
Efficient and Adaptive Parameterized Algorithms
on Modular Decompositions
Stefan Kratsch
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
kratsch@informatik.hu-berlin.de

Florian Nelles
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
nelles@informatik.hu-berlin.de

Abstract
We study the influence of a graph parameter called modular-width on the time complexity for
optimally solving well-known polynomial problems such as maximum matching, triangle
counting, and maximum s-t vertex-capacitated flow. The modular-width of a graph
depends on its (unique) modular decomposition tree, and can be computed in linear timeO(n+m)
for graphs with n vertices and m edges. Modular decompositions are an important tool for graph
algorithms, e.g., for linear-time recognition of certain graph classes.

Throughout, we obtain efficient parameterized algorithms of running times O(f(mw)n+m),
O(n+ f(mw)m) , or O(f(mw) + n+m) for low polynomial functions f and graphs of modular-
width mw. Our algorithm for maximum matching, running in time O(mw2 log mwn + m), is
both faster and simpler than the recent O(mw4 n+m) time algorithm of Coudert et al. (SODA
2018). For several other problems, e.g., triangle counting and maximum b-matching, we
give adaptive algorithms, meaning that their running times match the best unparameterized
algorithms for worst-case modular-width of mw = Θ(n) and they outperform them already for
mw = o(n), until reaching linear time for mw = O(1).

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases efficient parameterized algorithms, modular-width, adaptive algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.55

Related Version See [26], https://arxiv.org/abs/1804.10173, for the full version of the pa-
per.

1 Introduction

Determining the best possible worst-case running times for computational problems lies at
the heart of algorithmic research. For many intensively studied problems progress has been
stalled for decades and one may suspect that the “correct” running times have already been
found. While there is still only little known regarding unconditional lower bounds, the recent
success of “fine-grained analysis of algorithms” has brought plenty of tight conditional lower
bounds for a wealth of problems (see, e.g., [31, 5, 2]). Indeed, if one is willing to believe in
the conjectured worst-case optimality of known algorithms for 3-sum, all-pairs-shortest
paths (APSP), or satisfiability1 then lots of other known algorithms must be optimal as
well. Even if there is no general agreement on the truth of the conjectures, the previously

1 It has been conjectured that there is no O(n2−ε) time algorithm for 3-SUM, no O(n3−ε) time for APSP,
and there is no c < 2 such that k-SAT can be solved in time O(cn) for each fixed k (SETH).

© Stefan Kratsch and Florian Nelles;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 55; pp. 55:1–55:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160477960?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kratsch@informatik.hu-berlin.de
mailto:nelles@informatik.hu-berlin.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.55
https://arxiv.org/abs/1804.10173
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

55:2 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

stalled work can now be focused on beating the best known times for just those problems
rather than for a multitude of problems. Complementary to the quest for refuting conjectures
and beating long-standing fastest algorithms, what should we do if the conjectures and
implied lower bounds are true (or if we simply fail to disprove them)? Certainly, quadratic
or cubic time is often too slow, even long before entering the realm of big data. Apart
from heuristics and approximate algorithms, a possible solution lies in taking advantage of
structure in the input and deriving worst-case running times that depend on parameters
that quantify this structure. Consider for example the longest common subsequence
problem, where a breakthrough result [1, 6] proved that there is no O(n2−ε) time algorithm
for any ε > 0 unless satisfiability can be solved in O((2− ε′)n) time for some ε′ > 0 and
SETH fails. Long before this result, algorithms were discovered that run much faster than
O(n2) time when certain parameters are small (cf. [7]); curiously, a very recent result of
Bringmann and Künnemann [7] shows that these are optimal modulo SETH (while giving
one new optimal algorithm for binary alphabets). Similarly, for the task of sorting an array of
n items, there is the (unconditional) lower bound of Ω(n logn) for comparison-based sorting,
which is matched by well-known sorting algorithms. The goal in the area of adaptive sorting
is to find algorithms that are adaptive to presortedness (a.k.a., input structure) with very
low running times for almost sorted inputs while maintaining competitive running times as
disorder increases (cf. [12]).

The success of fine-grained analysis has rekindled the interest in outperforming (possibly
optimal) worst-case running times by tailoring algorithms to benefit from input structure.
This fits naturally into the framework of parameterized complexity where running times
are expressed in terms of input size and one or more problem-specific parameters. Usually,
this is aimed at NP-hard problems and a key goal is to obtain fixed-parameter tractable
(FPT) algorithms that run in time f(k)nc where f(k) is a (usually exponential) function
of the parameter and nc denotes a fixed polynomial in the input size n. Recent work of
Giannopoulou et al. [19] has initiated a programmatic study of what they called “FPT in P”,
i.e., efficient parameterized algorithms for tractable problems. Here, they propose to seek
running time O(kαnβ) when the best dependence on input size alone is O(nγ) for γ > β; in
particular, algorithms with linear dependence on the input size are sought, i.e., time O(kαn).
Giannopoulou et al. suggest that maximum matching could become a focal point of study,
similar to the related NP-hard vertex cover problem in parameterized complexity.

There have been several recent publications that fit into the FPT in P program [14, 28,
4, 13, 24]. Several works focus on the treewidth parameter, which is of core importance in
parameterized complexity [14, 23]. In particular, Fomin et al. [14] obtained algorithms that
depend polynomially on input size n and treewidth tw to solve a number of problems related
to determinants and systems of linear inequalities; e.g., they can solve maximum matching
in time O(tw3 n logn) and vertex flow with unit capacities in time O(tw2 n logn). (A small
caveat of treewidth in this context is that it is NP-hard to compute so one has to resort
to an approximation with polynomial blow-up in the treewidth.) Iwata et al. [24] studied
the related parameter tree-depth and, among other results, showed how to solve maximum
matching in time O(tdm) on graphs of tree-depth td. Very recently, Coudert et al. [8]
studied another tree-width related parameter called clique-width as well as several related
parameters such as modular-width and split-width; they obtain upper and lower bounds for
a variety of problems. Their main result is an algorithm for maximum matching that runs
in O(mw4 n+m) time, where mw stands for the modular-width of the input graph. Note
that modular-width and the modular decomposition of a graph can be computed in linear
time O(n+m); the modular-width is an upper bound for the (NP-hard) clique-width but it
is itself unbounded already on graphs of constant clique-width.

S. Kratsch and F. Nelles 55:3

Table 1 Overview about our results. We denote with n and m the number of vertices and edges,
mw denotes the modular-width of the input graph, and λ denotes the edge-connectivity of the graph
(which is upper-bounded by the minimum degree δ, so λ ≤ δ ≤ 2m/n. The previous best result for
maximum matching, parameterized by modular-width mw, was O(mw4 n+m) [8].

Problem Best unparameterized Our result
maximum matching O(m

√
n) [29] O(mw2 log mwn+m)

maximum b-matching2 O((n logn) · (m+ n logn)) [16] O(mw2 log mwn+m) or
O((mw log mw) · (m+ n log mw))

triangle counting O(nω) [32] or O(mwω−1 n+m)
O(m

2ω
ω+1) = O(m1.41) [3]

edge-disjoint s-t paths O(n 3
2m

1
2) [20] O(mw3 + n+m)

global min cut O(m+ λ2n log(n/λ)) [15] O(mw3 + n+m)
max s-t vertex flow O(nm) [30] O(mw3 + n+m)
global vertex min cut O(n3 logn) [22] O(mw2 log mwn+m)

Our work. We further explore the algorithmic applications of modular-width for well-
studied tractable problems. See Table 1 for an overview of our results. First, we improve
the running time for maximum matching from O(mw4 n + m) to O(mw2 log mwn + m).
We follow the same natural recursive approach as in previous work, i.e., computing optimal
solutions in a bottom-up fashion on the modular decomposition tree. Unlike Coudert et
al. [8], however, we do not seek to use the structure of modules to speed up the computation
of augmenting paths, starting from an union of maximum matchings for the child modules.
Instead, we simplify the current graph, while retaining the same maximum matching size,
such that the found solutions can be encoded into vertex capacities in a graph with at
most 3 mw vertices. This allows us to forget the matchings for the modules and instead of
augmenting paths it suffices to find a maximum b-matching subject to vertex capacities; using
an O(min{b(V), n logn} · (m + n logn)) = O(n3 logn) time algorithm due to Gabow [16]
then yields the claimed running time.3

Our algorithm for maximum matching easily generalizes to computing maximum b-
matchings in the same time O(mw2 log mwn+m). By a different summation of the running
time, one can also bound the time by O((mw log mw) · (m + n log mw)). For large total
capacity b(V), Gabow’s algorithm runs in time O((n logn) · (m+ n logn)), which matches
our running time for graphs with worst-case modular-width of mw = Θ(n).

Thus, when capacities are large, our algorithm interpolates smoothly between linear time
O(n+m) for mw = O(1) and the running time of the best unparameterized algorithm for
mw = Θ(n); i.e., it is an adaptive algorithm and already mw = o(n) gives an improved
running time. Such adaptive algorithms (for other problems and parameter) were also
considered by Iwata et al. [24]. For maximum matching, the comparison with the O(m

√
n)

time algorithm of Micali and Vazirani [29] is of course less favorable, but still yields a fairly
large regime for mw where we get a faster algorithm.

We next study triangle counting where, given a graph G = (V,E), we need to
determine the number of triangles in G. The fastest known algorithm in terms of n relies on
fast matrix multiplication and runs in O(nω) time [32] where ω is the matrix multiplication

2 For b(V) ≥ n logn
3 The obvious upper bound of O(mw3 log mwn+m) of applying Gabow’s algorithm on each prime node

can be improved by a slightly more careful summation; the same applies in the other results.

ESA 2018

55:4 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

exponent.4 We present an algorithm that runs in O(mwω−1 n+m) time. Again, our running
time smoothly interpolates between linear time O(n + m) for mw = O(1) and the best
unparameterized time for mw = Θ(n), making it adaptive for sufficiently dense graphs;
else, the O(m

2ω
ω+1) = O(m1.41) time algorithm of Alon et al. [3] is faster. Coudert et al. [8]

obtained time O(cw2(n+m)) where cw is the clique-width of G; this is incomparable with
our result because clique-width is a smaller parameter (cw ≤ mw and there are graphs with
cw = O(1) but mw = Θ(n)) but (so far) allows a worse time.

Finally, we turn to problems related to edge- and vertex-disjoint paths. Due to space
restrictions the discussion of those problems are deferred to the full version [26]. Our results
for the vertex-disjoint paths generalize to vertex-capacitated flows and global min cuts; it is
easy to see that there is little use for modular-width for most edge-weighted/capacitated
problems because it suffices to solve them on cliques, which have modular-width equal to
two (see also Section 5). Note that standard transformations between different variants of
path- and flow-type problems do not apply here because they affect the modular-width of the
graph. We obtain the following running times: maximum s-t vertex-capacitated flow
in O(mw3 + n+m) time; global vertex-capacitated min cut in O(mw2 log mwn+m)
time; edge-disjoint s-t paths in O(mw3 + n+m) time; and unweighted global min
cut in O(mw3 + n+m) time. The running times for flows/paths are linear in the graph
size and only have an additive contribution in terms of the modular-width, because at most
one involved computation (on a prime node) is needed. These also give rise to linear-time
kernelization-like algorithms that return an equivalent instance of size poly(mw), which
is the one instance that one would run some other algorithm on (i.e., the only source of
non-linear time). Such results (for other problems) have also been observed by Coudert
et al. [8]. It is easy to see that any algorithm of running time O(f(k) + n+m), for some
parameter k, implies a linear-time kernelization: Run the algorithm for c(n+m) steps, for
sufficiently large c relative to hidden constants in O; it either terminates and returns the
correct answer or allows the conclusion that n+m < f(k), i.e., the input instance itself is the
kernel. Again, as done for maximum b-matching, one can obtain different bounds for the
running time by slightly different summations. For example, the running time for maximum
s-t vertex-capacitated flow can also be bounded by O(mwm+ n), meaning that the
algorithm is never worse than the optimal unparameterized algorithm and outperforms it
already for mw = o(n).

To summarize, we obtain several results that fit into the recent FPT in P program
(and the much older programs of adaptive algorithms and faster algorithms for restricted
settings), i.e., efficient parameterized algorithms with running times O(poly(mw)(n+m)) or
O(poly(mw) +m+ n). All running times are linear for mw = O(1) and several algorithms
are adaptive so that they match the best known algorithm for mw = Θ(n) and outperform
it already when mw = o(n), possibly only for sufficiently dense graphs. Of course, we use
the best algorithms as black boxes so the message is that throughout there is little to no
overhead even in the worst case for using a modular decomposition-based approach and
getting savings in running time already for large (but not worst-case) modular-width.

Related work. triangle counting is solvable in time O(nω) using fast matrix multiplica-
tion [3], and even for the simpler triangle detection problem, where only (non-)existence
of a single triangle needs to be reported, it has been conjectured that there is no O(nω−ε)

4 It is known that 2 ≤ ω < 2.3728639 due to Le Gall [17]. By definition of ω the running time is in fact
O(nω+o(1)); adopting a common abuse of notation we use exponent ω for brevity.

S. Kratsch and F. Nelles 55:5

time and no combinatorial O(n3−ε) time algorithm. The fastest known algorithm for counting
triangles in sparse graphs is the AYZ algorithm due to Alon, Yuster, and Zwick [3], which
runs in time O(m

2ω
ω+1) (O(m1.41) for ω < 2.373). Coudert et al. [8] gave a faster algorithm for

graphs of bounded clique-width cw, running in time O(cw2(n+m)). Bentert et al. [4] have
studied triangle enumeration under various parameters including feedback edge number,
distance to d-degenerate graphs, and clique-width. The latter one outputs all triangles in
time O(cw2 n+ n2 + #T) where #T denotes the number of triangles in G.

The currently best maximum flow algorithm is due to Orlin [30] and runs in time O(nm).
Using a flow algorithm, one can determine the number of edge- or vertex-disjoint s-t paths in
a graph, but in the unweighted case one can do slightly better, e.g., computing the number of
edge-disjoint paths in an undirected graph can be done in time O(n 3

2m
1
2) using an algorithm

due to Goldberg and Rao [20]. Finding a global minimum edge cut with weights on the edges
in an undirected graph can be done in time O(nm+ n2 logn) due to Stoer and Wagner [33].
The unweighted variant can be solved in time O(m+ λ2n log(n/λ)) by Gabow [15], where λ
denotes the edge-connectivity of the graph (which is upper-bounded by the minimum degree
δ, so λ ≤ δ ≤ 2m/n). There is also a randomized algorithm with running time O(m log3 n)
due to Karger [25].

The notion of a modular decomposition was first introduced by Gallai [18] for recognizing
comparability graphs. The first linear time algorithm to compute a modular decomposition
was independently developed by McConnell and Spinrad [27] and Cournier and Habib [9].
Tedder et al. [34] later gave a new and much simpler linear-time algorithm.

Organization. In Section 2 we briefly introduce basic notation, define the modular de-
composition tree, and define modular-width. Then, in Section 3, we consider the problem
maximum matching and the generalization to maximum b-matching. In Section 4, we
study the problem triangle counting. Due to space restrictions, the remaining results for
edge/vertex-disjoint paths, flows, and cuts can be found in the full version [26]. We conclude
in Section 5.

2 Preliminaries

We use standard graph notation [10]. An s-t vertex-capacitated flow in a graph G = (V,E)
with vertex capacities c : V → R is a weighted collection of s-t paths in G such that the
total weight of paths including any vertex v ∈ V \ {s, t} is at most the capacity c(v).
(Equivalently, one may define this as a function f : E(←→G) → R where ←→G = (V,A) with
A = {(u, v), (v, u) | {u, v} ∈ E} that has flow-conservation at each v ∈ V \ {s, t} and with∑

(u,v)∈δ−←→
G

(v) f((u, v)) ≤ c(v) for all v ∈ V \ {s, t}, where δ−←→
G

(v) is the set of arcs with end
in v.) The value of such a flow, denoted by |f |, is the total weight over all the s-t paths
(equivalently,

∑
(v,t)∈δ−←→

G
(t) f(v, t)). For unit capacities c ≡ 1 this is equivalent to a maximum

collection of vertex-disjoint s-t paths.
We say that two sets A and B overlap if A ∩B 6= ∅, A \B 6= ∅, and B \ A 6= ∅ and let

[n] = {1, 2, . . . , n} for any n ∈ N.

Modular Decomposition. Let G = (V,E) be a graph. A module is a vertex set M ⊆ V

such that all vertices in M have the same neighborhood in V \M . In other words, M ⊆ N(x)
or M ∩N(x) = ∅ for every vertex x ∈ V \M . Clearly, ∅, V , and {v} for every v ∈ V are
modules of G; these are called trivial modules. If a graph only admits trivial modules, we
call G prime. Consider a partition P = {M1,M2, . . . ,M`} of the vertices of G into modules
where ` ≥ 2, called modular partition. If there is v ∈Mi and u ∈Mj with {u, v} ∈ E, then

ESA 2018

55:6 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

any vertex in Mi is adjacent to every vertex in Mj . In this case, we can call two modules Mi

and Mj of P adjacent, and non-adjacent otherwise.

I Definition 1. Let P = {M1,M2, . . . ,M`} be a modular partition of a graph G = (V,E).
The quotient graph G/P = ({qM1 , qM2 , . . . , qM`

}, EP) is the graph whose vertices are in a
one-to-one correspondence to the modules in P . Two vertices qMi

, qMj
of G/P are adjacent

if and only if the corresponding modules Mi and Mj are adjacent (with adjacency as above).

If P = {M1,M2, . . . ,M`} is a modular partition of a graph G, then the quotient graph
G/P is a compact representation of the edges with endpoint in different modules. Together
with all subgraphs G[Mi], with i ∈ [`], we can reconstruct G. Each subgraph G[Mi] is called
a factor. Instead of specifying the factors, one can recursively decompose them as well until
one reaches trivial modules {v}. To make the decomposition unique, one considers modular
partitions consisting of strong modules. A module of a graph G is called a strong module, if
it does not overlap with any other module of G. One can represent all strong modules of a
graph G by an inclusion tree MD(G). Each strong module M in G corresponds to a vertex
vM in MD(G). A vertex vA is an an ancestor of vB in MD(G) if and only if B (A for the
corresponding strong modules A and B of G. Hence, the root node of MD(G) corresponds
always to the complete vertex set V of G and every leaf of MD(G) corresponds a singleton
set {v} with v ∈ V . Consider an internal node vM of MD(G) with the set of children
{vM1 , . . . , vM`

}, i.e., vM corresponds to a strong module M of G and P = {M1, . . . ,M`} is a
modular partition of G[M] into strong modules where Mi is the corresponding module of
vMi , with i ∈ [`]. There are three types of internal nodes in MD(G). A node vM in MD(G)
is degenerate, if for any non-empty subset of the children of vM in MD(G), the union of the
corresponding modules induces a (not necessarily strong) module. In this case the quotient
graph G[M]/P is either a clique or an independent set. In the former case one calls vM a
series node, in the later a parallel node. Another case are so called prime nodes. Here, for
no proper subset of the children of vM , the union of the corresponding modules induces a
module. In this case the quotient graph of vM is prime. Gallai showed there are no further
nodes in MD(G).

I Theorem 2 ([18]). For any graph G = (V,E) one of the three conditions is satisfied:
G is not connected,
G is not connected,
G and G are connected and the quotient graph G/P , where P is the maximal modular
partition of G, is a prime graph.

Theorem 2 implies that MD(G) is unique. The tree MD(G) is called the modular
decomposition tree and the modular-width, denoted by mw = mw(G), is the minimum k ≥ 2
such that any prime node in MD(G) has at most k children. Since every node in MD(G)
has at least two children and there are exactly n leaves, MD(G) has at most 2n− 1 nodes.
It is known that MD(G) can be computed in time O(n+m) [34]. We refer to a survey of
Habib and Paul [21] for more information.

3 Maximum Matching

In the maximum matching problem we are given a graph G = (V,E) and need to find a
maximum set X ⊆ E of pairwise disjoint edges. The size of a maximum matching of a graph
G is denoted by µ(G). Edmond [11] was the first to give a polynomial-time algorithm for this

S. Kratsch and F. Nelles 55:7

problem. The fastest known algorithm, due to Micali and Vazirani [29], runs in time O(m
√
n).

A b-matching is a generalization of a matching that specifies for each vertex a degree bound of
how many edges in the matching may be incident with that vertex. Formally, degree bounds
are given by a function b : V → N, and a b-matching is a function x : E → N that fulfills for
every vertex v ∈ V the constraint that

∑
e∈δ(v) x(e) ≤ b(v). Gabow [16] showed how to find

a b-matching that maximizes
∑
e∈E x(e) in time O((n logn) · (m+ n logn)).

Recently, Coudert et al. [8] gave an O(mw4 n+m) time algorithm for maximum matching,
where mw denotes the modular-width of the input graph. In the following we will improve this
result by providing an algorithm for maximum matching that runs in time O(mw2 log mw ·
n+m). The main idea of our algorithm is to compress the computation of a matching in G
to a computation of a b-matching, instead of using the structure of modular decompositions
to speed up the search for augmenting paths (like in [8]).

I Theorem 3. For every graph G = (V,E) with modular-width mw, maximum matching
can be solved in time O(mw2 log mw · n+m).

Algorithm. First, we compute the modular decomposition tree MD(G). We will traverse
the decomposition tree in a bottom-up manner. For each vM in MD(G), with M denoting
the corresponding module of G, we will compute a maximum matching in G[M]. Note that
for the root module vM of MD(G) it holds that G[M] = G. For any leaf module vM of
MD(G), we have µ(G[M]) = 0, since G[M] is a graph consisting of a single vertex. Let vM
be a non-leaf vertex in MD(G) with the set of children {vM1 , . . . , vM`

}. This means that
{M1, . . . ,M`} is a modular partition of G[M], where Mi ⊆M corresponds to the vertex vMi

in MD(G) for i ∈ [`]. In the following, we can always assume that we have already computed
µ(G[Mi]) for i ∈ [`]. The next lemma shows that the concrete structure inside a module
is irrelevant for the maximum matching size of the whole graph, i.e., only the number of
vertices and the maximum matching size is important. The lemma is a more general version
of [8, Lemma 5.1], but can be proven in a similar way.

I Lemma 4. Let M be a module of G = (V,E) and let G[M] = (M,EM). Let A ⊆
(
M
2
)
be

any set of edges on the vertices of M such that µ((M,A)) = µ((M,EM)). Then, the size of
a maximum matching of G′ = (V, (E \EM) ∪A) is equal to the size of a maximum matching
of G.

Proof. We first show that µ(G′) ≥ µ(G). Let us consider a maximum matching F ⊆ E

in G = (V,E). To get a maximum matching in G′ we replace all edges in F that are
incident with M : First, replace all edges in F ∩ E(G[M]) by an arbitrary matching A′ ⊆ A
of the same size; such a matching must exist because F ∩ E(G[M]) is not larger than a
maximum matching in G[M] and µ((M,A)) = µ((M,EM)). Second, we replace all edges
in F that have exactly one endpoint in M as follows: Let X ⊆M be the set of vertices in
M that are endpoints of an edge in F whose other endpoint is not in M . By assumption,
|M \ V (A′)| ≥ |X| and since all vertices in V \M that are connected to a vertex in X in G
are also connected to all vertices in M \ V (A′) in G′, we can replace all edges of F that have
exactly one endpoint in M . Thus, µ(G′) ≥ µ(G), i.e., replacing the edges in a module by
an arbitrary set of edges with same maximum matching size does not decrease the size of
the maximum matching for the whole graph. Applying this argument for A′ := EM to swap
back to the original edge set yields, µ(G) ≥ µ(G′) and completes the proof. J

We now describe how to compute µ(G[M]) for a node vM in MD(G). Let {vM1 , . . . , vM`
}

be the set of children of vM in MD(G), meaning that P = {M1, . . . ,M`} is a modular
partition of G[M]. We can assume that we have already computed µ(G[Mi]) for i ∈ [`].

ESA 2018

55:8 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

Let G[M]/P be the quotient graph of G[M]. If vM is a parallel node then G[M]/P is
edgeless, i.e., G[M] is the disjoint union of all G[Mi]. In this case a maximum matching
for G[M] simply consists of the union of maximum matchings for each G[Mi] and we set
µ(G(M)) =

∑
i∈[`] µ(G[Mi]). Next, suppose that vM is a prime node. We will reduce the

problem of computing a maximum matching in G[M] to computing a maximum b-matching
in an auxiliary graph closely related to the quotient graph of vM that we will define next.

I Definition 5. Let G = (V,E) be a graph and P = {M1, . . . ,M`} be a modular partition of
G. Let ni denote the number of vertices in G[Mi] and fi the size of a maximum matching in
G[Mi]. We define an auxiliary graph G∗ = (V ∗, E∗) together with degree bounds b∗ : V ∗ → N
as an instance (G∗, b∗) for the maximum b-matching problem as follows:

For every module Mi ∈ P , with i ∈ [`], we add three vertices v1
i , v

2
i , v

3
i to V ∗ and set

b∗(v1
i) = b∗(v2

i) = fi and b∗(v3
i) = ni − 2fi.

We add the edge {v1
i , v

2
i } to E∗ for i ∈ [`].

For each edge between vertices qi and qj in G/P that corresponds to modules Mi and
Mj , we add the nine edges {vci , vdj } with c, d ∈ {1, 2, 3} to E∗.

I Lemma 6. Let G = (V,E) be a graph and P = {M1, . . . ,M`} be a modular partition of G.
Let (G∗, b∗) be the instance of a maximum b-matching problem as defined in Definition 5.
Then the size of maximum matchings in G is equal to the size of a maximum b-matching of
(G∗, b∗).

Proof. Consider a graph G = (V,E) with a modular partition P = {M1, . . . ,M`}. For
Mi ∈ P let ni = |V (G[Mi])| and let fi = µ(G[Mi]). Due to Lemma 4, we can replace each
G[Mi], for i ∈ [`], by a graph consisting of a complete bipartite graph Kfi,fi

together with
ni − 2fi single vertices without changing the size of a maximum matching. We do this for
every module Mi ∈ P and denote the resulting graph by G. Note, that µ(G) = µ(G). Now,
each replacement of G[Mi] can be partitioned into three modules, namely the two parts of
the complete bipartite graph Kfi,fi

and the one set consisting of ni − 2fi single vertices.
This results in a modular partition P ′ of G of size 3`, and for every module M ∈ P ′ the
factor graph G[M] is an independent set. The quotient graph G/P ′ is exactly the auxiliary
graph G∗ of G and the degree bound of a vertex v in G∗ is equal to the number of vertices
in the corresponding module. Since solving a b-matching in (G∗, b∗) directly corresponds to
solving maximum matching in G, this completes the proof. J

Finally, suppose that vM is a series node. Instead of computing µ(G[M]) directly, we
will modify the decomposition tree MD(G) (cf. [8]). Let {vM1 , . . . , vM`

} be the children of
vM in MD(G). We will iteratively compute a maximum matching for Gi = G[∪1≤j≤iMj]
by using a modular partition of Gi consisting of the two modules ∪1≤j<iMj and Mi, for
i ∈ [`]. This means that we replace a series node with ` children by `− 1 series nodes with
only two children. We will treat the newly inserted nodes as prime nodes (with a quotient
graph isomorphic to K2). After replacing the series nodes of the modular decomposition tree
MD(G), every node still has at least two children; hence, we still have a most 2n− 1 nodes
in MD(G).

Running Time. Consider a graph G = (V,E) with modular-width mw. Computing the
modular decomposition tree MD(G) takes time O(n+m). Since there are at most 2n− 1
nodes in MD(G) the total computation for all parallel nodes together takes time O(n). As
described above, we modify the decomposition tree such that every series node of MD(G)

S. Kratsch and F. Nelles 55:9

with ` ≥ 3 children is replaced by `− 1 ‘pseudo-prime‘ nodes with exactly two children. This
replacement can be done in time O(n). Now, every node vM ∈MD(G) that is not a parallel
node has a set of children {vM1 , . . . , vM`

} with ` ≤ mw. This means that P = {M1, . . . ,M`}
is a modular partition of G[M] and the quotient graph G[M]/P consists of ` ≤ mw vertices.
Since we have already computed µ(G[Mi]) for all i ∈ [`], we can construct the auxiliary
graph G∗ of G[M] as defined in Definition 5 in time O(V (G∗) + E(G∗)) = O(`2). Recall,
that |V (G∗)| = 3`. Thus, we can compute a maximum b-matching of G∗ subject to b in time
O(`3 log `) using the algorithm due to Gabow [16]. We have to do this for every prime and
series node, but a slightly more careful summation of running times over all nodes gives an
improvement over the obvious upper bound of O(mw3 log mw · n+m): Let t be the number
of nodes in MD(G) and for a node vMi in MD(G) let `i denote the number of children, i.e.
the number of vertices of the quotient graph of G[Mi]. Then, neglecting constant factors and
assuming that MD(G) is already computed, we can solve maximum matching, in time:

t∑
i=1

`3
i log `i ≤

(
t∑
i=1

`i

)
·max
i∈[t]
{`2
i log `i} ≤ 2n ·max

i∈[t]
{`2
i log `i} ≤ 2n · (mw2 log mw)

The second inequality holds, since
∑t
i=1 `i counts each node in MD(G) once, except for the

root. Since constant factors propagate through the inequality, the total running time of the
algorithm is O(mw2 log mw · n+m), which proves Theorem 3.

Generalization to b-matching. We can easily generalize this result to the more general
maximum b-matching problem.

I Theorem 7. For every graph G = (V,E) with modular-width mw, maximum b-matching
can be solved in time O(mw2 log mw · n+m).

Again, the concrete structure inside a module will not be important. The only important
information is the size of a maximum b-matching and the sum of all b-values in a module.
We naturally extend Definition 5 to b-matchings:

I Definition 8. Let G = (V,E) be a graph with b : V → N and let P = {M1, . . . ,M`} be a
modular partition of G. Let ni =

∑
v∈Mi

b(v) and fi be the size of a maximum b-matching in
G[Mi] for i ∈ [`]. We define the auxiliary graph G∗ = (V ∗, E∗) together with degree bounds
b∗ : V → N in the same way as done in Definition 5.

I Lemma 9. Let G = (V,E) be a graph and P = {M1, . . . ,M`} be a modular partition of G.
Let (G∗, b∗) be the instance of a maximum b-matching problem as defined in Definition 8.
Then the size of a maximum b-matching in (G, b) is equal to the size of a maximum b-matching
of (G∗, b∗).

Proof. Consider a graph G = (V,E) with a modular partition P = {M1, . . . ,M`}. For
Mi ∈ P let ni =

∑
v∈Mi

b(v) and let fi be the size of a maximum b-matching in Mi. Note,
that one can solve b-matching by replacing every vertex v by b(v) copies that are connected
in the same way as v. After considering this replacement and due to Lemma 4, we can
replace G[Mi], for i ∈ [`], by a graph consisting of a complete bipartite graph Kfi,fi

together
with ni − 2fi single vertices without changing the size of a maximum matching. We do this
for every module Mi and denote the resulting graph by G. As in the proof of Lemma 6, we
can subdivide every module in three parts. This yields to the instance (G∗, b∗) as defined
in Definition 8. Again, solving a maximum b-matching of (G∗, b∗) directly corresponds to
solving a maximum b-matching in G, which completes the proof. J

ESA 2018

55:10 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

The running time can be bounded in the same way as before. However, to see that this
algorithm is also adaptive for sparse graphs (at least for large b-values), we can modify the
computation of the running time: Let t be the number of nodes in MD(G). For a node
vMi in MD(G) let ni denote the number of vertices and mi denote the number of edges of
the quotient graph of G[Mi]. Thus, we can compute a maximum b-matching of G∗ subject
to b∗ in time O((ni logni) · (mi + ni logni)) using the algorithm due to Gabow [16]. Then,
neglecting constant factors and assuming that MD(G) is already computed, we can solve
maximum b-matching in time:

t∑
i=1

(ni logni) · (mi + ni logni) =
t∑
i=1

mini logni +
t∑
i=1

n2
i log2 ni

≤

(
t∑
i=1

mi

)
max
i∈[t]
{ni logni}+

(
t∑
i=1

ni

)
max
i∈[t]
{ni log2 ni}

≤ m ·mw log mw + 2n · (mw log2 mw)

Since constant factors propagate through the inequality, the total running time of the
algorithm is O((m+ n log mw) · (mw log mw)). Therefore, even for mw = Θ(n) our algorithm
is not worse than the (currently) best unparameterized algorithm, assuming b(V) ≥ n logn,
where b(V) =

∑
v∈V b(v).

4 Triangle Counting

In this section we consider the triangle counting problem, in which one is interested in
the number of triangles in the input graph.

I Theorem 10. For every graph G = (V,E) with modular-width mw, triangle counting
can be solved in time O(n ·mwω−1 +m).

Algorithm. First, we compute the modular decomposition tree MD(G). We will process
MD(G) in a bottom-up manner. For each vM in MD(G), with corresponding module M in
G, we will compute the following three values: the number of vertices nM = |V (G[M])|, the
number of edges mM = |E(G[M])|, and the number of triangles tM in G[M]. For any leaf
node vM in MD(G) we have nM = 1 and mM = tM = 0, because G[M] consists of a single
vertex. Let vM be a non-leaf node in MD(G) with children {vM1 , . . . , vM`

}. Since we process
MD(G) in a bottom-up manner, the values for G[Mi] are already computed for i ∈ [`]. If
vM is a parallel node, the values simply add up, i.e. nM =

∑`
i=1 nMi

, mM =
∑`
i=1 mMi

,
and tM =

∑`
i=1 tMi

. If vM is a series node, we will use the same approach as in Section 3
and replace vM by `− 1 series nodes with only two children each. Afterwards, we compute
the values for a series node vM with children vM1 and vM2 as follows:

nM = nM1 + nM2

mM = mM1 +mM2 + nM1nM2

tM = tM1 + tM2 +mM1nM2 +mM2nM1

Finally, let vM be a prime node in MD(G) and let {vM1 , . . . , vM`
} be the children of vM

in MD(G). This means that P = {M1, . . . ,M`} is a modular partition of G[M]. Again,
nM =

∑`
i=1 nMi and we can compute mM by traversing all edges in the quotient graph

S. Kratsch and F. Nelles 55:11

G[M]/P , i.e., mM =
∑`
i=1 mMi +

∑
{qi,qj}∈E(G[M]/P) nMi

nMj . For computing tM we count
triangles in G[M] of three types: Triangles using vertices in exactly one module, in two
(adjacent) modules, or in three modules of P . We call a triangle with vertices in three
different modules a separated triangle. To compute the number of separated triangles, we
use the following lemma:

I Lemma 11. Let G = (V,E) be a graph with a modular partition P = {M1, . . . ,M`} and
quotient graph G/P . Let nMi

:= |Mi| and consider the weight function w : E(G/P) → R+

with w({qi, qj}) = √nMinMj . Let A be the weighted adjacency matrix of G/P with respect to
w. Then, the number of separated triangles in G is:

∑̀
i,j=1

1
3(A2 ◦A)i,j ,

where A◦B denotes the Hadamard product of the matrices A and B, i.e., (A◦B)i,j = Ai,jBi,j .

Proof. To count all separated triangles in G we need to sum up the values nMi
nMj

nMk
for

each triangle (qi, qj , qk) in G/P . We show, that (A2 ◦A)i,j exactly corresponds to the number
of separated triangles in G with one vertex in Mi and one in Mj ; here, a wedge is a path on
three vertices (and a wedge (qi, qk, qj) requires the presence of edges {qi, qk} and {qk, qj}):

(
A2)

i,j
=
∑̀
k=1

Ai,kAk,j

=
∑

k:(qi,qk,qj)
is a wedge in G/P

√
nMinMk

√
nMk

nMj

= √nMi
nMj

∑
k:(qi,qk,qj)

is a wedge in G/P

nMk

⇒
(
A2 ◦A

)
i,j

=
∑

k:(qi,qk,qj)
is a triangle in G/P

nMi
nMj

nMk

Since every triangle is counted three times (once for each edge) the lemma follows. J

Using Lemma 11, we can compute tM by

tM =
∑̀
i=1

tMi
+

∑
{qi,qj}∈E(G/P)

(
mMi

nMj
+ nMi

mMj

)
+
∑̀
i,j=1

1
3
(
A2 ◦A

)
i,j
,

where the three terms refer to triangles with vertices from only one module, triangles using
vertices of two adjacent modules, and separated triangles with vertices in three different
(pairwise adjacent) modules.

Running Time. Computing the modular decomposition tree MD(G) takes time O(n+m).
Consider a node vM in MD(G) with children {vM1 , . . . , vM`

}. If vM is a parallel or a series
node then we can compute the values nM , mM , and tM for G[M] in time O(`). Thus, since
the number of nodes in MD(G) is at most 2n− 1, the total running time for all parallel and
series nodes is O(n). Assume that vM is a prime node. Recall, that P = {M1, . . . ,M`} is
a modular partition of G[M]. Computing nM takes time O(`) and computing mM takes

ESA 2018

55:12 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

time O(|E(G[M]/P)|) = O(`2). The running time for computing tM is dominated by the
computation of A2, which takes time O(`ω). Note, that 2 ≤ ` ≤ mw. By a similar careful
summation as done in Section 3 we can improve the obvious upper bound of O(n ·mwω +m):
Let p be the number of nodes in MD(G) and for vMi in MD(G) let `i be the number of
children, i.e., the number of vertices of the quotient graph of G[Mi]. Neglecting constant
factors and assuming that MD(G) is already computed, the running time is:

p∑
i=1

`ωi ≤

(
p∑
i=1

`i

)
max
i∈[p]

`ω−1
i ≤ 2n ·mwω−1

Again, since constant factors propagate through the inequalities, the total running time of
the algorithm is O(n ·mwω−1 + m), which proves Theorem 10. Note, that this algorithm
is adaptive for dense graphs, meaning that even for mw = Θ(n) our algorithm is not worse
than O(nω).

5 Conclusion

We have obtained efficient parameterized algorithms for maximum matching, maximum
b-matching, triangle counting, and several path- and flow-type problems with respect
to the modular-width mw of the input graph. All time bounds are of form O(f(mw)n+m),
O(n+ f(mw)m), or O(f(mw) + n+m), where the latter can be easily seen to imply linear-
time preprocessing to size O(f(mw)). Throughout, the dependence f(mw) is very low and
several algorithms are adaptive in the sense that their time bound interpolates smoothly
between O(n+m) when mw = O(1) and the best known unparameterized running time when
mw = Θ(n). Thus, even if typical inputs may have modular width Θ(n) (a caveat that all
structural parameters face to some degree), using these algorithms costs only a constant-factor
overhead and already mw = o(n) yields an improvement over the unparameterized case.

As mentioned in the introduction, (low) modular-width seems useless in problems where
edges are associated with weights and/or capacities. Intuitively, these numerical values
distinguish edges between adjacent modules M and M ′, which could otherwise be treated
as largely equivalent. For concreteness, consider an instance (G, s, t, w) of the shortest
s,t-path problem where w : E(G)→ N are the edge weights. Clearly, the distance from s to t
is unaffected if we add the missing edges of G and let their weight exceed the sum of weights
in w. However, the obtained graph is a clique and has constant modular-width. Similar
arguments work for other edge-weighted/capacitated problems like maximum flow using
either huge or negligible weights. In each case, running times of form O(f(mw)g(n,m)) would
imply time O(g(n,m)) for the unparameterized case (without considering modular-width),
so the best such running times cannot be outperformed even for low modular-width.

Apart from developing further efficient (and adaptive?) parameterized algorithms relative
to modular-width there are other directions of future work. Akin to conditional lower
bounds via fine-grained analysis of algorithms it would be interesting to prove optimality of
efficient parameterized algorithms for all regimes of the parameters (e.g., like Bringmann and
Künnemann [7]). Which other (graph) parameters allow for adaptive parameterized running
times so that even nontrivial upper bounds on the parameter imply faster algorithms than
the unparameterized worst case?

S. Kratsch and F. Nelles 55:13

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results

for LCS and other sequence similarity measures. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 59–78, 2015. doi:10.1109/FOCS.2015.14.

2 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 41–50. ACM,
2015. doi:10.1145/2746539.2746594.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

4 Matthias Bentert, Till Fluschnik, André Nichterlein, and Rolf Niedermeier. Parameterized
aspects of triangle enumeration. In Fundamentals of Computation Theory - 21st Inter-
national Symposium, FCT 2017, Bordeaux, France, September 11-13, 2017, Proceedings,
pages 96–110, 2017. doi:10.1007/978-3-662-55751-8_9.

5 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless SETH fails. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages
661–670. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.76.

6 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 79–97,
2015. doi:10.1109/FOCS.2015.15.

7 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
1216–1235, 2018. doi:10.1137/1.9781611975031.79.

8 David Coudert, Guillaume Ducoffe, and Alexandru Popa. Fully polynomial FPT algorithms
for some classes of bounded clique-width graphs. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 2765–2784, 2018. doi:10.1137/1.9781611975031.176.

9 Alain Cournier and Michel Habib. A new linear algorithm for modular decomposition. In
Sophie Tison, editor, Trees in Algebra and Programming - CAAP’94, 19th International
Colloquium, Edinburgh, U.K., April 11-13, 1994, Proceedings, volume 787 of Lecture Notes
in Computer Science, pages 68–84. Springer, 1994. doi:10.1007/BFb0017474.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,
1965.

12 Vladimir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms. ACM
Comput. Surv., 24(4):441–476, 1992. doi:10.1145/146370.146381.

13 Till Fluschnik, Christian Komusiewicz, George B. Mertzios, André Nichterlein, Rolf Nie-
dermeier, and Nimrod Talmon. When can graph hyperbolicity be computed in linear
time? In Algorithms and Data Structures - 15th International Symposium, WADS 2017,
St. John’s, NL, Canada, July 31 - August 2, 2017, Proceedings, pages 397–408, 2017.
doi:10.1007/978-3-319-62127-2_34.

14 Fedor V Fomin, Daniel Lokshtanov, Michał Pilipczuk, Saket Saurabh, and Marcin
Wrochna. Fully polynomial-time parameterized computations for graphs and matrices of
low treewidth. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on

ESA 2018

http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1145/2746539.2746594
http://dx.doi.org/10.1007/BF02523189
http://dx.doi.org/10.1007/978-3-662-55751-8_9
http://dx.doi.org/10.1109/FOCS.2014.76
http://dx.doi.org/10.1109/FOCS.2015.15
http://dx.doi.org/10.1137/1.9781611975031.79
http://dx.doi.org/10.1137/1.9781611975031.176
http://dx.doi.org/10.1007/BFb0017474
http://dx.doi.org/10.1145/146370.146381
http://dx.doi.org/10.1007/978-3-319-62127-2_34

55:14 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

Discrete Algorithms, pages 1419–1432. Society for Industrial and Applied Mathematics,
2017.

15 Harold N. Gabow. A matroid approach to finding edge connectivity and packing arbores-
cences. J. Comput. Syst. Sci., 50(2):259–273, 1995. doi:10.1006/jcss.1995.1022.

16 Harold N. Gabow. Data structures for weighted matching and extensions to b-matching
and f-factors. CoRR, abs/1611.07541, 2016. arXiv:1611.07541.

17 François Le Gall. Powers of tensors and fast matrix multiplication. In Katsusuke Nabeshima,
Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó, editors, International Symposium on
Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages 296–
303. ACM, 2014. URL: http://dl.acm.org/citation.cfm?id=2608628, doi:10.1145/
2608628.2608664.

18 Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18(1-2):25–66,
1967.

19 Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier. Polynomial
fixed-parameter algorithms: A case study for longest path on interval graphs. CoRR,
abs/1506.01652, 2015. arXiv:1506.01652.

20 Andrew V. Goldberg and Satish Rao. Flows in undirected unit capacity networks. SIAM
J. Discrete Math., 12(1):1–5, 1999. doi:10.1137/S089548019733103X.

21 Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decom-
position. Computer Science Review, 4(1):41–59, 2010. doi:10.1016/j.cosrev.2010.01.
001.

22 Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in a
directed graph. J. Algorithms, 17(3):424–446, 1994. doi:10.1006/jagm.1994.1043.

23 Thore Husfeldt. Computing graph distances parameterized by treewidth and diameter. In
Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized
and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63
of LIPIcs, pages 16:1–16:11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.IPEC.2016.16.

24 Yoichi Iwata, Tomoaki Ogasawara, and Naoto Ohsaka. On the power of tree-depth for
fully polynomial FPT algorithms. In 35th Symposium on Theoretical Aspects of Computer
Science, STACS 2018, February 28 to March 3, 2018, Caen, France, pages 41:1–41:14, 2018.
doi:10.4230/LIPIcs.STACS.2018.41.

25 David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000. doi:
10.1145/331605.331608.

26 Stefan Kratsch and Florian Nelles. Efficient and adaptive parameterized algorithms on
modular decompositions. CoRR, abs/1804.10173, 2018. arXiv:1804.10173.

27 Ross M McConnell and Jeremy P Spinrad. Linear-time modular decomposition and efficient
transitive orientation of comparability graphs. In Proceedings of the fifth annual ACM-
SIAM symposium on Discrete algorithms, pages 536–545. Society for Industrial and Applied
Mathematics, 1994.

28 George B. Mertzios, André Nichterlein, and Rolf Niedermeier. Fine-grained algorithm
design for matching. CoRR, abs/1609.08879, 2016. arXiv:1609.08879.

29 Silvio Micali and Vijay V. Vazirani. An o(sqrt(|v|) |e|) algorithm for finding maximum
matching in general graphs. In 21st Annual Symposium on Foundations of Computer
Science, Syracuse, New York, USA, 13-15 October 1980, pages 17–27. IEEE Computer
Society, 1980. doi:10.1109/SFCS.1980.12.

30 James B. Orlin. Max flows in o(nm) time, or better. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 765–774, 2013. doi:
10.1145/2488608.2488705.

http://dx.doi.org/10.1006/jcss.1995.1022
http://arxiv.org/abs/1611.07541
http://dl.acm.org/citation.cfm?id=2608628
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1145/2608628.2608664
http://arxiv.org/abs/1506.01652
http://dx.doi.org/10.1137/S089548019733103X
http://dx.doi.org/10.1016/j.cosrev.2010.01.001
http://dx.doi.org/10.1016/j.cosrev.2010.01.001
http://dx.doi.org/10.1006/jagm.1994.1043
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.16
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.41
http://dx.doi.org/10.1145/331605.331608
http://dx.doi.org/10.1145/331605.331608
http://arxiv.org/abs/1804.10173
http://arxiv.org/abs/1609.08879
http://dx.doi.org/10.1109/SFCS.1980.12
http://dx.doi.org/10.1145/2488608.2488705
http://dx.doi.org/10.1145/2488608.2488705

S. Kratsch and F. Nelles 55:15

31 Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In
Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages
1065–1075. SIAM, 2010. doi:10.1137/1.9781611973075.86.

32 Thomas Schank and Dorothea Wagner. Finding, counting and listing all triangles in large
graphs, an experimental study. In Experimental and Efficient Algorithms, 4th Internation-
alWorkshop, WEA 2005, Santorini Island, Greece, May 10-13, 2005, Proceedings, pages
606–609, 2005. doi:10.1007/11427186_54.

33 Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–591,
1997. doi:10.1145/263867.263872.

34 Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul. Simpler linear-
time modular decomposition via recursive factorizing permutations. In Luca Aceto, Ivan
Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, Automata, Languages and Programming, 35th International Col-
loquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A:
Algorithms, Automata, Complexity, and Games, volume 5125 of Lecture Notes in Computer
Science, pages 634–645. Springer, 2008. doi:10.1007/978-3-540-70575-8_52.

ESA 2018

http://dx.doi.org/10.1137/1.9781611973075.86
http://dx.doi.org/10.1007/11427186_54
http://dx.doi.org/10.1145/263867.263872
http://dx.doi.org/10.1007/978-3-540-70575-8_52

	Introduction
	Preliminaries
	Maximum Matching
	Triangle Counting
	Conclusion

