1,076 research outputs found

    On the Security of Cryptographic Protocols Using the Little Theorem of Witness Functions

    Full text link
    In this paper, we show how practical the little theorem of witness functions is in detecting security flaws in some category of cryptographic protocols. We convey a formal analysis of the Needham-Schroeder symmetric-key protocol in the theory of witness functions. We show how it helps to teach about a security vulnerability in a given step of this protocol where the value of security of a particular sensitive ticket in a sent message unexpectedly plummets compared with its value when received. This vulnerability may be exploited by an intruder to mount a replay attack as described by Denning and Sacco.Comment: Accepted at the 2019 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE) on March 1, 201

    Selfish Mining and Dyck Words in Bitcoin and Ethereum Networks

    Get PDF
    The main goal of this article is to present a direct approach for the formula giving the long-term apparent hashrates of Selfish Mining strategies using only elementary probabilities and combinatorics, more precisely, Dyck words. We can avoid computing stationary probabilities on Markov chain, nor stopping times for Poisson processes as in previous analysis. We do apply these techniques to other bockwithholding strategies in Bitcoin, and then, we consider also selfish mining in Ethereum

    Security Engineering of Patient-Centered Health Care Information Systems in Peer-to-Peer Environments: Systematic Review

    Get PDF
    Background: Patient-centered health care information systems (PHSs) enable patients to take control and become knowledgeable about their own health, preferably in a secure environment. Current and emerging PHSs use either a centralized database, peer-to-peer (P2P) technology, or distributed ledger technology for PHS deployment. The evolving COVID-19 decentralized Bluetooth-based tracing systems are examples of disease-centric P2P PHSs. Although using P2P technology for the provision of PHSs can be flexible, scalable, resilient to a single point of failure, and inexpensive for patients, the use of health information on P2P networks poses major security issues as users must manage information security largely by themselves. Objective: This study aims to identify the inherent security issues for PHS deployment in P2P networks and how they can be overcome. In addition, this study reviews different P2P architectures and proposes a suitable architecture for P2P PHS deployment. Methods: A systematic literature review was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting guidelines. Thematic analysis was used for data analysis. We searched the following databases: IEEE Digital Library, PubMed, Science Direct, ACM Digital Library, Scopus, and Semantic Scholar. The search was conducted on articles published between 2008 and 2020. The Common Vulnerability Scoring System was used as a guide for rating security issues. Results: Our findings are consolidated into 8 key security issues associated with PHS implementation and deployment on P2P networks and 7 factors promoting them. Moreover, we propose a suitable architecture for P2P PHSs and guidelines for the provision of PHSs while maintaining information security. Conclusions: Despite the clear advantages of P2P PHSs, the absence of centralized controls and inconsistent views of the network on some P2P systems have profound adverse impacts in terms of security. The security issues identified in this study need to be addressed to increase patients\u27 intention to use PHSs on P2P networks by making them safe to use

    Bridging the Gap: A Survey and Classification of Research-Informed Ethical Hacking Tools

    Get PDF
    The majority of Ethical Hacking (EH) tools utilised in penetration testing are developed by practitioners within the industry or underground communities. Similarly, academic researchers have also contributed to developing security tools. However, there appears to be limited awareness among practitioners of academic contributions in this domain, creating a significant gap between industry and academia’s contributions to EH tools. This research paper aims to survey the current state of EH academic research, primarily focusing on research-informed security tools. We categorise these tools into process-based frameworks (such as PTES and Mitre ATT&CK) and knowledge-based frameworks (such as CyBOK and ACM CCS). This classification provides a comprehensive overview of novel, research-informed tools, considering their functionality and application areas. The analysis covers licensing, release dates, source code availability, development activity, and peer review status, providing valuable insights into the current state of research in this field

    Evil from Within: Machine Learning Backdoors through Hardware Trojans

    Full text link
    Backdoors pose a serious threat to machine learning, as they can compromise the integrity of security-critical systems, such as self-driving cars. While different defenses have been proposed to address this threat, they all rely on the assumption that the hardware on which the learning models are executed during inference is trusted. In this paper, we challenge this assumption and introduce a backdoor attack that completely resides within a common hardware accelerator for machine learning. Outside of the accelerator, neither the learning model nor the software is manipulated, so that current defenses fail. To make this attack practical, we overcome two challenges: First, as memory on a hardware accelerator is severely limited, we introduce the concept of a minimal backdoor that deviates as little as possible from the original model and is activated by replacing a few model parameters only. Second, we develop a configurable hardware trojan that can be provisioned with the backdoor and performs a replacement only when the specific target model is processed. We demonstrate the practical feasibility of our attack by implanting our hardware trojan into the Xilinx Vitis AI DPU, a commercial machine-learning accelerator. We configure the trojan with a minimal backdoor for a traffic-sign recognition system. The backdoor replaces only 30 (0.069%) model parameters, yet it reliably manipulates the recognition once the input contains a backdoor trigger. Our attack expands the hardware circuit of the accelerator by 0.24% and induces no run-time overhead, rendering a detection hardly possible. Given the complex and highly distributed manufacturing process of current hardware, our work points to a new threat in machine learning that is inaccessible to current security mechanisms and calls for hardware to be manufactured only in fully trusted environments

    Benefits and Obstacles of Blockchain Applications in e-Government

    Get PDF
    Nowadays, Blockchain Technologies (BCT) could be characterized as one of the most promising trends. We are currently witnessing a plethora of implementations basically in the economic sector with the creation of cryptocurrencies. The majority of researchers and practitioners argues that many benefits could be derived from the use of this innovative technology with the most significant one being the improved sense of trust to BCT applications. At the same time governments pursue amplified trust from their citizens and BCT is gaining momentum since it addresses this of utmost importance problem based on its unique characteristics. More and more governments realize the advances of this technology and participate in pilot applications in different vertical governmental sectors. Even though there are several implementations in the Government sector, there is no comprehensive study towards the analysis of the major characteristics of these developments. This paper moves towards the fulfilment of this gap conducting a thorough analysis of e-Government pilot applications of BCT in a European level. Furthermore, this study discusses the key benefits and main barriers coming from the application of this technology in different domains with BCT experts

    Per-host DDoS mitigation by direct-control reinforcement learning

    Get PDF
    DDoS attacks plague the availability of online services today, yet like many cybersecurity problems are evolving and non-stationary. Normal and attack patterns shift as new protocols and applications are introduced, further compounded by burstiness and seasonal variation. Accordingly, it is difficult to apply machine learning-based techniques and defences in practice. Reinforcement learning (RL) may overcome this detection problem for DDoS attacks by managing and monitoring consequences; an agent’s role is to learn to optimise performance criteria (which are always available) in an online manner. We advance the state-of-the-art in RL-based DDoS mitigation by introducing two agent classes designed to act on a per-flow basis, in a protocol-agnostic manner for any network topology. This is supported by an in-depth investigation of feature suitability and empirical evaluation. Our results show the existence of flow features with high predictive power for different traffic classes, when used as a basis for feedback-loop-like control. We show that the new RL agent models can offer a significant increase in goodput of legitimate TCP traffic for many choices of host density

    Machine Unlearning: A Survey

    Full text link
    Machine learning has attracted widespread attention and evolved into an enabling technology for a wide range of highly successful applications, such as intelligent computer vision, speech recognition, medical diagnosis, and more. Yet a special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning. This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality. At the same time, this ambitious problem has led to numerous research efforts aimed at confronting its challenges. To the best of our knowledge, no study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios. Accordingly, with this survey, we aim to capture the key concepts of unlearning techniques. The existing solutions are classified and summarized based on their characteristics within an up-to-date and comprehensive review of each category's advantages and limitations. The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities
    • 

    corecore