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Abstract
In the past decades for more and more graph classes the Graph Isomorphism Problem was shown
to be solvable in polynomial time. An interesting family of graph classes arises from intersection
graphs of geometric objects. In this work we show that the Graph Isomorphism Problem for
unit square graphs, intersection graphs of axis-parallel unit squares in the plane, can be solved
in polynomial time. Since the recognition problem for this class of graphs is NP-hard we can not
rely on standard techniques for geometric graphs based on constructing a canonical realization.
Instead, we develop new techniques which combine structural insights into the class of unit
square graphs with understanding of the automorphism group of such graphs. For the latter we
introduce a generalization of bounded degree graphs which is used to capture the main structure
of unit square graphs. Using group theoretic algorithms we obtain sufficient information to solve
the isomorphism problem for unit square graphs.
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1 Introduction

The Graph Isomorphism Problem is one of the most famous open problems in theoretical
computer science. In the past three decades the problem was intensively studied but only
recently the upper bound on the complexity could be improved to quasipolynomial time
[2]. However, it is still open whether the Graph Isomorphism Problem can be solved in
polynomial time. In this work we focus on geometric graph classes, that is, graph classes
that arise as intersection graphs of geometric objects. In an intersection graph the vertices
are identified with geometric objects and two vertices are connected if the corresponding
objects intersect.

One of the most basic geometric graph classes is the class of interval graphs, intersection
graphs of intervals on the real line. Although this graph class is quite restrictive there are
a number of practical applications and specialized algorithms for interval graphs (see e.g.
[15]). The Graph Isomorphism Problem on interval graphs can be solved in linear time [11]
as well as in logarithmic space [18]. However, for several generalizations of interval graphs
the complexity of the Graph Isomorphism Problem is unknown. This includes for example
circular arc graphs (see [12]) and triangle graphs (see [30]). On the other hand a graph class
is GI-complete if the Graph Isomorphism Problem for this class is as difficult as the general
problem under polynomial time reductions. An example of a GI-complete geometric class is
the class of grid intersection graphs, bipartite intersection graphs of horizontal and vertical
line segments in the plane [29]. As an immediate consequence the class of intersection graphs
of axis-parallel rectangles is also GI-complete. Unit square graphs, intersection graphs of
axis-parallel unit squares, are a natural restriction for the rectangle graphs. This raises
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70:2 Graph Isomorphism for Unit Square Graphs

the question for the complexity of the isomorphism problem for unit square graphs. In
this work we prove that the Graph Isomorphism Problem for unit square graphs can be
solved in polynomial time. Besides being a natural restriction to rectangle graphs, another
central motivation to study this problem comes from unit disk graphs, intersection graphs
of unit circles in the plane. Unit disk graphs where first studied by Clark, Colbourn and
Johnson in [10] and for several problems specialized algorithms have been proposed (see
e.g. [13]). Practical applications arise for example from broadcast networks where each
broadcast station is represented by a vertex and two stations communicate with each other
if the distance between them does not exceed the broadcast range. In the work of Clark
et al. two problems, namely the recognition problem and the isomorphism problem, were
left open. While recognition of unit disk graphs proved to be NP-hard [8], the isomorphism
problem for unit disk graphs is still open. Unit square graphs present a natural variant
to unit disk graphs as we just replace the Euclidean norm by the Manhattan norm. Also,
going from unit disks to unit squares removes geometric intricacies and tends to simplify
the structure of graphs but maintains several key aspects of the problem. In particular, for
unit disk as well as unit square graphs vertices only have a bounded number of independent
neighbors (set of pairwise non-adjacent neighbors) and the structure of graphs seems to be
a mixture of bounded degree and planarity. Hence, solving the isomorphism problem for
unit square graphs might be a step towards solving the same problem for unit disk graphs.
Furthermore, in [29, 30] Uehara also asked for the complexity of graph isomorphism for unit
grid intersection graphs. Unit grid intersection graphs can be seen as bipartite versions
of unit square graphs in the following sense: A bipartite graph is a unit grid intersection
graph if and only if it is the intersection graph of unit squares where intersections between
squares belonging to vertices on the same side of the bipartition are ignored. Hence, the
result presented in this work shows that in some sense the difficulty for unit grid intersection
lies in recreating the information which lines are close to each other.

Another interesting point arises from the fact that, like for unit disk graphs, recognition
of unit square graphs is NP-hard [7]. Hence, we obtain an example of a natural graph class
with the interesting property that isomorphism tests can be performed in polynomial time
whereas recognition is NP-hard. Also, the hardness result rules out the classical approach
to attack the isomorphism problem. Typically, isomorphism tests for geometric graphs are
based on constructing a canonical geometric representation of the graph (see e.g. [18, 20])
but, as this would also solve the recognition problem, such an approach is not possible here.
Instead, our algorithm combines group theoretic techniques with geometric properties of
unit square graphs. For the group theoretic machinery we extend the results developed by
Luks [22] to decide isomorphism for bounded degree graphs by also allowing for example
large cycles in the neighborhood of a vertex. On a geometric level this coincides in some
sense with the intuition that vertices in the neighborhood of some fixed vertex are cyclically
arranged around the central vertex. Using geometric properties of unit square graphs and
known algorithms for other geometric graph classes such as proper circular arc graphs we
can canonically (in an isomorphism-invariant way) extract such circular orderings, which can
then be used by the group theoretic machinery. For this, we show a series of results giving
a deep insight into the structure of neighborhoods of single vertices and neighborhoods of
cliques within unit square graphs. These results not only help us to understand the structure
of unit square graphs, but also we obtain significant knowledge about the structure of the
automorphism group of a unit square graph. However, an obvious obstacle to this approach
comes from large cliques which are connected in a uniform way to the rest of the graph and
do not contain any significant structure. More precisely, such cliques may be responsible for
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large symmetric groups which are subgroups of the automorphism group of the whole graph.
Since large symmetric groups form a clear obstacle to the group theoretic machinery and
can not be handled by Luks’ algorithm we have to cope with these parts of the graph in a
different way. Our second main result on the structure of unit square graphs characterizes
connections between cliques which are stable with respect to the color refinement algorithm
(see e.g. [6, 24]), and also establishes a close connection to interval graphs. Building on this
characterization we show that the color refinement algorithm can be used to cope with the
symmetric parts of the graph containing no significant structure. Finally, combining the
color refinement algorithm with the group theoretic machinery, we obtain an algorithm to
solve the isomorphism problem for unit square graphs.

2 Preliminaries

2.1 Graphs
A graph is a pair G = (V,E) with vertex set V = V (G) and edge set E = E(G). In this
paper all graphs are undirected, so E(G) is always irreflexive and symmetric. The (open)
neighborhood of a vertex v ∈ V (G) is the set NG(v) = N(v) = {w ∈ V (G) | vw ∈ E(G)} and
the size of N(v) is the degree of v. The closed neighborhood is the set N [v] = N(v) ∪ {v}.
Two vertices v, w ∈ V (G) are connected twins if N [v] = N [w]. The corresponding equivalence
relation, where two vertices are related if they are connected twins, will be called the connected
twins relation. A path from v to w of length m is a sequence u0, . . . , um of distinct vertices
with u0 = v and um = w, such that ui−1ui ∈ E(G) for each i ∈ [m] := {1, . . . ,m}. The
distance between v and w, d(v, w), is the length of a shortest path from v to w. A colored
graph is a tuple G = (V,E, c) where c : V (G)→ N assigns each vertex a unique color. For
each color i ∈ N let Vi(G) = {v ∈ V (G) | c(v) = i}. Two graphs G and H are isomorphic
(G ∼= H) if there is a bijection ϕ : V (G) → V (H), such that vw ∈ E(G) if and only if
ϕ(v)ϕ(w) ∈ E(H) for all v, w ∈ V (G). In this case the mapping ϕ is an isomorphism from
G to H. In case the input graphs are colored it is demanded that the isomorphism also
preserves the coloring of the vertices. The Graph Isomorphism Problem asks whether two
given graphs G and H are isomorphic. An isomorphism from a graph to itself is called
an automorphism. The set of automorphisms of a graph G, denoted by Aut(G), forms a
subgroup of the symmetric group over the vertex set.

2.2 Color Refinement
A very basic and fundamental method, which is a basic building block of many isomorphism
tests, is the color refinement algorithm (see e.g. [24]). The basic idea is to iteratively
distinguish vertices if they have a different number of neighbors in some color. A partition P of
the vertices is stable if for all X,Y ∈ P and all v, w ∈ X it holds that |N(v)∩Y | = |N(w)∩Y |.
Further a partition P refines another partition Q if for each X ∈ P there is some Y ∈ Q
with X ⊆ Y . The color refinement algorithm computes the unique coarsest stable partition
refining the initial color partition (i.e. the partition of the vertices according to their color).
The coarsest stable partition can be computed in almost linear time (see [24, 6]). We say
color refinement distinguishes two graphs if there is some class in the coarsest stable partition
on the disjoint union of the graphs that contains a different number of vertices from the two
graphs. In this case the two input graphs are not isomorphic.

The k-dimensional Weisfeiler-Leman algorithm is a generalization of the color refinement
algorithm (cf. [9]). Instead of coloring only single vertices, the Weisfeiler-Leman algorithm
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70:4 Graph Isomorphism for Unit Square Graphs

colors k-tuples of vertices. Initially each tuple is colored with the isomorphism type of
the underlying induced subgraph and then the coloring is refined in a similar way as by
the color refinement algorithm (see [9] for a detailed description). We say k-dimensional
Weisfeiler-Leman identifies a graph class C if for every pair of non-isomorphic graphs G,H
with G ∈ C the k-dimensional Weisfeiler-Leman distinguishes between G and H.

2.3 Group Theory
In this subsection we briefly introduce the main group theoretic tools used in this work.
For a general introduction to group theory we refer to [25] whereas several group theoretic
algorithms are given in [16, 27]. Since we only deal with automorphism groups of graphs
we can restrict ourselves to permutation groups which throughout this work will always be
represented by generating sets of size polynomial in the size of the permutation domain. For
a set Ω let Sym(Ω) be the symmetric group over the set Ω. In particular we require a certain
subclass of permutation groups, namely groups with bounded non-abelian composition factors.
Let Γ be a group. A normal series is a sequence of subgroups Γ = Λ0 D Λ1 D · · · D Λk = {1}.
The length of the series is k and the groups Λi−1/Λi are the factor groups of the series, i ∈ [k].
A composition series is a strictly decreasing normal series of maximal length. For every finite
group Γ all composition series have the same family of factor groups considered as a multi-set
(cf. [25]). A composition factor of a finite group Γ is a factor group of a composition series
of Γ.

I Definition 2.1. Let d ∈ N. The family Γd contains all finite groups Γ for which all
non-abelian composition factors are isomorphic to subgroups of Sd = Sym([d]).

The class of Γd-groups is closed under subgroups and homomorphic images. Furthermore,
for groups N E Γ it holds that Γ ∈ Γd if and only if N ∈ Γd and Γ/N ∈ Γd (cf. [22]). A
group Γ is solvable if every composition factor is abelian. Two examples of solvable groups,
that are particularly important for this work, are cyclic groups and dihedral groups which are
the automorphism groups of directed cycles and undirected cycles. Note that every solvable
group is a Γd-group for every d ∈ N.

The Setwise Stabilizer Problem asks, given a permutation group Γ ≤ Sym(Ω) and A ⊆ Ω,
for a generating set of the group StabΓ(A) := {γ ∈ Γ | A = Aγ}, where Aγ = {αγ | α ∈ A}
and αγ is the image of α under the permutation γ. A central motivation to consider Γd-groups
is the following result.

I Theorem 2.2. Let d ∈ N. The Setwise Stabilizer Problem for groups in Γd can be solved
in polynomial time.

A weaker version of this statement was proved by Luks in [22] considering only groups
where all composition factors are isomorphic to subgroups of Sd. For the more general
version stated above we refer to [1]. This result is for example used by Luks to solve graph
isomorphism for graphs of bounded degree [22], but it can also be applied to more general
graph classes such as t-bounded graphs (see e.g. [4]). For this work we introduce a slight
variation, namely graphs which we call t-circle-bounded graphs. For a graph G and a set
X ⊆ V (G) we write G[X] to denote the induced subgraph of G with vertex set X.

I Definition 2.3. A colored graph G = (V,E, c) with c : V (G) → [k] is t-circle-bounded if
for each i ∈ [k] and X ⊆ V<i :=

⋃
j<i Vj(G) the graph

Gi,X := G[{v ∈ Vi(G) | N(v) ∩ V<i = X}]

is the disjoint union of at most t connected graphs of maximum degree two.
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Figure 1 Some forbidden induced subgraphs of proper circular arc graphs.

The t-circle-bounded graphs are closely related to t-bounded graphs which are similarly
defined with the size of Gi,X bounded by t (see [4]). From an algorithmic point of view we
can use very similar methods for the isomorphism problem on t-circle-bounded graphs as for
t-bounded graphs.

I Theorem 2.4. Let G be a t-circle-bounded graph. Then Aut(G) ∈ Γt.

I Theorem 2.5. The Graph Isomorphism Problem for t-circle-bounded graphs can be solved
in polynomial time.

Both theorems can be proved in very similar fashion as the respective statements for
t-bounded graphs. In fact the only additional argument required for t-circle-bounded graphs
is that the automorphism groups of connected graphs of maximum degree two are solvable
and thus elements of Γt.

2.4 Proper circular arc graphs
A graph G is a unit interval graph if G is the intersection graph of unit intervals on the real
line. A graph G is a proper circular arc graph if G is the intersection graph of arcs on a
circle, such that for no two arcs one is properly contained in the other. A characterization of
unit interval graphs and proper circular arc graphs in terms of forbidden induced subgraphs
is given in [28]. For our purposes the following statements are sufficient. Some relevant
forbidden induced subgraphs are also depicted in Figure 1.

I Theorem 2.6. A graph G is a unit interval graph if and only if there are no induced
subgraphs isomorphic to Cn+4 for n ≥ 0, S3, K1,3 and net.

Here, Cn denotes a cycle of length n. Furthermore we denote by G∪H the disjoint union
of G and H and the graph G is the complement graph of G.

I Lemma 2.7. Let G be a graph, such that NG[v] induces a unit interval graph for every
v ∈ V (G) and there are no induced subgraphs isomorphic to K1 ∪ Cn+4 for n ≥ 0, K1 ∪ S3,
T2, C6 and net. Then G is a proper circular arc graph.
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We also require the following characterization for proper circular arc graphs. A vertex is
universal if it is adjacent to all other vertices. A graph G is twin-free if it does not contain
connected twins and G is co-bipartite if G is bipartite.

I Theorem 2.8 ([19], Theorem 3). Let G be a graph without universal vertices. Then G is a
proper circular arc graph if and only if there is a cycle H with V (G) = V (H), such that
1. NG[v] induces a connected subgraph in H for each v ∈ V (G)
2. For all v, w ∈ V (G) it holds that if NG[v] ⊆ NG[w] then the two paths share an endpoint

in H.

Furthermore, if G is connected, twin-free and not co-bipartite, the cycle H is unique [17].
Additionally, given some proper circular arc graph, a cycle H can be computed in polynomial
time (see [19]). This gives us the following result.

I Theorem 2.9. Let G be a connected proper circular arc graph, such that G is not bipartite.
Further let ∼G be the connected twins relation and P the corresponding partition into
equivalence classes. Then one can compute in polynomial time a canonical connected graph
H, such that V (H) = P and H has maximum degree two.

3 Basic Properties

For unit square graphs there are several possible definitions. The most obvious one is to
describe vertices by axis-parallel unit squares with edges connecting two vertices if the
unit squares intersect. Alternatively it can also be demanded that vertices represented by
unit squares are connected if the center of the first square is contained in the other square.
Another possibility is to describe vertices by points in the plane. Note that two squares with
unit side length intersect if and only if the distance between their centers using the maximum
norm is at most one. Thus, two vertices are connected if the distance between the points is
at most one using the maximum norm. Furthermore, a unit square contains the center point
of another unit square if and only if the distance between both centers is at most one half
using the maximum norm. By applying a scaling argument this also gives us the equivalence
to the second definition. In this paper we work with the last definition, that is we represent
vertices by points in the plane. For a point p ∈ Rk we denote by pi the i-th component of p,
i ∈ [k]. The L∞-norm is defined as ‖p‖∞ = maxi∈[k] |pi|.

I Definition 3.1. A k-dimensional L∞-realization of a graph G is a mapping f : V (G)→ Rk
such that vw ∈ E(G) if and only if ‖f(v)− f(w)‖∞ ≤ 1 for all v, w ∈ V (G). A unit square
graph is a graph having a two-dimensional L∞-realization.

Observe that graphs with 1-dimensional L∞-realization are exactly the unit interval
graphs. For the remainder of this paper we focus on unit square graphs and just use the
term realization for a two-dimensional L∞-realization. Following our previous notation, for a
realization f : V (G)→ R2 and a vertex v ∈ V (G), we denote by (f(v))i the i-th component
of f(v). This is also abbreviated by f(v)i, i ∈ [2]. We start by listing some basic properties
for unit square graphs.

I Observation 3.2. Let G be a unit square graph and f : V (G)→ R2 a realization. Further
let X ⊆ V (G), such that there are a1, b1, a2, b2 ∈ R with a1 ≤ b1 ≤ a1 + 1, a2 ≤ b2 and
f(v) ∈ [a1, b1]× [a2, b2] for every v ∈ X. Then G[X] is a unit interval graph.

I Lemma 3.3. Let G be a unit square graph. Then the following properties hold:
1. There is some v ∈ V (G), such that G[N [v]] is a unit interval graph.
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2. For every two non-adjacent u, v ∈ V (G) the set N(u)∩N(v) induces a unit interval graph
with at most two independent vertices.

3. G has no induced subgraph isomorphic to K1,5, K2,3 or 3K2 (3K2 is the disjoint union
of three K2).

Proof. Let f : V (G) → R2 be a realization. Pick v = argminv∈V (G) f(v)1. Further let
a1 = f(v)1, b1 = a1 + 1, a2 = f(v)2 − 1 and b2 = f(v)2 + 1. Then f(w) ∈ [a1, b1]× [a2, b2]
for every w ∈ N [v]. So G[N [v]] is a unit interval graph by Observation 3.2.

Now let u, v ∈ V (G) be two non-adjacent vertices. Without loss of generality assume
f(u)1 + 1 ≤ f(v)1. For w ∈ N(u) ∩N(v) we obtain f(u)1 ≤ f(w)1 ≤ f(v)1. Without loss
of generality let f(u) = (0, 0). Then f(w) ∈ [0, 1]× [−1, 1] for every w ∈ N(u) ∩N(v). So
N(u) ∩N(v) defines a unit interval graph according to Observation 3.2. Furthermore in this
area there can be at most two independent vertices.

For the third item first observe that the class of unit square graphs is hereditary (i.e. it is
closed under taking induced subgraphs) so it suffices to show that the listed graphs are not
unit square graphs. We first consider the graph K1,5. Suppose towards a contradiction that
there is a realization f : V (G)→ R2. Without loss of generality let f(v) = (0, 0) where v is
the center vertex connected to the other vertices w1, . . . , w5. Then there is some quadrant
containing two vertices wi and wj for distinct i, j ∈ [5]. But then wiwj ∈ E(G) which is a
contradiction.

For K2,3 the two vertices on the left side have three independent common neighbors.
The graph 3K2 contains two non-adjacent vertices whose common neighborhood is a 4-cycle.
So in both cases it follows from the second statement that the graph is not a unit square
graph. J

We also require some properties of maximal cliques. A clique is a set C ⊆ V (G), such
that vw ∈ E(G) for every two distinct v, w ∈ C. A maximal clique is a clique so that there
is no larger clique containing it. For a graph G the set of maximal cliques of G is denoted by
M(G).

I Lemma 3.4. Let G be a unit square graph and C be a maximal clique of G. Then there
are v1, . . . , v4 ∈ V (G), such that C =

⋂
i∈[4]N [vi].

Proof. Let f : V (G) → R2 be a realization of G. Let v2i−1 = argminv∈Cf(v)i and v2i =
argmaxv∈Cf(v)i for i ∈ [2]. Clearly C ⊆

⋂
i∈[4]N [vi]. So let w ∈

⋂
i∈[4]N [vi] and v ∈ C.

In order to prove w ∈ C it suffices to show that ‖f(v) − f(w)‖∞ ≤ 1, since v is chosen
arbitrarily from C. For i ∈ [2] it holds that f(v2i−1)i ≤ f(v2i)i. If f(w)i ≤ f(v2i)i then
−1 ≤ f(v2i)i− 1− f(v)i ≤ f(w)i− f(v)i ≤ f(v2i)i− f(v)i ≤ 1. Otherwise f(w)i ≥ f(v2i−1)i
and −1 ≤ f(v2i−1)i − f(v)i ≤ f(w)i − f(v)i ≤ f(v2i−1)i + 1− f(v)i ≤ 1. J

In particular all maximal cliques can be computed in polynomial time.

4 Local structure

The basic approach for our algorithm is group-theoretic. A main obstacle for group theoretic
approaches comes from large symmetric or alternating groups that appear in the automorph-
ism group of the given graph. For unit square graphs the central observation is that these
groups can in a way only arise from cliques. In this section we show how to cope with possibly
very symmetric parts of the graphs and give a corresponding reduction to get rid of them.

ESA 2016



70:8 Graph Isomorphism for Unit Square Graphs

C1 C2 C3 C4 C5 C6 C7

(a) An interval graph G (b) The constructed realization for GM

Figure 2 From interval to unit square graphs.

We start by giving a central class of examples to obtain a better understanding of
how the symmetric parts may look like. Let G be a graph. Define the colored graph
GM = (V (G) ∪M(G), E(GM), cGM) with

E(GM) = {vC | C ∈M(G), v ∈ C} ∪ {vw | v 6= w ∈ V (G)} ∪ {CD | C 6= D ∈M(G)}

and cGM(v) = cG(v) + 1 for v ∈ V (G), cGM(C) = 1 for C ∈M(G). For a group Γ ≤ Sym(Ω)
and a set A ⊆ Ω the pointwise stabilizer is the group Stab•Γ(A) := {γ ∈ Γ | ∀α ∈ A : αγ = α}.
If A is invariant under Γ (i.e. Aγ = A for every γ ∈ Γ) we define the restriction of Γ to A as
Γ|A := {γ|A | γ ∈ Γ} where γ|A : A→ A with γ|A(α) = γ(α).

I Observation 4.1. For every two graphs G and H it holds that
1. G ∼= H if and only if GM ∼= HM,
2. Stab•Aut(GM)(V (G)) = {1} (here 1 denotes the identify mapping),
3. Aut(GM)|V (G) = Aut(G).

In particular Aut(G) ∼= Aut(GM) by combining the second and third part of the obser-
vation. We now show that for each interval graph G the graph GM is a unit square
graph. For this we use the following characterization of interval graphs: A graph G

is an interval graph if and only if there is a linear order on the maximal cliques, such
that each vertex appears in consecutive maximal cliques [14]. For a vertex v ∈ V (G) let
MG(v) =M(v) = {C ∈M(G) | v ∈ C}.

I Lemma 4.2. Let G be an interval graph. Then GM is a colored unit square graph.

Proof. Let < be a linear order on M(G), such that each vertex appears in consecutive
maximal cliques. Let k = |M(G)| and C1 < C2 < · · · < Ck be the maximal cliques of G. For
each v ∈ V (G) define av, bv ∈ [k] in such a way thatM(v) = {Ci | av ≤ i ≤ bv}. Consider
the following realization f : V (GM)→ R2 with f(Ci) = ( ik − 1, ik ) and f(v) = (av

k ,
bv

k − 1)
for all v ∈ V (G). Clearly all vertices are connected to each other as well as all maximal
cliques. So let v ∈ V (G). Then |av

k −
i
k + 1| = |av−i

k + 1| ≤ 1 if and only if av ≤ i. Further
| ik −

bv

k + 1| = | i−bv

k + 1| ≤ 1 if and only if i ≤ bv. So there is an edge between v ∈ V (G) and
Ci ∈M if and only if av ≤ i ≤ bv if and only if v ∈ Ci. J

A visualization of the presented realization is also given in Figure 2. In Figure 2b the
vertices of GM are represented by points. The squares are only for visualization purposes
and indicate which vertices are connected. Each square describes a maximal clique of the
original interval graph and contains exactly the vertex which corresponds to the given clique
and the vertices being in the clique.
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I Corollary 4.3. For each colored interval graph G one can compute in polynomial time
some colored unit square graph H with Aut(G) ∼= Aut(H).

In particular this construction implies that there are twin-free unit square graphs where
the automorphism group contains arbitrarily large symmetric groups which can not be
handled by the group theoretic approach due to Luks. For example consider the following
graph Gn,k for n, k ∈ N. The vertex set V (Gn,k) = [n]≤k is the set of all words over the
alphabet [n] of length at most k and there is an edge vw ∈ E(Gn,k) if v is a prefix of w
(this is interpreted for an undirected graph). First, Gn,k is an interval graph. To verify this
consider the set [n]k of words of length k with the natural lexicographic order. Then each
vertex v ∈ V (Gn,k) can be represented by the interval In,k(v) = {w ∈ [n]k | v is prefix of w}.
It is easy to check that two vertices are connected if and only if the corresponding intervals
intersect. The automorphism group of Gn,k is a wreath product of the automorphism group
of Gn,k−1 by a symmetric group on n points.

One of the main contributions of this work is to show that within automorphism groups
of unit square graphs large symmetric groups only appear in a local setting. Here, local
refers to a small area in the realization of a unit square graph G. In the presented example
the vertices of each color class are close together and in particular they induce a clique. The
main target for this section is to present a method how to cope with the local parts of the
graph that may admit large symmetric groups in the automorphism group. For this purpose
we have to analyze the structure of clique-partitions of the vertices.

I Definition 4.4. Let G be a graph and P be a partition of the vertices. We call P a
clique-partition if X is a clique for each X ∈ P.

Let G be a unit square graph with realization f : V (G)→ R2. We first define the graph
G∗M = (V (G) ∪M(G), E(G∗M), cG∗M) with E(G∗M) = {vC | C ∈M(G), v ∈ C} ∪ E(G) and
cG∗M = cGM as defined above. Let P be a clique-partition of V (G), which is refined by the
color refinement algorithm applied to the graph G∗M. More precisely let P∗ be the unique
coarsest partition of V (G)∪M(G) that is stable with respect to G∗M and refines the partition
P ∪ {M(G)}. The partition P is called clique-stable if P∗ ∩ 2V (G) = P.

I Lemma 4.5. Let G be a twin-free unit square graph and let P be a clique-stable partition.
Further let f : V (G)→ R2 be a realization. Then the following properties hold:
1. For each X ∈ P there exists b ∈ {−1, 1}, such that

f(v)1 ≤ f(w)1 ⇔ b · f(v)2 ≤ b · f(w)2 (1)

for all v, w ∈ X. The value b is called the orientation of X, which is denoted by oriG,f (X)
(the value b is unique unless |X| = 1, in this case we define oriG,f (X) = 1).

2. Let X,Y ∈ P with oriG,f (X) 6= oriG,f (Y ). Then either xy ∈ E(G) for all x ∈ X, y ∈ Y
or there is no x ∈ X, y ∈ Y with xy ∈ E(G).

3. Let X,Y ∈ P with oriG,f (X) = oriG,f (Y ) and suppose k = |{xy ∈ X × Y | xy ∈
E(G)}| ≥ 1. Further let X = {x1, . . . , xs}, such that f(xi)1 ≤ f(xi+1)1 for all i ∈ [s],
and Y = {y1, . . . , yt}, such that f(yj)1 ≤ f(yj+1)1 for all j ∈ [t]. Then

xiyj ∈ E(G) ⇔
⌈
i · t
k

⌉
=
⌈
j · s
k

⌉
. (2)

Now let P be a canonical, clique-stable partition of the graph G. We define the vertex
and edge-colored graph G[P] = (P, E, cV , cE) with E = {XY | X 6= Y ∈ P},

cV : P → N : X 7→ |X|
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and

cE : E → N : XY 7→ |{xy ∈ X × Y | xy ∈ E(G)}|.

For γ ∈ Aut(G) define the permutation γP := ϕ(γ) ∈ Sym(P) where ϕ : Aut(G)→ Sym(P)
is the natural action of Aut(G) on P. Note that ϕ is well-defined since the partition P is
canonical.

I Theorem 4.6. Let G be a twin-free unit square graph and let P be a canonical, clique-stable
partition. Further let δ ∈ Aut(G[P]). Then there is some γ ∈ Aut(G) with γP = δ.

Intuitively, the last theorem states that each automorphism of G[P ] naturally extends to
an automorphism of G. In particular, the graph G can be uniquely reconstructed from the
graph G[P ]. This is the main result on the local structure of unit square graphs which allows
us, for a canonical, clique-stable partition P , to restrict to the graph G[P ]. For the remainder
of this work the goal is to compute a canonical, clique-stable partition P, such that the
automorphism group of G[P ] is a Γt-group for some constant t. To achieve this goal we require
the graph G to have some singleton vertex v0 (a vertex with a unique color). More precisely,
for such a graph we construct the desired partition P and a canonical, t-circle-bounded
graph H, such that P ⊆ V (H) and P is invariant under Aut(H). This results in a good
supergroup of the group Aut(G[P]) which can be used by Luks’ algorithm to compute the
real automorphism group. To compute the graph H we devise an algorithm that iteratively
extends H taking vertices with larger and larger distances to v0 into account. While doing
so the crucial subproblem is to compute canonical clique-partitions for neighborhoods of
cliques. This problem is addressed in the next section.

5 Neighborhoods

In order to obtain canonical clique-partitions for neighborhoods we essentially proceed in
two steps. First, we use some combinatorial partitioning techniques to obtain some initial
coloring of the vertices. Then, considering each color class separately, the main contribution
is to prove that each color class can either be described by a co-bipartite graph or a proper
circular arc graph. In both cases it is easy to compute a canonical clique-partition.

5.1 Neighborhood graphs
Before considering neighborhoods of cliques we first restrict to neighborhoods of vertices.
This occurs as a subcase when analyzing neighborhood of cliques. Also the structure of
neighborhoods tends to be simpler than for neighborhoods of cliques.

I Definition 5.1. A unit square graph is a neighborhood graph if there is a realization
f : V (G)→ [−1, 1]2.

Note that every graph induced on a neighborhood of a vertex is indeed a neighborhood
graph and every neighborhood graph can be turned into the neighborhood of a vertex by
adding a universal vertex located at the origin. Let G be a neighborhood unit square graph.
The goal is to prove that, after performing the k-dimensional Weisfeiler-Leman algorithm
for sufficiently large k, each color class of vertices is co-bipartite or proper circular arc. We
build on the characterization of proper circular arc graphs in terms of forbidden induced
subgraphs. We start by giving two general graph-theoretic lemmas.



D. Neuen 70:11

I Lemma 5.2. Let G be a graph, such that
1. G[N [v]] is a unit interval graph for each v ∈ V (G),
2. G has no induced subgraph isomorphic to C4 ∪K1.
Further let X = {w1 ∈ V (G) | ∃w2, . . . , w6 : G[w1, . . . , w6] ∼= C6}. Then G[X] is co-bipartite.

I Lemma 5.3. Let G be a graph, such that
1. G[N [v]] is a unit interval graph for each v ∈ V (G),
2. G has no induced subgraph isomorphic to Cn+4 ∪K1 for n ≥ 0,
3. there are no v, w ∈ V (G), such that N [v] ( N [w].
Then G has no induced subgraph isomorphic to net.

Now let G be a neighborhood unit square graph. In order to apply Lemma 2.7 we still
need to consider Cn+4 ∪K1 and S3 ∪K1.

I Lemma 5.4. Let G be a neighborhood unit square graph. Let X = {v ∈ V (G) | ∃` ≥
4 ∃w1, . . . , w` : vwi /∈ E(G) ∧G[w1, . . . , w`] ∼= C`}. Then X 6= V (G).

Proof. Let f : V (G)→ [−1, 1]2 be a realization and let v = argminv∈V (G) |f(v)1|. Suppose
towards a contradiction that v ∈ X. Then there is some ` ≥ 4 and w1, . . . , w` ∈ V (G), such
that vwi /∈ E(G) for all i ∈ [`] and wiwj ∈ E(G) if and only if i− j ≡ ±1 mod ` for all i, j ∈
[`]. Without loss of generality assume that f(v) ∈ [−1, 0]× [−1, 0]. Let i = argmini∈[`] f(wi)2.
Since G[w1, . . . , w`] is not a unit interval graph it holds that f(wi) ∈ [0, 1] × [−1, 0] by
Observation 3.2. Without loss of generality assume i = 2. Now consider the two neighbors
w1 and w3. Note that w1w3 /∈ E(G) since ` ≥ 4. Then there is some j ∈ {1, 3}, such
that f(wj) ∈ [−1, 0) × [0, 1]. So in particular f(wj)1 < 0. Further f(wj)1 + 1 ≥ f(w2)1
and f(v)1 + 1 < f(w2)1. Altogether this means that f(v)1 < f(wj)1 < 0 contradicting the
definition of v. J

I Lemma 5.5. Let G be a neighborhood unit square graph. Let X = {v ∈ V (G) | ∃w1, . . . , w6 :
vwi /∈ E(G) ∧G[w1, . . . , w6] ∼= S3}. Then X 6= V (G).

This lemma is proved in a similar fashion to Lemma 5.4. In order to prove the main
partitioning result for neighborhood graphs we also require that for sufficiently large k the
k-dimensional Weisfeiler-Leman algorithm identifies all interval graphs (cf. [21]).

I Corollary 5.6. There is some k ∈ N, such that for each neighborhood unit square graph
the following holds: After performing k-dimensional Weisfeiler-Leman each equivalence class
of vertices induces a graph which is co-bipartite or proper circular arc with at most four
connected components.

Proof. Choose k sufficiently large and let X ⊆ V (G) be an equivalence class. Then G[X] is
a neighborhood unit square graph. By Lemma 3.3 there is some v ∈ X, such that NG[X][v]
induces a unit interval graph. Since k-dimensional Weisfeiler-Leman identifies all interval
graphs this is true for all v ∈ X. From Lemma 5.4 it follows that there exists a vertex v ∈ X,
such that every induced cycle contains at least one vertex being a neighbor of v. Again
by stability of the set X with respect to k-dimensional Weisfeiler-Leman this is true for
all v ∈ X (note that the maximal length of an induced cycle is at most 8). So there is no
induced subgraph isomorphic to Cn+4 ∪K1. Combining the same argument with Lemma
5.5 we get that G[X] also has no induced subgraph isomorphic to S3 ∪K1. Since G[X] is
regular there are no vertices v, w ∈ X, such that NG[X][v] ( NG[X][w]. So we can apply
Lemma 5.3 and obtain that there is no induced subgraph isomorphic to net. Furthermore
G[X] has no induced subgraph isomorphic to 3K2 by Lemma 3.3 and therefore it has also no

ESA 2016



70:12 Graph Isomorphism for Unit Square Graphs

induced subgraph T2. Now suppose there is an induced subgraph isomorphic to C6. Then,
by stability, every vertex is part of an induced subgraph C6 and thus, G[X] is co-bipartite
by Lemma 5.2. Otherwise G[X] is proper circular arc by Lemma 2.7. The bound on the
number of components follows from the fact that K1,5 is not a unit square graph (cf. Lemma
3.3). J

I Theorem 5.7. Let G be a neighborhood unit square graph. Then one can compute in
polynomial time a canonical clique-partition P and a canonical colored graph H, such that
1. P = V (H),
2. H is 4-circle-bounded,
3. im(ϕ) ≤ Aut(H) where ϕ : Aut(G)→ Sym(P) is the natural action of Aut(G) on P.

Proof. Choose k according to Corollary 5.6 and let X ⊆ V (G) be an equivalence class after
performing k-dimensional Weisfeiler-Leman. Further let c be the color of the equivalence
class. First suppose G[X] is co-bipartite. Let t be the number of non-trivial connected
components of G[X]. Then t ≤ 2 by Lemma 3.3. Let Yj,1, Yj,2 be the unique bipartition
of the j-th connected component, j ∈ [t]. Further let Y be the set of isolated vertices in
G[X] and Y = {Y } if Y 6= ∅ and Y = ∅ otherwise. Define PX = {Yj,j′ | j ∈ [t], j′ ∈ [2]} ∪ Y.
Further let HX = {PX , E(HX), cX} with Y Z ∈ E(HX) if there are v ∈ Y,w ∈ Z with
vw ∈ E

(
G[X]

)
and cX(Y ) = c.

Otherwise G[X] is proper circular arc according to Corollary 5.6. Let X1, . . . , Xt be the
connected components of G[X]. Then t ≤ 4 by Corollary 5.6. Let i ∈ [t] and let PX,i be
the partition containing the equivalence classes of the connected twins relation for G[Xi].
Further let HX,i be the graph computed by Theorem 2.9 where each vertex is colored by c.
Define PX =

⋃
i∈[t] PX,i and HX =

⋃
i∈[t]HX,i.

Finally let P =
⋃
X PX and H =

⋃
X HX . It can easily be checked that P and H have

the desired properties. J

5.2 Clique neighborhoods graphs
Remember, that our goal is to compute a canonical clique-partition of a given unit square
graph with singleton vertex v0. We first group the vertices according to their distance to
v0. Then, for the first level of vertices which are all the neighbors of v0, we use the previous
theorem to compute a canonical clique-partition. For all other levels we want to build up
on the partition computed in the previous level. More precisely, for a given clique in the
partition of the previous level we want to partition its neighbors in the current level. Hence,
we need to consider neighborhoods of cliques and extend the results of the previous subsection
accordingly.

Let G be a colored unit square graph and let X ⊆ V (G) be a clique, such that V (G) =
N [X] =

⋃
v∈X N [v]. Further suppose there is some color i, such that X = Vi(G), and there

is some k ∈ [|X|], such that |N [v] ∩X| = k for all v ∈ V (G) \X. In this case G is called a
simple clique neighborhood graph with respect to X. The next theorem extends the result of
the previous subsection to simple clique neighborhood graphs. Note that we have to pay a
price here, namely the constant for the circle-bounded graph increases from four to eight.
This can be explained by the fact that a single vertex can have at most four independent
neighbors whereas a clique can have eight independent neighbors (cf. Figure 3).

I Theorem 5.8. Let G be a simple clique neighborhood graph with respect to X ⊆ V (G).
Then one can compute in polynomial time a canonical clique-partition P and a canonical
colored graph H, such that
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Figure 3 Neighborhood of a clique and realization for the graph G8

1. P ⊆ V (H) and P is Aut(H)-invariant,
2. H is 8-circle-bounded,
3. im(ϕ) ≤ Aut(H)|P where ϕ : Aut(G)→ Sym(P) is the natural action of Aut(G) on P.

The basic idea for the proof is similar to Theorem 5.7 but the technical details are far
more involved. In particular Corollary 5.6 does not hold for neighborhoods of cliques. To
circumvent this problem the basic idea is to consider an initial partition which is based
on whether two vertices have the same neighbors in X. Then the single sets all define
neighborhood graphs whereas on the sets considered as single elements we can define an
auxiliary graph in a canonical way so that this auxiliary graph is again proper circular arc.
From this point we can use similar arguments as for neighborhoods of single vertices. We
omit the details here.

6 Global structure

In this section we are ready construct a canonical, clique-stable partition P together with
some canonical 8-circle-bounded graph H, such that P ⊆ V (H) and P is Aut(H)-invariant.
This method is the central part of our algorithm and gives us a good supergroup of the natural
action of the automorphism group on the computed partition. The computed supergroup is
then given to the subroutine, that computes setwise stabilizers for groups in Γ8, to obtain
the automorphism group of G[P].

I Theorem 6.1. Let G be a connected unit square graph with singleton vertex. Then one
can compute in polynomial time a canonical, clique-stable partition P and a canonical colored
graph H, such that
1. P ⊆ V (H) and P is invariant under Aut(H),
2. H is 8-circle-bounded,
3. im(ϕ) ≤ Aut(H)|P where ϕ : Aut(G)→ Sym(P) is the natural action of Aut(G) on P.

The basic idea for the algorithm is to proceed in two steps. First, we compute a
clique-partition P, which is only canonical but not necessarily clique-stable, together with
a corresponding graph H. For this part of the algorithm we make use of the partitioning
algorithm for neighborhoods of cliques. More precisely we first group the vertices according
to their distance to the singleton vertex v0 and then we iteratively consider vertices with
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larger and larger distances to v0. In the first iteration we only consider the neighbors of
v0 and compute a clique-partition and a canonical graph using Theorem 5.7. In the i-th
iteration we partition the vertices with distance i to v0 based on the partition of the vertices
in the previous level. For each clique in the partition of the previous level we partition its
neighbors in the current level using Theorem 5.8. Then we combine the computed partitions
into one partition for the current level and use the computed graphs (which we obtained
from Theorem 5.8) to update the graph H.

Then, in a second step, we refine the computed partition using the color refinement
algorithm while simultaneously extending the graph H. The crucial idea for extending
the graph H is to use additional layers which model the iterations of the color refinement
algorithm.

I Corollary 6.2. Let G be a connected unit square graph with singleton vertex. Then one
can compute in polynomial time a canonical clique-partition P, such that im(ϕ) ∈ Γ8 where
ϕ : Aut(G)→ Sym(P) is the natural action of Aut(G) on P.

I Remark. The constant d = 8 is tight for the previous corollary. In particular the graph G8
with V (G8) = {vi | i ∈ [9]} ∪ {wi | i ∈ [8]} and E(G8) = {vivj | i 6= j ∈ [9]} ∪ {viwi | i ∈ [8]}
is a unit square graph (the vertex v9 may be a singleton vertex). A possible realization of
G8 is depicted in Figure 3.

Together with Theorem 4.6 this gives us sufficient structure to compute the natural action
of the automorphism group on the computed partition. This can also be used to solve the
isomorphism problem.

I Theorem 6.3. Let G be a connected, twin-free unit square graph with a singleton vertex.
Then one can compute in polynomial time a canonical, clique-stable partition P and a set
S ⊆ Sym(P), such that 〈S〉 = im(ϕ) ∈ Γ8 where ϕ : Aut(G)→ Sym(P) is the natural action
of Aut(G) on P.

Proof. Let P be the canonical, clique-stable partition and H the canonical, 8-circle-bounded
graph obtained from Theorem 6.1. Then Aut(H) can be computed in polynomial time
and Aut(H) ∈ Γ8 by Theorem 2.5 and 2.4. Further P is invariant under Aut(H). Since
H is canonical this implies im(ϕ) ≤ Aut(H)|P ∈ Γ8. Furthermore im(ϕ) = Aut(G[P]) by
Theorem 4.6. A generating set for Aut(G[P]) can be computed in polynomial time using
Theorem 2.2. J

I Theorem 6.4. The Graph Isomorphism Problem for unit square graphs can be solved in
polynomial time.

Proof. Let G1, G2 be two unit square graphs. First, it can be assumed that G1 and G2 are
connected by considering the connected components separately. Furthermore, the graphs can
be assumed to be twin-free using modular decompositions of graphs (cf. [26]). Let c ∈ N be
a fresh color (i.e. a color which does not appear in G1 or G2). For a graph G and a vertex
v ∈ V (G) we denote by Gv 7→c the graph where vertex v is colored by c. Pick v1 ∈ V (G1).
For each v2 ∈ V (G2) test whether Gv1 7→c

1
∼= Gv2 7→c

2 by the following procedure. For i ∈ [2]
let Pi be the partition and Hi be the graph computed by Theorem 6.1 for the graph Gvi 7→c

i .
Let H be the disjoint union of H1 and H2. Note that H1 ∼= H2 if Gv1 7→c

1
∼= Gv2 7→c

2 because
the graph Hi is canonical. Compute a generating set for Aut(H) ∈ Γ8. This can be done in
polynomial time according to Theorem 2.5. Let G be the disjoint union of Gv1 7→c

1 [P1] and
Gv2 7→c

2 [P2]. Then Aut(G) ≤ Aut(H)|P1∪P2 and hence a generating set for Aut(G) can be
computed in polynomial time using Theorem 2.2 (note that Aut(G) is the set of permutations
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which stabilize the edge set). By Theorem 4.6 it holds that Gv1 7→c
1

∼= Gv2 7→c
2 if and only if

there is an automorphism γ ∈ Aut(G) that maps Gv1 7→c
1 [P1] to Gv2 7→c

2 [P2]. Since G is the
disjoint union of of Gv1 7→c

1 [P1] and Gv2 7→c
2 [P2] and both of these graphs are connected it holds

that if such an automorphism exists then there will also be one present in the generating set
of Aut(G). Thus it can be checked in polynomial time whether Gv1 7→c

1
∼= Gv2 7→c

2 . J

I Remark. The running time of the presented algorithm is dominated by the running time
for the subroutine computing setwise stabilizers for groups in Γ8, which in turn depends on
the maximal size of primitive Γ8-groups.

The latter was analyzed by Babai, Cameron and Pálfy in [3] and proven to be polynomially
bounded in the size of the permutation domain. For a complexity analysis of the setwise
stabilizer subroutine we refer to [22, 23, 5]. Note that the setwise stabilizer subroutine is also
used for computing the automorphism group of H and the graph H might be much larger
than the original graph G.

I Remark. The presented algorithm also gives us some insight about the structure of the
automorphism group of a unit square graph with singleton vertex. There is an invariant
clique-partition, such that the natural action on the partition forms a Γ8-group.

An interesting question is whether a similar statement still holds if the given graph does
not have a singleton vertex. We leave this question open.

7 Discussion

We presented a polynomial time algorithm solving the Graph Isomorphism Problem for unit
square graphs. Overall the presented algorithm heavily depends on group theoretic methods.
This raises the question whether the problem can also be solved without the use of such
methods. In fact, it might be that the k-dimensional Weisfeiler-Leman algorithm can identify
every unit square graph for sufficiently large k. This is left as an open question.

Furthermore it is an interesting question whether the methods presented in this work can
be adapted to other geometric classes for which the isomorphism problem is still open. At
first glance a natural candidate seems to be the class of unit disk graphs. However, it turns
out that there are some crucial structural differences to unit square graphs. In particular,
there are unit disk graphs with singleton vertex, such that for each canonical clique-partition
the natural action of the automorphism group contains a large symmetric group.

Finally we would like to address two natural generalizations of unit square graphs. The
first one concerns the dimension of the realization, that is, what is the complexity of graph
isomorphism for graphs with d-dimensional L∞-realization for any constant number d. The
second extension concerns squares of arbitrary size. This is still a natural restriction for
the class of intersection graphs of rectangles, which is GI-complete, and the reduction does
not directly extend to square graphs because it requires large complete bipartite graphs as
induced subgraphs (cf. [29]). However, developing an efficient algorithm for this class of
graphs would require some new ideas since the number of independent neighbors of a vertex
is unbounded.
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