18 research outputs found

    A comparison of phase unwrapping techniques in synthetic aperture radar interferometry

    Get PDF
    A comparison of different phase unwrapping techniques based on the least mean square error is presented. A testing environment based on simulated interferograms has been created in order to assess the methods described in the literature. Each of them has shown good properties under different constraints. Multigrid with a previous adaptive maximum likelihood gradient estimation is very robust when strong aliasing is not expected. In a general scenario with aliasing, an adaptive multiresolution gradient estimator gives a coarse approximation to the low resolution topography.Peer ReviewedPostprint (published version

    Three-Dimensional Nepal Earthquake Displacement Using Hybrid Genetic Algorithm Phase Unwrapping from Sentinel-1A Satellite

    Get PDF
    Introduction: Geophysicists had forewarned for decades that Nepal was exposed to a deadly earthquake, exceptionally despite its geology, urbanization and architecture. Gorkha earthquake is the most horrible natural disaster to crash into Nepal since the 1934 Nepal-Bihar earthquake. Gorkha earthquake occurred on April 25, 2015, at 11:56 NST and killed more than 10,000 people and injured more than 23,000 population. Objective: The main objective of this work is to utilize hybrid genetic algorithm for three-dimensional phase unwrapping of Nepal earthquake displacement using Sentinel-1A satellite. The three-dimensional best-path avoiding singularity loops (3DBPASL) algorithm was implemented to perform 3D Sentinel-1A satellite phase unwrapping. The hybrid genetic algorithm (HGA) was used to achieve 3DBPASL phase matching. Advancely, the errors in phase decorrelation were reduced by optimization of 3DBPASL using HGA. Results: The findings indicate a few cm of ground deformation and vertical northern of Kathmandu. Approximately, an area of 12,000 km2 has been drifted also the northern of Kathmandu. Further, each fringe of colour represents about 2.5 cm of deformation. The large amount of fringes indicates a large deformation pattern with ground motions of 3 m. Conclusion: In conclusion, HGA can be used to produce accurate 3D quake deformation using Sentinel-1A satellite

    Deceptive Jamming Detection for SAR Based on Cross-Track Interferometry

    Get PDF
    Deceptive jamming against synthetic aperture radar (SAR) can create false targets or deceptive scenes in the image effectively. Based on the difference in interferometric phase between the target and deceptive jamming signals, a novel method for detecting deceptive jamming using cross-track interferometry is proposed, where the echoes with deceptive jamming are received by two SAR antennas simultaneously and the false targets are identified through SAR interferometry. Since the derived false phase is close to a constant in interferogram, it is extracted through phase filtering and frequency detection. Finally, the false targets in the SAR image are obtained according to the detected false part in the interferogram. The effectiveness of the proposed method is validated by simulation results based on the TanDEM-X system

    Absolute phase image reconstruction: a stochastic nonlinear filtering approach

    Full text link

    Nonlocal noise reduction method based on fringe frequency compensation for SAR interferogram

    Get PDF
    Phase noise reduction is one of the key steps for synthetic aperture radar interferometry data processing. In this article, a novel phase filtering method is proposed. The main innovation and contribution of this research is to 1) incorporate local fringe frequency (LFF) compensation technique into the nonlocal phase filtering method to include more independent and identically distributed samples for filtering; 2) modify the nonlocal phase filter from three aspects: 1) executing nonlocal filtering in the complex domain of the residual phase to avoid gray jumps in phase, 2) adaptively calculating the smoothing parameter based on the LFF and the coherence coefficient, and 3) using the integral image in similarity calculation to improve the efficiency; 3) perform Goldstein filter in high coherence areas to reduce the computation expense. Experiments based on both simulated and real data have shown that the proposed method has achieved a better performance in terms of both noise reduction and edge preservation than some existing phase filtering methods

    Advanced satellite radar interferometry for small-scale surface deformation detection

    Get PDF
    Synthetic aperture radar interferometry (InSAR) is a technique that enables generation of Digital Elevation Models (DEMs) and detection of surface motion at the centimetre level using radar signals transmitted from a satellite or an aeroplane. Deformation observations can be performed due to the fact that surface motion, caused by natural and human activities, generates a local phase shift in the resultant interferogram. The magnitude of surface deformation can be estimated directly as a fraction of the wavelength of the transmitted signal. Moreover, differential InSAR (DInSAR) eliminates the phase signal caused by relief to yield a differential interferogram in which the signature of surface deformation can be seen. Although InSAR applications are well established, the improvement of the interferometry technique and the quality of its products is highly desirable to further enhance its capabilities. The application of InSAR encounters problems due to noise in the interferometric phase measurement, caused by a number of decorrelation factors. In addition, the interferogram contains biases owing to satellite orbit errors and atmospheric heterogeneity These factors dramatically reduce the stlectiveness of radar interferometry in many applications, and, in particular, compromise detection and analysis of small-scale spatial deformations. The research presented in this thesis aim to apply radar interferometry processing to detect small-scale surface deformations, improve the quality of the interferometry products, determine the minimum and maximum detectable deformation gradient and enhance the analysis of the interferometric phase image. The quality of DEM and displacement maps can be improved by various methods at different processing levels. One of the methods is filtering of the interferometric phase.However, while filtering reduces noise in the interferogram, it does not necessarily enhance or recover the signal. Furthermore, the impact of the filter can significantly change the structure of the interferogram. A new adaptive radar interferogram filter has been developed and is presented herein. The filter is based on a modification to the Goldstein radar interferogram filter making the filter parameter dependent on coherence so that incoherent areas are filtered more than coherent areas. This modification minimises the loss of signal while still reducing the level of noise. A methodology leading to the creation of a functional model for determining minimum and maximum detectable deformation gradient, in terms of the coherence value, has been developed. The sets of representative deformation models have been simulated and the associated phase from these models has been introduced to real SAR data acquired by ERS-1/2 satellites. A number of cases of surface motion with varying magnitudes and spatial extent have been simulated. In each case, the resultant surface deformation has been compared with the 'true' surface deformation as defined by the deformation model. Based on those observations, the functional model has been developed. Finally, the extended analysis of the interferometric phase image using a wavelet approach is presented. The ability of a continuous wavelet transform to reveal the content of the wrapped phase interferogram, such as (i) discontinuities, (ii) extent of the deformation signal, and (iii) the magnitude of the deformation signal is examined. The results presented represent a preliminary study revealing the wavelet method as a promising technique for interferometric phase image analysis

    Amplitude and phase sonar calibration and the use of target phase for enhanced acoustic target characterisation

    Get PDF
    This thesis investigates the incorporation of target phase into sonar signal processing, for enhanced information in the context of acoustical oceanography. A sonar system phase calibration method, which includes both the amplitude and phase response is proposed. The technique is an extension of the widespread standard-target sonar calibration method, based on the use of metallic spheres as standard targets. Frequency domain data processing is used, with target phase measured as a phase angle difference between two frequency components. This approach minimizes the impact of range uncertainties in the calibration process. Calibration accuracy is examined by comparison to theoretical full-wave modal solutions. The system complex response is obtained for an operating frequency of 50 to 150 kHz, and sources of ambiguity are examined. The calibrated broadband sonar system is then used to study the complex scattering of objects important for the modelling of marine organism echoes, such as elastic spheres, fluid-filled shells, cylinders and prolate spheroids. Underlying echo formation mechanisms and their interaction are explored. Phase-sensitive sonar systems could be important for the acquisition of increased levels of information, crucial for the development of automated species identification. Studies of sonar system phase calibration and complex scattering from fundamental shapes are necessary in order to incorporate this type of fully-coherent processing into scientific acoustic instruments

    Broadband Echosounder Calibration and Processing for Frequency Dependent Target Strength and Phase Measurements

    Get PDF
    An analysis technique is developed for the calibration and processing for the target strength and phase spectra using a broadband echosounder. A new variable ‘residual phase’ is introduced, which could be used as a target classifier. Implementation of the method to characterise marine organism from the open ocean, demonstrated consistent target strength and residual phase and the matching of both the variables to the output of the numerical scattering model verified the method
    corecore