52 research outputs found

    A metafictional reflection on historiography : the inclusiveness of truth in Graeme Macrae Burnet’s "His Bloody Project"

    Get PDF
    This article analyses Graeme Macrae Burnet’s novel "His Bloody Project" (2015) as a metafictional exemplification of the problem of truth in historical accounts. Spuriously claiming that his novel contains authentic material related to a nineteenth-century crime, Burnet recounts the case in the form of a collection of miscellaneous texts. The novel may be read in the light of the stance upheld in postmodern historiography that there is no ultimate truth to be reached at the end of a historical enquiry. This analysis of "His Bloody Project" aims to demonstrate that the obscure, multifaceted truth about the murder case is constituted by all the diverse − even if incongruous and contradictory − perspectives presented in the book

    Advancing zero defect manufacturing: A state-of-the-art perspective and future research directions

    Get PDF
    Zero Defect Manufacturing is a disruptive concept that has the potential to entirely reshape the manufacturing ideology. Building on the same quality management philosophy that underpins both lean production and Six Sigma, the Zero Defect Manufacturing paradigm has in recent years developed significantly, given the onset of Industry 4.0 and the increasing maturity of its digital technologies. In this paper, we review contemporary advances in Zero Defect Manufacturing using structured literature review. We explore emergent themes and present important directions for future development in this continuously emerging field of research and practice. We highlight two specific Zero Defect Manufacturing strategy types: defect prevention, and defect compensation; as well as identify two important themes for future ZDM research, namely advancing ZDM research (particularly with a view to progressing from zero-defect processes to zero-waste value chain strategies) and overcoming the global application challenges of ZDM (with emphasis on cyber-security and the extension of defect prevention and compensation strategies to less explored manufacturing processes).publishedVersio

    Enhancing Inclusion, Diversity, Equity and Accessibility (IDEA) in Open Educational Resources (OER)

    Get PDF
    This practical guide provides a framework and tips to enhance inclusion, diversity, equity, inclusion and accessibility in Open Educational Resources

    Bio-JOIE: Joint Representation Learning of Biological Knowledge Bases

    Full text link
    The widespread of Coronavirus has led to a worldwide pandemic with a high mortality rate. Currently, the knowledge accumulated from different studies about this virus is very limited. Leveraging a wide-range of biological knowledge, such as gene ontology and protein-protein interaction (PPI) networks from other closely related species presents a vital approach to infer the molecular impact of a new species. In this paper, we propose the transferred multi-relational embedding model Bio-JOIE to capture the knowledge of gene ontology and PPI networks, which demonstrates superb capability in modeling the SARS-CoV-2-human protein interactions. Bio-JOIE jointly trains two model components. The knowledge model encodes the relational facts from the protein and GO domains into separated embedding spaces, using a hierarchy-aware encoding technique employed for the GO terms. On top of that, the transfer model learns a non-linear transformation to transfer the knowledge of PPIs and gene ontology annotations across their embedding spaces. By leveraging only structured knowledge, Bio-JOIE significantly outperforms existing state-of-the-art methods in PPI type prediction on multiple species. Furthermore, we also demonstrate the potential of leveraging the learned representations on clustering proteins with enzymatic function into enzyme commission families. Finally, we show that Bio-JOIE can accurately identify PPIs between the SARS-CoV-2 proteins and human proteins, providing valuable insights for advancing research on this new disease.Comment: ACM BCB 2020, Best Student Pape

    Evidence for rapid paraglacial formation of rock glaciers in southern Norway from 10Be surface-exposure dating

    Get PDF
    We evaluate the timing and environmental controls on past rock-glacier activity at Øyberget, upper Ottadalen, southern Norway, using in situ 10Be surface-exposure dating on (1) boulders belonging to relict rock-glacier lobes at c. 530 m asl, (2) bedrock and boulder surfaces at the Øyberget summit (c. 1200 m asl), and (3) bedrock at an up-valley site (c. 615 m asl). We find that the rock-glacier lobes became inactive around 11.1 ± 1.2 ka, coeval with the timing of summit deglaciation (11.2 ± 0.7 ka). This is slightly older than previously published Schmidt-hammer surface-exposure ages. The timing does not match known climatic conditions promoting rock-glacier formation in the early Holocene; hence we infer that lobe formation resulted from enhanced debris supply and burial of residual ice during and soon after deglaciation. The results demonstrate that rock glaciers may form over a relatively short period of time (hundreds rather than thousands of years) under non-permafrost conditions and possibly indicate a paraglacial type of process

    Lessons in Crisis Leadership from 9/11: Delineating the constituents of Crisis Leadership and their utilization in the context of Covid-19

    Get PDF
    Abstract The year 2020 was challenging and demanding for humankind. The outbreak of the COVID-19 pandemic compelled thousands of organizations to shift their operations online and millions of employees to work from home. Many have compared this crisis to the terrorist attacks of September 11, 2001, in the United States, another inconceivable incident that changed the way we think and act today. This study analyzes three leaders in the context of the 9/11 terrorist attacks, who proved to be role models of leadership during crisis situations and, thereby, have contributed to the evolution of crisis leadership. By doing so, it attempts to define the constituents of effective crisis leadership and fill the relevant gap in the existing literature on crisis leadership. The current study’s limitations, implications for practitioners, and suggestions for further research needed to shed light on cases of effective leadership during the COVID-19 pandemic are also discussed

    Age, origin and palaeoclimatic implications of peri- and paraglacial boulder-dominated landforms in Rondane, South Norway

    Get PDF
    Boulder-dominated landforms of periglacial, paraglacial and related origin constitute a valuable, but often unexplored source of palaeoclimatic and morphodynamic information. The timing of landform development initiation and its subsequent stabilization can be linked to past climatic conditions offering the potential to reconstruct cold climatic periods. In this study, Schmidt-hammer exposure-age dating (SHD) was applied to a variety of boulder-dominated landforms (sorted stripes, blockfield, rock-slope failure, paraglacial alluvial fan) in Rondane, eastern South Norway for the first time. On the basis of old and young control points a regional SHD calibration curve was established and successively utilized for the calculation of surface exposure ages for individual landforms. The chronological investigation of development and stabilization of the respective landforms permitted an assessment of Holocene climate variability in Rondane and its impact on overall landform evolution. Our obtained SHD age estimates ranged from 11.44 ± 1.22 ka (ST-D2) to 4.09 ± 1.51 ka (AF1) showing their inactive and relict character. Most surface exposure ages for sorted stripes clustered between 9.88 ± 1.35 ka and 9.25 ± 1.21 ka, hence indicating stabilization during the late stage of the Erdalen Event or shortly thereafter. It is inferred that the blockfield formed prior to the Last Glacial Maximum, was protected by cold-based ice throughout glaciation and shortly reactivated during the Erdalen Event only to subsequently becoming inactive. The surface exposure age of a rock-slope failure (7.58 ± 0.73 ka) falls into the early phase of the Holocene Thermal Maximum (HTM, ~8.0–5.0 ka). This indicates permafrost degradation and/or increasing hydrological pressure negatively influencing slope stability. The paraglacial alluvial fan with its four subsites yielded ages between 8.73 ± 1.63 ka and 4.09 ± 1.51 ka. The old exposure ages point to fan aggradation following regional deglaciation due to paraglacial processes, whereas the younger ages can be explained by increasing precipitation during the onset neoglaciation at ~4.0 ka. Our results underline the importance of meltwater for the activation of periglacial landforms in a continental climate and indicate that the Erdalen Event and immediately following onset of the HTM had major impact on landscape evolution in Rondane. Our obtained surface exposure ages from boulder-dominated landforms in Rondane give important insights into the local palaeoclimatic variability during the Holocene.publishedVersio
    • 

    corecore