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Abstract
The main goal of this article is to present a direct approach for the formula giving the long-term
apparent hashrates of Selfish Mining strategies using only elementary probabilities and combinatorics,
more precisely, Dyck words. We can avoid computing stationary probabilities on Markov chain, nor
stopping times for Poisson processes as in previous analysis. We do apply these techniques to other
bockwithholding strategies in Bitcoin, and then, we consider also selfish mining in Ethereum.
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1 Introduction

Background

Selfish mining (in short SM) is a non-stop blockwithholding attack described in [1] which
exploits a flaw in the Bitcoin protocol in the difficulty adjustment formula [2]. The strategy
is made of attack cycles. During each attack cycle, the attacker adds blocks to a secret fork
and broadcasts them to peers with an appropriate timing. This is a deviant strategy from the
Bitcoin protocol since an honest miner never withholds validated blocks and always mines
on top of the last block of the official blockchain [7].

A rigorous profitability analysis that incorporates time considerations was done in [2].
The objective function based on sound economics principles that allows the comparison
of profitabilities of different mining strategies with repetition is the Revenue Ratio E[R]

E[T ]
where R and T are respectively the revenue and the duration time per attack cycle. A
blockcwithholding attack slows down the production of blocks, hurting the profitability
per unit time of all miners, including the attacker. Only after a difficulty adjustment, the
attack can become profitable. The mean duration time of block production becomes equal to
E[L] · τB where L is the number of blocks added to the official blockchain by the network per
attack cycle and τB = 600 sec. is the mean validation time of a block in Bitcoin network [4].
For Ethereum τE is around 12 sec. (in what follows, we use subscript B or E depending on
which network we consider).

The Revenue Ratio becomes proportional to the long-term apparent hashrate of the
strategy q̃ = E[Z]

E[L] where Z is the number of blocks added by the attacker to the official
blockchain per attack cycle. This apparent hashrate becomes a proxy for the Revenue Ratio
and can be used as a benchmark for profitability, but only after a difficulty adjustment.
Several methods have been devised to compute q̃. The original approach from [1] uses a
Markov model. Then the stationary probability is computed and used to compute the long
term apparent hashrate. In [2] we use Martingale techniques and consider Poisson processes
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and associated stopping times in order to compute the Revenue Ratio, and also the expected
number of blocks E[Z] added by the attacker to the blockchain per attack cycle. The Revenue
Ratio is computed at once using Doob’s Stopping Time Theorem for Martingales. This
last method has the advantage to compute the correct profitability analysis directly, not by
means of the proxy of the long term apparent hashrate. For example, we can compute how
long it takes for the attacker to have profit, something that is impossible to compute with
the old Markov chain model. Moreover, with the Martingale techniques we clearly identify
the difficulty adjustment formula as the origin of the vulnerability of the protocol. A Bitcoin
Improvement Proposal (BIP) was proposed in [2] to prevent blockwithholding attacks. It
consists in incorporating orphan blocks in the computation of the apparent hashrate of the
network, and this is done by signaling orphan blocks. Something similar is done in Ethereum
where rewards are given to some orphan blocks (“uncle” blocks). The goal was to favor
mining decentralization.

Main goal

In this article we present a direct combinatorial approach for the direct computation of
the apparent hashrate for different blockwithholding strategies in Bitcoin and Ethereum.
These formulas are sometimes complicated, so it is remarkable that such a direct approach is
possible. We don’t need to use Markov chain, nor Martingale theory, and only elementary
combinatorics using Dyck words. This analysis does not provide the full strength of the
Martingale theory approach, but provides the basic formulas to estimate the long term
apparent hashrates, and hence the profitabilities of the different strategies. The situation in
Ethereum is combinatorially more complex due to the reward of “uncle” blocks and their
signaling, which gives a larger spectrum of possible strategies. Our combinatorial approach
also gives closed-form formulas for the apparent hashrate of one of the most effective strategy.

Notation

As usual, the relative hashrate of the honest miners (resp. attacker) is denoted by p (resp. q)
and γ is its connectivity to the network. We have p+ q = 1, q < 1

2 and 0 ≤ γ ≤ 1. When a
competition occurs between two blocks or two forks, γ is the fraction of the honest miners
who mine on top of a block validated by the attacker.

We will make use of Catalan numbers and Dyck words. Catalan numbers can be defined by

Cn = 1
2n+ 1

(
2n
n

)
= (2n)!
n!(n+ 1)!

and their generating series is

C(x) =
+∞∑
n=0

Cnx
n = 1−

√
1− 4x

2x

A Dyck word is a string (word) composed by two letters X and Y such that no initial segment
of the string contains more Y ’s than X’s. The relation with Catalan numbers is that the
n-th Catalan number is the number of Dyck words of length 2n. We refer to [6] for more
properties and background material.
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2 Selfish mining

An attack cycle for the SM strategy (see [2]) can be described as a sequence X0 . . . Xn with
Xi ∈ {S,H}. The index i indicates the i-th block validated since the beginning of the cycle
and the letter S, resp. H, indicates that the selfish, resp. honest, miner has discovered this
block. From this labelling we will get the relation with Dyck words.

I Example 1. The sequence SSSHSHH means that the selfish miner has been first to validate
three blocks in a row, then the honest miners have mined one, then the selfish miner has
validated a new one and finally the honest miners have mined two blocks. At this point,
the advantage of the selfish miner is only of one block. So according to the SM strategy, he
decides to publish his whole fork and ends his attack cycle. In that case, we have L = Z = 4.

We are interested in the distribution of the random variable L.

I Theorem 2. We have P[L = 1] = p,P[L = 2] = pq + pq2 and for n > 3, P[L = n] =
pq2(pq)n−2Cn−2 where Cn is the n-th Catalan number.

Proof. For n > 3, we note that {L = n} is a collection of sequences of the form w =
SSX1 · · ·X2(n−2)H with Xi ∈ {S,H} for all i, such that if S and H are respectively replaced
by the brackets “(“ and “)” then, X1 · · ·X2(n−2) is a Dyck word (i.e. balanced parenthesis)
with length 2(n − 2) (see [6]). The number of letters “S” (resp. “H”) in w is n (resp.
n − 1). So, we get P[L = n] = pn−1qnCn−2 (see [6]). Finally, from the observation that
{L = 1} = {H}, {L = 2} = {SSH,SHS,SHH}, the result follows. J

I Corollary 3. We have E[L] = 1 + p2q
p−q

Proof. This formula results from the well know relations from [3]

Σn>0p(pq)nCn = 1 (1)

Σn>0np(pq)nCn = q

p− q
(2)

J

We can now compute the apparent hashrate.

I Theorem 4. The long-term apparent hashrate of the selfish miner in Bitcoin is

q̃B = [(p− q)(1 + pq) + pq]q − (p− q)p2q(1− γ)
pq2 + p− q

Proof. When L > 3 we are in the situation where all blocks validated by the selfish miner
end-up in the official blockchain. So, we have Z = L. If L = 1, then we have Z = 0.
Moreover, we have Z(SSH) = Z(SHS) = 2 and Z(SHH) = 0 (resp. 1) with probability 1− γ
(resp. γ). So, we have

E[Z] = E[L]− p− p2qγ − 2p2q(1− γ)
= E[L]− (p+ p2q + p2q(1− γ))

Using Corollary 3 we get,

E[Z]
E[L] = p2q + p− q − (p− q)(p+ p2q + p2q(1− γ))

pq2 + p− q

= [(p− q)(1 + pq) + pq]q − (p− q)p2q(1− γ)
pq2 + p− q

This is Proposition 4.9 from [2] which is another form of Formula (8) from [1]. J

Tokenomics 2019
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3 Stubborn Mining

We consider now two other block withholding strategies described in [8].

3.1 Equal Fork Stubborn Mining
In this strategy, the attacker never tries to override the official blockchain but, when possible,
he broadcasts the part of his secret fork sharing the same height as the official blockchain as
soon as the honest miners publish a new block. The attack cycle ends when the attacker has
been caught-up and overtaken by the honest miners by one block [3, 8]. We show that the
distribution of L− 1 is what we defined as a (p, q)-Catalan distribution of first type in [3].

I Theorem 5. For n > 0 we have P[L = n+ 1] = p(pq)nCn.

Proof. For n > 0, {L = n+ 1} corresponds to sequences of the form w = X1 · · ·X2nH with
Xi ∈ {S,H} for all i, such that if S and H are respectively replaced by the brackets “(“ and
“)” then, X1 · · ·X2n is a Dyck word with length 2n. J

I Corollary 6. We have E[L] = p
p−q

Proof. Follows from (1) and (2). J

I Theorem 7. The long-term apparent hashrate of a miner following the Equal-Fork Stubborn
Mining strategy is given by

q̃ = q

p
− (1− γ)(p− q)

γp
(1− pC((1− γ)pq))

Proof. In an attack cycle, all the honest blocks except the last one have a probability γ to
be replaced by the attacker. So, we have E[Z|L = n+ 1] = n+ 1− 1−(1−γ)n+1

γ (see Lemma
B.1 in [3]). Conditioning by {L = n+ 1} for n ∈ N and using Theorem 5, we get

E[Z] = q

p− q
− 1− γ

γ
(1− pC((1− γ)pq))

and the result follows. J

3.2 Lead Stubborn Mining
This strategy is similar to the selfish mining strategy but this time the attacker takes the risk
of being caught-up by the honest miners. When this happens, there is a final competition
between two forks sharing the same height. when the competition is resolved, a new attack
cycles starts. In this case, the distribution of L−1 turns out to be a (p, q)-Catalan distribution
of second type as defined in [3].

I Theorem 8. We have P[L = 1] = p and for n > 1, P[L = n+ 1] = (pq)nCn−1.

Proof. We have {L = 1} = {H} and for n > 0, the condition {L = n+ 1} corresponds to
sequences of the form w = SX1 · · ·X2(n−1)HY with X1, . . . , X2(n−1), Y ∈ {S,H} and such
that if S and H are respectively replaced by the brackets “(“ and “)” then, X1 · · ·X2(n−1) is
a Dyck word with length 2(n− 1). J

I Corollary 9. We have E[L] = p−q+pq
p−q

Proof. Follows from (1) and (2). J
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Figure 1 From left to right: HM, SM, LSM, EFSM.

By repeating the same argument as in the proof of Theorem 7 for the computation of
E[Z], we obtain the following theorem [3].

I Theorem 10. The long-term apparent hashrate of a miner following the Lead Stubborn
Mining strategy is given by

q̃ = q(p+ pq − q2)
p+ pq − q

− pq(p− q)(1− γ)
γ

· 1− p(1− γ)C((1− γ)pq)
p+ pq − q

We plot regions in the parameter space (q, γ) ∈ [0, 0.5]× [0, 1] according to which strategy
is more profitable. We get Figure 1 [3] (HM honest mining, SM selfish mining, LSM Lead
Stubborn mining, EFSM Equal Fork Stubborn mining).

4 Selfish mining in Ethereum

Ethereum is a cryptocurrency based on a variation of the GHOST protocol [11]. The reward
system is different than in Bitcoin, and this introduces a supplementary complexity in the
analysis of block withholding strategies. Contrary to Bitcoin, mined orphan blocks can be
rewarded like regular blocks, with a reward smaller than regular blocks. The condition for
an orphan block to get a reward is to be an “uncle” referred by a “nephew” which is “not
too far”. By definition, an “uncle” is a stale block whose parent belongs to the main chain
and a “nephew” is a regular block which refers to this “uncle”. “Not too far” means that the
distance d between the uncle and the nephew is less than some parameter value n1. The
distance is the number of blocks which separates the nephew to the uncle’s parent in the
main chain. When this situation occurs, the nephew gets an additional reward of πb and the
uncle gets a reward Ku(d)b where b denotes the coinbase in Ethereum. Today’s parameter
values are n1 = 6, Ku(d) = 8−d

8 · 116d66, π = 1
32 and b = 2 ETH [9].

There is little published research on selfish mining in Ethereum except for [9] and [10]
based on numerical simulations. In [9], through a Markov chain approach, a non-closed
infinite double sum is given for the apparent hash rate of the attacker.

Tokenomics 2019
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The general study of selfish mining in Ethereum is complex because equivalent selfish
mining strategies in Bitcoin are no longer equivalent for Ethereum. The attacker can choose
to refer or not uncle blocks. Referring uncle blocks provides an extra revenue but hurts the
main goal of selfish mining of lowering the difficulty. Also, he can choose to create artificially
more uncles by broadcasting the part of his secret fork sharing the same height as the public
blockchain of the honest miners. All this different strategies are analyzed in [5]. In the
present article we restrict to a couple of strategies.

In the strategy studied in [9], the attacker creates as many uncles as possible and tries
to refer all of them. In [5], we prove that this strategy is not optimal and is less profitable
than the strategy we study in this article, for which we obtain a closed form formula for the
apparent hashrate of the attacker using only elementary combinatorics.

In the strategy we consider, the attacker never broadcasts his fork, which remains secret
until he is on the edge of being caught-up by the honest miners or is actually caught up (this
last case can only occur when the attack cycle starts with SH). In addition, the attacker
always refers to all possible uncle blocks.

We denote by R the revenue by cycle of the selfish miner following this strategy. We
have R = Rs +Ru +Rn where Rs is the revenue coming from “static” blocks in the main
chain i.e., Rs = Zb, Ru is the revenue coming from uncles and Rn is the additional revenue
coming from nephews.
I Remark 11. We always have Ru = 0 except when the attack cycle is SHH and the last
block mined by the honest miners has been mined on top of an honest block. In that case,
the first block mined by the selfish miner is referred by the second block of the honest miners.
It follows from this remark that

E
[
Ru
b

]
= p2q(1− γ)Ku(1) (3)

It remains to compute E[Rn].

I Definition 12. If ω is an attack cycle, we denote by U(ω) (resp. Us(ω), Uh(ω)) the
random variable counting the number of uncles created during the cycle ω which are referred
by nephew blocks (resp. nephew blocks mined by the selfish miner, nephew blocks mined by
the honest miners) in the cycle ω or in a later attack cycle.

We denote by V (ω) the random variable counting the number of uncles created during the
cycle ω and are referred by nephew blocks (honest or not) in an attack cycle strictly after ω.

I Proposition 13. We have E[U ] = q − qn1+1.

Proof. We have U = 0 if and only if the attack cycle is H or if it starts with n1 + 1 blocks of
type S. Otherwise, we have U = 1. So, E[U ] = P[U > 0] = 1− (p+ qn1+1) = q − qn1+1 J

We compute now E[V ]

I Proposition 14. We have E[V ] = pq2 · 1−(pq)n1−1

1−pq .

Proof. We have V = 1 if and only if the attack cycle ω is SS..SH..H with 2 ≤ k ≤ n1 S. In
that case, the first block H is an uncle that will be referred by the first future official block
in the attack cycle after ω. Otherwise, V = 0. So, E[V ] = pq2 + . . .+ pn1−1qn1 , and we get
the result. J

I Proposition 15. We have E[Uh] = p2q +
(
p+ (1− γ)p2q

)
pq2 · 1−(pq)n1−1

1−pq .
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Proof. Let ω be an attack cycle and let ω′ be the attack cycle after ω. If U (1)
h (ω) (resp.

U
(2)
h (ω)) counts the number of uncles referred by honest nephews only present in ω (resp. in

ω′), then we have Uh = U
(1)
h +U (2)

h . Moreover, U (1)
h (ω) = 1ω=SHH and U (2)

h (ω) = 1ω′∈E ·V (ω)
where E is the event that ω′ is either H or SHH with a second honest block mined on top of
the first honest block. Hence we get the result by taking expectations since ω and ω′ are
independent. J

I Corollary 16. We have

E
[
Rn
π

]
= q2(1 + p)− qn1+1 −

(
p+ (1− γ)p2q

)
pq2 · 1− (pq)n1−1

1− pq (4)

Proof. We have E[Us] = E[U ]− E[Uh] and we use Proposition 13 and Proposition 15. J

We can now compute the apparent hashrate of the selfish miner in Ethereum. We have
two cases to consider: The old difficulty adjustment formula (similar to the one in Bitcoin),
and the current difficulty adjustment formula that takesinto account referred uncles.

I Theorem 17. The long term apparent hashrate q̃E,0 of the selfish miner in Ethereum with
its old difficulty adjustment formula is given by q̃E,0 = q̃B + q̃uKu(1) + q̃nπ with

q̃u = p2q(1− γ)(p− q)
p− q + p2q

q̃n =
(p− q)

(
q2(1 + p)− qn1+1 −

(
p+ (1− γ)p2q

)
pq2 · 1−(pq)n1−1

1−pq

)
p− q + p2q

The long term apparent hashrate q̃E of the selfish miner in Ethereum with its current difficulty
adjustment formula is

q̃E = q̃E,0 · ξ

where

ξ = p− q + p2q

p2q + (p− q)
(
1 + q − qn1+1

)
Proof. We have q̃E,0 = E[R]

E[L] and q̃E = E[R]
E[L]+E[U ] We then use Proposition 13, (3), (4) and

the formula for q̃B in Theorem 4. J

We can now compare this strategy to selfish mining in Bitcoin. Observe that q̃E,0 > q̃B ,
where q̃B is the long term apparent hashrate of the Bitcoin selfish miner. Therefore, the
minimal threshold qmin such that the inequality q̃ > q for q > qmin is always lower in
Ethereum with its old adjustment formula than in Bitcoin. This is due to the particular
reward system that indeed favors selfish mining as we have proved. Notice also that when
q > qmin, the attack is profitable faster in Ethereum than in Bitcoin because of another
difference in the protocols: In Ethereum the difficulty is updated at each block and in Bitcoin
only after 2016 blocks.

Figure 2 plots the regions in parameter space (q, γ) ∈ [0, 0.5]× [0, 1] where each strategy
HM or SM is more profitable. We find qmin ≈ 9.5% when γ = 0.

Now, Ethereum with its new difficulty adjustment formula is more resilient to selfish
mining. Figure 3 plots the region in parameter space (q, γ) ∈ [0, 0.5] × [0, 1] where each
strategy HM or SM is more profitable.

Tokenomics 2019
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Figure 2 HM vs. SM Ethereum old difficulty adjustment.

Figure 3 HM vs. SM Ethereum new difficulty adjustment.
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Figure 4 HM vs. SM in Bitcoin and Ethereum.

We note that Bitcoin is more resilient to selfish mining when the relative hashrate of
the attacker is high, but we have the opposite for smaller relative hashrates. This means
that when the relative hashrate of the attacker is small (resp. high) then, the connectivity
of the attacker should be higher (resp. lower) in Ethereum than in Bitcoin for the attack
to be profitable. Figure 4 compares the thresholds curves between HM and SM in Bitcoin
and Ethereum.

5 Conclusions

We have computed closed-form formulas for the long term apparent hashrate of different
blockwithholding strategies for Bitcoin and Ethereum using only elementary combinatorics,
Dyck words, Catalan numbers, and their properties. Although this approach does not provide
a complete analysis of the profitability of the strategies, as for example the time it takes to the
strategy to become profitable, this minimalist approach is sufficient to compare profitabilities
in the long run. In the strategies studied we have show the impact of the different reward
system. For these strategies, depending on given parameters (q, γ), relative hashrate and
connectivity of the attacker, we have determined which network is more resilient to selfish
mining attacks.
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