2,469 research outputs found

    On the Complexity of the Cayley Semigroup Membership Problem

    Get PDF
    We investigate the complexity of deciding, given a multiplication table representing a semigroup S, a subset X of S and an element t of S, whether t can be expressed as a product of elements of X. It is well-known that this problem is {NL}-complete and that the more general Cayley groupoid membership problem, where the multiplication table is not required to be associative, is {P}-complete. For groups, the problem can be solved in deterministic log-space which raised the question of determining the exact complexity of this variant. Barrington, Kadau, Lange and McKenzie showed that for Abelian groups and for certain solvable groups, the problem is contained in the complexity class {FOLL} and they concluded that these variants are not hard for any complexity class containing {Parity}. The more general case of arbitrary groups remained open. In this work, we show that for both groups and for commutative semigroups, the problem is solvable in {qAC}^0 (quasi-polynomial size circuits of constant depth with unbounded fan-in) and conclude that these variants are also not hard for any class containing {Parity}. Moreover, we prove that {NL}-completeness already holds for the classes of 0-simple semigroups and nilpotent semigroups. Together with our results on groups and commutative semigroups, we prove the existence of a natural class of finite semigroups which generates a variety of finite semigroups with {NL}-complete Cayley semigroup membership, while the Cayley semigroup membership problem for the class itself is not {NL}-hard. We also discuss applications of our technique to {FOLL}

    Cumulative Faculty Bibliography Through 2009

    Get PDF
    Cumulative Faculty Bibliography Through 2009https://ir.lawnet.fordham.edu/fac_bib/1020/thumbnail.jp

    volume 20, no. 2 (Summer 2013)

    Get PDF

    Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

    Get PDF
    We study the influence of a graph parameter called modular-width on the time complexity for optimally solving well-known polynomial problems such as Maximum Matching, Triangle Counting, and Maximum s-t Vertex-Capacitated Flow. The modular-width of a graph depends on its (unique) modular decomposition tree, and can be computed in linear time O(n+m) for graphs with n vertices and m edges. Modular decompositions are an important tool for graph algorithms, e.g., for linear-time recognition of certain graph classes. Throughout, we obtain efficient parameterized algorithms of running times O(f(mw)n+m), O(n+f(mw)m)or O(f(mw)+n+m) for low polynomial functions f and graphs of modular-width mw. Our algorithm for Maximum Matching, running in time O(mw^2 log mw n+m), is both faster and simpler than the recent O(mw^4n+m) time algorithm of Coudert et al. (SODA 2018). For several other problems, e.g., Triangle Counting and Maximum b-Matching, we give adaptive algorithms, meaning that their running times match the best unparameterized algorithms for worst-case modular-width of mw=Theta(n) and they outperform them already for mw=o(n), until reaching linear time for mw=O(1)

    The Intersection Problem for Finite Monoids

    Get PDF
    We investigate the intersection problem for finite monoids, which asks for a given set of regular languages, represented by recognizing morphisms to finite monoids from a variety V, whether there exists a word contained in their intersection. Our main result is that the problem is PSPACE-complete if V is contained in DS and NP-complete if V is non-trivial and contained in DO. Our NP-algorithm for the case that V is contained in DO uses novel methods, based on compression techniques and combinatorial properties of DO. We also show that the problem is log-space reducible to the intersection problem for deterministic finite automata (DFA) and that a variant of the problem is log-space reducible to the membership problem for transformation monoids. In light of these reductions, our hardness results can be seen as a generalization of both a classical result by Kozen and a theorem by Beaudry, McKenzie and Therien.Comment: Extended version of a paper accepted to STACS 201

    Graph Isomorphism for unit square graphs

    Get PDF
    In the past decades for more and more graph classes the Graph Isomorphism Problem was shown to be solvable in polynomial time. An interesting family of graph classes arises from intersection graphs of geometric objects. In this work we show that the Graph Isomorphism Problem for unit square graphs, intersection graphs of axis-parallel unit squares in the plane, can be solved in polynomial time. Since the recognition problem for this class of graphs is NP-hard we can not rely on standard techniques for geometric graphs based on constructing a canonical realization. Instead, we develop new techniques which combine structural insights into the class of unit square graphs with understanding of the automorphism group of such graphs. For the latter we introduce a generalization of bounded degree graphs which is used to capture the main structure of unit square graphs. Using group theoretic algorithms we obtain sufficient information to solve the isomorphism problem for unit square graphs.Comment: 31 pages, 6 figure

    An exponential lower bound for Individualization-Refinement algorithms for Graph Isomorphism

    Full text link
    The individualization-refinement paradigm provides a strong toolbox for testing isomorphism of two graphs and indeed, the currently fastest implementations of isomorphism solvers all follow this approach. While these solvers are fast in practice, from a theoretical point of view, no general lower bounds concerning the worst case complexity of these tools are known. In fact, it is an open question whether individualization-refinement algorithms can achieve upper bounds on the running time similar to the more theoretical techniques based on a group theoretic approach. In this work we give a negative answer to this question and construct a family of graphs on which algorithms based on the individualization-refinement paradigm require exponential time. Contrary to a previous construction of Miyazaki, that only applies to a specific implementation within the individualization-refinement framework, our construction is immune to changing the cell selector, or adding various heuristic invariants to the algorithm. Furthermore, our graphs also provide exponential lower bounds in the case when the kk-dimensional Weisfeiler-Leman algorithm is used to replace the standard color refinement operator and the arguments even work when the entire automorphism group of the inputs is initially provided to the algorithm.Comment: 21 page

    Total Functions in the Polynomial Hierarchy

    Get PDF

    Metatheorems for Dynamic Weighted Matching

    Get PDF
    We consider the maximum weight matching (MWM) problem in dynamic graphs. We provide two reductions. The first reduces the dynamic MWM problem on m-edge, n-node graphs with weights bounded by N to the problem with weights bounded by (n/eps)^2, so that if the MWM problem can be alpha-approximated with update time t(m,n,N), then it can also be (1+eps)alpha-approximated with update time O(t(m,n,(n/eps)^2)log^2 n+log n loglog N)). The second reduction reduces the dynamic MWM problem to the dynamic maximum cardinality matching (MCM) problem in which the graph is unweighted. This reduction shows that if there is an alpha-approximation algorithm for MCM with update time t(m,n) in m-edge n-node graphs, then there is also a (2+eps)alpha-approximation algorithm for MWM with update time O(t(m,n)eps^{-2}log^2 N). We also obtain better bounds in our reductions if the ratio between the largest and the smallest edge weight is small. Combined with recent work on MCM, these two reductions substantially improve upon the state-of-the-art of dynamic MWM algorithms
    • …
    corecore