9 research outputs found

    Dynamic autonomous set-up of relays in Bluetooth mesh

    Get PDF
    BLE-based mesh networks are based on a simple flooding algorithm with some mechanisms to reduce network saturation, called managed flooding. The operating parameters of the network establish its performance, but in an industrial environment the operating conditions are not permanent, so a system that can adjust to these changes is necessary. A global decision system is not valid since each part of the network may have different properties. An autonomous system that does not introduce an overhead of message exchange is necessary for its operation. This paper proposes an algorithm based on the information provided by a single control message exchange that allows each node to autonomously select its operating parameters to improve the quality of links with neighbouring nodes and thus improve the overall performance of the network

    Vehicular communication management framework : a flexible hybrid connectivity platform for CCAM services

    Get PDF
    In the upcoming decade and beyond, the Cooperative, Connected and Automated Mobility (CCAM) initiative will play a huge role in increasing road safety, traffic efficiency and comfort of driving in Europe. While several individual vehicular wireless communication technologies exist, there is still a lack of real flexible and modular platforms that can support the need for hybrid communication. In this paper, we propose a novel vehicular communication management framework (CAMINO), which incorporates flexible support for both short-range direct and long-range cellular technologies and offers built-in Cooperative Intelligent Transport Systems' (C-ITS) services for experimental validation in real-life settings. Moreover, integration with vehicle and infrastructure sensors/actuators and external services is enabled using a Distributed Uniform Streaming (DUST) framework. The framework is implemented and evaluated in the Smart Highway test site for two targeted use cases, proofing the functional operation in realistic environments. The flexibility and the modular architecture of the hybrid CAMINO framework offers valuable research potential in the field of vehicular communications and CCAM services and can enable cross-technology vehicular connectivity

    A Systematic Literature Review on Distributed Machine Learning in Edge Computing

    Get PDF
    Distributed edge intelligence is a disruptive research area that enables the execution of machine learning and deep learning (ML/DL) algorithms close to where data are generated. Since edge devices are more limited and heterogeneous than typical cloud devices, many hindrances have to be overcome to fully extract the potential benefits of such an approach (such as data-in-motion analytics). In this paper, we investigate the challenges of running ML/DL on edge devices in a distributed way, paying special attention to how techniques are adapted or designed to execute on these restricted devices. The techniques under discussion pervade the processes of caching, training, inference, and offloading on edge devices. We also explore the benefits and drawbacks of these strategies

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    Network Service Availability and Continuity Management in the Context of Network Function Virtualization

    Get PDF
    In legacy computer systems, network functions (e.g., routers, firewalls, etc.) have been provided by specialized hardware appliances to realize Network Services (NS). In recent years, the rise of Network Function Virtualization (NFV) has changed how we realize NSs. With NFV, commercial off-the-shelf hardware and virtualization technologies are used to create Virtual Network Functions (VNF). In the context of NFV, an NS is realized by interconnecting VNFs using Virtual Links (VL). Service availability and continuity are among the important non-functional characteristics of NSs. Availability is defined as the fraction of time the NS functionality is provided in a period. Current work on NS availability, in the NFV context, focuses on determining the appropriate number of redundant VNFs and their deployment in the virtualized environment, and the redundancy of network paths. Such solutions are necessary but insufficient because redundancy does not guarantee that the overall service outage time for an NS functionality remains below a certain threshold. Moreover, service disruption which impacts the service continuity is not addressed in the current work quantitatively. In addition, NSs and VNFs elasticity and the dynamicity of virtualized infrastructures which can impact the availability of NS functionalities, are not considered in the current state of the art. In this thesis, we propose a framework for NS availability and continuity management, which consists of two approaches, one for design time and another for runtime adaptation. For this, we define service disruption time for an NS functionality as the amount of time for which the service data is lost due to service outages for a given period. We also define the service data disruption for an NS functionality as the maximum amount of data lost due to a service outage. The design-time approach includes analytical methods which take acceptable service disruption and availability requirements of the tenant, a designed NS, and a given infrastructure as inputs to adjust the NS design and map these requirements to constraints on low-level configuration parameters. Design-time approach guarantees the service availability and continuity requirements will be met as long as the availability characteristics of the infrastructure resources used by the NS constituents do not change at runtime. However, changes in the supporting infrastructure may happen at runtime due to multiple reasons like failover, upgrades, and aging. Therefore, we propose a runtime adaptation approach that reacts to changes at runtime and adjusts the configuration parameters accordingly to satisfy the same service availability and continuity requirements. The runtime approach uses machine learning models, which are created at design time, to determine the required adjustments at runtime. To demonstrate the feasibility of the proposed solutions and to experiment with them, we present a proof of concept, including prototypes of our approaches and their application in a small NFV cloud environment created for validation purposes. We conduct multiple experiments for two case studies with different service availability and continuity requirements. The results from the conducted experiments show that our approaches can guarantee the fulfillment of the service availability and continuity requirements

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot
    corecore