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ABSTRACT Social graphs have been widely used for representing the relationship among users in online
social networks (OSNs). As crawling an entire OSN is resource- and time-consuming, most of the existing
works only pick a sampled subgraph for study. However, this may introduce serious inaccuracy into the
analytic results, not to mention that some important metrics cannot even be calculated. In this paper, we crawl
the entire social network of Swarm, a leading mobile social app with more than 60 million users, using
a distributed approach. Based on the crawled massive user data, we conduct a data-driven study to get a
comprehensive picture of the whole Swarm social network. This paper provides a deep analysis of social
interactions between Swarm users, and reveals the relationship between social connectivity and check-in
activities.

INDEX TERMS Social network analytics, Swarm app, social graph, user-generated contents.

I. INTRODUCTION
Nowadays online social networks (OSNs) have become
extremely popular around the world, and have attracted bil-
lions of users [23]. To gain a deep understanding of an OSN,
social graphs have been widely used for describing and ana-
lyzing the interactions between users [12], [13], [21], [26],
[32], [34], [47], [50], [54]. They have been adopted in stud-
ies of data placement [22], [56], information diffusion [27],
cloud computing [5], trustworthy distributed computing [33],
and social data delivery [51].

Most of the mainstream OSNs have applied a per-IP
address rate limit, which controls for example how many
requests are allowed to be sent per hour from a unique IP
address. Therefore, it would take lots of time and network
resources to crawl the entire social graph of a large-scale
OSN. Due to this, most of the existing works have chosen
to pick a sampled subgraph for study, unless the authors have
direct access to the back-end of the OSN service [1], [34],
[47], [54]. Examples of sampling algorithms include Breadth-
First Search (BFS) [48] and Metropolis-Hastings Random

Walk (MHRW) [13]. Because a sampled subgraph can only
provide a partial view of anOSN, the analysis results based on
the subgraphs may be biased and may not precisely represent
all the key features of the OSN [48].

This work aims at providing a comprehensive view of
a mainstream OSN that consists of tens of millions nodes.
We choose Foursquare’s Swarm app, a dedicated mobile
social app with more than 60 million users around the world.
In order to speed up the data collection, we launched a
number of servers with different IP addresses. These servers
collaborated with each other to fetch the user data, using
the crowd crawling framework [10]. We were able to crawl
the whole Swarm network within 40 days in 2015. For each
user, our data set records her profile page and a complete
list of her friends. Based on the data set, we create the
entire social graph of Swarm, and calculate the key graph
metrics, including the degree, clustering coefficient, assor-
tativity, PageRank, connected components and communities.
In addition, we study the app usage, taking the check-in func-
tion as an example, and propose a classification algorithm
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FIGURE 1. Screenshots of the Swarm App. (a) Profile. (b) Check-in. (c) Mayorship. (d) Virtual coins.

for predicting active users. We have made the anonymized
data set publicly available via https://github.com/
chenyang03/Swarm_dataset.

Our contributions are summarized below.
• We perform a demographic analysis that investigates
the composition of Swarm users from different aspects,
including gender, location and their privacy concerns.
This gives an informative overview of Swarm users.

• We create the entire social graph of Swarm without
directly accessing the back-end of the Swarm site, and
conduct a comprehensive analysis of the social interac-
tion between Swarm users. Compared with the analysis
results based on subgraphs, our work demonstrates the
need for studying the entire social graph.

• Our work discovers the predictability of user behav-
ior by investigating Swarm users’ check-in activities.
We have found that a user’s social connections and pro-
file can be used to accurately predict a user’s activeness
in terms of the number of check-ins.

The rest of this paper is organized as follows. We discuss
the background of the Swarm app, and the procedure of data
collection in Section II. We analyze the collected massive
Swarm data in Section III. We review the related work in
Section IV, before we conclude the work in Section V.

II. BACKGROUND AND DATA COLLECTION
Since 2009, Foursquare [38], [39], [44] has been a leading
site for the combination of location-based services (LBS)
and mobile social networking. Different from traditional
OSNs, such as Facebook and LinkedIn, all activities on
Foursquare are related to certain venues, a.k.a., points of
interest. In May 2014, the original Foursquare was split into
two apps, i.e., Foursquare City Guide and Swarm. The brand
new Foursquare City Guide app acts as a Yelp-like plat-
form for discovering and posting comments on new places.

Differently, most of the classic functions of the original
Foursquare app, such as check-in and mayorship, are inte-
grated into the new Swarm app. Swarm focuses on serving
mobile users by engaging them in location-centric activities.
Swarm users can share their locations through the social
network. Note that Swarm does not offer any interface for
desktop users to conduct check-ins or make friends. Fig. 1(a)
shows the profile page of a Swarm user. If you click the
‘‘friends’’ box, you can obtain the full friend list of this user.

The primary way of content publishing in Swarm is known
as ‘‘check-ins’’. As shown in Fig. 1(b), a user can conduct
a check-in to publish the real-time location, and this infor-
mation will be shown on the timelines of his Swarm friends.
Accordingly, a Swarm user can browse the location history
of each of his friends. To make a check-in informative, a user
can attach a ‘‘sticker’’ to the check-in to express his feel-
ing or indicate what he is doing, for example, drinking a beer.
By using the cross-site linking function [8], the check-ins can
be automatically shared to other social networks including
Facebook and Twitter.

There are two types of incentives in Swarm to encourage
users to check in more often. A user can play location-based
games with other users, e.g., competing for the ‘‘mayorship’’
crown of a certain place by visiting the place more frequently.
In Fig. 1(c), we can see a user has seized the mayorship
crown after conducting a check-in. Meanwhile, Swarm pro-
vides virtual coins for users according to their activities.
The more active the user is, the more coins she would earn.
Fig. 1(d) shows a ‘‘leaderboard’’ which ranks a user and
his friends based on the amount of coins. Since June 2016,
virtual coins can be used for getting discounts when con-
ducting check-ins at certain businesses.1 This provides

1https://www.theverge.com/2016/9/13/12896836/foursquare-swarm-
deals-update-version
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a viable economic incentive for Swarm users to undertake
more check-ins.

We use the social graph to analyze the social interactions
between massive Swarm users. To obtain a snapshot of the
entire social graph of Swarm, we need to crawl the data
of all 60+ million Swarm users. This task is not trivial,
because Swarm applies a strict rate limit for each IP address,
which prevents us from obtaining massive user data in a
short time. For each user’s data, we use the official Swarm
API to conduct the crawling. Each Swarm user has a unique
numeric ID, and the IDs are assigned successively. Therefore,
we can register a new Swarm account to get the maxi-
mum ID, denoted by max_uid . In order to deal with the
IP-based rate limit, we launched 40 crawlers in paral-
lel. Each crawler was deployed on a virtual instance of
the Microsoft Azure platform, with a unique IP address.
We split the whole ID range [1,max_uid] evenly into
40 chunks, with each crawler taking care of one
chunk.

From August 1 to September 10 in 2015, we crawled all
62.6 million Swarm users’ profile pages and friend lists.
Note that we respect the privacy of Swarm users that we
only crawled the publicly-accessible information. Based on
the crawled friend lists of all Swarm users, we model the
entire Swarm network using an undirected social graph G =
(V ,E). V is the set of all Swarm users, and E is the set of
social connections between users. A node in V represents a
user, and an edge in E represents a social connection. For
any two nodes v1 ∈ V and v2 ∈ V , an edge e ∈ E
between them indicates that these two users are friends in
the Swarm network. The degree of a node in G indicates the
number of friends the corresponding user has. The cluster-
ing coefficient (CC) of a node in G denotes the fraction of
pairs of the node’s neighbors that are directly connected to
each other. The clustering coefficient of node i is defined as
follows:

Ci =


2ei

ki(ki − 1)
ki > 1

0, ki ∈ {0, 1}
(1)

where ki is the degree of node i, and ei is the number of
connected pairs between any two neighbors of i.
The social graph G we create has 62,602,899 nodes and

777,559,146 edges. To the best of our knowledge, this is the
first measurement-based work that analyzes the entire social
graph of a mainstreammobile social network without directly
accessing the back-end of the site. Ourmethod can be adopted
by scholars and third-party application providers to crawl and
analyze the entire social graph of Swarm or other similar
social networks.

III. DATA ANALYSIS
In this section, we study the behavior of Swarm users using
the data set described in Section II. Based on the user profiles,
we first conduct a demographic analysis in Section III-A, and
then demonstrate the necessity of getting the entire social

graph in Section III-B. After that, we measure a series of key
graphmetrics in Section III-C, and investigate the predictabil-
ity of the check-in behavior in Section III-D.

A. DEMOGRAPHIC ANALYSIS
To understand the composition of Swarm users, we analyze
several key information fields of user profiles. We first look
at the gender distribution. Among all Swarm users, 51.07%
of them are male, 41.43% are female, and 7.50% do not want
to disclose their gender information.

Regarding user location, 89.69% of Swarm users have
filled out the optional ‘‘location’’ field. We use the Google
Geocoding API2 to interpret the country information from the
user input. According to our study, 24.13%, 11.68%, 7.17%
and 5.90% of Swarm users come from the USA, Turkey,
Indonesia and Brazil, respectively. The users from these four
countries cover about half of the entire Swarm population.

A Swarm user is allowed to link her Swarm account with
her Facebook and/or Twitter accounts. By enabling this cross-
site linking function [8], a user can publish her check-ins on
other OSNs automatically. Meanwhile, she can import the
friend lists from the linked OSN accounts [55]. We can see
that 56.76% of users have linked their Swarm profiles to their
Facebook and/or Twitter accounts.

We also group the users according to their privacy con-
cerns. In addition to the mandatory information fields, there
are five optional fields in a Swarm user’s profile, i.e., last
name, gender, profile photo, home location, and biography.
We consider a user as an ‘‘open’’ user, if she has filled out at
least four out of these five fields. Similarly, we regard a user
as ‘‘cautious’’, if at least 4 fields are left empty. Accordingly,
1.70% of users are ‘‘open’’, 40.01% are ‘‘cautious’’, and the
others are grouped into ‘‘other’’.

B. SIGNIFICANCE OF GETTING THE ENTIRE
SOCIAL GRAPH
In this subsection, we explain why getting the entire social
graph is essential for conducting an unbiased analysis of
the social network. In the literature, people usually use a
sampled subgraph, for example, a small portion of nodes
and the corresponding edges. The well-known breadth-first
search (BFS) algorithm starts from adding a selected user to
a queue. In each step, we pick the first user from the head
of the queue, download her profile, and obtain a list of her
friends. These friends, if they have not been crawled, will be
added to the queue. This procedure will be repeated until the
queue is empty, or until we have collected enough user data.
BFS has been widely used, such as in [14], [15], and [50],
given its simplicity. However, such a sampling method is
biased, and has a higher probability of including more nodes
with relatively high degrees in the data set. As a result,
the sampled users cannot represent the entire user population.
On the other hand, scholars have proposed some ‘‘unbiased
sampling’’ algorithms, such as Metropolis-Hastings Random

2https://developers.google.com/maps/documentation/geocoding
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TABLE 1. Mean and variance of the average degrees and clustering coefficients of different subgraphs.

Walk (MHRW) [13]. MHRW is a Markov-Chain Monte
Carlo (MCMC) algorithm that gets a random sample of nodes
according to the degree distribution of the nodes. Unfortu-
nately, MHRW only works on connected graphs.

We execute the BFS and MHRW algorithms on G, respec-
tively, to sample different subgraphs. To validate whether a
sampled subgraph can represent the entire network, we use
two metrics, degree and clustering coefficient, to compare
the analysis results between the entire G and the subgraphs
obtained by BFS and MHRW, respectively. We start BFS and
MHRW from a randomly selected node within the largest
connected component (LCC). Since the Swarm network is not
a connected graph, the sampling results will not include any
nodes from other connected components. For both BFS and
MHRW, we examine the cases where 1%, 5% and 10% of
all nodes are sampled, respectively. For each algorithm with
a specified sampling percentage, we run it 500 times inde-
pendently and report the mean and the variance of both the
average degree and clustering coefficient metrics in Table 1.

We find that neither BFS nor MHRW could accurately
represent the average degree of the entire Swarm network.
In the case of BFS, the average degree of the sampled nodes
is much larger than that of the LCC, not to mention the
entire Swarm network. The value of average degree gets
higher, if less samples are collected. For MHRW, we find that
the mean values of average degrees of sampled subgraphs
remain stable, regardless of the size of the sample data,
and is very close to the average node degree of the LCC.
These results confirm that MHRW can accurately capture
the average degree of a connected component. However, this
value is still nearly two times of the entire Swarm graph.
A similar phenomenon can be observed for the measure-
ments of the mean values of average clustering coefficients.
MHRW can characterize the average clustering coefficient of
the LCC precisely, but not the entire Swarm network.

Regarding the variance, the MHRW algorithm can always
achieve a small variance for both average degrees and clus-
tering coefficients. In other words, MHRW can obtain the
average degree and clustering coefficient of the LCC in an
accurate and stableway. In contrast, the BFS algorithm results
in a much larger variance.

In addition to the inaccuracy caused by the node sam-
pling, some widely used methods in graph analysis, such
as community detection [2] and PageRank calculation [40],
require the information of all nodes and edges of the graph.
Therefore, they cannot be undertaken, given a sampled subset
of the graph. Therefore, our efforts on getting the entire social
graph are necessary for obtaining a comprehensive view of

the Swarm network. In Section III-C, to understand the social
interactions between users, we will study the entire Swarm
social graph from different angles.

C. ANALYZING THE ENTIRE SWARM GRAPH
To analyze the entire Swarm graph with tens of millions
of nodes, we use the Stanford Network Analysis Plat-
form (SNAP) [29], which is a general purpose library for
social network analysis. It is implemented in C++ and can
scale up to large networks with millions of nodes. We are
interested in the following graph metrics, i.e., degree, cluster-
ing coefficient, assortativity, PageRank and connected com-
ponents. Also, we analyze the communities formed by users.

1) DEGREE AND CLUSTERING COEFFICIENT
Fig. 2(a) shows the probability density function (PDF) of the
degrees of all nodes. We can see that 37.69% of nodes have
a degree larger than 5, while 30.19% of nodes have a degree
larger than 10. Although the average node degree in Swarm
is 24.84, there are still 26,607,755 nodes (42.5% of all nodes)
which do not have any friend.

Earlier results have shown that inmost of the representative
OSNs, such as Facebook [50], Orkut [32], and Flickr [32],
the degree distribution can be approximated by a power-law
distribution. This finding has been widely used for studying
natural and man-made phenomena. To figure out the best
fitting for the degree distribution of Swarm social graph,
we compare the results of four well-known distributions,
i.e., power law (P(k) ∝ Ck−α) [9], power law with expo-
nential cutoff (P(k) ∝ Ck−αe−λk ) [9], lognormal (P(k) ∝

e−
(ln k−µ)2

2τ2 ), and two-term exponential (P(k) ∝ aebk + cedk ).
To compute the fitting parameters and the accuracy, we use
the cftool (Curve Fitting Tool) in MATLAB 2016a, and quan-
tify the fitting accuracy using a metric called the coefficient
of determination (the R2 value). The R2 value is between
0 and 1. When the value is 1, it means the model fits the
data perfectly. Based on our investigation, the degree distri-
bution of Swarm can be approximated by a power-law model
(C = 13.65, α = 0.8958), with the corresponding R2 value
of 0.9809. According to Fig. 2(a), the statistical model fits the
distribution very well.

We compare the average degree between different groups
of users. According to Fig. 2(b), the average degree of male
users is 27.28, while that of female users is 24.84. Male
Swarm users tend to make more friends online than female
ones. For the users who choose not to disclose the gender
information, the average degree is only 9.13. They tend to
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FIGURE 2. Degree. (a) Probability density function. (b) Gender. (c) Country. (d) User type. (e) Cross-site linking. (f) Privacy.

make fewer friends as they care more about privacy. We also
group the users by home country. In Fig. 2(c), we show
the average degrees of users from the top 10 countries with
the highest Swarm population. On average, a user in Turkey
has more than 70 friends. However, in United States, United
Kingdom, and India, a user has less than 10 friends on
average. Some most dedicated and passionate Swarm users
are known as superusers.3 These superusers are responsible
for verifying the correctness of the location information.
According to Fig. 2(d), being a superuser is an indicator of
having a higher node degree. In addition, for a user who links
her profile to Facebook/Twitter accounts (Fig. 2(e)), she has
a higher chance to have more friends. For a user who cares
more about her privacy, by contrast, she tends to have fewer
friends in Swarm (Fig. 2(f)).

Fig. 3(a) shows the cumulative distribution function (CDF)
of CC in the Swarm network. The average CC is 0.080.
We also perform a group-based study on the average CC.
According to Fig. 3(b), the average CC of male users is 0.080,
while that of female users is 0.087. Therefore, male users
have a slightly smaller average CC than female users.We also
group the users by home country in Fig. 3(c). For Russian
users, the average CC of a node is 0.145. However, for
Indian users, the average CC of a node is 0.068. We also
see that being a superuser (Fig. 3(d)) or linking the profile
to Facebook/Twitter accounts (Fig. 3(e)) is an indicator of

3Superusers in Foursquare/Swarm: https://support.foursquare.com/hc/en-
us/articles/201066260-Superusers-SUs-

TABLE 2. Swarm v.s. other mainstream OSNs.

having a higher CC. Meanwhile, for a Swarm user who cares
more about her privacy, she tends to have a smaller value
of CC (Fig. 3(f)).

There are several existing studies about social graphs
of OSNs. Unfortunately, many of them are based on sub-
graphs, including [14], [15], [21], [32], and [50]. Because
we need data sets that cover the entire networks for com-
parison, we select the following two mainstream OSNs,
i.e., Cyworld and Renren. Ahn et al. [1] have analyzed
the Cyworld data set provided by SK Communications,
the provider of the Cyworld service. It is an anonymized snap-
shot of the entire Cyworld network captured in Nov. 2005.
The data set contains 191 million social connections among
12 million users. Zhao et al. [54] have explored a data set
provided by the Renren network. The data set covers the
timestamped creation activities of all 19,413,375 users and
199,563,976 social connections of the Renren network during
November 21, 2005 and December 31, 2007.

As shown in Table 2, our comparison focuses on two
metrics, i.e., degree and clustering coefficient. The average
degree of Swarm is much smaller than that of Cyworld, but
larger than that of Renren. Regarding the average cluster-
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FIGURE 3. Clustering Coefficient. (a) Clustering coefficient distribution (CDF). (b) Gender. (c) Country. (d) User type. (e) Cross-site linking. (f) Privacy.

ing coefficient, the corresponding value of Swarm is much
smaller than both Cyworld and Renren. Therefore, nodes in
Swarm are not tightly connected with each other. We believe
that it is because Swarm is not only for interacting with
old friends, but also for playing location-centric games with
strangers, and possibly making new friends.

2) ASSORTATIVITY
Degree assortativity rdeg [35] is a widely-used metric for
quantifying the probability of connecting a node with other
nodes with similar degrees. It is defined as the coefficient
of the Pearson correlation between the degrees of any two
connected nodes. The value of rdeg is between −1 and 1.
A positive value indicates that there is a correlation between
nodes of similar degrees. Such a graph is considered to fol-
low an assortative mixing pattern. On the contrary, a graph
with a negative rdeg is considered to have a disassortative
mixing pattern. According to [36] and [37], most social net-
works show an assortative mixing pattern. The rdeg value
of the Swarm network is 0.40, which is larger than the
social networks studied in the existing literature includ-
ing [1], [21], [32], [36], and [50]. Therefore, the Swarm social
graph demonstrates a clear assortative mixing pattern of
degree.

By grouping Swarm users based on demographic infor-
mation such as gender and home country, we study the
assortative mixing according to discrete characteristics.
We first classify all users into m groups. Accordingly, we get
an m×m symmetric mixing matrix E . As in [36], for such an

TABLE 3. Mixing matrix (gender).

undirected graph, each edge has a pair of unique X-end and
Y-end. We define eij as the fraction that a randomly chosen
edge is connected to a node of group i at its X-end and group
j at its Y-end. We count the edges that are connected to group
i at its X-end, and the ones that are connected to group j at its
Y-end. The sums are denoted by ai =

∑
j eij and bj =

∑
i eij,

respectively. As in [35], the assortative coefficient can be
calculated as

r =

∑
i eii −

∑
i aibi

1−
∑

i aibi
(2)

This metric is similar to but distinct from rdeg. Table 3 and
Table 4 list the mixing matrix based on users’ gender and
home country information, respectively. For the gender-based
mixing matrix, we ignore the users who have not provided
their gender information. We find that a female user has a
higher chance to make friend with a male user rather than
another female user. Therefore, rgender is as small as 0.104.
For the home country-based mixing matrix, we only consider
users coming from the top 10 countries with highest Swarm
population. We observe that users tend to connect with other
users coming from the same home country, as rcountry is as
large as 0.865.
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TABLE 4. Mixing matrix (country).

FIGURE 4. Analyzing the swarm social graph. (a) Size of connected components. (b) Path length (LCC). (c) Robustness.

3) PAGERANK
PageRank is a metric that quantifies the importance of dif-
ferent nodes in the network [40]. It has been applied by the
Google search engine to rank the websites. For any node of
the network, its PageRank value is between 0 and 1. A larger
PageRank value indicates that the corresponding node ismore
important. PageRank has been widely used in quantifying
the user influence [27], [45], [46], [49] in social networks.
Based on the Swarm social graph, we are able to compute
the PageRank of all nodes. We define the users within the
top 0.1% PageRank values as influentials, and use a set P to
present them. We aim to find some unique characteristics of
the influentials.

Regarding the graph metrics, the average degree of nodes
inP is 655.30, which ismuch larger than that of thewhole net-
work. Meanwhile, the average clustering coefficient is 0.041,
which is instead much smaller than that of the whole network.
We believe this is because the influentials are globally well
connected and their friends are not densely connected with
each other.

Also, we can see the influentials has a different com-
position of gender and country. In P, 68.55% of users are
male, 26.94% are female, and the rest do not provide any
gender information. Therefore, there are more male users
in P. Regarding the country composition, we can see that
the top three countries are USA (34.42% of all users),
Indonesia (7.90%), and Russia (4.80%). Regarding the cross-
site linking option, 87.32% of the influentials have enabled
this option, which is much larger than that of all Swarm
users (56.76%).

4) CONNECTED COMPONENTS
A big social graph might have a number of connected com-
ponents. A connected component is an undirected subgraph.
In a connected component, any two nodes are connected
to each other by paths, and any of these nodes is not con-
nected to any additional node in the supergraph. There are
35,690,080 nodes (57.01% of all nodes) in the LCC, or, in the
giant component. Also, 42.50% of Swarm nodes are single-
tons [25], i.e., nodes with zero degree. Among the nodes with
a non-zero degree, only 305,064 of them do not belong to the
LCC. The exceptional cases cover only 0.49% of all Swarm
nodes. As in [25], we call these nodes ‘‘middle region’’.
As shown in Fig. 4(a), there is a single giant connected com-
ponent in the Swarm network. The sizes of the second, third,
fourth, and fifth largest connected components are 1614, 407,
301, and 301, respectively.

Fig. 4(b) shows the probability density function of the
shortest-path distances of node pairs in the LCC. We can see
the average distance is only 5.12. The 90th percentile value
of the distances is 6, which is also known as the effective
diameter [28] of the LCC. This means for most of the node
pairs in the LCC, they can reach each other within 6 hops.

As in [32], we further examine whether the ‘‘core’’ of the
Swarm network is densely connected. We remove from the
entire social graph the nodes with the highest degrees, and
analyze the remaining nodes and edges. Starting from 0.01%,
we remove up to 30% of the nodes with the highest degrees.
The distribution of the connected components in the remained
network is illustrated in Fig. 4(c). Note that we classify
all connected components into three groups, i.e., the LCC,
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FIGURE 5. Community structure of the swarm network. (a) Modularity v.s. δ. (b) Coverage of top 100 communities. (c) Communities edges.

the singletons, and the middle region. We can see that even
when 20% of highest degree nodes have been removed,
we still have a giant LCC, covering over 30%of the remaining
nodes. Obviously, the graph is still well connected even when
we remove 20% of the nodes with the highest degrees. Once
we remove 30% of these nodes, the LCC is split into a
large number of connected components with few nodes in
each component. We can see a much smaller LCC, and the
percentage of the middle region nodes has become much
larger.

5) COMMUNITY DETECTION
‘‘Communities’’ widely exist in different types of online
social networks [26], [54]. A community is a group of densely
connected nodes. The inter-community connections are rela-
tively sparse. For the Swarm network, we study how users
form communities in such a large network. Here we exclude
singletons, as each of them will form a single-node commu-
nity. We focus on the rest 35,995,144 nodes and all the edges
between them.

To detect the communities in the Swarm network, we use
the Louvain algorithm [2], which has been applied for dif-
ferent types of networks [16], [18], [54]. This algorithm can
scale to a network with tens of millions of nodes. To evaluate
the accuracy of the community detection, a metric known
as modularity has been widely used. The value of modular-
ity is between −1 and 1. It measures the density of intra-
communities links as compared to inter-community links.
Precisely, if there are k communities, modularity Q can be
calculated as

Q =
k∑
i=1

(eii − a2i ) (3)

In Eq. 3, eij refers to the fraction of edges with one end
nodes in community i and the other in community j, while ai
represents the fraction of ends of edges that are attached to
nodes in community i, i.e., ai =

∑
j eij. A larger modularity

indicates the network can be clustered into communities in
a better way. According to [26], modularity ≥ 0.3 means
the corresponding network has a viable community structure.
As discussed in [54], the δ parameter is a critical tuning

TABLE 5. Percentage of users in top 3 countries per community.

parameter for the Louvain algorithm. According to Fig. 5(a),
we can see that different δ values will lead to a similar
modularity. Moreover, among all δ values we have chosen,
the corresponding modularity values are always much larger
than 0.3. Therefore, the Swarm users can be grouped into
communities well.

Given the similarity among modularity values, we set δ
as 0.1 for our further study. We can see that the investigated
nodes can be clustered into 137,470 communities. Although
the number of communities is large, only a few of them
have many nodes. We plot the cumulative node percentage
of the largest 100 communities in Fig. 5(b). We can see the
top 20 communities have covered 86.3% of all investigated
nodes, and top 100 communities have covered 99.6% of all
investigated nodes. Therefore, most of the nodes belong to a
small number of communities.

For an edge connecting two nodes within the same commu-
nity, we denote it as an ‘‘intra-community’’ edge. Differently,
for an edge connecting two nodes from different communi-
ties, we call it an ‘‘inter-community’’ edge. In Fig. 5(c), for
each of the top 10 communities, we show the average intra-
community degree and inter-community degree. We can see
that for all these 10 communities, the value of the average
intra-community degree is significantly larger than that of the
average inter-community degree.

We further dive into the largest communities, and study the
relationship between these communities and the users’ home
countries. According to Table 5, each community is dominant
by one or a small number of countries. In other words, users
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FIGURE 6. Check-ins of swarm users. (a) Probability distribution function. (b) Gender. (c) Country. (d) User type. (e) Cross-site linking. (f) Privacy.

have a higher chance to connect with other users coming from
the same country. Moreover, the dominant countries in the
top four communities are United States, Turkey, Brazil and
Indonesia, respectively. As we have shown in Section III-A,
these four countries have the largest Swarm population.

6) SUMMARY
In short, the Swarm social graph has an average node degree
of 24.84, and the degrees reveal a clear assortative mixing
pattern. The nodes in this graph are loosely connected with
each other.More than 57% of all the nodes belong to the LCC,
and the users can be divided well into communities.

D. GO BEYOND THE GRAPH: CHECK-INS
OF SWARM USERS
In this subsection, we focus on the check-in function, which is
the core function of the Swarm app, and the principal form of
user-generated contents (UGCs). A user can share her latest
check-ins with her Swarm friends. Meanwhile, users can
compete for the ‘‘mayor’’ for a certain place, by conducting
more check-ins. This motivates the users to post more. In this
subsection, we investigate the check-in activities by referring
to different groups of Swarm users, and study the relationship
between a user’s activeness in check-ins and the user’s profile
and social connections.

Fig. 6(a) shows the probability density function of the
number of check-ins of all Swarm users. About 44.88% of
users have conducted check-ins, while a Swarm user has
undertaken 120.94 check-ins on average. Top 1% of Swarm
users have performed 34.73% of all check-ins, and top 5%

of Swarm users have conducted 70.26% of all check-ins.
We also find that the number of check-ins follows a power-
law distribution (C = 15.21, α = 1.068). The corresponding
R2 value is 0.9997.

We classify users into groups. According to Fig. 6(b), male
users have published on average 133.34 check-ins, while
female users have posted 119.51 check-ins. Therefore, male
users are more active in conducting check-ins. Differently,
in microblogging networks like Twitter, female users publish
more tweets than male users [8]. Among different countries
in Fig. 6(c), users from Russia and Malaysia are more active
in performing check-ins. On average, a user in Russia has
published 206.96 check-ins, while in India, this number is
only 60.84. According to Fig. 6(d), there is a significant
difference between superusers and ordinary users, in terms
of the number of published check-ins. As shown in Fig. 6(e),
enabling the cross-site linking function indicates a larger
number of check-ins in general. This is consistent with our
earlier findings in [8]. Finally, as shown in Fig. 6(f), open
users tend to publish more, while cautious users would prefer
to publish less.

Based on the number of published check-ins, we are able
to classify all Swarm users into two groups, i.e., a group
of ‘‘active users’’ and another group of ‘‘less active users’’.
By examining the data set, we find that each of the top 10%
of users has conducted more than 220 check-ins, and each
of the top 20% of users has posted more than 55 check-ins.
Accordingly, if a user has conducted more than 55 check-ins,
we will consider her as an ‘‘active user’’. Otherwise, this user
will be selected as a ‘‘less active user’’. We further investigate
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FIGURE 7. Comparison between Active and Less Active users based on graph metrics. (a) Degree. (b) Clustering coefficient. (c) PageRank.

TABLE 6. Comparison between active and less active users based on optional profile fields.

that to what extent a user’s social connections and optional
profile fields will affect the classification of users. In other
words, we investigate the feasibility of predicting whether
a user is active or not based on her social connections and
optional profile fields.

In practice, we apply supervised machine learning tech-
niques to train a classifier. We select a number of key features
to distinguish users from different groups. There are two
categories of these features as follows.
• Graph metrics (4 features): We use three key graph met-
rics as features, including the degree, clustering coeffi-
cient, and the PageRank values of a user. Also, we use
the community number of a user as one of the features.
For a singleton, the corresponding community number
will be set as −1.

• Profile fields (7 features): We pick several optional
fields in a users profile, and see whether each field is
enabled or not. These fields include gender, location,
profile photo, Facebook account, Twitter account, biog-
raphy, and last name. If a field is enabled, we set the
feature value as 1. Otherwise, we set the feature value
as 0.

We randomly pick 2000 active users and 2000 less active
users to form a training and validation data set. Using some
features related to the social graph, we can see significant
differences between active users and inactive users. In Fig. 7,
we compare active users and less active users in terms
of degree, clustering coefficient and PageRank. Similarly,
we compare active users and less active users by check-
ing whether a certain optional profile field in Table 6 is
enabled. We find significant differences between these two
user groups in profile fields of biography, profile photo,
Facebook account and Twitter account.

We use a number of classic machine learning algorithms,
including XGBoost [6], support vector machine (SVM) [19],
C4.5 Decision Tree [42], Random Forest [3], and
Naive Bayers [24]. XGBoost is an emerging scalable tree

boosting system. It has been widely used in different machine
learning contests. Besides XGBoost, the other algorithms are
evaluated using Weka [17]. For SVM, we apply both SVM
with radial basis function kernel (SVMr) and SVM with
polynomial kernel (SVMp).

To evaluate the prediction performance of the classifiers,
we apply the following three metrics, i.e., precision, recall,
and F1-score. Precision means the fraction of predicted active
users who are really active. Recall means the fraction of active
users who are accurately detected. As in Eq. 4, F1-score is
defined as the harmonic mean of precision and recall.

F1 = 2 ·
precision · recall
precision+ recall

(4)

Once a set of parameters are determined, we can use
10-fold cross-validation4 to calcualte the precision, recall and
F1-score. For each algorithm, we carefully tune the parame-
ters, and record a set of ‘‘best’’ parameters which achieves
the maximum F1-score. Please refer to Tables 7 and 8 for the
parameters.

After the models have been trained, we randomly select
1000 active users and 1000 less active users to form a test data
set. We use the trained models to predict each user’s category.

According to our results shown in Table 7, we have found
that XGBoost performs the best with an F1-score of 0.883.
Therefore, we can conclude that the selected features could
accurately distinguish active users from less active users.

To measure different features’ discriminative power,
we show the top 10 features ranked by χ2 (Chi Square)
statistic [52]. As shown in Table 9, we can see that the
most discriminative features are PageRank, degree, clustering
coefficient, and the community information, which are all

4In 10-fold cross-validation, the training and validation data set is ran-
domly divided into 10 subsets with equal size. Of the 10 subsets, a single
subset is retained as the validation data for evaluating the model, and the
remaining 9 subsets are used for training. The cross-validation process is
repeated 10 times, with each of the 10 subsets used once as the validation
data.
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TABLE 7. Prediction of active users.

TABLE 8. Parameters set for XGBoost.

TABLE 9. χ2 statistic.

determined by the social graph. Therefore, the social con-
nections and optional profile fields of a Swarm user could
provide a viable hint for her check-in activities. Intuitively,
we believe that this is because the network will spread the
check-in information to a user’s friends via the social net-
work. Therefore, the social network encourages Swarm users
to conduct more check-ins.

IV. RELATED WORK
Social network analytics has become a widely used tool to
understand the connections among OSN users [1], [21], [32],
[50], [54]. Nowadays the sizes of the OSNs are growing
rapidly. This makes the analysis of the entire social graph of a
mainstream OSN a challenging problem. Ugander et al. [47]
have studied the social network of active users of Facebook in
May 2011, covering 721 million users. Myers et al. [34] have
analyzed the social graph of Twitter in 2012 with 175 million
active users and about 20 billion edges. Unfortunately, these
data sets are provided by the OSN service providers directly.
In most cases, researchers from the academia or third-party
application providers are not able to access such data sets,
and have to crawl the publicly-accessible data from the OSN
sites. Gabielkov et al. [12] aimed to crawl the entire Twitter
population, and study themacroscopic anatomy of the Twitter
social graph. However, more than 5% of Twitter users are
‘‘protected’’, i.e., their connections to other users are unavail-
able to the public. As a result, the entire Twitter graph cannot

be collected by crawling the public data. Gong et al. [14] have
crawled the Largest Weakly Connected Component (LWCC)
of Google+. The crawled data set covers about 70% of
all users. Similarly, Gonzalez et al. [15] have crawled five
snapshots of LWCC of Google+ using BFS. Still, the entire
Google+ social graph has not been obtained.
Given the difficulty in obtaining an entire network with

millions of users, people might crawl a subset of such net-
works, and investigate the crawled subset such as [21], [32],
and [50]. There are several proposals on how to sample
a representative subset, such as BFS, Metropolis-Hastings
Random Walk [13] and Frontier Sampling [43]. However,
according to our earlier study in [48], none of these algo-
rithms can preserve all key properties of the original graph.
As we have shown in Section III-B, getting the entire graph is
necessary to conduct a comprehensive and accurate analysis
of key properties of the graph.

Due to the rapid development of mobile computing tech-
nologies, a number of social networking services, such as
WeChat, Swarm, Momo and WhatsApp, are only avail-
able in mobile platforms. However, there are very few
work on conducting data-driven analysis of these networks.
Huang et al. [20] have collected WeChat traces from a com-
mercial 3G network in China, including about 150K WeChat
users, and further investigated the user and service/task activ-
ities. Chen et al. [7] have crawled over 8 million user pro-
files and around 150 million location updates from Momo,
and studied the spatial-temporal usage patterns of Momo
users. Fiadino et al. [11] have analyzed an entire week of
WhatsApp traffic traces collected at the core of an Euro-
pean nation-wide cellular network, and presented a large-
scale traffic characterization of WhatsApp. Noulas et al. [39]
have crawled a data set of about 700K Foursquare users, and
studied spatial-temporal patterns of these users. Qiu et al. [41]
have explored social messaging groups of WeChat, focusing
on the lifecycle, the change in group structures over time and
the membership cascade process. Their study is based on an
anonymized data set provided by WeChat. Differently, our
work has demonstrated how to efficiently crawl and analyze
an entire mobile social network with more than 60 million
users around the world, and how to analyze this network from
different aspects.

V. CONCLUSION AND FUTURE WORK
In this paper, we have conducted a data-driven analysis for the
entire Swarm network. Our study covers 62.6 million Swarm
users, and we investigate the social connections among them.
By analyzing such a huge social graph, we use several classic
graph metrics to characterize how people in Swarm connect
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with each other. Furthermore, we study the check-ins, the pri-
mary form of UGCs in Swarm. We use some graph-based
and profile-based features to accurately predict the check-
in activities. For future work, we aim to study the following
issues.

First, as we have obtained the entire social graph of a
mobile social network, we will use this graph as the ‘‘ground
truth’’ to evaluate different applications related to big social
graphs. Potential applications include large-scale graph pro-
cessing systems [31], and embedding a huge graph into
geometric spaces [53]. Also, we could study the malicious
account detection problem, by using social graph-based algo-
rithms such as SybilRank [4].

Second, in this paper, we only study the number of check-
ins, as detailed check-in history of a user is not available to the
public. To explore further into the spatial-temporal properties
of Swarm users, we need the detailed check-in history of
some users. As in [30], we will recruit some volunteers who
could give us access to their check-in data, and we plan to fur-
ther investigate the relationship between social connections
and user mobility.

Last but not least, we aim to understand the dynamic
natures of the Swarm network. We plan to do the data
crawling periodically to obtain a series of snapshots of the
network. We will further study how the network evolves.
Meanwhile, we are interested in the link prediction prob-
lem of the Swarm network. We aim to develop some algo-
rithms to predict potential social connections in an accurate
way.
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