219 research outputs found

    Delay Tolerant Networking over the Metropolitan Public Transportation

    Get PDF
    We discuss MDTN: a delay tolerant application platform built on top of the Public Transportation System (PTS) and able to provide service access while exploiting opportunistic connectivity. Our solution adopts a carrier-based approach where buses act as data collectors for user requests requiring Internet access. Simulations based on real maps and PTS routes with state-of-the-art routing protocols demonstrate that MDTN represents a viable solution for elastic nonreal-time service delivery. Nevertheless, performance indexes of the considered routing policies show that there is no golden rule for optimal performance and a tailored routing strategy is required for each specific case

    A neural network propagation model for LoRaWAN and critical analysis with real-world measurements

    Get PDF
    Among the many technologies competing for the Internet of Things (IoT), one of the most promising and fast-growing technologies in this landscape is the Low-Power Wide-Area Network (LPWAN). Coverage of LoRa, one of the main IoT LPWAN technologies, has previously been studied for outdoor environments. However, this article focuses on end-to-end propagation in an outdoor–indoor scenario. This article will investigate how the reported and documented outdoor metrics are interpreted for an indoor environment. Furthermore, to facilitate network planning and coverage prediction, a novel hybrid propagation estimation method has been developed and examined. This hybrid model is comprised of an artificial neural network (ANN) and an optimized Multi-Wall Model (MWM). Subsequently, real-world measurements were collected and compared against different propagation models. For benchmarking, log-distance and COST231 models were used due to their simplicity. It was observed and concluded that: (a) the propagation of the LoRa Wide-Area Network (LoRaWAN) is limited to a much shorter range in this investigated environment compared with outdoor reports; (b) log-distance and COST231 models do not yield an accurate estimate of propagation characteristics for outdoor–indoor scenarios; (c) this lack of accuracy can be addressed by adjusting the COST231 model, to account for the outdoor propagation; (d) a feedforward neural network combined with a COST231 model improves the accuracy of the predictions. This work demonstrates practical results and provides an insight into the LoRaWAN’s propagation in similar scenarios. This could facilitate network planning for outdoor–indoor environments

    A survey and tutorial of electromagnetic radiation and reduction in mobile communication systems

    Get PDF
    This paper provides a survey and tutorial of electromagnetic (EM) radiation exposure and reduction in mobile communication systems. EM radiation exposure has received a fair share of interest in the literature; however, this work is one of the first to compile the most interesting results and ideas related to EM exposure in mobile communication systems and present possible ways of reducing it. We provide a comprehensive survey of existing literature and also offer a tutorial on the dosimetry, metrics, international projects as well as guidelines and limits on the exposure from EM radiation in mobile communication systems. Based on this survey and given that EM radiation exposure is closely linked with specific absorption rate (SAR) and transmit power usage, we propose possible techniques for reducing EM radiation exposure in mobile communication systems by exploring known concepts related to SAR and transmit power reduction in mobile systems. Thus, this paper serves as an introductory guide to EM radiation exposure in mobile communication systems and provides insights toward the design of future low-EM exposure mobile communication networks

    Connectivity, Coverage and Placement in Wireless Sensor Networks

    Get PDF
    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes

    Delay Tolerant Networking over the Metropolitan Public Transportation

    Get PDF

    VoIP Call Admission Control in WLANs in Presence of Elastic Traffic

    Get PDF
    VoIP service over WLAN networks is a promising alternative to provide mobile voice communications. However, several performance problems appear due to i) heavy protocol overheads, ii) unfairness and asymmetry between the uplink and downlink flows, and iii) the coexistence with other traffic flows. This paper addresses the performance of VoIP communications with simultaneous presence of bidirectional TCP traffic, and shows how the presence of elastic flows drastically reduces the capacity of the system. To solve this limitation a simple solution is proposed using an adaptive Admission and Rate Control algorithm which tunes the BEB (Binary Exponential Backoff) parameters. Analytical results are obtained by using an IEEE 802.11e user centric queuing model based on a bulk service M=G[1;B]=1=K queue, which is able to capture the main dynamics of the EDCA-based traffic differentiation parameters (AIFS, BEB and TXOP). The results show that the improvement achieved by our scheme on the overall VoIP performance is significant

    Channel Estimation for Wireless OFDM Communications

    Get PDF

    Achievable Sum Rates of Half- and Full-Duplex Bidirectional OFDM Communication Links

    Full text link
    While full-duplex (FD) transmission has the potential to double the system capacity, its substantial benefit can be offset by the self-interference (SI) and non-ideality of practical transceivers. In this paper, we investigate the achievable sum rates (ASRs) of half-duplex (HD) and FD transmissions with orthogonal frequency division multiplexing (OFDM), where the non-ideality is taken into consideration. Four transmission strategies are considered, namely HD with uniform power allocation (UPA), HD with non-UPA (NUPA), FD with UPA, and FD with NUPA. For each of the four transmission strategies, an optimization problem is formulated to maximize its ASR, and a (suboptimal/optimal) solution with low complexity is accordingly derived. Performance evaluations and comparisons are conducted for three typical channels, namely symmetric frequency-flat/selective and asymmetric frequency-selective channels. Results show that the proposed solutions for both HD and FD transmissions can achieve near optimal performances. For FD transmissions, the optimal solution can be obtained under typical conditions. In addition, several observations are made on the ASR performances of HD and FD transmissions.Comment: To appear in IEEE TVT. This paper solves the problem of sum achievable rate optimization of bidirectional FD OFDM link, where joint time and power allocation is involve
    corecore