113 research outputs found

    Semantic Systems. The Power of AI and Knowledge Graphs

    Get PDF
    This open access book constitutes the refereed proceedings of the 15th International Conference on Semantic Systems, SEMANTiCS 2019, held in Karlsruhe, Germany, in September 2019. The 20 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 88 submissions. They cover topics such as: web semantics and linked (open) data; machine learning and deep learning techniques; semantic information management and knowledge integration; terminology, thesaurus and ontology management; data mining and knowledge discovery; semantics in blockchain and distributed ledger technologies

    Revisiting the high-performance reconfigurable computing for future datacenters

    Get PDF
    Modern datacenters are reinforcing the computational power and energy efficiency by assimilating field programmable gate arrays (FPGAs). The sustainability of this large-scale integration depends on enabling multi-tenant FPGAs. This requisite amplifies the importance of communication architecture and virtualization method with the required features in order to meet the high-end objective. Consequently, in the last decade, academia and industry proposed several virtualization techniques and hardware architectures for addressing resource management, scheduling, adoptability, segregation, scalability, performance-overhead, availability, programmability, time-to-market, security, and mainly, multitenancy. This paper provides an extensive survey covering three important aspects-discussion on non-standard terms used in existing literature, network-on-chip evaluation choices as a mean to explore the communication architecture, and virtualization methods under latest classification. The purpose is to emphasize the importance of choosing appropriate communication architecture, virtualization technique and standard language to evolve the multi-tenant FPGAs in datacenters. None of the previous surveys encapsulated these aspects in one writing. Open problems are indicated for scientific community as well

    Radiation Damage to the diamond-based Beam Condition Monitor of the CMS Detector at the LHC

    Get PDF
    In the Beam Condition Monitor at the CMS experiment at the LHC, CVD diamonds are used as detectors. During Run 1 operation of the LHC, significant reduction of signal efficiency due to radiation damage was observed. The decrease was significantly stronger than expected. The so-called polarization effect is responsible for this signal reduction. Electric field deformations due to trapped charge carriers are shown in measurements using the transient current technique and compared with simulations

    Enhancing an embedded processor core for efficient and isolated execution of cryptographic algorithms

    Get PDF
    We propose enhancing a reconfigurable and extensible embedded RISC processor core with a protected zone for isolated execution of cryptographic algorithms. The protected zone is a collection of processor subsystems such as functional units optimized for high-speed execution of integer operations, a small amount of local memory for storing sensitive data during cryptographic computations, and special-purpose and cryptographic registers to execute instructions securely. We outline the principles for secure software implementations of cryptographic algorithms in a processor equipped with the proposed protected zone. We demonstrate the efficiency and effectiveness of our proposed zone by implementing the most-commonly used cryptographic algorithms in the protected zone; namely RSA, elliptic curve cryptography, pairing-based cryptography, AES block cipher, and SHA-1 and SHA-256 cryptographic hash functions. In terms of time efficiency, our software implementations of cryptographic algorithms running on the enhanced core compare favorably with equivalent software implementations on similar processors reported in the literature. The protected zone is designed in such a modular fashion that it can easily be integrated into any RISC processor. The proposed enhancements for the protected zone are realized on an FPGA device. The implementation results on the FPGA confirm that its area overhead is relatively moderate in the sense that it can be used in many embedded processors. Finally, the protected zone is useful against cold-boot and micro-architectural side-channel attacks such as cache-based and branch prediction attacks

    Radar Detection, Tracking and Identification for UAV Sense and Avoid Applications

    Get PDF
    Advances in Unmanned Aerial Vehicle (UAV) technology have enabled wider access for the general public leading to more stringent flight regulations, such as the line of sight restriction, for hobbyists and commercial applications. Improving sensor technology for Sense And Avoid (SAA) systems is currently a major research area in the unmanned vehicle community. This thesis overviews efforts made to advance intelligent algorithms used to detect, track, and identify commercial UAV targets by enabling rapid prototyping of novel radar techniques such as micro-Doppler radar target identification or cognitive radar. To enable empirical radar signal processing evaluations, an S-Band and X-Band frequency modulated, software-defined radar testbed is designed, implemented, and evaluated with field measurements. The final evaluations provide proof of functionality, performance measurements, and limitations of this testbed and future software-defined radars. The testbed is comprised of open-source software and hardware meant to accelerate the development of a reliable, repeatable, and scalable SAA system for the wide range of new and existing UAVs
    corecore