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Abstract

This paper surveys the field of machine vision from a computer science 
perspective. It is written to act as an introduction to the field and presents 
the reader with references to specific implementations. Machine vision is a 
complex and developing field  that  can be broken into the three stages: 
stereo correspondence, scene reconstruction,  and object recognition.  We 
present the techniques and general approaches to each of these stages and 
summarize the future direction of research.

Keywords: machine vision; stereo correspondence; scene reconstruction; 3d 
object recognition

1.  Introduction

Decades ago machine vision was considered science fiction, but has since grown into a 
complete field of research in computer science. The work of past researchers has built a 
solid foundation on which modern approaches may be constructed. This paper presents 
an  overview of  the  history  and  modern  approaches  to  machine  vision,  as  well  as  a 
proposed structure for future machine vision techniques.
       Machine vision is important because it allows programs to perform automated tasks 
that previously required human supervision. Such examples include assembly line part 
recognition, satellite reconnaissance, face recognition, unmanned aerial vehicles, crime 
scene reconstruction, and even unmanned automobiles. The current goal of vision is to 
develop  a  generic  framework  that  may  be  implemented  to  solve  a  wide  range  of 
problems,  and  ultimately  become  a  foundational  system  in  artificial  intelligence  and 
robotics.
       There are dozens of approaches to different subsets of the larger goal, but machine 
vision lacks a universal process for generic object recognition. There are two categories 
of vision: active vision and passive vision. Active vision involves interacting with the 
environment to receive information. Techniques such as range finding, RADAR, LIDAR, 
and SONAR all  emit  signals  such as light,  sound, or radio waves and will  listen for 
reflected signals to resolve an image. This paper focuses on the techniques of passive 
vision, such as gathering light from the environment like human eyes. Passive vision is 
important because it is stealthy and doesn’t fill the air with cluttered emissions, and the 
hardware is significantly less expensive to implement.
       The goal of vision is to perform scene reconstruction and object recognition in an 
automated way. Research can be broken into three stages: stereo correspondence, scene 
reconstruction,  and object recognition.  The paper is organized into sections to discuss 
each of these stages and concludes with a current assessment of the state of the field.



2.   Stereo Correspondence

Stereo correspondence is the process of taking input from two cameras and identifying 
shared features in each image. The result of correspondence is a disparity map of the 
image (see Figure 5). A disparity map is essentially an inverse depth map that will depict 
how far away every pixel is from the plane of the camera[11]. The cameras in the system 
must  be  a  known  fixed  distance  apart  and  at  known  orientations  to  each  other  for 
computations  to  work  effectively.  Researchers  will  often  perform calibration  tests  to 
determine these distances and orientations automatically [5]. The input of the image is 
raw data from the camera that will typically need to undergo preprocessing called image 
rectification. Image rectification is the process of transforming an image onto a common 
surface such that distorted images are normalized. This is particularly important in the 
case of fish-eye camera lenses or camera height mismatches. The resulting output is a 
normalized image from each camera that we can run through matching correspondence 
algorithms.
       Correspondence is typically done between two cameras, but some experiments may 
use dozens to improve their output [14]. Using more cameras will yield more accurate 
results but will take significantly longer to perform matching. An analogy to this would 
be taking the testimony of fifty witnesses to a traffic accident to discover what occurred, 
as opposed to only asking two bystanders. The two bystanders can quickly tell you what 
they saw and agree upon it, while the fifty will take significantly longer to come to an 
agreement. However the results from the many witnesses will be more accurate than the 
two bystanders. Economic considerations may dictate that using six inexpensive cameras 
is more efficient than two high quality cameras.

Figure 1: The steps of stereo correspondence algorithms



       Typical stereo correspondence algorithms can be classified by their implementations 
of matching cost, aggregation method, disparity optimization, and disparity refinement 
[11].

• Matching cost refers to the algorithm used to estimate similarity between pixel 
intensities in the image set.

• Support  cost  aggregation is  the  method  of  generating  the  matching  cost 
estimates from a local support region.

• Disparity optimization is the process of determining the disparity (depth) at a 
given pixel.

• Refinement is the process of smoothing out disparities to continuous values from 
common techniques that yield discretized intervals.

Correspondence  techniques  can  be  classified  into  feature-based  or  intensity-based 
matching  techniques.  Feature-based  approaches  attempt  to  match  edges  or  corners 
between the images. However this requires extensive pre-processing on the images such 
as  blurring  and  gradient  detection,  and  post-processing  to  interpolate  the  disparities 
between the features. Feature extraction is not a preferred method due to noise and image 
occlusion (a visual obstruction), which leads to sparse and unreliable disparity maps.

Figure 2: An intensity profile is developed for each image using the coloration intensity  
from each pixel

Intensity-based matching uses scanlines to develop intensity profiles (see Figure X). 
A scanline approach relies upon rectified images and operates on one horizontal line at a 
time. Image correspondence is established by sliding the offset camera’s intensity profile 
along  the  horizontal,  and  minimizing  the  difference  (maximizing  the  similarity)  in 



intensities. When comparing color images it is customary to develop an intensity profile 
for each color component and average the resulting intensity.
       The scanline approach has been adapted to create sliding windows which perform the 
same calculations but on a local scale [11]. A sliding window will develop an intensity 
profile for a window size of N by N around the pixel in question. An equal sized window 
is then slid along the other image, and attempts to minimize the difference in intensity 
profiles.

Typical measurements to determine similarity include Normalized cross correlation 
(NCC), Sum of squared differences (SSD), and sum of absolute differences (SAD)[6]. 
Let X and Y represent the intensities in two windows, and there exists N tuples (X1, Y1) 
… (XN, YN), for a window of size N. Then NCC is given by

where  and  represent the sample means of the corresponding windows. The value of 
NCC will be between -1 and 1, where a value of 1 indicates perfect correlation. The Sum 
of square differences is

which  measures  the  squared  Euclidean  distance  between  X and  Y.  Sum of  absolute 
differences is

and measures the absolute distance between intensity values. Other methods of similarity 
measurement exist but are not as popular as these.
       There are a number of factors that can contribute to poor matching conditions such as 
occlusion  and specular  lighting  [6].  Specular  lighting  refers  to  reflections  from non-
Lambertian surfaces. A Lambertian surface is a diffuse surface that reflects light equally 
in  all  directions.  These  factors  become  problematic  when  the  cameras  see  different 
images of the same scene because of their differing perspectives.
       Disparity  optimization  attempts  to  construct  an  accurate  disparity  map  by 
determining  the  best  set  of  disparities  that  represent  the  scene  surface.  Common 
approaches  include  winner-take-all  (WTA),  dynamic  programming  (DP),  simulated 
annealing (SA), graph cuts (GC), and scanline optimization (SO)[11].

• Winner-take-all is the simplest and most common approach for window-based 
aggregation methods. It chooses the disparity that minimizes the cost value. 

• Dynamic  Programming attempts  to  find  a  globally  optimized  minimum-cost 
path through the matrix of all pairwise matching costs between two corresponding 
scanlines (Figure 3)[3].



Figure 3: Stereo matching using dynamic programming. For each pair of corresponding  
scanlines,  a  minimizing  path  through  the  matrix  of  all  pairwise  matching  costs  is  
selected.  Lowercase  letters  (a-k)  symbolize  the  intensities  along  each  scanline.  
Uppercase letters represent the selected path through the matrix. Matches are indicated 
by M, while partially occluded points (which have a fixed cost) are indicated by L and R,  
corresponding to points only visible in the left and right image, respectively.

• Scanline Optimization is similar to DP except that there is no occlusion cost.
• Simulated Annealing randomly chooses a disparity and evaluates the cost at that 

pixel and will slide left or right in an attempt to reach the global minimum.
• Graph cuts implement the α-β swap move algorithm [4].

Figure 4: Epipolar geometry used to calculate the depth of a projected pixel. C1 and C2 

represent the left and right cameras, while e1 and e2 represent the epipolar line, and P1 

P2 are the projected coordinates in the image.



       The disparity map is calculated using epipolar geometry after correspondence has 
been  determined.  Epipolar  geometry  is  a  form  of  projective  geometry  specifically 
designed to determine the three dimensional position of an object from two cameras (see 
Figure 4) [10]. In an ideal world with perfect camera resolution we would be able to 
precisely calculate the exact position of an object. However, using cameras with limited 
resolutions the triangulation angle limits  depth resolution.  This leads to an inaccurate 
projected position,  and an inherent degree of error that  can be predicted within some 
tolerance. This is why having many cameras allows for more precise estimates of location 
because  there  are  more  cameras  to  vote  on  the  final  position.  After  the  position  of 
correspondence has been determined it is just a matter of calculating the depth of the 
position from the plane of the camera to determine a disparity map (see Figure 5).

Figure 5: The reference image (left) and obtained disparity map (right)

      Disparity  refinement  is  the  process  of  smoothing  the  final  disparity  map  from 
discretized  intervals  into  continuous  values.  This  is  done  by smoothing  the  disparity 
between the top best disparity values, or between the neighbors. It is often assumed that 
the disparity of a neighboring pixel is equal to the current one, and thus smoothing across 
them will yield accurate results.
      Modern implementations offload epipolar geometry calculations to the graphics card 
and use the projective texturing hardware to accelerate the process. This lightens the load 
on  the  CPU  significantly  and  leads  to  increases  a  hundred  fold  increase  in  3d 
reconstruction.

3.   Scene Reconstruction

Scene reconstruction is the process of building a three dimensional model that represents 
the image from the cameras. Examples of this include reconstruction of a crime scene 
environment for analysis, constructing three dimensional maps of buildings for virtual 
worlds, or even rebuilding a precious moment from a family vacation. Reconstruction of 
a  scene creates  ordered information in a  familiar  format  to  humans,  which allows us 
create algorithms to act upon it in intuitive ways.



Figure 6: The disparity map (left) and reconstructed scene (right)

       There  are  two  camera  models  that  need  to  be  considered  when  performing 
reconstruction: calibrated and uncalibrated. A calibrated camera has a known focal point, 
field of view, and lens type. An uncalibrated camera has unknown attributes that can be 
experimentally discovered when picturing known images [5]. Uncalibrated cameras tend 
to use structure from motion [13] techniques to derive position information. Significant 
amounts  of  research  have  been  contributed  to  scene  reconstruction  from  a  set  of 
uncalibrated  camera  images,  but  that  is  beyond  the  scope  of  this  paper.  Calibrated 
cameras that are a known distance and orientation relative to each other allow epipolar 
geometry calculations in the stereo correspondence stage.
       The disparity maps obtained from stereo correspondence can be used to determine 
the three dimensional position of the pixel.  A pixel that occupies a three dimensional 
position is referred to as a voxel (volumetric pixel). By projecting thousands of voxels 
into Euclidean space we are able to build a scene that a human can view and understand 
(see Figure 6). The scene can be textured by coloring the voxels with the average color 
from the original pixels.
       However, the voxel-based data storage has not always been feasible due to hardware 
memory constraints decades ago. Older methods tend to reduce the scene complexity by 
performing interpolation across local regions to form surface meshes [10]. These fused 
geometry  representations  would  eliminate  many  voxels  by  merging  them  into  one 
approximated mesh. Smoothing algorithms would then be run on the meshes to reduce 
the effect of noise. Texture can be estimated by combining the coloration of neighboring 
voxels. This has the effect of reduced accuracy with the data and loss of small features, 
but requires much less memory.
       Modern approaches take the opposite approach and interpolate sub-voxel information 
from surrounding neighbors to give greater detailed to a scene [5]. A scene is sparsely 
populated with voxels and thus sparse data  representations  are  used,  except  in  a few 
experiments where voxels are locked into a grid for dense scene reconstruction. Feature 
information such as edges and corners can be stored in a scene for fast camera calibration 
when position and orientation have been changed slightly.
       Scene detail can be improved by increasing camera resolutions, or adding more 
pictures  to the set  of data.  An analogy would be picking up an unknown object  and 
turning it around in your hand so you can better build a mental image of its structure. 



These methods are described as structure from motion[13]. Moving the camera system 
will slightly change its position and orientation and allow a new set of stereo images to be 
taken. The goal is to incorporate the new set of images into the scene reconstructed by the 
previous set.  The first step is to determine the camera’s new position and orientation 
relative to the previous state. This is done by comparison of prominent sparse features 
(high probability matched corners and edges) to extrapolate new position and orientation. 
When the new camera parameters have been established, the projected voxel set can be 
added into the reconstructed scene. The consecutive stereo images can be obtained by 
mounting two cameras  into one chassis  and recording a video stream from each and 
panning around a room (see Figure 7). 

Figure 7: Reconstructed scene from consecutive image sets

       Deriving individual objects from a reconstructed scene is simple for a human but 
complex for a machine. Voxels can be clustered using coloration and Euclidean distance 
into logically unique objects. Human interaction, learning algorithms, or experience can 
aid the machine with association between objects (i.e. a chair is composed of the chair’s 
feet and the upholstery).
       It should be noted that these methods assume a static scene (that the scene does not 
change between images), but this is not a realistic assumption for the real world. This can 
be countered by increasing the sampling rate of the cameras and periodically flushing the 
scene of voxels that change. The sampling rate is increased because as the change in time 
between  scenes  approaches  zero,  the  change  in  object  movement  between  scenes 
approaches  zero  –  and  it  becomes  an  instantaneous  static  scene.  While  this  creates 
problems in the present, it will not be a problem in the future.



4.   Object Recognit ion

Object recognition is the process of identifying an object and its location within a picture 
or scene. Recognition has historically been performed on two dimensional images using a 
set  database for reference.  These approaches  often encountered  problems with partial 
occlusion,  variable  lighting  conditions,  and  cluttered  backgrounds.  Using  a  three 
dimensional  scene  eliminates  occlusion  as  a  problem  during  this  stage  of  analysis 
(because  it  is  handled  earlier  in  stereo  correspondence).  Cluttered  scenes  only  cause 
concern when it comes to scene reconstruction and clustering groups of voxels together 
into an object.
       Object recognition must go through the two phases of acquisition (training) and 
recognition.  The program must  first  acquire  objects  into its  memory that  it  can  later 
identify and recognize. Traditionally object model databases have stored sets of images 
from numerous angles and lighting conditions – but this has proven memory inefficient. 
Constructive Solid Geometry (CSG) is a more memory efficient method used to store 3D 
information about an object. CSG uses solid primitives combined through intersection, 
union, and set difference operations to form an object. This can be logically represented 
in a binary tree, where leaf nodes are solid primitives and parent nodes are the operations.

Figure 8: Constructive Solid Geometry (CSG) representation of objects

       Wire frames have also been used to depict the outline of a 3D model. However a 
wire frame model can have the same projective appearance from many perspectives, and 
thus is not a preferred method. Voxel-based data stores tend to use methods of spatial 
occupancy,  which  lock  voxels  into  a  discretized  3D  binary  array.  The  object  is 
volumetrically constructed by combining structural information from the binary array. A 
generic version of CSG was developed into the A Cone Representation of Objects Not 
Yet  Modeled  (ACRONYM)  system  [2].  ACRONYM  uses  the  concept  of  “swept 
volumes.” A swept volume is a 3D object that has a 2D shape for an end point, an axis 
that the 2D shape is “swept” down, and a “sweeping rule” that describes what happens to 
the shape as it moves down the axis. A cylinder, cube, pyramid, and a bottle are all swept 
objects. ACRONYM constructed swept objects and attempted to cluster them together to 
form a whole object. It ran into problems with generation of complex sweeping rules, and 
was later abandoned. 



       Object recognition techniques can be broken into two general approaches of pattern 
recognition and feature-based geometric recognition. Pattern recognition operates on low-
level  data  (voxels)  and  attempts  to  match  texture  and  coloration  patterns  against  a 
database. Because many objects share the same texture this is typically not a preferred 
matching technique. Feature-based geometric recognition seeks invariant features that are 
unique  to  an  object.  An  invariant  feature  does  not  change  when transformations  are 
applied to the object.  Standard transformations that must  be considered are Euclidean 
transformations (translation, rotation, or reflection), and affine transforms (sheering and 
scaling).  Ratios,  edges,  and  corners  are  examples  of  invariant  features.  The  scale-
invariant feature transform (SIFT) methodology offers a generic technique of identifying 
invariant  features  and  comparing  them  between  objects.  SIFT  has  proven  highly 
successful, even when faced with partial occlusion.

5.   Experimental  Results

Stereo  correspondence  algorithms  have  been  researched  for  many  decades. 
Experimentally it has been determined that larger sized sliding windows function better 
in textureless areas, and all methods perform poorly near discontinuities (occluded areas). 
Sliding windows out-performed all  other  aggregation methods,  and adaptive windows 
offered the best results against discontinuities [11]. Sliding windows and SSD performed 
the best  of all  local  methods,  and graph cuts  performed the best  overall.  In terms of 
efficiency the sliding windows performed best in mere seconds, while graph cuts would 
take up to 30 minutes.
       Scene  reconstruction  techniques  are  directly  based  on  the  results  of  stereo 
correspondence algorithms and thus it is difficult to compare them directly. Smoothing 
algorithms  achieve  good  results  with  interpolating  new  voxels.  Estimated  texturing 
methods on newly created voxels also create realistic looking scenes. Construction of 
object  meshes  using  the  nearest  neighbor  approach  currently  fails  to  account  for 
individual  object clustering.  This leads to the appearance of “snow” across the entire 
scene and object blend together.
       Scale-invariant feature transform (SIFT) methodology has proven highly effective 
for matching objects in variable lighting conditions and perspective transformations. The 
older techniques of incrementally constructing 3D models offer a logical hierarchy, but 
are highly susceptible to noise and error.

Conclusion

Machine  vision  is  advancing  through  the  refinement  of  individual  techniques  and 
incorporating ideas from previous researchers. There are many other paths of research, 
including  active  vision,  structure  from  motion,  and  scene  reconstruction  from 
uncalibrated camera pictures which contain subset problems that overlap with problems 
presented in this paper.
       Possible avenues of research include investigating the relative efficiency of using a 
large  number  of  lower-quality  cameras  for  correspondence  compared  with  two  high 
quality  cameras.  The stereo correspondence disparity  refinement  methods  of  fitting  a 
curve to the top few disparity values to obtain a sub-pixel disparity needs more research 



to develop an alternative approach (the old approach has been raising questions within 
the  community  [11]).  Research  also  needs  to  be  performed  on  voxel-based  memory 
representation of a generic scene, with possible storage of important scene features such 
as  edges  and  corners.  In  scene  reconstruction  work  needs  to  be  done  to  investigate 
clustering techniques to form objects based on coloration and proximity.
       In the future we can expect to see hardware upgrades that increase camera resolution, 
CPU and GPU power, and memory availability. These increases in capability offer better 
voxel  position  resolution  and  more  detail  for  object  recognition.  Because  of  these 
increases  we  can  expect  the  efficient  correspondence  algorithms  of  window  based 
dynamic programming to become the most popular. Methods such as graph-cuts will be 
popular  for  long-term offline  calculations  that  require  accuracy  such  as  modeling  of 
important  buildings,  famous  landmarks,  or  other  planets.  Eventually  an  international 
standard will exist for model representation and online object repositories will exist for 
public use.

References

1. Arman, F. and Aggarwal, J. K. 1993. Model-based object recognition in dense-range 
images—a  review.  ACM  Comput.  Surv. 25,  1  (Mar.  1993),  5-43.  DOI= 
http://doi.acm.org/10.1145/151254.151255

2. Besl, P. J. and Jain, R. C. 1985. Three-dimensional object recognition. ACM Comput.  
Surv. 17, 1 (Mar. 1985), 75-145. DOI= http://doi.acm.org/10.1145/4078.4081

3. Bobick, A. F. and Intille, S. S. 1999. Large Occlusion Stereo. Int. J. Comput. Vision 
33, 3 (Sep. 1999), 181-200. DOI= http://dx.doi.org/10.1023/A:1008150329890

4. Boykov, Y., Veksler, O., and Zabih, R. 2001. Fast Approximate Energy Minimization 
via Graph Cuts.  IEEE Trans. Pattern Anal. Mach. Intell. 23, 11 (Nov. 2001), 1222-
1239. DOI= http://dx.doi.org/10.1109/34.969114

5. Debevec, P. E., Taylor, C. J., and Malik, J. 1996. Modeling and rendering architecture 
from photographs: a hybrid geometry- and image-based approach. In Proceedings of 
the  23rd  Annual  Conference  on  Computer  Graphics  and  interactive  Techniques 
SIGGRAPH  '96.  ACM,  New  York,  NY,  11-20.  DOI= 
http://doi.acm.org/10.1145/237170.237191

6. Kumar,  S., Srinivas, Chatterji,  B. N. 2004.  Robust Similarity Measures for Stereo  
Correspondence. Institution of Engineers (India). Volume 18. 2004.

7. Kutulakos,  K.  N.  and  Seitz,  S.  M.  1998  A Theory  of  Shape  by  Space  Carving. 
Technical Report. UMI Order Number: TR692., University of Rochester.

8. Lowe,  D.  G.  1999.  Object  Recognition  from  Local  Scale-Invariant  Features.  In 
Proceedings of the international Conference on Computer Vision-Volume 2 - Volume 
2 (September 20 - 25, 1999). ICCV. IEEE Computer Society, Washington, DC, 1150.

9. Rodrigues,  R.  and  Fernandes,  A.  R.  2004.  Accelerated  epipolar  geometry 
computation for 3D reconstruction using projective texturing. In Proceedings of the 
20th Spring Conference on Computer Graphics (Budmerice, Slovakia, April 22 - 24, 
2004).  SCCG  '04.  ACM,  New  York,  NY,  200-206.  DOI= 
http://doi.acm.org/10.1145/1037210.1037241

10. Sabharwal,  C.  L.  1992.  Stereoscopic  projections  and  3D scene  reconstruction.  In 
Proceedings  of  the  1992  ACM/SIGAPP  Symposium  on  Applied  Computing:  



Technological Challenges of the 1990's (Kansas City,  Missouri,  United States). H. 
Berghel, G. Hedrick, E. Deaton, D. Roach, and R. Wainwright, Eds. SAC '92. ACM, 
New York, NY, 1248-1257. DOI= http://doi.acm.org/10.1145/130069.130155

11. Scharstein, D. and Szeliski, R. 2002. A Taxonomy and Evaluation of Dense Two-
Frame Stereo Correspondence Algorithms. Int. J. Comput. Vision 47, 1-3 (Apr. 2002), 
7-42.

12. Stich,  T.,  Linz,  C.,  Wallraven,  C.,  Cunningham,  D.,  and  Magnor,  M.  2008. 
Perception-motivated  interpolation  of  image sequences.  In  Proceedings  of  the 5th  
Symposium  on  Applied  Perception  in  Graphics  and  Visualization (Los  Angeles, 
California, August 09 - 10, 2008). APGV '08. ACM, New York, NY, 97-106. DOI= 
http://doi.acm.org/10.1145/1394281.1394299

13. Tomasi,  C.  and  Kanade,  T.  1992  Shape  and  Motion  from  Image  Streams:  a  
Factorization Method Parts 2,8,10 Full Report on the Orthographic Case. Technical 
Report. UMI Order Number: CS-92-104., Carnegie Mellon University.

14. Wilburn,  B., Joshi, N., Vaish, V., Talvala,  E.,  Antunez, E., Barth, A., Adams, A., 
Horowitz, M., and Levoy, M. 2005. High performance imaging using large camera 
arrays. In ACM SIGGRAPH 2005 Papers (Los Angeles, California, July 31 - August 
04, 2005). J.  Marks, Ed. SIGGRAPH '05. ACM, New York, NY, 765-776. DOI= 
http://doi.acm.org/10.1145/1186822.1073259


	Western Washington University
	Western CEDAR
	2008

	Machine vision: a survey
	David Phillips
	Recommended Citation


	David Phillips

