296 research outputs found

    The FO^2 alternation hierarchy is decidable

    Get PDF
    We consider the two-variable fragment FO^2[<] of first-order logic over finite words. Numerous characterizations of this class are known. Th\'erien and Wilke have shown that it is decidable whether a given regular language is definable in FO^2[<]. From a practical point of view, as shown by Weis, FO^2[<] is interesting since its satisfiability problem is in NP. Restricting the number of quantifier alternations yields an infinite hierarchy inside the class of FO^2[<]-definable languages. We show that each level of this hierarchy is decidable. For this purpose, we relate each level of the hierarchy with a decidable variety of finite monoids. Our result implies that there are many different ways of climbing up the FO^2[<]-quantifier alternation hierarchy: deterministic and co-deterministic products, Mal'cev products with definite and reverse definite semigroups, iterated block products with J-trivial monoids, and some inductively defined omega-term identities. A combinatorial tool in the process of ascension is that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle programs of Schwentick, Th\'erien, and Vollmer

    More Structural Characterizations of Some Subregular Language Families by Biautomata

    Full text link
    We study structural restrictions on biautomata such as, e.g., acyclicity, permutation-freeness, strongly permutation-freeness, and orderability, to mention a few. We compare the obtained language families with those induced by deterministic finite automata with the same property. In some cases, it is shown that there is no difference in characterization between deterministic finite automata and biautomata as for the permutation-freeness, but there are also other cases, where it makes a big difference whether one considers deterministic finite automata or biautomata. This is, for instance, the case when comparing strongly permutation-freeness, which results in the family of definite language for deterministic finite automata, while biautomata induce the family of finite and co-finite languages. The obtained results nicely fall into the known landscape on classical language families.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations

    Full text link
    We present a formal tool for verification of multivariate nonlinear inequalities. Our verification method is based on interval arithmetic with Taylor approximations. Our tool is implemented in the HOL Light proof assistant and it is capable to verify multivariate nonlinear polynomial and non-polynomial inequalities on rectangular domains. One of the main features of our work is an efficient implementation of the verification procedure which can prove non-trivial high-dimensional inequalities in several seconds. We developed the verification tool as a part of the Flyspeck project (a formal proof of the Kepler conjecture). The Flyspeck project includes about 1000 nonlinear inequalities. We successfully tested our method on more than 100 Flyspeck inequalities and estimated that the formal verification procedure is about 3000 times slower than an informal verification method implemented in C++. We also describe future work and prospective optimizations for our method.Comment: 15 page

    Monus Semantics in Vector Addition Systems with States

    Get PDF
    Vector addition systems with states (VASS) are a popular model for concurrent systems. However, many decision problems have prohibitively high complexity. Therefore, it is sometimes useful to consider overapproximating semantics in which these problems can be decided more efficiently. We study an overapproximation, called monus semantics, that slightly relaxes the semantics of decrements: A key property of a vector addition systems is that in order to decrement a counter, this counter must have a positive value. In contrast, our semantics allows decrements of zero-valued counters: If such a transition is executed, the counter just remains zero. It turns out that if only a subset of transitions is used with monus semantics (and the others with classical semantics), then reachability is undecidable. However, we show that if monus semantics is used throughout, reachability remains decidable. In particular, we show that reachability for VASS with monus semantics is as hard as that of classical VASS (i.e. Ackermann-hard), while the zero-reachability and coverability are easier (i.e. EXPSPACE-complete and NP-complete, respectively). We provide a comprehensive account of the complexity of the general reachability problem, reachability of zero configurations, and coverability under monus semantics. We study these problems in general VASS, two-dimensional VASS, and one-dimensional VASS, with unary and binary counter updates

    Strategic Issues, Problems and Challenges in Inductive Theorem Proving

    Get PDF
    Abstract(Automated) Inductive Theorem Proving (ITP) is a challenging field in automated reasoning and theorem proving. Typically, (Automated) Theorem Proving (TP) refers to methods, techniques and tools for automatically proving general (most often first-order) theorems. Nowadays, the field of TP has reached a certain degree of maturity and powerful TP systems are widely available and used. The situation with ITP is strikingly different, in the sense that proving inductive theorems in an essentially automatic way still is a very challenging task, even for the most advanced existing ITP systems. Both in general TP and in ITP, strategies for guiding the proof search process are of fundamental importance, in automated as well as in interactive or mixed settings. In the paper we will analyze and discuss the most important strategic and proof search issues in ITP, compare ITP with TP, and argue why ITP is in a sense much more challenging. More generally, we will systematically isolate, investigate and classify the main problems and challenges in ITP w.r.t. automation, on different levels and from different points of views. Finally, based on this analysis we will present some theses about the state of the art in the field, possible criteria for what could be considered as substantial progress, and promising lines of research for the future, towards (more) automated ITP

    Adding modular predicates to first-order fragments

    Full text link
    We investigate the decidability of the definability problem for fragments of first order logic over finite words enriched with modular predicates. Our approach aims toward the most generic statements that we could achieve, which successfully covers the quantifier alternation hierarchy of first order logic and some of its fragments. We obtain that deciding this problem for each level of the alternation hierarchy of both first order logic and its two-variable fragment when equipped with all regular numerical predicates is not harder than deciding it for the corresponding level equipped with only the linear order and the successor. For two-variable fragments we also treat the case of the signature containing only the order and modular predicates.Relying on some recent results, this proves the decidability for each level of the alternation hierarchy of the two-variable first order fragmentwhile in the case of the first order logic the question remains open for levels greater than two.The main ingredients of the proofs are syntactic transformations of first order formulas as well as the algebraic framework of finite categories
    • …
    corecore