828 research outputs found

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Axp: A hw-sw co-design pipeline for energy-efficient approximated convnets via associative matching

    Get PDF
    The reduction in energy consumption is key for deep neural networks (DNNs) to ensure usability and reliability, whether they are deployed on low-power end-nodes with limited resources or high-performance platforms that serve large pools of users. Leveraging the over-parametrization shown by many DNN models, convolutional neural networks (ConvNets) in particular, energy efficiency can be improved substantially preserving the model accuracy. The solution proposed in this work exploits the intrinsic redundancy of ConvNets to maximize the reuse of partial arithmetic results during the inference stages. Specifically, the weight-set of a given ConvNet is discretized through a clustering procedure such that the largest possible number of inner multiplications fall into predefined bins; this allows an off-line computation of the most frequent results, which in turn can be stored locally and retrieved when needed during the forward pass. Such a reuse mechanism leads to remarkable energy savings with the aid of a custom processing element (PE) that integrates an associative memory with a standard floating-point unit (FPU). Moreover, the adoption of an approximate associative rule based on a partial bit-match increases the hit rate over the pre-computed results, maximizing the energy reduction even further. Results collected on a set of ConvNets trained for computer vision and speech processing tasks reveal that the proposed associative-based hw-sw co-design achieves up to 77% in energy savings with less than 1% in accuracy loss

    SW-VHDL Co-Verification Environment Using Open Source Tools

    Get PDF
    The verification of complex digital designs often involves the use of expensive simulators. The present paper proposes an approach to verify a specific family of complex hardware/software systems, whose hardware part, running on an FPGA, communicates with a software counterpart executed on an external processor, such as a user/operator software running on an external PC. The hardware is described in VHDL and the software may be described in any computer language that can be interpreted or compiled into a (Linux) executable file. The presented approach uses open source tools, avoiding expensive license costs and usage restrictions.Unión Europea 68722

    DTAPO: Dynamic thermal-aware performance optimization for dark silicon many-core systems

    Get PDF
    Future many-core systems need to handle high power density and chip temperature effectively. Some cores in many-core systems need to be turned off or ‘dark’ to manage chip power and thermal density. This phenomenon is also known as the dark silicon problem. This problem prevents many-core systems from utilizing and gaining improved performance from a large number of processing cores. This paper presents a dynamic thermal-aware performance optimization of dark silicon many-core systems (DTaPO) technique for optimizing dark silicon a many-core system performance under temperature constraint. The proposed technique utilizes both task migration and dynamic voltage frequency scaling (DVFS) for optimizing the performance of a many-core system while keeping system temperature in a safe operating limit. Task migration puts hot cores in low-power states and moves tasks to cooler dark cores to aggressively reduce chip temperature while maintaining high overall system performance. To reduce task migration overhead due to cold start, the source core (i.e., active core) keeps its L2 cache content during the initial migration phase. The destination core (i.e., dark core) can access it to reduce the impact of cold start misses. Moreover, the proposed technique limits tasks migration among cores that share the last level cache (LLC). In the case of major thermal violation and no cooler cores being available, DVFS is used to reduce the hot cores temperature gradually by reducing their frequency. Experimental results for different threshold temperatures show that DTaPO can keep the average system temperature below the thermal limit. Affirmatively, the execution time penalty is reduced by up to 18% compared with using only DVFS for all thermal thresholds. Moreover, the average peak temperature is reduced by up to 10.8◦ C. In addition, the experimental results show that DTaPO improves the system’s performance by up to 80% compared to optimal sprinting patterns (OSP) and reduces the temperature by up to 13.6◦ C

    On the use of probabilistic worst-case execution time estimation for parallel applications in high performance systems

    Get PDF
    Some high performance computing (HPC) applications exhibit increasing real-time requirements, which call for effective means to predict their high execution times distribution. This is a new challenge for HPC applications but a well-known problem for real-time embedded applications where solutions already exist, although they target low-performance systems running single-threaded applications. In this paper, we show how some performance validation and measurement-based practices for real-time execution time prediction can be leveraged in the context of HPC applications on high-performance platforms, thus enabling reliable means to obtain real-time guarantees for those applications. In particular, the proposed methodology uses coordinately techniques that randomly explore potential timing behavior of the application together with Extreme Value Theory (EVT) to predict rare (and high) execution times to, eventually, derive probabilistic Worst-Case Execution Time (pWCET) curves. We demonstrate the effectiveness of this approach for an acoustic wave inversion application used for geophysical explorationThis research was funded by the Horizon 2020 Framework Programme, grant number 801137, project RECIPEPeer ReviewedPostprint (published version

    Towards QoS-Based Embedded Machine Learning

    Get PDF
    Due to various breakthroughs and advancements in machine learning and computer architectures, machine learning models are beginning to proliferate through embedded platforms. Some of these machine learning models cover a range of applications including computer vision, speech recognition, healthcare efficiency, industrial IoT, robotics and many more. However, there is a critical limitation in implementing ML algorithms efficiently on embedded platforms: the computational and memory expense of many machine learning models can make them unsuitable in resource-constrained environments. Therefore, to efficiently implement these memory-intensive and computationally expensive algorithms in an embedded computing environment, innovative resource management techniques are required at the hardware, software and system levels. To this end, we present a novel quality-of-service based resource allocation scheme that uses feedback control to adjust compute resources dynamically to cope with the varying and unpredictable workloads of ML applications while still maintaining an acceptable level of service to the user. To evaluate the feasibility of our approach we implemented a feedback control scheduling simulator that was used to analyze our framework under various simulated workloads. We also implemented our framework as a Linux kernel module running on a virtual machine as well as a Raspberry Pi 4 single board computer. Results illustrate that our approach was able to maintain a sufficient level of service without overloading the processor as well as providing an energy savings of almost 20% as compared to the native resource management in Linux

    System-on-chip Computing and Interconnection Architectures for Telecommunications and Signal Processing

    Get PDF
    This dissertation proposes novel architectures and design techniques targeting SoC building blocks for telecommunications and signal processing applications. Hardware implementation of Low-Density Parity-Check decoders is approached at both the algorithmic and the architecture level. Low-Density Parity-Check codes are a promising coding scheme for future communication standards due to their outstanding error correction performance. This work proposes a methodology for analyzing effects of finite precision arithmetic on error correction performance and hardware complexity. The methodology is throughout employed for co-designing the decoder. First, a low-complexity check node based on the P-output decoding principle is designed and characterized on a CMOS standard-cells library. Results demonstrate implementation loss below 0.2 dB down to BER of 10^{-8} and a saving in complexity up to 59% with respect to other works in recent literature. High-throughput and low-latency issues are addressed with modified single-phase decoding schedules. A new "memory-aware" schedule is proposed requiring down to 20% of memory with respect to the traditional two-phase flooding decoding. Additionally, throughput is doubled and logic complexity reduced of 12%. These advantages are traded-off with error correction performance, thus making the solution attractive only for long codes, as those adopted in the DVB-S2 standard. The "layered decoding" principle is extended to those codes not specifically conceived for this technique. Proposed architectures exhibit complexity savings in the order of 40% for both area and power consumption figures, while implementation loss is smaller than 0.05 dB. Most modern communication standards employ Orthogonal Frequency Division Multiplexing as part of their physical layer. The core of OFDM is the Fast Fourier Transform and its inverse in charge of symbols (de)modulation. Requirements on throughput and energy efficiency call for FFT hardware implementation, while ubiquity of FFT suggests the design of parametric, re-configurable and re-usable IP hardware macrocells. In this context, this thesis describes an FFT/IFFT core compiler particularly suited for implementation of OFDM communication systems. The tool employs an accuracy-driven configuration engine which automatically profiles the internal arithmetic and generates a core with minimum operands bit-width and thus minimum circuit complexity. The engine performs a closed-loop optimization over three different internal arithmetic models (fixed-point, block floating-point and convergent block floating-point) using the numerical accuracy budget given by the user as a reference point. The flexibility and re-usability of the proposed macrocell are illustrated through several case studies which encompass all current state-of-the-art OFDM communications standards (WLAN, WMAN, xDSL, DVB-T/H, DAB and UWB). Implementations results are presented for two deep sub-micron standard-cells libraries (65 and 90 nm) and commercially available FPGA devices. Compared with other FFT core compilers, the proposed environment produces macrocells with lower circuit complexity and same system level performance (throughput, transform size and numerical accuracy). The final part of this dissertation focuses on the Network-on-Chip design paradigm whose goal is building scalable communication infrastructures connecting hundreds of core. A low-complexity link architecture for mesochronous on-chip communication is discussed. The link enables skew constraint looseness in the clock tree synthesis, frequency speed-up, power consumption reduction and faster back-end turnarounds. The proposed architecture reaches a maximum clock frequency of 1 GHz on 65 nm low-leakage CMOS standard-cells library. In a complex test case with a full-blown NoC infrastructure, the link overhead is only 3% of chip area and 0.5% of leakage power consumption. Finally, a new methodology, named metacoding, is proposed. Metacoding generates correct-by-construction technology independent RTL codebases for NoC building blocks. The RTL coding phase is abstracted and modeled with an Object Oriented framework, integrated within a commercial tool for IP packaging (Synopsys CoreTools suite). Compared with traditional coding styles based on pre-processor directives, metacoding produces 65% smaller codebases and reduces the configurations to verify up to three orders of magnitude

    Deterministic Cache-based Execution of On-line Self-Test Routines in Multi-core Automotive System-on-Chips

    Get PDF
    Traditionally, the usage of caches and deterministic execution of on-line self-test procedures have been considered two mutually exclusive concepts. At the same time, software executed in a multi-core context suffers of a limited timing predictability due to the higher system bus contention. When dealing with selftest procedures, this higher contention might lead to a fluctuating fault coverage or even the failure of some test programs. This paper presents a cache-based strategy for achieving both deterministic behaviour and stable fault coverage from the execution of self-test procedures in multi-core systems. The proposed strategy is applied to two representative modules negatively affected by a multi-core execution: synchronous imprecise interrupts logic and pipeline hazard detection unit. The experiments illustrate that it is possible to achieve a stable execution while also improving the state-of-the-art approaches for the on-line testing of embedded microprocessors. The effectiveness of the methodology was assessed on all the three cores of a multi-core industrial System- on-Chip intended for automotive ASIL D applications
    corecore