42 research outputs found

    Image Processing on the GPU: Implementing the Canny Edge Detection Algorithm

    Get PDF
    Abstract: In this paper we present a detailed Graphics Processing Unit (GPU)-based implementation of the well known Canny edge detection algorithm. The aim of the paper is to provide an overview on our approach to implement the Canny edge detection algorithm, as it encompasses a set of image processing techniques. The result is an algorithm that can be applied in real-time applications..

    Video Enhancement and Dynamic Range Control of HDR Sequences for Automotive Applications

    Get PDF
    CMOS video cameras with high dynamic range (HDR) output are particularly suitable for driving assistance applications, where lighting conditions can strongly vary, going from direct sunlight to dark areas in tunnels. However, common visualization devices can only handle a low dynamic range, and thus a dynamic range reduction is needed. Many algorithms have been proposed in the literature to reduce the dynamic range of still pictures. Anyway, extending the available methods to video is not straightforward, due to the peculiar nature of video data. We propose an algorithm for both reducing the dynamic range of video sequences and enhancing its appearance, thus improving visual quality and reducing temporal artifacts. We also provide an optimized version of our algorithm for a viable hardware implementation on an FPGA. The feasibility of this implementation is demonstrated by means of a case study

    Design and Waterproof of Car Coatings Using Art Simulation Techniques and Flora Polyacrylamide

    Get PDF
    Since car is one of the issues that people deal with constantly and daily, improving the efficiency of its components, such as seat covers, not only does not reduce its value, but also provides greater comfort to passengers. Improving the design of car coatings and waterproofing of fabrics which have different advantages such as reducing accumulation of dirt on the cloth are considered in this research. The aim of the study is using flora polyacrylamide (FPAA) waterproof material with a chemical structure of weak cationic, non-ionic through the conventional padding method on polyester fabrics along with art simulation techniques. For this purpose, different concentrations of the composition of flora poly-acrylic waterproof coating was used on polyester fabric. Hydrophilic and hydrophobic properties of polyester fabrics were evaluated by water absorption tests based on a standard test method called the American Association of Textile Chemists and Colorists 79 -2003. As such, art simulation techniques were applied to car seat covers. The results of the study demonstrate that the use of appropriate amounts of waterproofing flora polyacrylamide composition could significantly prevent water absorption from polyester fabrics. Therefore, waterproofed fabrics designed by art simulation techniques can be used in auto production centers in Iran

    Audio masking effect on inter-component skews in olfaction-enhanced multimedia presentations

    Get PDF
    Media-rich content plays a vital role in consumer applications today, as these applications try to find new and interesting ways to engage their users. Video, audio, and the more traditional forms of media content continue to dominate with respect to the use of media content to enhance the user experience. Tactile interactivity has also now become widely popular in modern computing applications, while our olfactory and gustatory senses continue to have a limited role. However, in recent times, there have been significant advancements regarding the use of olfactory media content (i.e., smell), and there are a variety of devices now available to enable its computer-controlled emission. This paper explores the impact of the audio stream on user perception of olfactory-enhanced video content in the presence of skews between the olfactory and video media. This research uses the results from two experimental studies of user-perceived quality of olfactory-enhanced multimedia, where audio was present and absent, respectively. Specifically, the paper shows that the user Quality of Experience (QoE) is generally higher in the absence of audio for nearly perfect synchronized olfactory-enhanced multimedia presentations (i.e., an olfactory media skew of between {−10,+10s}); however, for greater olfactory media skews (ranging between {−30s;−10s} and {+10s, +30s}) user QoE is higher when the audio stream is present. It can be concluded that the presence of the audio has the ability to mask larger synchronization skews between the other media components in olfaction-enhanced multimedia presentations

    Machine vision: a survey

    Get PDF
    This paper surveys the field of machine vision from a computer science perspective. It is written to act as an introduction to the field and presents the reader with references to specific implementations. Machine vision is a complex and developing field that can be broken into the three stages: stereo correspondence, scene reconstruction, and object recognition. We present the techniques and general approaches to each of these stages and summarize the future direction of research

    Procedural Generation and Rendering of Realistic, Navigable Forest Environments: An Open-Source Tool

    Full text link
    Simulation of forest environments has applications from entertainment and art creation to commercial and scientific modelling. Due to the unique features and lighting in forests, a forest-specific simulator is desirable, however many current forest simulators are proprietary or highly tailored to a particular application. Here we review several areas of procedural generation and rendering specific to forest generation, and utilise this to create a generalised, open-source tool for generating and rendering interactive, realistic forest scenes. The system uses specialised L-systems to generate trees which are distributed using an ecosystem simulation algorithm. The resulting scene is rendered using a deferred rendering pipeline, a Blinn-Phong lighting model with real-time leaf transparency and post-processing lighting effects. The result is a system that achieves a balance between high natural realism and visual appeal, suitable for tasks including training computer vision algorithms for autonomous robots and visual media generation.Comment: 14 pages, 11 figures. Submitted to Computer Graphics Forum (CGF). The application and supporting configuration files can be found at https://github.com/callumnewlands/ForestGenerato

    Adaptive face modelling for reconstructing 3D face shapes from single 2D images

    Get PDF
    Example-based statistical face models using principle component analysis (PCA) have been widely deployed for three-dimensional (3D) face reconstruction and face recognition. The two common factors that are generally concerned with such models are the size of the training dataset and the selection of different examples in the training set. The representational power (RP) of an example-based model is its capability to depict a new 3D face for a given 2D face image. The RP of the model can be increased by correspondingly increasing the number of training samples. In this contribution, a novel approach is proposed to increase the RP of the 3D face reconstruction model by deforming a set of examples in the training dataset. A PCA-based 3D face model is adapted for each new near frontal input face image to reconstruct the 3D face shape. Further an extended Tikhonov regularisation method has been

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)
    corecore