
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A task-efficient sink node based on embedded multi-core soC for
Internet of Things
Tie Qiu a,∗, Aoyang Zhao a, Ruixin Ma a, Victor Chang b, Fangbing Liu a, Zhangjie Fu c

a School of Software, Dalian University of Technology, Dalian 116620, China
b IBSS, Xi’an Jiaotong Liverpool University, Suzhou 215123, China
c School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China

h i g h l i g h t s

• TESN processes tasks in parallel. It has heterogeneous architecture, including one master core and seven slave cores.
• TESN adopts WLC to allocate tasks, which balances the load of each slave core and improves the tasks processing speed obviously.
• Compared with single core system, TESN effectively reduces the congestion situation.
• The performance of WLC based on multi-core processor is better than RR when the number of soft cores is more than two.

a r t i c l e i n f o

Article history:
Received 29 February 2016
Received in revised form
20 October 2016
Accepted 17 December 2016
Available online xxxx

Keywords:
Internet of Things
Sink node
Multi-core
Task allocation strategy
Load balance

a b s t r a c t

With the increase of collected information, the computing performance of single-core sink node for
Internet of Things (IoTs) cannot satisfy with the demand of large data processing anymore. Therefore, the
sink node which based on embeddedmulti-core SoC for IoTs andmaximizing its computing performance
has brought into focus in recent years. In this paper, we design a multi-core Task-Efficient Sink Node
(TESN) based on heterogeneous architecture and the Weighted-Least Connection (WLC) task schedule
strategy has been proposed to improve its efficiency. There are two types of cores in the sink node, master
core and slave cores. The master core deals with tasks allocation and the seven slave cores deal with data
processing. All of the cores are communicating with each other through mailbox. By considering each
core’s real-time processing information and computing performance, the proposedWLC can balance each
core’s load and reduce network congestion. The Xilinx V5 platform is used to evaluate the performance
of WLC and Round-Robin (RR) algorithms for multi-core sink node. The experiment results show that
the WLC strategy improves the processing speed obviously, achieves load balance and avoids large scale
congestion of sink node in the sensor networks of IoTs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Internet of Things (IoTs) is a huge integration of many fields [1,
2], including sensor networks, embedded systems, intelligent
control [3,4], data processing and fusion, task scheduling and
allocation [5,6] etc. The emerging application in IoTs are often
based onnetworks and sensing. Such as smart city and smart home.
In order to sense environmental factors, the large-scale nodes are
deployed in the distributed areas, include sink node and sensor
nodes [7]. Sensor nodes can collaborate monitoring, sensing and

∗ Corresponding author. Fax: +86 411 62274416.
E-mail address: qiutie@ieee.org (T. Qiu).

collecting environment information, which cover the geographic
region, and send collected data to sink node through multi-
hop [8,9]. Sink node is responsible for collecting and analyzing
the sensing data from other sensor nodes. It needs more powerful
computing and data processing generally. In recent years, multi-
core system has been used in dealing with larger data. Each
core runs synchronously and they coordinate with each other
to complete tasks. The way of parallel computing [10] greatly
improves the efficiency of sink node. Therefore, multi-core system
is essential for real-time system in IoTs.

With the development of innovative applications, IoTs [11,12]
has been applied in the field of industrial automation, transport
systems, cities etc. For example, in healthcare, IoTs plays a vital role
in collecting thousands of patients’ data andmonitoring the health
state of patients. To keep tabs on the location of medical devices,

http://dx.doi.org/10.1016/j.future.2016.12.024
0167-739X/© 2016 Elsevier B.V. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322327184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.future.2016.12.024
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:qiutie@ieee.org
http://dx.doi.org/10.1016/j.future.2016.12.024

2 T. Qiu et al. / Future Generation Computer Systems () –

patients, and personnel, many hospitals use IoTs. In the future,
the IoTs will be widely used in smart home, smart city, wearable
devices etc., which enables people to manage their daily lives with
more efficient monitoring and control.

Embedded multi-core SoC contains multiple executing cores,
which are integrated into a processor chip. Therefore, it is a parallel
processor with high computing performance. Embedded multi-
core SoC computes parallelly and synchronously, it can execute
complex computing [13,14] and dealing with big data processing.
Each core in embedded multi-core SoC is an independent
processing unit. These cores are tightly coupled, they communicate
with each other through Shared-bus [15] or Data Hiway[16].

Compared with traditional single-core processor, multi-core
processor [17,18] can greatly improve the computing performance.
Especially for large-scale IoTs, the sink node with single-core can-
not satisfy the requirement of applications. Therefore, we design
a Task-Efficient Sink Node (TESN) based on embedded multi-core
SoC for IoTs. It can parallelly execute process and achieve better
load balance [19]. There are two architecture types of multi-core
processor: homogeneous [20] and heterogeneous [21]. Consider-
ing the better scalability and functional diversity, the heteroge-
neous multi-core processor is widely used for IoTs. However, all
of the cores must be cooperating to complete the tasks. In order
to optimize the performance of multi-core processor, the effective
strategy for task allocation and scheduling [22,23] is a significant
part to further improve the performance of multi-core sink node
and prolong its life-time [24].

For TESN, when allocating task to processing cores, we must
consider three performance metrics [25]. The total time, load
balance and congestion. Total time is the time to finish all the
tasks. Each core should have same or similar task load to ensure
TESN achieves load balance. By the way, we also need to consider
the congestion situation of each core. In order to improve the
performance of sink node, we need to achieve the following three
objectives: to minimize the total processing time of all tasks, to
balance the load situation of each execution core and to control
each core’s congestion. On one hand, it increases the overhead of
communication between executing cores to achieve balanced load
and low congestion. On the other hand, if only one core dealing
all tasks, there are no communication overhead, but other cores
will be idle, which reduces the processing efficiency of sink node
greatly. Therefore, we need to establish a proper task allocation
scheme [26], which aims at minimizes tasks’ total processing time
and the overhead of all cores. And also, the scheme should make
each core with low congestion.

In recent years, researchers have presented many related
algorithms and scheduling strategies on the application of TESN
and task scheduling for multi-core processors in IoTs. Munir
et al. [27] propose a heterogeneous hierarchical multi-core
embedded wireless sensor networks architecture. The more
efficient computational performance of multi-core embedded
sensor nodes benefit compute-intensive tasks. But it lacks of
proper tasks scheduling policy to achieve better performance.
Zhou et al. [28] use multi-core processors into WSNs and propose
a cache allocation algorithm which to provide suitable cache
for parallel tasks. It improves the performance and utilization
effectively of WSNs. But this algorithm does not consider the
requirements of load balance. Muneeswari et al. [29] incorporates
the load balancing agent for the multi-core processor based on
the hard–soft processor affinity scheduling algorithm. It achieves
the process migration between cores, although load balancing
is reached, the communication consumption is too much. It has
negative impact on the life-time of sink node. Zhang et al. [30]
propose scheduling strategy in IP-core level. The authors use
driftwood algorithm to build an optimized global scheduling
strategy. But the main purpose of this work is to achieve the

maximum use of testing resources to test the SoC. Useful real-time
scheduling algorithms are introduced in [31,32]. Zheng et al. [31]
propose a ‘‘per-priority’’ basis analysis scheme which computes
the total time window at each priority level instead of each traffic-
flow, and further propose a task mapping and priority assignment
algorithm, in such a way that the hard time bounds are met with
a reduced overhead of sink node. Lee et al. [32] propose adaptive
scheduling algorithm for embedded multi-core real-time systems.
The scheduler assigns tasks dynamically and crosses over global
and local scheduler. It calls for the hardware support for scheduler.
Digalwar et al. [33] present a real time scheduling algorithm for
mixed task set on homogeneous multi-core platform. But the
heterogeneous cores are not considered. These two works mainly
focus on real-time strategy without considering the load balance
and each core’s congestion. Round-Robin (RR) task allocation
algorithm and conventional Least-Connection (LC) task allocation
algorithm are mentioned in [34,35]. The way how to allocate tasks
to server between RR and LC is different. In RR, tasks are allocated
to servers in sequence. However, LC will choose the server which
has the least number of tasks to allocate. They are used for LVS
(Linux Virtual Server).

In this paper, we design a Task-Efficient Sink Node (TESN) based
on embedded multi-core SoC for IoTs. There are eight soft cores
working in the sink node. One of them is the master core and
others are slave cores. Each core is an independent execution
unit. The master core assigns tasks and balances load for slave
cores, and slave cores execute the accepted tasks frommaster core.
The Weighted-Least Connection (WLC) task allocation strategy for
master core of TESN which is proposed in our previous work [36].
Jiang et al. [37] present two multiplex network-adapted models
of task allocation with load balancing: network layer-oriented
allocation and agent-oriented allocation. They considers both link
types and agents, and substantially extends the existing work by
highlighting the effect of network layers on task allocation and load
balancing. Guo et al. [38] proposed a trust dynamic task allocation
algorithm. They designed a discrete particle swarm optimization
(PSO) to generate a structure of the parallel coalitions and payoff
functions to minimize the execution time of the tasks. Brutschy
et al. [39] present a self-organized tasks allocation method, which
is based on the delay experienced by the robots working on one
subtask when waiting for input from another subtask. It does not
require the robots to communicate. Yang et al. [40] proposed a
modified version of binary particle swarm optimization (MBPSO)
for the task allocation problem to obtain the best solution. It
adopts a different transfer function and a new position updating
procedure with mutation. In Dynamic weighted-least connection
algorithm (DWLC), the master core also collects the real-time load
information of each slave core. The information will be used to
avoid congestion. In order to facilitate the communication between
soft cores, the Shared-bus and mailbox architecture are designed
for the communication between master core and salver cores.
The Xilinx V5 platform is used as the multi-core sink node and
MiCroBlaze soft cores are used as processors in the experiments.

The main contributions of this paper are as follows:

(i) We design the architecture of sink node in IoTs based on eight
cores. TESN uses the master and slave structure, it can greatly
enhance the ability of processing tasks.

(ii) The proposed algorithmWLC, allocates the coming tasks prop-
erly. On one hand, it keeps the load balance of multi-core
system and helps TESN to play the role of parallel execution.
On the other hand, WLC reduces the communication between
cores and ensures the majority of resource using for process-
ing tasks.

T. Qiu et al. / Future Generation Computer Systems () – 3

(iii) We test the performance of TESN and WLC through both
software simulations and hardware experiments. The results
show that, TESN improves the computing performance of sink
node significantly and WLC satisfies the requirements of the
load balancing. TESN is suitable for large-scale data acquisition
and processing in IoTs.

The remainder of this paper is organized as follows. The prob-
lem statement and motivation are described in Section 2. We in-
troduce the hardware design of TESN with shared-bus and mail-
box architecture in Section 3. In Section 4, TESN scheduling strat-
egy is described. We propose WLC for heterogeneous architec-
ture. In Section 5, we present algorithm design for our strategy.
The algorithms include the multi-core communication algorithm,
the multi-core data processing algorithm and DWLC algorithm. In
Section 6, the performance results of our algorithms are evalu-
ated with different core numbers and different task numbers on
Xilinx V5 platform compared with RR. We also use NS2 simulation
environment to test the computing performance and load balance
of TESN. Section 7 concludes this paper.

2. Problem statement and motivation

In IoTs applications, devices with different capabilities are
interconnect for data transfer and data collection. With the
amount of information and data keep increasing, the capabilities
of computing [41] and resource of devices are limited in the
applications. When we use the sink node with single-core, all of
the data sent by other nodes must be collected and processed
by the only one processing core. If the processing ability of
single-core sink node cannot satisfy with the demand of large
data, task delay and data missing may occur frequently, which
impacts the performance of system seriously. On the other hand,
the development of SoCs is limited in the ability to process
large number of data. The improvement of the performance of
SoC is limited by the technology and processes. The computing
performance of sink node cannot be enhanced unlimitedly.
Therefore the performance bottleneck of single-core sink node is
becoming more and more prominent. Large-scale data collection
and processing is crucial for IoTs. In order to improve the poor
computing performance of single-core system, multi-core system
has been widely used gradually. The aim is to speed up the
processing time and enable the network make their resources
available. In multi-core system, the collection and processing of
data is allocated to multiple computing cores. Each core can
perform tasks independently and cannot be affected by others. All
tasks can be executed in parallel [42] at different cores. Without
improving the single-core performance, the processing speed of
the system can still be significantly improved, so as to satisfy the
needs of large-scale data. Considering the size of a distributed
IoTs network, the tasks allocation issue with the aim of improving
network performance is essential, which is particular necessary for
the real-time system.

Multi-core sink node can solve the problem about poor
computing performance of single-core sink node. However, when
tasks are executed on a multi-core system, they must be allocated
and scheduled uniformly. Otherwise it may lead to the large load
gap between cores, even lost tasks or re-execute tasks. If the
load between cores cannot be balanced, the execution of the task
is still similar to the serial execution. As a consequence, multi-
core system cannot take full advantages of parallel execution.
This phenomenon reduces the system performance greatly. On the
other hand, in order to allocate tasks uniformly, communication
between different cores is necessary. Moreover, with the number
of cores increasing, the communication between cores becomes
more and more frequent and consumes more resources, which

does not exist in single-core system. Thus the energy consumption
of multi-core sink node is significantly larger than that of single-
core sink node. The extra energy consumption is coursed by the
parallel execution of tasks and cores communication. Excessive
power consumption will shorten the lifetime of multi-core sink
node. Therefore, it is crucial to design a task scheduling algorithm
based on multi-core sink node. It needs to ensure multi-core load
balancing by allocating tasks reasonably as well as minimize the
inter-core communication to reduce energy consumption.

To deal with the problem stated above, an eight cores sink node
architecture named TESN and a task scheduling strategy named
WLC are proposed.

3. TESN architecture
TESN processes tasks in parallel. It has eight executing cores

and satisfies the requirements for processing large amounts of
data. We realize TESN architecture on Xilinx platform. It is a
Field-Programmable Gate Array (FPGA) chip which has several
MicroBlaze processors. We can use necessary exterior devices to
realize the embedded programming SoC of IoTs and improve the
design flexibility. Fig. 1 shows the architecture of TESN.

All of the cores in TESN are realized by soft cores. As can be seen
in Fig. 1, we useMicroBlaze to realize the eight executing cores,MB0
toMB7. The master core isMB0,MB1 toMB7 are seven salver cores.
MB0 allocates tasks and balances the load for salver cores. AndMB1
toMB7 are responsible for the cooperation executing tasks.When a
new task arrives, it will be assigned to one of the seven slave cores
according to the DWLC bymaster core. Once the task is allocated to
a core, it should be finished on it. There is no taskmigration among
cores in order to decrease multi-core communication cost.

In order to support synchronous work, some kinds of IP-cores
are used to steady the architecture. We use xps_timer as the
timer module to control the global time. plb0 to plb7 are
eight local bus for each core. All of them are realized by
LogiCORE IP Processor Local Bus (PLB) v4.6. They are responsible
for the transfer instruction and information. We use Shared-
bus architecture to reduce the energy consumption of multi-core
communication. The seven mailbox modules, mbox0 to mbox6,
which are realized by mailbox, are in charge of communication
between salver cores and master core. Bram0 to Bram7 are the
memory of each executing core, they are realized by Bram_block.
MPMC is the conflict control module in the architecture, which is
realized bympmc. It controls the visiting ofmemory from soft cores
through eight ports. The register data are stored in an independent
BRAM. We use Mdm module for debugging, Network Controler
module for wireless network communication.

Fig. 2 shows the IoTs architecture which TESN applied. TESN
has powerful computing performance and it is responsible for
collecting and processing data as the sink node. All of the sensor
nodes send data to TESN by wireless. TESN connects to the IoTs
through thewirelessmodule namedNetwork Controler . Themaster
core receive tasks from the wireless module and allocates them
to appropriate slave core. TESN implement the parallel execution
of all tasks by multi-core. Its computing performance significantly
improved. However, the communication between cores will
consumption a part of CPU resources. With the increase of cores,
the proportion of communication CPU resource consumption
also rise quickly. Therefore, when the cores reaching a certain
number, the computing performance of TESN will has no more
obvious improvement. On the contrary, it will increase the power
consumption greatly. Considering what has mentioned above, we
adopt eight cores to build the architecture of TESN based on a lot
of simulations.

4 T. Qiu et al. / Future Generation Computer Systems () –

Fig. 1. Architecture of TESN.

Fig. 2. IoTs architecture of TESN.

4. TESN scheduling strategy

Multi-core processor is designed to improve the thread-level
parallelism for sink node. In order to make TESN processing speed
faster and get higher computing performance, we should consider
multi-core task allocation strategy, threads scheduling of slave
cores and multi-core communication strategy. Next we introduce
each part carefully.

4.1. Multi-core task allocation strategy

TESN is a heterogeneous architecture. The master core is used
to receive tasks and allocate tasks to slave cores. Slave cores only
responsible for dealing with tasks. For multi-core task allocation,
tasks are allocated to each core’s local task waiting queue by WLC.

We assume that C0, C1, . . . , CN−1 are N soft cores in the multi-
core processor. T0, T1, . . . , TM−1 are M threads which need to be
allocated. Mf is the number of finished threads. Every salve core
writes its finished tasks number in the mailbox. Then, the master
core reads the information from mbox0 to mbox6 and modifies the
finished tasks number of all slave cores. The current tasks number

of soft core i can be calculated by Eq. (1).

taskc[i] = taskg [i] − taskf [i] (1)

where, taskg [i] is the allocated tasks number of soft core i, and the
finished tasks number of soft core i is stored in taskf [i]. taksc is
the current tasks number which need to be execute on each slave
core. We assume that the total number of tasks is tasksn, it can be
described as Eq. (2).

tasksn = taskg [i] + taskg [2] + · · · + taskg [i] (i = 1, 2, 3 . . .). (2)

Otherwise, the master core dynamically changes the value M
with the total number of tasks in the multi-core processor. load[i]
is used to describe the load situation of soft core i. congestion[i]
reflects the congestion situation of soft core i, cp[i] is the computing
performance of soft core i.

We consider both current tasks number and computing
performance of the slave core to allocate the coming tasks. The
computing performance is proportional to the clock frequency.
We assume that the clock frequency of soft core MB1 is 150 MHz
and the clock frequency of soft core MB2 is 75 MHz. Then, the
computing performance of MB1 is twice then MB2. The least
computing performance will be stored as 1. We can get that
cp[1] = 2 and cp[2] = 1. Therefore, the weighted value of each
slave core is described in Eq. (3). The soft core which has the least
value of weight[i] is the proper slave core to deal with the coming
tasks.

weight[i] = taskc[i]/cp[i]. (3)

4.2. Threads scheduling of slave cores

There are two main threads running on the slave core. One is
communication thread and the other is data processing thread.
Also there are two main threads running on the master core. One
thread is communication thread and the other one is the task
allocation thread. The thread status of the master core and slave

T. Qiu et al. / Future Generation Computer Systems () – 5

Fig. 3. Working threads of the master core and slave cores.

cores is shown in Fig. 3. We use timer to control the finishing
moment of communication thread, which sends each slave core’s
finished task number and status to the master core.

In order to improve the performance of TESN, multi-core
weighted-least connection task allocation strategy is proposed.
Each core must be assigned a timer to provide a core’s start tick for
the purpose of responding to the interrupt to execute the process
schedule. Xilkernel’s executing unit supports the POSIX standard.
As creating and destroying a thread costs less than scheduling
process, threads are used to deal with data and communicate with
other cores. We consider each core’s processing ability and the
number of unfinished tasks on each core to allocate the coming
tasks.

4.3. Multi-core communication strategy

For the purpose of cooperative completing the tasks, all
of the soft cores must communicate with each other. Fixed
Access Unit (FAU), Mailbox mechanism and message queue are
three commonly used multi-core communication strategies. In
this paper, the multi-core communication strategy is realized
by Mailbox mechanism. A soft core sends information to its
corresponding mailbox and the receiving core can read the
information from themailbox. Both reading andwriting operations
are unblocked.

5. Scheduling algorithm design

According to Section 3, the schedule strategy can be divided into
the following three modules:

(i) Timer interrupt module.
(ii) Multi-core thread switch module.
(iii) Multi-core weighted-least connection task allocationmodule.

5.1. Timer interrupt module

Xilkernel provides the timer function to deal with the time-
related situation. This module is configurable. We may set it to
input or output mode. According to internet data, load balance
should be adjusted every 200 ms. If the frequency is too low, some
cores can be idle. If the frequency is too high, communication can
consume much resource and decrease processing speed. The load
situation can be calculated in Eq. (4) and the congestion situation
can be calculated in Eq. (5).

load = length_queue/max_queue (4)
congestion = task_queue/max_queue (5)

wait_queue is the tasks number in wait queue, task_queue is the
length of current tasks number for this slave core and max_queue

Algorithm 1 Timer interrupt module
Input: timer , data, type, taskf and tasksg
Output: Task results
1: procedure timer interrupt module
2: while timer > 0 and idle == 0 do
3: while taskf < tasksg do
4: read the type of data
5: if type == 1 then
6: The data will be executed on computing-intensive

thread
7: else
8: The data will be execute on computing-general

thread
9: end if

10: taskf + +

11: Check timer
12: end while
13: Reset idle = 1
14: end while
15: Sends load situation to mailbox
16: Master core reads the load situation
17: Master core calculates the weights
18: Master core allocates the coming tasks
19: Reset the value of timer
20: end procedure

is the total length of tasks queue. We set the same timer for every
soft core. the time of all soft cores should be synchronized. idle is
the state of slave core. If the value of idle is set to 1, itmeans that this
slave core finishes its current tasks. The state of this slave core will
be send to the mailbox and the slave core waits the master core to
allocation new tasks. When the timer expires, all of the slave cores
send their own load situation to themailbox. Then the master core
collects these information and allocates the coming tasks. Timer
interrupt module is an important part for WLC and DWLC.

All threads have the same permission to access resources.
POSIX thread API is the basic interface that can be used
by users. Xilkernel also provides extra interfaces. The threads
can be operated through threads identifiers. The operating
system supports the priority-driven scheduling and round-
robin scheduling mechanism. Considering that thread switching
resource cost is much lower than process switching, and Xilkernel
supports POSIXwell,we create lots of threads on a core,whichhave
different functions.

Data processing thread and multi-core communication thread
are two types of threads in slave cores. Data processing thread re-
sponsible for the task processing and calculating the performance
of soft cores. Multi-core communication thread is used to send
relevant cooperative information between master core and slave
cores.

There are two types of data processing thread in WLC.
computing-intensive thread and computing-general thread. The
type value of computing-intensive thread is 1. It means that this
task needs to be executed with more CPU time slices. The other
type tasks will be executed with less CPU time slices. Algorithm
1 shows the implementation process of timer interrupt model in
detail.

In Algorithm 1, we input the following params data, type, taskf
and tasksn.We assume that timer is t and tasksn is n. Each slave core
dealswith its own tasks before the timer expired (Lines 2–3).When
the slave cores dealing with tasks, they will read the type of each
task firstly, and decide to use computing-intensive or computing-
general thread for this task (Lines 4–12). After all of the current
tasks finished, slave core reset idle to 1 (Line 13). Then, master core
allocates tasks for seven slave cores (Lines 15–20). Therefore, the
time complexity of this algorithm is O(t ∗ n).

6 T. Qiu et al. / Future Generation Computer Systems () –

5.2. Multi-core thread switch module

Algorithm 2Multi-core communication
Input: taskg and taskf
Output: taskc
1: procedure multi-core communication module
2: Initialize nbyte = 0
3: Initialize sent = 0
4: Initialize num = 0
5: while ((nbyte < TOTAL_BYTE_SIZE)&&(num < TOTAL_NUM_SIZE)) do
6: Read data from mailbox by functionmbox_read()
7: update sent
8: nbyte+ = sent
9: num + +

10: end while
11: if taskf > 0 then
12: taskc = taskg − taskf
13: end if
14: end procedure

We update the global variables such as taskc , taskf , end, idle etc.
during the data processing thread. The master core collects the
values of these variables to calculate the appropriate weight for
task allocation. The multi-core communication thread is shown in
Algorithm 2. TOTAL_BYTE_SIZE is the maximal bytes in a mailbox.
And TOTAL_NUM_SIZE is the maximal bytes number in a mailbox.

Algorithm 2 works as follow. At the beginning, we initialize
variables nbyte, sent and num (Lines 2–4). nbyte is the total reading
bytes. sent is the reading bytes number in each operation. num is
the total reading bytes number. The soft core continuously reads
data frommailbox until the total size (Lines 5–10). Then it updates
the current tasks number (Lines 11–13). The time complexity of
this algorithm is O(n).

5.3. Multi-core weighted-least connection task allocation module

Algorithm 3 Dynamic weighted-least connection
Input: taskg , taskf and cp
Output: coreindex
1: procedure dynamic weighted-least connection algorithm
2: while !end do
3: for i ∈ [1, 7] do
4: sum+ = taskg [i]
5: taskc[i] = taskg [i] − taskf [i]
6: weight[i] = taskc[i]/cp[i]
7: end for
8: if sum >= tasksnumber then
9: end = 1

10: end if
11: end while
12: coreindex=sort(int taskc[i], int se[])
13: end procedure

In this hardware platform architecture, each slave core has
different computing performance, thus tasks should be allocated
according to WLC. Task allocation is shown in Algorithm 3.

This algorithm works as follow. The master core computers the
weight of each slave core and cumulate the value sum (Lines 3–7).
When sum is greater than tasks number, master core will end the
tasks allocation and sort the tasks for slaves. The time complexity
of this algorithm is O(n).

Fig. 4. Ticks time when dealing with 300 tasks using two algorithms.

6. Experiment results

6.1. Assumptions

Every slave core needs 10 ticks to finish a task. The maximum
length of each slave cores taskwaiting queue is 50. Themaster core
collects the load situation of all slave cores every 200 ms.

6.2. Metrics to evaluate processor’s performance

ticks is the number of ticks taken to finish all tasks, wait_len is
the length of the waiting queue,max_len is themaximum length of
the waiting queue, N stands for the total task number, task_num is
the number of current tasks needed to be dealt.

In order to evaluate our strategy’s performance, we use
following three metrics:

(i) ticks: It is used to show the total time that is needed to finish
all tasks. The larger ticks is, the longer time is needed to finish
all tasks.

(ii) avg_load: It is used to reflect the slave cores’s load situation. It
can be calculated by Eq. (6).

(iii) avg_cong: It is used to reflect the slave core’s congestion. It can
be calculated by Eq. (7).

avg_load =

i−N
i=1

(wait_len/max_len)/N (6)

avg_cong =

i−N
i=1

(task_num/max_len)/N. (7)

6.3. Experimental results

Fig. 4 shows the results of ticks. There are 300 tasks in the
simulation. Y axis is the total time ticks and X axis is the number
of cores. In Fig. 4, if only one soft core is active in the processor,
the scheduling strategy is unefficient. The performance of RR and
WLC are exactly the same. Themaster core is used to task allocation
and other soft cores are slave cores, they are responsible for the
task processing. So, if the number of cores is two, we have only
on slave core, parallel processing is not available. Therefore, both
of WLC and RR need to consume resources for tasks allocation.
The time ticks will increase. With the further increase of cores,
the scheduling strategy starts to work, more than one slave core
deals with tasks in parallel. WLC can keeps better load balance

T. Qiu et al. / Future Generation Computer Systems () – 7

Fig. 5. Load situation based on WLC and RR with 300 tasks.

than RR, so the time ticks of WLC will drop a little faster. We can
see that when the number of soft cores is in the range of 3–6, the
performance of WLC is much better than RR. As can be seen in
Fig. 4,when the number of cores is large than 2, the time ticks begin
to drop and the drop speed is more and more slowly. The reason
of this phenomena is that different cores need to communicate
with each other. The more cores TESN has, the larger proportion
of resources that communication occupied. It means that, with the
increase of cores number, the improvement of performancewill be
more andmore slowly. So the lines of time ticks aremore andmore
flat.

Fig. 5 shows the average load situation of cores when using
two strategies. There are also 300 tasks in the simulation. The total
number of tasks and the speed of coming tasks are fixed. Therefore,
with the increase of cores, we can find that the cores average load
decreases. Because more andmore soft cores are joined in to share
the coming tasks. When the number of cores is less than 4, the
number of data processing soft cores is small. The speed of coming
tasks is faster. They cannot share the workload for each other
obviously. So the average load still keeps in the high level.With the
further increase of soft cores, more soft cores are used to deal with
tasks. And the speed of coming tasks is fixed. Therefore, the share
effect will be more obvious, the average load reduce quickly. By
the way, when we use the multi-core system, the communication
between different cores occupies certain resources. They also has
impact on the load situation. So the drop speed of load situation
is also different. The weighted-least connection strategy has lower
average load than that of round-robin algorithm. TESN is able to
allocate computing resourcesmore reasonable based onweighted-
least connection strategy.

The congestion situation of TESN based on WLC and RR is
shown in Fig. 6. There are also 300 tasks in the simulation. At
the beginning, the system has only on core, differences algorithms
has no influence on the tasks running. Therefore, they have the
same congestion situation. If the number of soft cores is two,
there is only one slave core in the processor. If the number of
soft cores is two, there is only one slave core in the processor. In
WLC, the salve core needs to calculate and send its load situation
to master core and the master core also need to calculate the
appropriate allocation decision. Even though it has one slave to
choose, the process of calculation cannot be skipped. Both of the
communication and calculation need consume much resource.
However, we donąŕt need to consider about the information
transfer and weight calculation in RR. The tasks are allocated in
turn. It will saving a part of resources compared with WLC. So the
performance of RR is better. When the number of cores continue

Fig. 6. Congestion situation based on WLC and RR with 300 tasks.

Fig. 7. Load of different cores number when task number is different.

to increase, WLC keeps better load balancing than RR, it has lower
congestion situation.

Fig. 7 shows the cores’ average load of TESNwith different cores
number. It is the results of the weighted-least connection strategy.
The X axis is the number of tasks, and the Y axis is the average load
of soft cores. In Fig. 7, we can see that the average load increases
with the increasing task amounts. When the number of soft cores
is one or two, there is only one data processing core. The average
load keeps in the high level. Then with the increase of soft cores,
the average load reduce quickly. Average load of cores is becoming
smaller with the increase number of cores when the task number
keeps invariant.

Fig. 8 shows the cores’ average congestion situation of TESN
with different cores number. It is the results of the weighted-
least connection strategy. The X axis is the number of tasks,
and the Y axis is the average congestion of soft cores. From
Fig. 8, we can see that the average congestion increases with
the increasing of task amounts. The single core system has the
highest congestion situation. Themulti-core system hasmore than
one data processing cores. It has the ability to assign tasks well
and reduce the congestion. Congestion load of cores is becoming
smaller with the increase number of cores when the task number
keeps invariant. As can be seen in Fig. 8, when the number of cores
larger then 2, the drop speed of congestion is slower. The reason
is that, when the system has more cores, the communication
between different cores will be more frequently. TESN need to
use more resource to deal with the communication. Therefore,

8 T. Qiu et al. / Future Generation Computer Systems () –

Fig. 8. Congestion of different cores number when task numbers vary.

Fig. 9. The network topology for TESN in IoTs.

when the number of cores up to 8, TESN cannot get more obvious
improvement of congestion situation.

In order to evaluate the performance of TESN, we deploy
64 regular sensor nodes which are according to the 8*8 lined
up in the topology. The gap between the nodes is 100 m. The
communication radius of each node is set to 200 m. The TESN
with multi-core is moving along the trajectory of the arrow in the
network topology. Each sensor node collects the environmental
data and sends them to the sink node. TESN is responsible for
collecting all the environmental data from the sensor nodes, which
is shown in Fig. 9. We use NS2 to simulate this process and analyze
the information. The wireless communication between nodes is
based on flooding protocol. In order to simulate TESN, we set up
eight cores in the mobile sink node. One of the cores is treated as
the master core. Others are slave cores. The master core allocates
the packages, which are collected from the regular sensor nodes.
We assume that a package represents a task. All slave cores only
receive the packages from master core and deal with tasks. Each
slave core needs 100 ms to finish a task. A timer is employed to
control themoment of task scheduling.When the timer expires, all
slave cores send their state information to the master core. Then,

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Lo
ad

 o
f e

ac
h

sl
av

e
co

re

Index of each slave core

1 2 3 4 5 6 7

Fig. 10. Load situation of each slave core of TESN. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 11. Total time consumption for different cores number.

themaster core calculates theweights of all slave cores and choose
the most appropriate core to assign task.

Fig. 10 shows the load situation of 7 slave cores. Different colors
represent different soft cores. The total number of tasks is 300. It is
achieved by the proportion of the number of current tasks in the
queue and the length of queue, when the system runs stability.
In Fig. 10, each slave core has the similar load situation. WLC is
able to balance the load of each slave core and assign tasks to the
appropriate one.

Fig. 11 illustrates the total time consumption for different cores
number. The total number of tasks is 300. X axis expresses the
number of soft cores and Y axis expresses the time consumption
for running all tasks. In the experiment, we set the number of soft
cores to 1, 2, 4, 6 and 8. All experiments based on the WLC task
scheduling algorithm. It reflects the CPUefficiency of TESN. The less
time consumption is, the higher CPU efficiency is. In Fig. 11, TESN
with 8 soft cores adopt the least time to complete all the tasks,
which means that it has the fastest speed for tasks processing.
The time consumption presents a decline tread with the increase
of soft cores basically. When the soft cores number is 2, because
of the WLC task scheduling algorithm, TESN has one master core
and one slave core. The master core deals with task scheduling
and the salver core is responsible for data processing, they also
need to communicate with each other. So the time consumption
of double cores system is a certain higher than that of single core

T. Qiu et al. / Future Generation Computer Systems () – 9

Fig. 12. Task processing rate for different cores number.

system.When the soft cores number is 4, there are three slave cores
and one master core in the TESN. Because of the communication
between soft cores consumes CPU resources, the CPU efficiency
is improved closer than three times. So the time consumption is
reduced to nearly a third of single core system. Then, with the
increase of soft cores, the CPU efficiency also has been further
enhanced.

Fig. 12 shows the task processing rate for different cores
number. X axis expresses the arrival rate of tasks. Y axis expresses
the average processing time per task. Every soft core needs 100ms
to finish a task. The total number of tasks is 300. In Fig. 12, TESN
with eight soft cores has the lowest average processing time per
task when it is full load. The single core system only processing
the tasks by itself, so the average processing time per task basically
remains 100 ms. The double cores system has one master core and
one slave core. It also only has one core to process tasks. They also
need extra time to communicate with each other, so the average
processing time per task is higher than single core system. When
the arrival rate of tasks is 1 T/s, it means that there is one task
arrive in a second. At this time, all of them do not reach saturation.
Compared with single core system, all multi-core systems need to
allocate tasks and communicate between cores. Theywill consume
extra time and the average processing timeper task is a little higher
then 100 ms. When the arrival rate of tasks is 5 T/s, the average
processing time per task for more then four cores systems are
quickly reduced. All of the slave cores in the four cores and six
cores systems are used to process tasks, they are in the full load
working condition. So with the increase of arrival rate of tasks, the
average processing time per task basically keeps the same. The six
cores system has more slave cores than four cores system, so it has
lower average processing time per task. However, there are two
idle soft cores in TESN. Thus, the load is not full. With the further
increase of tasks arrival rate, the average processing time per task
will continually reduced and also keeps the same when it reaches
saturation.

In Fig. 13, the experiment shows the total time consumption
increases with the packet number. X axis expresses the number
of tasks which ranges from 100 to 600. Y axis expresses the
time consumption of running tasks. We compared the time
consumption of five different numbers of cores in the mobile sink
node. It is obviously that TESN with eight cores utilizes the least
time to run all the task, compared with time consumption of
less cores. Furthermore, four cores and six cores systems speed
up the running speed closed to three and five times respectively
compared with that of one core system. Due to using multi-core
system, the tasks are processed in parallel and the CPU efficiency is
increased, thus the processing speed is improved greatly. However,

Fig. 13. Task processing time for different cores number.

when the number of cores is two, themaster core has to take some
time to deal with task scheduling and the slave node takes charge
of data processing. Therefore, the total time consumption is longer
than one core system. With the number of packets increasing,
the rate of time consumption in TESN with eight cores is smaller
than others. It has the ability to assign tasks well and speed up
processing time. Thus, the performance of TESN with eight soft
cores is stable and reliable even if the task number is large.

Following conclusions can be reached from the simulation
results:

(i) In the master–slave architecture on IoTs, when the number of
soft cores is one or two, the congestion situation of multi-core
processor is increased, but the processing speed is decreased.
The processing time grows larger because of the multi-core
communication cost. If there are more than two soft cores in
themulti-core processor, the processing time is decreased and
the average load situation and average congestion situation is
improved obviously.

(ii) The performance of WLC based on multi-core processor is
better than RR when the number of soft cores is more than
two. It helps to keep load balance well between slave-cores in
IoTs.

(iii) TESN significantly promotes the processing speed of sink
node in IoTs. It effectively satisfies the needs of large-scale
data calculation and processing in IoTs. Therefore, TESN can
be widely used in a lot of IoTs applications, such as sensor
networks, embedded systems, intelligent control etc.

7. Conclusion

In this paper, we design TESN, a task-efficient sink node
based on embedded multi-core SoC for IoTs. TESN has eight
soft cores and it has the master–slave architecture. In order
to achieve lower congestion and better load balance for the
parallel computing, we propose WLC to allocate the tasks for
slave cores. WLC considering the processing speed, tasks number
and real-time processing situation of each slave core, it obviously
improves the computational efficiency of TESN. The experiments
are realized on Xilinx V5 platform. We compares the time ticks,
load situation and congestion situation of WLC and RR task
schedule strategies, which are aimed at improving the computing
performance of TESN. We also test the load balance and CPU
efficiency of TESN in NS2 simulation environment. The experiment
results show that, the performance of WLC is better than RR
when the number of soft sore is more than two and TESN keeps
well efficiency and load balance. The implementation of TESN in

10 T. Qiu et al. / Future Generation Computer Systems () –

IoTs achieves lower congestion, load balance and speeds up the
processing time of sensor nodes observably, which improves the
network performance and contributes to the multi-core system
development of IoTs.

Wewill further focus on the application ofmulti-core sink node
in sensor networks of IoTs. On one hand, TESN will lead to the
increase of power consumption and high temperature. Therefore,
the appropriate cooling strategy is worth to study. More cores
means faster and less cores means low power. In order to achieve
the best comprehensive performance, it is important to further
research on the number of core for different IoTs applications
through software. On the other hand, this paper only considering
the task allocation, our next step will try to combine the task
allocation with the routing and deployment method to further
improve the performance of heterogeneous sensor networks in
IoTs.

Acknowledgments

This work is partially supported by Natural Science Founda-
tion of China under Grant (Grant No. 61672131), and the Fun-
damental Research Funds for the Central Universities (Grant No.
DUT16QY27).

References

[1] A. Whitmore, A. Agarwal, L. Da Xu, The Internet of things-a survey of topics
and trends, Inf. Syst. Front. 17 (2) (2015) 261–274.

[2] G. Han, J. Jiang, C. Zhang, T.Q. Duong, M. Guizani, G.K. Karagiannidis, A survey
on mobile anchors assisted localization in wireless sensor networks, IEEE
Commun. Surv. Tutor. 18 (3) (2016) 2220–2243.

[3] D. Zhang, D. Zhang, H. Xiong, L.T. Yang, V. Gauthier, Nextcell: predicting
location using social interplay from cell phone traces, IEEE Trans. Comput. 64
(2) (2015) 452–463.

[4] T. Qiu, Y. Lv, F. Xia, N. Chen, J.Wan, A. Tolba, Ergid: An efficient routing protocol
for emergency response Internet of things, J. Netw. Comput. Appl. 72 (9) (2016)
104–112.

[5] S. Lu, Z. Wang, Joint optimization of power allocation and training duration
for uplink multiuser mimo communications, in: Proceeding of the 2015 IEEE
Wireless Communications and Networking Conference (WCNC 2015), New
Orleans, LA USA, IEEE, 2015, pp. 322–327. March 9-12.

[6] T. Qiu, L. Feng, H. Jiang, W. Sun, Queueing model analysis and scheduling
strategy for embedded multi-core soc based on task priority, Comput. Electr.
Eng. 39 (1) (2013) 24–33.

[7] T. Qiu, D. Luo, F. Xia, N. Deonauth, W. Si, A. Tolba, A greedy model with
small world for improving the robustness of heterogeneous Internet of things,
Comput. Netw. 101 (2016) 127–143.

[8] S. Lu, Z. Wang, Z. Wang, S. Zhou, Throughput of underwater wireless ad
hoc networks with random access: a physical layer perspective, IEEE Trans.
Wireless Commun. 14 (11) (2015) 6257–6268.

[9] G. Han, J. Shen, L. Liu, L. Shu, Brtco: A novel border line recognition and tracking
algorithm for continuous objects in wireless sensor networks, IEEE Syst. J. PP
(08) (2016) 1–10.

[10] A. Salama, C. Binnig, T. Kraska, E. Zamanian, Cost-based fault-tolerance
for parallel data processing, in: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ACM, 2015, pp. 285–297.

[11] L.D. Xu, W. He, S. Li, Internet of things in industries: A survey, IEEE Trans. Ind.
Inf. 10 (4) (2014) 2233–2243.

[12] J.A. Stankovic, Research directions for the Internet of things, IEEE Internet
Things J. 1 (1) (2014) 3–9.

[13] T. Bonald, J. Roberts, Enhanced cluster computing performance through
proportional fairness, Perform. Eval. 79 (2014) 134–145.

[14] G. Han, L. Wan, L. Shu, N. Feng, Two novel doa estimation approaches for real
time assistant calibration system in future vehicle industrial, IEEE Syst. J. PP
(6) (2015) 1–12.

[15] M. Kondo, T. Yokogawa, Y. Sato, K. Arimoto, High-speed performance
evaluation of a large-scale shared-bus digital system, Electron. Commun. Japan
98 (10) (2015) 57–66.

[16] V.T. Ravi, G. Agrawal, Performance issues in parallelizing data-intensive
applications on amulti-core cluster, in: Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGRID 2009),
Shanghai, China, IEEE Computer Society, 2009, pp. 308–315. May 18-21.

[17] S. Bernabe, S. Sanchez, A. Plaza, S. Lopez, J.A. Benediktsson, R. Sarmiento,
Hyperspectral unmixing on gpus and multi-core processors: A comparison,
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6 (3) (2013) 1386–1398.

[18] A. Saifullah, J. Li, K. Agrawal, C. Lu, C. Gill, Multi-core real-time scheduling for
generalized parallel task models, Real-Time Syst. 49 (4) (2013) 404–435.

[19] C. Chen, S.C. Mukhopadhyay, C. Chuang, M. Liu, J. Jiang, Efficient coverage and
connectivity preservationwith load balance forwireless sensor networks, IEEE
Sens. J. 15 (1) (2015) 48–62.

[20] S. Xie, Y. Wang, Construction of tree network with limited delivery latency in
homogeneous wireless sensor networks, Wirel. Pers. Commun. 78 (1) (2014)
231–246.

[21] R. Hu, Y. Qian, An energy efficient and spectrum efficient wireless heteroge-
neous network framework for 5g systems, IEEE Commun. Mag. 52 (5) (2014)
94–101.

[22] D. Ergu, G. Kou, Y. Peng, Y. Shi, Y. Shi, The analytic hierarchy process:
task scheduling and resource allocation in cloud computing environment, J.
Supercomput. 64 (3) (2013) 835–848.

[23] B. Jedari, L. Liu, T. Qiu, A. Rahim, F. Xia, A game-theoretic incentive scheme for
social-aware routing in selfish mobile social networks, Future Gener. Comput.
Syst. (2016) in press.

[24] Z. George, E. Voroshazi, C. Lindqvist, R. Kroon, W. Zhuang, E. Wang, P.
Henriksson, A. Hadipour, M.R. Andersson, Improved performance and life time
of inverted organic photovoltaics by using polymer interfacial materials, Sol.
Energy Mater. Sol. Cells 133 (2015) 99–104.

[25] H. Song, D.B. Rawat, S. Jeschke, C. Brecher, Cyber-physical Systems:
Foundations, Principles and Applications, Morgan Kaufmann, 2016.

[26] J. Youn, I. Park, M. Sunwoo, Heuristic resource allocation and scheduling
method for distributed automotive control systems, Int. J. Automot. Technol.
14 (4) (2013) 611–624.

[27] A. Munir, A. Gordon-Ross, S. Ranka, Multi-core embedded wireless sensor
networks: Architecture and applications, IEEE Trans. Parallel Distrib. Syst. 25
(6) (2014) 1553–1562.

[28] B.H. Zhou, D.P. Yao, Research on multicore node performance in wireless
sensor network, in: Proceedings of the Advanced Materials Research, Dalian,
China, Vol. 821, Trans. Tech. Publ., 2013, pp. 1429–1433. August 24-25.

[29] G. Muneeswari, K. Shunmuganathan, Agent based load balancing scheme
using affinity processor scheduling for multicore architectures, WSEAS Trans.
Comput. 55 (3) (2011) 247–258.

[30] J. Zhang, W. Cai, C. Wang, The implementation of the global scheduling
strategy, in: Proceedings of the 2010 10th IEEE International Conference on
Solid-State and Integrated Circuit Technology (ICSICT-2010), Shanghai, China,
IEEE, 2010, pp. 1970–1972. November 1-4.

[31] S. Zheng, A. Burns, Schedulability analysis and task mapping for real-time on-
chip communication, Real-Time Syst. 46 (3) (2010) 360–385.

[32] L. Lee, H. Chang, W. Luk, An adaptive embedded multi-core real-time system
scheduling, in: Proceedings of the 2nd International Conference on Ubiquitous
Computing and Multimedia Applications (UCMA 2011), Daejeon, Korea,
Springer, 2011, pp. 263–272. April 13-15.

[33] M. Digalwar, P. Gahukar, S. Mohan, Design and development of a real
time scheduling algorithm for mixed task set on multi-core processors,
in: Proceedings of the 2014 7th International Conference on Contemporary
Computing (IC3 2014), Noida, India, IEEE, 2014, pp. 265–269. August 7-9.

[34] W. Chen, Y. Zhang, Z. Xiong, Research and realization of the load balancing
algorithm for heterogeneous cluster with dynamic feedback, J. Chongqing
Univ. 2 (2010) 014.

[35] H. Wang, Z. Fang, G. Qu, X. Zhang, Y. Zhang, A novel weight distrithm
scheduling algorithm, J. Inf. Comput. Sci. 8 (2011) 1235–1244.

[36] T. Qiu, F. Liu, F. Xia, R. Qiao, A new schedule strategy of embedded multi-core
soc, in: Proceedings of the 5th FTRA International Conference on Computer
Science and its Applications (CSA 2013), Danang, Viet nam, Springer, 2013,
pp. 43–49. December 18-21.

[37] Y. Jiang, Y. Zhou, Y. Li, Reliable task allocation with load balancing inmultiplex
networks, ACM Trans. Auton. Adapt. Syst. (TAAS) 10 (1) (2015) 3.

[38] W.Z. Guo, J.Y. Chen, G.L. Chen, H.F. Zheng, Trust dynamic task allocation
algorithm with nash equilibrium for heterogeneous wireless sensor network,
Secur. Commun. Netw. 8 (10) (2015) 1865–1877.

[39] A. Brutschy, G. Pini, C. Pinciroli, M. Birattari, M. Dorigo, Self-organized task
allocation to sequentially interdependent tasks in swarm robotics, Auton.
Agents Multi-Agent Syst. 28 (1) (2014) 101–125.

[40] J. Yang, H. Zhang, Y. Ling, C. Pan, W. Sun, Task allocation for wireless sensor
network using modified binary particle swarm optimization, IEEE Sens. J. 14
(3) (2014) 882–892.

[41] V. Mauch, M. Kunze, M. Hillenbrand, High performance cloud computing,
Future Gener. Comput. Syst. 29 (6) (2013) 1408–1416.

[42] M. Baklouti, M. Ammar, P. Marquet, M. Abid, J.-L. Dekeyser, A model-driven
based framework for rapid parallel soc fpga prototyping, in: Proceedings of
the 2011 22nd IEEE International Symposium on Rapid System Prototyping:
Shortening the Path from Specification to Prototype, RSP-2011, Karlsruhe,
Germany, IEEE, 2011, pp. 149–155. May 24-27.

http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref1
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref2
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref3
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref4
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref5
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref6
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref7
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref8
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref9
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref10
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref11
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref12
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref13
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref14
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref15
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref16
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref17
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref18
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref19
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref20
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref21
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref22
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref23
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref24
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref25
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref26
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref27
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref28
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref29
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref30
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref31
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref32
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref33
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref34
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref35
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref36
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref37
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref38
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref39
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref40
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref41
http://refhub.elsevier.com/S0167-739X(16)30803-2/sbref42

T. Qiu et al. / Future Generation Computer Systems () – 11

Tie Qiu received Ph.D. and M.Sc. from Dalian University
of Technology (DUT), in 2005 and 2012, respectively. He
is currently Associate Professor at School of Software,
Dalian University of Technology, China. He was a visiting
professor at electrical and computer engineering at Iowa
State University in US (Jan. 2014–Jan. 2015). He serves
as an Associate Editor of IEEE Access and Computers
& Electrical Engineering (Elsevier journal), an Editorial
Board Member of Journal of Advanced Computer Science
& Technology, a Guest Editor of Computers and Electrical
Engineering (Elsevier journal) and Ad Hoc Networks

(Elsevier journal), a Program Chair of iThings2016, a TPC member of Industrial
IoT15, AIA13, EEC14, EEC15, EEC16 and ICSN16, a Workshop Chair of CISIS13
and ICCMSE15. He has authored/co-authored 7 books, over 50 scientific papers
in international journals and conference proceedings. He has contributed to the
development of 3 copyrighted software systems and invented 10 patents. He is a
senior member of China Computer Federation (CCF) and a Senior Member of IEEE
and ACM.

Aoyang Zhao received B.E. from Dalian University of
Technology, China, in 2014. He is currentlyMaster Student
in School of Software, Dalian University of Technology
(DUT), China. He used to participate in ‘‘Open source
hardware and embedded computing contest 2012’’ and
won the National first prize. He has authored one scientific
paper in international conference. He is an excellent
graduate student of DUT and has been awarded several
scholarships in academic excellence and technology
innovation. He is a Student Member of IEEE. His research
interests cover embedded system, distributed computing

and internet of things.

RuixinMa received Ph.D. andM.Sc. fromDalian University
of Technology (DUT), in 2003 and 2012, respectively. He is
currently Associate Professor at School of Software, Dalian
University of Technology, China. He has authored/co-
authored 7 books, over 10 scientific papers in international
journals and conference proceedings. He has contributed
to the development of 10 copyrighted software systems.

Victor Chang is an Associate Professor in Information
Management and Information Systems and also a Director
of Ph.D. Program at International Business School Suzhou
(IBSS), Xi’an Jiaotong Liverpool, China. Dr. Victor Chang
was a Senior Lecturer in Computing at Leeds Beckett Uni-
versity, UK and a Visiting Researcher at the University
of Southampton, UK. He has been a technical lead in
web applications, web services, database, grid, cloud, stor-
age/backup, bioinformatics, financial computing which
subsequently have become his research interests. Victor
has also successfully delivered many IT projects in Taiwan

(place of birth), Singapore, Australia, and the UK since 1998. Victor is experienced
in a number of different IT subjects and has 27 certifications with 97% on average.
He completed PGCert (Higher Education, University Greenwich, 2012) and Ph.D.
(C.S, University of Southampton, 2013) within four years while working full-time,
whereby the distance between his work and research is about hundreds of miles
away. He has over 100 published peer-reviewed papers, including several high-
quality journals up-to-date.

Fangbing Liu received B.E. from Dalian University of
technology, China, in 2013. She is currently a master
student in Department of Computer Science, Tsinghua
University, China. She used to participate in ‘‘Open
source hardware and embedded computing contest 2011’’
and won the National Third Prize. She has authored
one scientific paper in international conference. She is
an excellent graduate student of Dalian University of
technology and has been awarded several scholarships
in academic excellence and technology innovation. Her
research interests cover embedded system, distributed

computing and internet of things.

Zhangjie Fu received his Ph.D. in computer science from
the College of Computer, HunanUniversity, China, in 2012.
He is currently an Associate Professor at the School of
Computer and Software, NanjingUniversity of Information
Science and Technology, China. His research interests
include Cloud & Outsourcing Security, Digital Forensics,
Network and Information Security. His research has been
supported byNSFC, PAPD, andGYHY. Zhangjie is amember
of IEEE, and a member of ACM.

	A task-efficient sink node based on embedded multi-core soC for Internet of Things
	Introduction
	Problem statement and motivation
	TESN architecture
	TESN scheduling strategy
	Multi-core task allocation strategy
	Threads scheduling of slave cores
	Multi-core communication strategy

	Scheduling algorithm design
	Timer interrupt module
	Multi-core thread switch module
	Multi-core weighted-least connection task allocation module

	Experiment results
	Assumptions
	Metrics to evaluate processor's performance
	Experimental results

	Conclusion
	Acknowledgments
	References

