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ABSTRACT 

Synthetic aperture radar interferometry (InSAR) is a technique that enables 

generation of Digital Elevation Models (DEMs) and detection of surface motion at 

the centimetre level using radar signals transmitted from a satellite or an aeroplane.  

Deformation observations can be performed due to the fact that surface motion, 

caused by natural and human activities, generates a local phase shift in the resultant 

interferogram.  The magnitude of surface deformation can be estimated directly as a 

fraction of the wavelength of the transmitted signal.  Moreover, differential InSAR 

(DInSAR) eliminates the phase signal caused by relief to yield a differential 

interferogram in which the signature of surface deformation can be seen. 

 

Although InSAR applications are well established, the improvement of the 

interferometry technique and the quality of its products is highly desirable to further 

enhance its capabilities.  The application of InSAR encounters problems due to noise 

in the interferometric phase measurement, caused by a number of decorrelation 

factors.  In addition, the interferogram contains biases owing to satellite orbit errors 

and atmospheric heterogeneity.  These factors dramatically reduce the effectiveness 

of radar interferometry in many applications, and, in particular, compromise 

detection and analysis of small-scale spatial deformations. 

 

The research presented in this thesis aim to apply radar interferometry processing to 

detect small-scale surface deformations, improve the quality of the interferometry 

products, determine the minimum and maximum detectable deformation gradient and 

enhance the analysis of the interferometric phase image. 

 

The quality of DEM and displacement maps can be improved by various methods at 

different processing levels.  One of the methods is filtering of the interferometric 

phase.  However, while filtering reduces noise in the interferogram, it does not 

necessarily enhance or recover the signal.  Furthermore, the impact of the filter can 

significantly change the structure of the interferogram.  A new adaptive radar 

interferogram filter has been developed and is presented herein.  The filter is based 

on a modification to the Goldstein radar interferogram filter making the filter 

parameter dependent on coherence so that incoherent areas are filtered more than 
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coherent areas.  This modification minimises the loss of signal while still reducing 

the level of noise. 

 

A methodology leading to the creation of a functional model for determining 

minimum and maximum detectable deformation gradient, in terms of the coherence 

value, has been developed.  The sets of representative deformation models have been 

simulated and the associated phase from these models has been introduced to real 

SAR data acquired by ERS-1/2 satellites.  A number of cases of surface motion with 

varying magnitudes and spatial extent have been simulated.  In each case, the 

resultant surface deformation has been compared with the 'true' surface deformation 

as defined by the deformation model.  Based on those observations, the functional 

model has been developed. 

 

Finally, the extended analysis of the interferometric phase image using a wavelet 

approach is presented.  The ability of a continuous wavelet transform to reveal the 

content of the wrapped phase interferogram, such as (i) discontinuities, (ii) extent of 

the deformation signal, and (iii) the magnitude of the deformation signal is 

examined.  The results presented represent a preliminary study revealing the wavelet 

method as a promising technique for interferometric phase image analysis. 
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1 INTRODUCTION 

 

 

 

Prior to commencing into an investigation of the use of satellite-borne radar imaging 

to detect and research small-scale surface deformation, a review of the origin of 

remote sensing, radar imaging and the Synthetic Aperture Radar Interferometry 

(InSAR) is presented in this chapter.  Given an introduction to this technology and its 

application, the scope and hypothesis of this dissertation are laid out. 

 

1. 1 Remote Sensing 
The term remote sensing was established in the 1960s by geographers at the US 

Office of Naval Research and is used to denote images acquired from aircraft and 

artificial satellites (Curran, 1985, p2).  Providing an accurate and comprehensive 

definition of remote sensing is very difficult and varies depending on the degree of 

complexity used.  Different definitions of remote sensing can be found, for instance 

in Lillesand and Kiefer (2000, p1) and Lintz and Simonett (1976, p1).  However, 

having taken the similarities between these definitions into account, remote sensing 

can be defined as a technique that involves acquisition of information about an object 

without being in direct contact with it.  Remote sensing has a long history that Harris 

(1987, pp2-4) divides into five different stages.  However, in the past decade, a very 

dynamic development of both airborne and satellite remote sensors has been 

experienced.  A variety of sensors carried on board satellites and operating at 

different electromagnetic spectra have provided a wide range of scientific data, such 

as optical and radar images of the Earth’s surface. 

 

Based on the sensor’s characteristics, satellite remote sensing systems can be divided 

into ‘active’ and ‘passive’ systems (Legg, 1994, p17).  Passive systems use an 

external source of energy, such as solar illumination from the surface of the Earth.  

These record reflected or emitted electromagnetic radiation, mostly in the optical 

spectrum, which extends from 0.3 µm to 14 µm and includes ultra violet (UV), 

visible, near visible and thermal infrared wavelengths (Lillesand and Kiefer, 2000, 
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pp373-374).  Active systems use their own energy source, which is first transmitted 

to the object (e.g. the Earth) and then the backscattered signal is detected and 

processed.  The active system usually employs electromagnetic energy in the 

microwave part of the spectrum.  The advantage of microwave sensing is its 

independence of weather conditions and daylight.  Since the radar system operates in 

the microwave portion of the electromagnetic spectrum, it can provide information 

that cannot be obtained by visible and infrared images.  In addition, radar imaging 

achieves the quality and resolution comparable to the traditional optical imagery. 

 

1.1.1 Satellite Radar Remote Sensing Systems 

Satellite remote sensing is an extension of airborne remote sensing which was 

established in the 1960s and 1970s.  The first space borne radar system Seasat was 

launched in 1978 and was primarily dedicated to ocean studies.  Although its mission 

finished prematurely after 100 days of operation, the Synthetic Aperture Radar 

(SAR) imagery was impressive, and enabled SAR systems to be included in 

numerous satellite missions, such as Shuttle Imaging Radar (SIR) and the Soviet 

Cosmos launched in the 1980s.  In the early 1990s, three other radar satellites were 

launched: Almaz-1 by the former Soviet Union, ERS-1 by the European Space 

Agency (ESA), and JERS-1 by Japan.  In 1995, Canada’s Radarsat and ESA’s ERS-2 

followed (Campbell, 1996, pp228-235). 

 

All remote sensing satellites have a set of instruments for observing the Earth’s 

surface and its atmosphere.  Each system has various sensors and supporting 

instrumentation necessary to receive operating instructions from the ground control 

stations.  The design, construction and launch of a new satellite span several years.  

For example, the ESA ERS-1 satellite, launched in 1991, was mainly constructed 

before 1986, and most of the electronics date back to the early 1980s (Legg, 1994, 

pp11-13).  For more details and different sensor parameters the reader is referred to 

Franceschetti and Lanari (1999, pp4-13). 

 

The new Earth observation satellite programs, such as ENVISAT, developed by ESA 

and launched in March 2002 (ESA Service, 2002), and the proposed future programs, 

such as LIGHTSAR (USA), ECHO (USA), COSMO-SKYMED (Italy), and SMART 



Chapter 1: Introduction 

 

3

SAR (Germany), aim to reduce mission and operational costs of the satellite radar 

remote systems (Desnos et al., 2000; Louet and Bruzzi, 1999). 

 

1.1.2 Synthetic Aperture Radar Interferometry 

Synthetic Aperture Radar Interferometry is a valuable technique for creating Digital 

Elevation Models (DEM) and deformation detection studies based on remotely 

sensed data. 

 

Various terms are used to describe the InSAR technique and its applications.  In this 

thesis, the term InSAR or radar interferometry denotes a combination of two or more 

SAR images covering the same area to obtain accurate surface topography or 

deformation information (Rees, 1999, p101).  The term Differential Synthetic 

Aperture Radar Interferometry (DInSAR) is used to describe the technique that 

provides accurate surface deformation by eliminating topographic effects from an 

InSAR interferogram (Guarnieri and Rocca, 1999). 

 

1. 2 Application of InSAR for Deformation Monitoring 
InSAR technology was originally developed for military purposes.  Nowadays, it is 

available and widely used for a variety of civilian applications (Capes, 1999; 

Ehrismann et al., 1999).  Since the late 1980s, many applications of radar 

interferometry have been developed, including the observation of ground motion 

over agricultural areas by Gabriel et al. (1989), the creation of high accuracy DEM 

(Zebker and Goldstein, 1986), and deformation monitoring of the Earth’s crust with 

millimetre per year accuracy at very dense spatial sampling (Strozzi et al., 2000).  

The following paragraphs review the application of InSAR to many forms of surface 

deformation that can be categorised as follows: (i) glacier and ice motions, (ii) 

volcano deformations, (iii) earthquake deformation, (iv) landslides and (v) mining 

subsidence. 
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1.2.1 Glacier and Ice Motions 

On account of the inaccessibility of some terrain (e.g. Antarctica), satellite radar 

interferometry is a valuable technique that enables measurements of glacier and ice 

motions.  According to an earlier study conducted by Goldstein et al. (1993), glacier 

motions and sea ice dynamics can be studied and monitored using radar 

interferometry.  Madsen et al. (1999) state that such monitoring is very important for 

assessing glacier mass transport and changes in glacier volume, which may have 

significant implications for global climate change assessment.  However, the satellite 

repeat interval (35 days for the ERS-1/2 satellites) has been found to be the major 

factor limiting the interferometry application in cases of high glacier velocity.  Some 

further results of satellite radar interferometry application for glacier and ice motion 

measurements are demonstrated by Haarpainter et al. (2000), Hall (1998), Rack et al. 

(1998), Dammert et al. (1997), Mohr and Madsen (1996), and Cumming et al. 

(1996). 

 

1.2.2 Volcano Deformation 

Massonnet et al. (1995) evaluated space born radar interferometry as a highly 

effective method for volcano deformation detection studies.  It was successfully 

demonstrated that radar images, acquired by the ERS-1 satellite, could be applied to 

detect the inflation of volcanic edifices that usually precede eruptions.  Further 

studies conducted on the Mt. Etna volcano also showed the suitability of the InSAR 

for volcano eruption monitoring (Sansosti et al., 1998; Lanari et al., 1998).  Amelung 

et al. (2000) studied deformation of eight volcanoes on the Galápagos Islands during 

1992-99, using radar interferometry.  The results of this investigation provided 

displacement maps of volcanoes, indicating uplift rates ranging from several 

millimetres up to 0.9 m per year.  Further information about the application of 

InSAR for volcanic deformation monitoring may be found in Dzurisin (2003), Mann 

et al. (2002), Tokunaga and Thuy (2000), Vadon and Massonnet (2000), Amelung et 

al. (1999a), Kobayashi et al. (1999), and Berardino et al. (1999).  In summary, these 

studies show that measurements of pre-eruptive, co-eruptive and post-eruptive 

volcano deformation using radar interferometry can be performed. 
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1.2.3 Earthquake Deformation 

One of the first applications of InSAR technology for earthquake motion detection 

was carried out in Landers, California in 1992 (Massonnet et al., 1993).  The 

observed deformations were evaluated against surveying measurements, 

demonstrating the high accuracy of InSAR technology for earthquake related motion 

monitoring.  Furthermore, the researchers indicated the advantages of the InSAR 

technique over standard geodetic techniques for ground deformation monitoring, due 

to the very dense spatial sampling and its high vertical accuracy.  In addition, it is 

evident that the InSAR technique is becoming a new geodetic tool, helping to better 

understand earthquake origins and their characteristics.  More information about the 

application of InSAR for earthquake deformation monitoring can be found in 

Amelung and Bell (2003), Zeng and Ohkura (2000), Stramondo et al. (1999), Feigl et 

al. (1999), Peltzer et al. (1996), and Peltzer and Rosen (1995). 

 

1.2.4 Landslides 

The application of radar interferometry to monitor natural ground displacement 

phenomena with the accuracy required for landslide monitoring was demonstrated by 

Fruneau et al. (1996).  In this study, a small spatial extent (800x800 m) with a high 

topographic variability was examined and the model of surface displacements was 

constructed.  Rott and Siegel (1999) successfully applied satellite radar 

interferometry to monitor mass movements and to detect hazard zones in the 

Austrian Alps.  Studies of InSAR for land subsidence mapping in urban areas also 

show high capability to detect, monitor and quantify subtle ground deformations over 

a specific period of time and over vast areas (Berardino et al., 2000; Wegmüller et 

al., 1999, 1998; Fruneau et al., 1999; Strozzi and Wegmüller, 1999; Haynes et al., 

1997).  Refice et al. (2000), however, state that the application of InSAR to slope 

stability studies of a small spatial extent is strongly limited by weather conditions.  

Some further results of InSAR application for subsidence monitoring are 

demonstrated by Schmidt and Bürgmann (2003), Nakagawa et al. (2000), Yonezawa 

and Takeuchi (2000), Amelung et al. (1999b), and Cohen et al. (1998). 
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1.2.5 Mining Subsidence 

Subsidence and its effects on surface-level structures poses serious problems for the 

development and maintenance of building stock and other human-made structures, 

such as roads and railway lines (Wodyński and Kocot, 2000).  Therefore, the 

effective protection and management of mining induced deformation is one of the 

main concerns for the mining industry as well as for local communities.  First 

attempts to apply InSAR for mining subsidence monitoring proved the method’s 

viability to measure such a deformation with vertical accuracy of a few millimetres 

(Stow et al., 1999; Stow and Wright, 1997; Stow, 1996).  According to this research, 

remotely acquired SAR images have the potential to improve subsidence-modelling 

accuracy by increasing the quantity and quality of collected data, as compared to the 

conventional surveying techniques.  The achieved interferogram (Figure 1.1) shows 

two distinctive concentric fringe features indicating subsidence aligning with areas of 

underground mining activity over the Selby coalfield, UK.  Geotechnical 

interpretation of the fringe features was possible and the associated subsidence was 

established as between 3 and 12 cm. 

 

 

Figure 1.1 Interferometric fringes overlaid with underground mine activity (after 
Stow and Wright, 1997). 

 

This research shows that mining subsidence can be successfully detected using the 

35-day repeat SAR data and radar interferometry techniques.  Furthermore, 

researchers indicate that the balance between adopting a useable temporal baseline 

(in terms of interferogram coherence) and allowing a suitable length of time to lapse 
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for a measurable amount of subsidence to occur needs to be found.  In addition, 

agricultural land and unfavourable weather conditions during data acquisition 

considerably increase the interferometric phase noise and reduce the ability of radar 

interferometry for deformation detection studies. 

 

Timmen et al. (1996) assessed the ability of InSAR and its accuracy for surface 

deformation monitoring over a uranium ore mining site in Thuringia, Germany.  In 

principle, the reference network of specially developed corner reflectors (CR) was 

deployed and measured using terrestrial geodetic techniques.  Than, the 

interferometric phase images were investigated with the objective of detecting the 

CR movements.  It was demonstrated that the sub-centimetre accuracy of InSAR 

derived data in surface motion detection is achievable under favourable 

environmental conditions.  Moreover, Timmen et al. (1996) report that significant 

change in weather and seasonal conditions between two epochs destroyed the 

coherence and provided no result. 

 

The application of InSAR for deformation monitoring undertaken in 1997 by Perski 

(1998) confirms the usefulness of this technique in environmental monitoring as well 

as in detecting the dynamics of land subsidence caused by underground mining 

activities over the Upper Silesian Coal Basin, Poland.  Perski indicated the negative 

aspect of high magnitude mining activities in this region, which is one of Europe’s 

biggest mining centres.  Changes of topography and hydrography as well as damage 

to buildings and other structures due to mining in this region are significant.  The 

results of his experiment showed that mining-related surface deformation could be 

monitored with good quality and quantity using ERS-1/2 satellites data and a 35-day 

repeat cycle.  Furthermore, using InSAR data, Perski derived a complete map of 

terrain deformation over the Upper Silesia.  Moreover, the high accuracy of this map 

was demonstrated by its agreement with the ground control points measured using 

conventional surveying techniques (Perski, 2000, 1999; Perski and Jura, 1999). 

 

A slow and local phenomenon of subsidence caused by underground coal mining has 

been observed near Gardanne in France (Carnec and Delacourt, 1999).  The series of 

radar images acquired by both ERS-1 and ERS-2 satellites were processed and the 

achieved interferogram demonstrated the ability of radar interferometry to detect 
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surface subsidence.  Validation of the interferometry data with levelling observations 

showed a high level of agreement. 

 

A similar study demonstrated by Wegmüller et al. (2000) showed that radar 

interferometry has substantial potential for monitoring deformation caused by 

subsurface mining activities.  However, Wegmüller et al. (2000) indicate that the 

main limitation of InSAR is the temporal decorrelation, which does not allow the 

estimation of surface deformation in forested and most agricultural areas. 

 

As indicated by Ge et al. (2001a, 2001b, 2001c, 2000a, 2000b), a network of GPS 

points is not sufficiently dense to monitor surface subsidence caused by underground 

mining as well as the crustal deformation due to an active seismic fault or volcanic 

activity.  They proposed the integrated GPS and InSAR called “Double Interpolation 

and Double Prediction” (DIDP) method to improve the monitoring of surface 

deformation.  In the proposed DIDP approach, the atmospheric corrections and the 

satellite orbit errors are obtained from GPS measurements and incorporated in the 

InSAR process to improve the accuracy of the ground displacement measurements.  

The InSAR data however, give the high-density map of physical phenomena being 

studied. 

 

According to Popiołek et al. (2002), the application of InSAR for deformation 

monitoring can be potentially extended over surface mining activities to examine the 

following dynamic phenomena: (i) landslides and motions of excavation slopes and 

floor, (ii) the mass movement of waste dumps, (iii) depression and deformation due 

to drainage and (iv) mining progress. 

 

In conclusion, many types of surface deformation can be monitored using the InSAR 

technique.  However, the horizontal resolution is limited by the size of the resolution 

pixel (20 m in case of satellite ERS-1/2) whereas the vertical accuracy is much 

higher (up to a few millimetres).  In addition, while the weather conditions do not 

prevent a radar system from acquiring an image, the changes in weather conditions 

from times of image acquisition reduce the applicability of radar interferometry for 

deformation detection studies. 
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1. 3 Conventional Deformation Monitoring Techniques 
Conventional surface deformation monitoring techniques can be divided into two 

categories, namely surveying and geotechnical (Ding et al., 1998, pp3-12; Thompson 

et al., 1993).  For the surveying techniques, survey instruments, such as levels, 

theodolites, total stations, GPS receivers, and photogrammetric cameras, are usually 

employed to collect data.  Surface deformation monitoring systems employ a 

levelling line or mesh of points to obtain vertical movement.  Currently, highly 

accurate surveying systems are able to determine all three spatial coordinates (x,y,z), 

by establishing the positions of the surveyed targets in relation to a stable set of 

reference points.  The indication of movement of the coordinated targets can be 

determined by comparing the coordinates from at least two different survey epochs.  

Surveying techniques can be used to determine the absolute position and positional 

changes of any point on the surface with respect to the reference point(s). 

 

Geotechnical monitoring techniques usually employ instrumentation to measure 

deformation or displacement with a very high accuracy over a relatively small spatial 

extent.  Common geotechnical instrumentations used in small-scale deformation 

surveys include (i) extensometers, (ii) inclinometers, piezometers, (iii) crack meters, 

and (iv) microseismic geophones, which are directly attached to the deforming body 

(Ding et al., 1998, pp 12-14; Logan et al., 1993; Loubser, 1993). 

 

Surveying and geotechnical monitoring systems are usually established in areas 

where the likelihood of deformation is very high.  The main advantage of the 

surveying and geotechnical monitoring techniques used for deformation control is 

the high accuracy of measurements.  However, major disadvantages include the 

complicated instrumentation, the small number of observations obtained, poor spatial 

resolution and high cost of surveys. 

 

1. 4 Aims of this Research 

Although InSAR applications are well established, the improvement of the 

interferometry technique and the quality of its products is desirable to further 

enhance its capabilities.  The aim of this research is to apply, test and enhance the 

radar interferometry technique to determine surface deformation, with the major 
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focus on small-scale surface deformation such as that associated with mining 

activities. 

 

In this thesis, three research problems and objectives have been identified.  First, 

radar interferometry encounters problems due to noise in the interferometric phase 

measurement, caused by a number of decorrelation factors.  Moreover, the 

interferogram contains biases due to satellite orbit errors and atmospheric 

heterogeneity.  These factors dramatically reduce the capabilities of radar 

interferometry in many applications and, in particular, compromise detection and the 

analysis of spatially small-scale surface deformations.  By filtering the 

interferometric phase, the quality of deformation maps can be improved.  However, 

while filtering reduces noise in the interferogram it reduces the deformation signal. 

 

Secondly, the following problem is related to the radar interferometry limits.  What is 

the minimum and maximum deformation gradient that the radar interferometry can 

detect?  While Massonnet and Feigl (1998) defined the maximum detectable 

deformation gradient, they did not include the effects of decorrelation that are 

responsible for the phase noise.  Therefore, such a definition does not describe the 

problem realistically. 

 

Finally, as the analyses of the interferometric phase are based on the visual 

inspection of the phase image (interferogram), the question emerges whether the 

interpretation of the interferometric information could be extended.  If this is 

possible, the additional information, invisible to the human eye, could be revealed.  

Moreover, the deformation detection could be automated. 

 

The key objectives of this research may therefore be summarised as follows: 

• Determine suitability of InSAR for small-scale surface deformation detection; 

• Reduce the interferometric phase noise via implementation of a developed 

filtering algorithm; 

• Develop a functional model for determining the minimum and maximum 

detectable deformation gradient accounting for the effects of decorrelation; and 

• Advanced analysis of the interferometric phase image; 
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1. 5 Thesis Structure 
This thesis comprises eight chapters (Figure 1.2).  Chapter 1 has considered the 

concept of remote sensing, InSAR origin, and reviewed the application of radar 

interferometry for deformation detection, focusing on small-scale deformation 

detection (e.g. mining related surface subsidence).  Furthermore, the objectives of the 

research have been defined.  Chapter 2 provides an overview of the background and 

theory required for DEM generation and surface deformation detection using the 

satellite radar interferometry technique.  It discusses radar, synthetic aperture radar 

and interferometry principles followed by sources of errors.  Chapter 3 presents the 

case study areas and describes the deformation characteristics of the areas to be 

analysed using radar interferometry.  Moreover, the key characteristics of the satellite 

and reference data are outlined.  The sequences of the processing steps necessary to 

create a repeat pass interferogram and a differential interferogram from SAR data are 

given and discussed in Chapter 4.  In this chapter, the interferometric data from the 

two study areas are presented and analysed in terms of small-scale surface 

deformation detection.  In addition, the problems associated with interferometry 

processing as well as interferogram interpretation have been identified.  A new 

adaptive radar interferogram filter that minimises the loss of signal while still 

reducing the level of noise is proposed in Chapter 5.  The validation of the new filter 

is undertaken on simulated and real data.  In Chapter 6, a functional model for 

determining the minimum and maximum detectable deformation gradient in terms of 

the coherence value is developed.  The extended analysis of the interferometric phase 

image using the wavelet transform is presented in Chapter 7.  Finally, Chapter 8 

concludes with a summary of the major findings of this research and includes 

recommendations for future work. 
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Figure 1.2 Thesis structure. 
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2 SYNTHETIC APERTURE RADAR INTERFEROMETRY 
BACKGROUND 

 

 

 

This chapter presents a condensed overview of the background and theory required 

for understanding the InSAR technique.  The theory presented here focuses on the 

definition of the principles of radar, synthetic aperture radar, and interferometry.  

Furthermore, the decorrelation effects as well as the satellite orbit errors and 

atmospheric heterogeneity responsible for increasing noise in the interferogram 

phase measurement are identified and discussed.  Moreover, this chapter provides the 

basic theory necessary for simulations of the interferometric data undertaken in 

Chapter 5 and Chapter 6.  For further details and background on SAR and radar 

interferometry, the reader is referred to the many textbooks available (e.g. Fitch, 

1988; Franceschetti and Lanari, 1999; and Hanssen, 2001). 

 

2. 1 Radar 
As mentioned in the introductory chapter, radar is an example of an active image 

technology in which the sensor provides its own source of illumination.  Radar, an 

acronym for Radio Detection and Ranging, refers to a technique and instrumentation 

that operate in the microwave portion of the electromagnetic spectrum, and which 

penetrate cloud cover and other atmospheric particles due to relatively long 

wavelength (Figure 2.1).  Such a bandwidth increases the signal penetration capacity, 

which gives radar a strong advantage over optical sensors. 

 

In many ways radar images resemble those from optical systems.  However, optical 

imagery shows the terrain reflectivity response to visible light, whereas radar 

imagery shows the terrain response to radio waves.  Thus, the response of objects 

and terrain to microwave radiation can be vastly different from optical waves. 
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Figure 2.1 The electromagnetic spectrum and atmospheric transmission capabilities 
(after Henderson and Lewis, 1998, p3). 

 

A radar instrument (antenna) emits a series of electromagnetic pulses and detects the 

reflections of these pulses from objects in its line of sight.  The strength of the signal 

and the two-way travel time of the pulse are stored by the radar system.  The 

backscatter amplitudes define the pixel brightness.  The time delays and the speed of 

light are used to determine the range to the detected object (Fitch, 1988, pp1-18). 

 

2. 2 Basic SAR principles 
The SAR system generates a radar image by scanning the Earth’s surface from an 

aircraft or spacecraft platform using an attached radar antenna.  As the radar antenna 

moves at uniform speed (v) and altitude (H) along the flight path, it transmits at look 

angle (θ) the microwave pulses along direction (R) which is orthogonal to the 

direction of the flight path (Figure 2.2).  Each pulse is shaped into a linear frequency 

modulated and transmitted at the pulse repetition frequency (PRF) towards the Earth.  

The same antenna receives the backscattered echoes reflected from the terrain.  The 

signal is than stored and processed to synthesize a large aperture.  Finally, the data 

are formed as the high-resolution image of the terrain response to the radio signals 

(Bamler and Schättler, 1993). 

 

The transmitted and received signals are coherent.  This means that the transmitted 

signals are generated from a stable local oscillator and can be referenced in time and 

space to a common point.  The received signal has a precisely measurable time delay, 

which is dependent on the distance to the ground, and has a precisely measurable 
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phase difference in relation to the local reference phase (oscillator phase).  The 

coherence allows for synthesising the effect of the large aperture (antenna) that 

permits imaging at a much higher resolution than could be achieved with the 

physically small antenna (Ghiglia and Pritt, 1998, pp8; Olmsted, 1993). 

R

G

transmited
pulse

radar antenna

cτ
θ

pulsewidth

∆r

∆rg

αt

 
Figure 2.2 Sensor-target geometry (single pass). 

 

The SAR imaging configuration determines the coordinate system in which the 

azimuth coordinate indicates position along the flight path, whereas the range refers 

to the position along the line perpendicular to the flight direction.  The range 

coordinate is associated with the direction of the transmitted pulses.  Figure 2.3 

illustrates the whole imaging scene as it is created at the acquisition time.  The spot 

on the Earth illuminated by a single pulse is referred to as the antenna footprint, 

while the imaged strip on the ground is called the swath.  D and L are the dimensions 

of the physical radar antenna.  The angles θ and β are the look angle and beam angle 

respectively.  H indicates the altitude of the satellite and λ is the wavelength. 
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Figure 2.3 Three-dimensional view of the scanning configuration for a side looking 
SAR system. 

 

The pulse duration τ of the transmitted signal determines the slant range resolution 

∆r of the SAR system (see Figure 2.2): 

2
τcr =∆  (2.1)

where c is the speed of light. 
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On the other hand, the range resolution on the ground ∆rg, which describes the 

minimum distance between two objects that can be individually detected, is defined 

as follows: 

t
g

cr
α

τ
cos2

=∆  (2.2)

where αt is the terrain slope angle. 

 

The range resolution can be easily changed and improved by managing the 

bandwidth of the transmitted pulse.  The azimuth resolution, however, is limited by 

the azimuth antenna footprint size.  Basic antenna theory states that the resolution of 

the signal detected by an antenna (∆A) is inversely proportional to the length of the 

antenna: 

R
L

A ⋅=∆
λ  (2.3)

In general, a larger sensor (antenna) can obtain more information about scanned 

objects and thus improve resolution.  To increase the image resolution in the azimuth 

direction, the SAR system uses spacecraft movement and advanced signal processing 

techniques to simulate a larger sensor size (Figure 2.4). 

 

R

flight path

real antenna

synthetic

antenna

 

Figure 2.4 Real antenna forming a synthetic aperture. 
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The synthetic aperture technique was first demonstrated by Graham (1974), and 

improves azimuth resolution from the 4.5 km beam width for the single pulse to 

approximately 5 m.  Since then, several algorithms for SAR focusing have been 

developed (e.g. Madsen, 1989; Massonnet et al., 1994; and Xiong et al., 1995; Jin, 

1996; Debao et al., 1999).  The ERS-1/2 SAR data used in this study were pre-

processed (focussed) to the Single Look Complex (SLC) format by the ESA 

Processing and Archiving Centre. 

 

In principle, the azimuth processing of SAR data requires an estimation of the 

Doppler Frequency Shift (also called Doppler Centroid Frequency (FDC)) of the 

returned echo signal.  FDC is a change in wave frequency as a function of the 

relative velocities of the radar antenna and the target.  In practice this means that the 

signal returned from the area ahead of the space-borne sensor has an upshifted 

(higher) frequency.  Conversely, the signal from the area behind the sensor has a 

downshifted (lower) frequency. 

 

zero Doppler
shift

signals ahead of radar
(upshifted in freq.)

radar antenna

effective resolution
element

signals behind radar
(downshifted in freq.)

range resolution

azimuth resolution

 
Figure 2.5 Determination of the effective resolution element (adapted from Lillesand 

and Kiefer, 2000, p623). 
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By processing (focusing) the returned signal using FDC, a very small effective beam 

width is obtained (Figure 2.5).  In other words, the azimuth spectrum contains 

information about Doppler shift and its bandwidth, and is related to the spectral 

resolution in the azimuth direction.  The FDC depends on the Earth’s rotation and 

satellite yaw steering and it varies in slant range direction (Price, 1999, pp48-69; 

Barmettler et al., 1996; Zebker et al., 1994). 

 

A focused radar image is composed of many dots (pixels).  Each pixel in the radar 

image represents the radar backscatter for the corresponding area of the ground 

surface.  The quality of the image depends on the sensor-scene geometry and signal 

processing approach.  One of the SAR imagery products called Single Look 

Complex Image (SLC) has preserved the amplitude and phase of the backscattered 

signal for each pixel, in complex number fashion.  Such information makes the 

interferometry process possible and is described in detail later in this chapter. 

 

2. 3 Factors Affecting Reflectivity 

Four major factors affect the reflectivity of the radar signal, namely (i) geometry, (ii) 

topography, (iii) surface roughness, and (iv) dielectric constant (Mikhail et al., 

2001). 

 

The incidence angle (θinc) is the major geometrical factor affecting the strength of the 

radar signal (Figure 2.6).  As θinc increases the radar energy spreads away and the 

reflectivity of the terrain decreases.  Furthermore, the local incidence angle (θlok) is 

influencing the strength of the radar echo (Figure 2.6).  Thus, an increase in the 

terrain slope in the range direction increases the strength of the returned signal.  In 

addition, the backscattered signal increases if the surface roughness increases. 
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Figure 2.6 Terrain elevation affecting the image geometry. Area (1) indicates 
foreshortening, (2) layover and (3) shadow.  Black strip (3) indicates weak 
backscattered signal. 
 

The last factor affecting the radar reflectivity is the dielectric constant (dc), which is a 

measure of the reaction of a material to the presence of an electric field.  Materials 

with high dielectric constant are very good reflectors of radar energy.  For instance, 

water has a dc equal to 80, while the value of dc for dry land surface ranges from 3 to 

8 (Mikhail et al., 2001, p305).  Since soil contains a high amount of water, it strongly 

reflects the radar energy away from the antenna and, again, it appears as a dark area 

on the image. 

 

2. 4 Topographic Effects on Image Geometry 
There are three effects on radar image geometry caused by the SAR configuration 

and topography of the observed scene: (i) foreshortening, (ii) layover, and (iii) 

shadow.  These are illustrated in Figure 2.6. 

 

Foreshortening refers to a compression of terrain slopes that face the incoming radar 

energy, which occurs due to the nature of radar as a ranging system. 
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The layover phenomenon is caused by the simultaneous return of radar signals from 

multiple fractions of the terrain that are at the same distance from the signal 

transmitter. 

 

The shadow areas are caused by the absence of radar returns from portions of the 

terrain that are occluded, thus not illuminated by the transmitted radar signal. 

 

2. 5 Principles of InSAR 
As mentioned previously, the SAR system is capable of delivering a product called a 

single look complex image, which preserves the phase information as well as the 

amplitude of the backscattered signal.  This information can be exploited and used 

for topography modelling or deformation detection.  The phase refers to the relative 

position along the wave with respect to a reference point, or the relative displacement 

between two or more waves. 

 

Waves interact with one another and the result of their interaction depends on the 

individual wave properties.  There are two possible types of interaction between 

waves, firstly constructive (C) addition of the amplitudes when the waves are in 

phase and secondly, destructive (D) addition when the waves are out of phase 

(Figure 2.7).  This constructive and destructive interaction among waves is known as 

interference. 

 

  

Figure 2.7 Wave phase difference (left-hand side), and addition of two waves (right-
hand side). 

 

C

D 
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In 1801, Young first studied the interference of light waves.  His experiment, 

commonly known as the ‘double-slit’ is illustrated on Figure 2.8a. 
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(b) 

Figure 2.8 a (left-hand side) Young’s two-slit experiment set up and b (right-hand 
side) interferometric fringes (adapted from Ghiglia and Pritt (1998, p10 and p13). 
 

On the viewing screen S2 (Figure 2.8b) a series of light and dark bands can be seen.  

The dark lines represent the minima of the combined wave disturbance, where 

destructive interference occurs and the waves cancel each other out.  On the other 

hand, the bright lines represent the maxima, where constructive interference occurs 

and the wave amplitudes add to each other.  The patterns of light and dark bands are 

commonly called interferometric fringes. 
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Figure 2.9 Cross-section through Young’s experiment set up (adapted from Ghiglia 

and Pritt; 1998, p11). 
 

In Figure 2.9 a cross-section through Young’s experimental set up is illustrated.  

Young determined the mathematical relationship between all relevant quantities and 

determined the relationship between the phase difference ∆φ and the path difference 

∆R given as: 

π
ϕ

λ 2
∆

=
∆R  (2.4)

Nowadays, the principles of this classical experiment are applied to SAR 

interferometry.  However, instead of the slits, two radar antennas SM and SS, coherent 

sources of electromagnetic energy, are applied and the surface of the Earth becomes 

the ‘viewing screen’.  The configuration of the side-looking SAR system is shown in 

Figure 2.10.  The interference pattern can be seen on the ground due to path 

differences between the two sensors to any point that varies with position G(x,y).  

Moreover, the fringes have a slight curvature because the path difference varies in 

both directions.  The exact spacing and curvature of the fringes are a function of 

parameters, such as (i) radar wavelength, (ii) distance between antenna and Earth 

surface, (iii) shape of the surface, and (iv) spatial configuration (separation) of the 

two antennas in space. 
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Figure 2.10 Side-looking SAR set up with two radar antennas (perspective view). 
 

A SAR system produces images of the ground that comprise a regular grid of 

complex values g(x,y): 

g(x,y) = u(x,y) + iv(x,y) (2.5)

where u(x,y) and v(x,y) are the real and imaginary parts of the complex number as 

illustrated in Figure 2.11. 

 

u(x,y)

v(x,y)

0 Real

Imag.

Φ(x,y)

|g(x,y)|

 
Figure 2.11 Definitions of amplitude and phase. 

 

Such complex numbers can be represented in terms of amplitude |g(x,y)| and phase 

Φ(x,y): 
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),(),(),( yxieyxgyxg Φ=  (2.6)

where amplitude is defined as: 

),(),(),( 22 yxvyxuyxg +=  (2.7)

and phase: 

),(
),(arctan),(

yxu
yxvyx =Φ    when 0),( ≠yxu  (2.8)

The surface area on the ground is represented by a single pixel, which generally 

contains hundreds of elementary returns from all scatters within the resolution cell.  

Thus, the pixel signal value is generated as the sum of hundreds of elementary 

returns. 

 

To perform radar interferometry two SAR images are needed.  In this thesis, the 

image acquired in the first pass is called the master (M) and the image acquired in the 

second pass is called the slave (S).  Following Ghiglia and Pritt (1998, p14), the 

complex notation of the SAR images can be expressed as: 

( ) ( ) { }MMM iyxgyxg Φ≅ exp,, ,   where:  ( )
λ

π yxRM
M

,4
−=Φ  (2.9)

( ) ( ) { }SSS iyxgyxg Φ≅ exp,, ,   where:   ( )
λ

π yxRS
S

,4
−=Φ  (2.10)

where ( )yxgM ,  and ( )yxgS ,  are the complex terrain reflectivities (amplitude), RM 

and RS are the ranges from the sensors to point G(x,y) on the ground, and λ is the 

wavelength. 

 

After aligning and resampling the slave image to corresponding locations in the 

master grid, the two images can be interfered with each other by multiplication of the 

complex value of the master gM(x,y) by the complex conjugate of the slave gS
*(x,y): 

( ) ( ) ( ) ( ) ( ){ }SMSMSM iyxgyxgyxgyxg Φ−Φ≅⋅ exp,,,, *  (2.11)
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where ‘·’ denotes the point wise multiplier.  The result of such a multiplication is a 

complex interferogram. 

 

If the position of the radar antennas and the SAR system quantities are known very 

precisely and the images are highly spatially correlated (that is, 

( )yxgM , ≅ ( )yxgS , ), then the interferogram measures the phase difference 

(modulo 2π) in slant range to the common ground point G(x,y), illuminated during 

both acquisitions. 

 

Figure 2.12 shows a typical interferometry cross-section that indicates all quantities 

required to obtain topographic heights or surface deformation, based on two radar 

images. 
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Figure 2.12 InSAR geometry in the plane orthogonal to the satellite trajectories. 

 

Using the observed phase difference (φ) at point G(x,y), range RM, the sensor’s 

separation baseline (B), and the sensor height (H), it is possible to determine the 

height (HG) of point G(x,y) above a reference surface. 
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When the exterior conditions are equal during acquisitions of master (first pass) and 

slave (second pass) images, the interferometric phase can be written as: 

||
4)(4 BRR SM

SM λ
π

λ
πφ −=

−
−=Φ−Φ=  (2.12)

If the range (Ri) is much larger than the baseline (B), we can assume that both ray 

paths are approximately parallel.  Therefore, using this approach known as the 

parallel-ray approximation (Zebker and Goldstein, 1986), the path difference (B||) 

can be approximated as: 

( )αθ −= sin|| BB  (2.13)

Due to orbit inaccuracies and the 2π phase ambiguity it is not possible to derive B|| 

directly from the geometry.  However, the relation between changes in B|| and θ can 

be described as: 

θαθ ∂−=∂ )cos( 0
|| BB  (2.14)

where θ0 is the initial value obtained at the reference surface (e.g. ellipsoid). 

 

Knowing precisely the height of the satellite H above the reference surface and the 

derivative for a resolution cell G with range RMG, the relationship between the 

changes in look angle θ due to a height difference H∂ can be found.  Finally, the 

height HG of the pixel location above a reference surface and the phase difference 

Gφ∂  can be defined as (Hanssen, 2001, p37): 

G
G

GMG
G B

RH φ
π

θλ
∂=

⊥
0

,

0

4
)sin(    where:   )cos( 00

, αθ −=⊥ GG BB  (2.15)

where RMG is the range from the satellite to the resolution cell G determined in the 

configuration of the master image, B is the baseline and 0
Gθ  is the initial value found 

for an arbitrary reference surface, for instance an ellipsoid. 

 

Rearranging Equation (2.15), the functional relationship between the absolute 

interferometric phase Gφ and the terrain height HG above a reference surface can be 

defined as: 
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0

0
,

sin
4

GMG

GG
G R

BH
θλ

π
φ ⊥−=  (2.16)

A recursive scheme is used to determine a new value at a specific height above the 

arbitrary reference surface.  The component Gφ∂ in Equation (2.15) can be replaced 

by 2π that yields the height ambiguity.  In other words, it is the linear interval that 

corresponds to a 2π phase shift: 

0
,

0

2 2
sin

G

GMG

B
Rh

⊥

=
θλ

π  (2.17)

Since the measured interferometric phase is the sum of the expected reference phase 

GRφ  on the reference surface, often called the ‘flat Earth pattern’: 

( )αθ
λ
πφ −= 0sin4

GR B
G

 (2.18)

and the observed phase changes due to topography (HG) and deformation (DG),  the 

reference phase has to be removed from Equation (2.16).  Thus, the final 

interferogram contains both the interferometric phase that represents a map of the 

relative terrain elevation with respect to the slant range direction and deformation 

(DG) can be written as (Rocca et al., 2002; Hanssen 2001, p38): 

( ) 









−−−= ⊥

0

0
,0

sin
sin4

GMG

GG
GGG R

BH
DB

θ
αθ

λ
πφ  (2.19)

If the ground is flat, the achieved fringe pattern is very uniform.  However if the 

surface has variable topography, the point G(x,y) moves in the range and azimuth 

directions as well as up and down, causing path differences in 3D.  Thus, terrain 

height disrupts the uniform fringe pattern as shown schematically in Figure 2.13. 

 

The interferometric fringes do not directly represent the surface height.  The wrapped 

discontinuities must be solved.  This can be done during the unwrapping process, 

which, in general, is a process of finding the correct number of whole phase cycles 

and scaling them by the height ambiguity value.  The different unwrapping 

approaches and algorithms can be studied for example in Zebker et al. (1986), 
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Goldstein et al. (1988), Spagnolini (1995), Ghiglia and Pritt (1998), Loffeld and 

Krämer (1999), Fornaro and Sansosti (1999) and Stramaglia et al. (1999). 

SM SS

G

RM RS

 

Figure 2.13 Interferometry pattern caused by topography. 
 

In addition, the interferogram contains changes in phase due to atmospheric 

heterogeneity and decorrelation sources which occur between acquisitions times.  

These issues are discussed in Section 2.8 to Section 2.10. 

 

2. 6 Differential Interferometry 
Deformation observations using InSAR are made possible by the fact that surface 

motion caused by natural and human activities generates a local phase shift in the 

resultant interferogram.  In fact, DInSAR can detect local and relative motions in 

slant range (satellite-ground). 

 

Ground displacements have a direct impact on the interferogram phase shift and are 

independent of the satellite separation.  The quantity of surface displacement can be 

estimated directly as a fraction of the wavelength.  The ideal condition for 

deformation detection occurs when the satellites are in the same position in space 

during both acquisitions to ensure that only deformation will cause phase shifts in the 

interferogram.  Unfortunately, it is very difficult to ensure such a condition and the 

non-zero perpendicular baseline ( 0≠⊥B ) will cause interferometric fringes, due to 
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the surface topography as well as deformation.  However, DInSAR eliminates the 

phase signal due to topography to yield a differential interferogram in which the 

signature of surface deformation can be seen.  Such an interferogram contains only 

the fringe patterns caused by deformation and possible decorrelation sources. 

 

There are several ways to generate a differential interferogram, but commonly all 

techniques involve the generation of two interferograms: one spanning some surface 

change and topography, the other indicating only the surface topography.  The 

topography related interferogram could either be calculated from a conventional 

DEM (2-pass differential interferometry), or from an independent interferometric 

pair without the phase component due to displacement (three- and four-pass 

differential interferometry).  Finally, the topography interferogram is used to subtract 

the topographic signal from the interferogram that includes the deformation related 

signal.  According to Franceschetti and Riccardo (1999, p. 219) taking a given (or 

generated) DEM with an accuracy 30 m and the satellite parameters of the ERS-1, 

example baseline perpendicular component ⊥B = 100 m, we get an accuracy on the 

displacement equal to 1 cm. 
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Figure 2.14 Two-pass DInSAR geometry in the plane orthogonal to the satellite 

trajectories. 
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Figure 2.14 shows the two-pass DInSAR set-up geometry.  D indicates the 

displacement of point G that took place between two radar acquisitions.  The range in 

the second pass (slave) is indicated with RSG’, while RSG is the range in the absence of 

displacement.  The interferometric phase is given by: 

( )MGSGG RR −= '
4
λ
πφ  (2.20)

By rearranging Equation (2.20), the contributions to the path difference due to the 

target displacement (DG) and the topographic height (HG) can be distinguished 

(Franceschetti and Lanari, 1999, p219): 

( ) ( ) GGMGSGSGSG
G HDRRRR +=−+−= '4π
λφ  (2.21)

If the baseline B = 0 (the same satellite position during both acquisitions), the 

topographic contribution will equal zero and the interferometric phase would be 

related only to the displacement term (DG). 

 

Using the far field approximation, a parallel look direction can be assumed.  Thus the 

displacement vector D in direction αG will create a slant range deformation 

component DG as follows: 

( )GincG DD αθ −= sin  (2.22)

In practice, such a situation is very difficult to obtain due to difficulties in satellite 

navigation.  Thus, the topographic influence has to usually be removed.  However, in 

order to reduce the topography influence, radar images with the smallest possible 

perpendicular baseline ( min→⊥B ) are preferred if the study focuses on the surface 

deformation detection.  

 

2. 7 Interferometric Phase Statistics 

2.7.1 Coherence 

The complex coherence γ (complex correlation coefficient) between two complex 

SAR images gM and gS (the interferometric pair) is defined as (Lee et al. 1994; 

Bamler and Just, 1993): 
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{ }
{ } { }22

SM

SM

gEgE

ggE ∗

=γ  
(2.23)

where E{} is the expectation operator. 

 

Coherence is a measure of the correlation of the phase information of two 

corresponding signals.  This value can be assigned to every pixel of the 

interferogram, which provides a matrix of coherence values often called a coherence 

map. 

 

2.7.2 The Multilook Phase Difference Distribution 

As long as the two radar images gM and gS have some degree of correlation, the 

probability density function (PDF) of the interferogram phase is not necessarily 

uniform.  Following Tough et al. (1995) and Oliver and Quegan (1998, p334), the 

marginal PDF for the phase difference φ is given as: 
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 (2.24)

where φ0 is the expected phase of the interferogram (φ0 = 0), L is the number of 

independent looks, and ( )0cos φφγϖ −= .  The gamma function is defined as: 

( ) ( )!1−=Γ LL  (2.25)

If L = 1, the summation contains no terms and the distribution reduces to single-look.  

The value of the PDF depends only on the number of looks and the complex 

correlation coefficient.  Figure 2.15 shows the changes of the PDF functions 

(Equation (2.24)) for a constant value of coherence and different multilook values 

(L). 



Chapter 2: Synthetic Aperture Radar Interferometry Background 

 

33

 

-3 -2 -1 0 1 2 3 0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 
1.8 

2 

Phase [rad]

P
D

F  

              L= 1 
              L = 2 
              L = 5 
              L = 10 

 

Figure 2.15 Probability Density Functions for different multilook (L) values (γ = 
0.75, φ0 = 0). 

 

It can be seen that as the multilook factor increases the PDF increases.  Thus the 

phase statistics can be improved, but at the expense of the spatial resolution of the 

interferogram.  Figure 2.16 shows the changes of the PDF for different coherence 

values but using a constant multilook value. 
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Figure 2.16 Probability Density Functions for different coherence levels (L=1). 
 

As can be seen from Figure 2.16, high coherence increases the PDF value.  Thus, 

coherence has a significant impact on the accuracy and reliability of the 

interferometric products.  Low coherence can affect the phase differences related to 

topography or deformation in the way that its correct qualitative and quantitative 

interpretation may be impossible. 
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2. 8 Sources of Decorrelation 
The interferometric phase can be affected by many decorrelation effects (factors), 

which can be categorised as follows: (i) thermal decorrelation, (ii) temporal 

decorrelation, (iii) geometrical decorrelation, (iv) Doppler centroid decorrelation and 

(v) processing induced decorrelation (Hanssen, 2001, p98; Ferretti et al., 2001, 

1999a; Franceschetti and Lanari, 1999, pp173-176).  These effects increase the 

interferometric phase noise, thus decrease the suitability of radar interferometry for 

surface deformation detection or DEM generation. 

 

When considered together, the above decorrelation factors are multiplicative so the 

total decorrelation value (γtotal) can be estimated as (Zebker and Villasenor, 1992): 

procFDCgeomtemporalthermaltotal γγγγγγ ⋅⋅⋅⋅=  (2.26)

The following sections describe all the listed decorrelation factors in more detail. 

 

2.8.1 Thermal Decorrelation 

The influence of thermal noise (γthermal) on the interferometric phase can be expressed 

by the signal-to-noise (SNR) ratio of the specific sensor (system) (Bamler and Just, 

1993; Just and Bamler, 1994; Zebker and Villasenor, 1992): 

11
1

−+
=

SNRthermalγ  (2.27)

The value of the SNR ratio is defined as: 

N

S

P
PSNR =  (2.28)

where PS is the power of the signal and PN the power of the noise. 

 

According to Hanssen (2001, p101), the SNR value for the satellite ERS-1/2 is 11.7 

[dB] and is mainly influenced by the design of the radar system, and the scattered 

scene. 
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2.8.2 Temporal Decorrelation 

Temporal decorrelation ( temporalγ ) occurs in the case of repeat-pass interferometry and 

it is one of the major constraints of radar interferometry.  Temporal decorrelation is 

the function of all physical changes occurring on the terrain surface between two data 

acquisitions.  It includes changes of soil moisture content, surface roughness and 

vegetation.  Analytical modelling and numerical assessment of the temporal 

decorrelation is almost impossible due to the wide range of possible influencing 

factors.  Changes in the environment caused by human activities can be a good 

example of the temporal decorrelation factor, which cannot be modelled 

quantitatively due to its unpredictable and discrete nature. 

 

2.8.3 Geometric Decorrelation 

Zebker and Villasenor (1992) provide the geometric (spatial) baseline decorrelation 

function geomγ  as the result of the phase offset due to the difference in the incidence 

angle θM and θS (Figure 2.17) between the two radar antennas (SM, SS) on the Earth’s 

surface: 

R
RB g

geom λ
θ

γ
2cos2

1−=  (2.29)

where θ is the average look angle, λ the radar wavelength, B the baseline separation 

in the horizontal direction (in meters), Rg the ground range resolution, and R the slant 

range. 

G

SM SS

Earth's surface

θM

θS

Centre of  the
resolution element

 

Figure 2.17 Interferometric image geometry on the Earth’s surface. 
 



Chapter 2: Synthetic Aperture Radar Interferometry Background 

 

36

A modified version of Equation (2.29), given by Lee and Liu (1999), includes the 

terrain slope αt and baseline component B⊥: 

( )t
w

geom RB
cB

αθ
λ

γ −−= ⊥
0cot1  (2.30)

where c is the speed of light, θ0 the nominal incidence angle on the ellipsoidal Earth 

(23º for ERS-1 and ERS-2), ⊥B the perpendicular baseline (in meters), αt is the local 

terrain slope, and Bw the frequency bandwidth of the transmitted signal. 

 

Figure 2.18 shows the quantity of the geometric decorrelation geomγ  for the satellites 

ERS-1/2 as a function of the perpendicular baseline ⊥B  and the terrain slope angle αt. 

 

 

Figure 2.18 Geometric decorrelation for ERS-1/2 (after Hanssen, 2001, p103). 
 

As Figure 2.18 shows, if the length of the perpendicular baseline ( ⊥B ) increases, the 

phase leads to a decorrelation and lower level of coherence.  The coherence is 

completely lost and the interferometry cannot be performed if the ⊥B reaches its 

critical length CB ,⊥ : 

( )t
w

C c
RBB αθλ

−=⊥ 0, tan  (2.31)

For the satellite ERS-1/2 the value of CB ,⊥  is approximately 1100 m. 
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2.8.4 Doppler Centroid Decorrelation 

The difference in Doppler centroid frequencies S
DC

M
DCDC fff −=∆  between the 

master and slave images causes a Doppler centroid decorrelation γFDC: 









>∆

≤∆
∆

−
=

ADC

ADC
A

DC

FDC

Bfif

Bfif
B
f

0

1
γ  (2.32)

where BA is the bandwidth in the azimuth direction.  Therefore, a large value of DCf∆  

will increase the phase noise. 

 

2.8.5 Processing Induced Decorrelation 

Incorrect alignment (coregistration) of two images during the interferometry 

processing generates an additional source of noise referred to as processing 

decorrelation γproc.  Moreover, according to Hanssen and Bamler (1999) the 

interpolation kernels are also a potential source of interferometric decorrelation.  

However, Just and Bamler (1994) state that coregistration accuracy higher than 1/8 

of pixel size leads to a negligible decorrelation. 

 

2. 9 Orbital Error 
In order to determine the interferometric baseline and to refer the interferometric 

products to a reference datum, the satellite orbit ephemerides are required.  Any 

orbital errors will propagate directly as an error in DEMs or deformation maps. 

 

The state vector error can be decomposed into three components, namely the radial 

(σR) (in the state vector direction), along-track (σA), and across-track (σX) (Figure 

2.19a).  According to Hanssen (2001, p121), the along-track error (σA) is usually 

sufficiently corrected during the coregistration of the master and slave images and 

can be neglected as a factor influencing the interferogram phase.  Thus, the problem 

is two-dimensional and focuses on radial and across-track errors that propagate as 

systematic phase errors into the interferogram. 
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Figure 2.19 a (left-hand side) Two orbits (master and slave) and associated error 
ellipses, b (right-hand side) radial and across-track errors influencing the baseline 
vertical (Bv) and horizontal (Bh) components (after Hanssen, 2001, p121). 
 

Assuming that the errors between master and slave orbits are uncorrelated, the radial 

(σR) and across-track (σX) errors propagate directly into the baseline (B) according to 

the relationships given in Equations (2.33) and (2.34). 

2
,

2
,, XSXMhB σσσ +=  (2.33)

2
,

2
,, RSRMvB σσσ +=  (2.34)

Increasing the confidence interval to 95%, the baseline error b lies with sufficient 

confidence level within the larger error ellipse, as shown on Figure 2.19b.  Only the 

length of the error vector b is known.  The orientation of vector b remains unknown, 

thus the influence of this error on the interferogram phase can be any kind of 

behaviour.  The orbital error b creates a residual reference phase trend, which has the 

largest effect when the orientation angle κ of b vector is close to 0 and π.  However, 

if angle κ is close to 
2
π

± , the effect is almost negligible. 

 

2. 10 Atmospheric Heterogeneities 
It is most likely that conditions in the atmosphere are not identical as the images are 

acquired at different times.  Therefore, the length of the measured ray path between 

the sensor and the ground can change due to the time delay caused by any differences 

in the tropospheric and ionospheric disturbances.  Any atmospheric heterogeneity 

will appear as a phase distortion in an interferogram and thus limit the confidence of 
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the results.  Hanssen and Feijt (1996) quantitatively evaluate the atmospheric effects 

on SAR interferometry using an existing tropospheric model.  A quantitative 

assessment of the influence of three major atmospheric parameters, such as pressure, 

relative humidity and temperature on the interferometric phase has been derived. 

 

According to Zebker et al. (1997), interferograms derived from repeat-pass radar 

interferometry can be affected due to the time and space variation of atmospheric 

water vapour.  Furthermore, variation of pressure and temperature do not induce 

distortion significantly as they are more evenly distributed through an interferogram 

than the wet troposphere term.  Zebker et al. (1997) state that dry regions have fewer 

variations than wet regions.  Although night time acquisition can reduce atmospheric 

artefacts more than daytime, due to more quiescent vegetation and a statistically 

more stable atmosphere at night (Massonnet and Feigl, 1998), the user has no control 

over the acquisition time for any given region on the Earth. 

 

Weather balloon and surface data can be valuable sources of information to estimate 

and eliminate the tropospheric effect (Hopfield, 1971), but very often there is not 

sufficient data over the area of interest.  Ground-based meteorological and GPS 

measurements can be used to estimate the tropospheric delay and calibration of radar 

interferograms as demonstrated by Bonforte et al. (2001), Ge et al. (2000b), 

Williams et al. (1998). 

 

The ionospheric effect is extremely difficult to remove from the radar observation.  

Used in GPS technology, and based on the dispersive nature of the ionosphere, the 

combination of phase measurements at two different frequencies could eliminate the 

ionospheric contribution.  This approach would require two radar images acquired 

simultaneously at different frequencies.  Unfortunately, such a radar system does not 

exist.  However, according to Gray et al. (2000) the ionospheric disturbance 

influences radar interferometry causing an azimuth offset which results in azimuth 

shift modulations at a kilometre scale for C-band wavelength.  Therefore, it is 

assumed that the ionospheric effect will not influence the interferometric phase 

significantly over a single radar frame. 
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Taking into account the fact that radar interferometry is very sensitive to any changes 

in atmospheric conditions, it creates a potential tool for meteorological study.  As 

shown in Hanssen et al. (1999), if the topography and deformation effects are 

known, the interferometric delay measurements can be used to infer high-resolution 

maps of integrated atmospheric water vapour distribution. 

 

2. 11 Summary 
In this chapter, the Synthetic Aperture Radar Interferometry background and theory 

have been presented.  The chapter has included a short introduction to radar and 

synthetic aperture radar theory, followed by factors affecting the signal reflectivity.  

Furthermore, by introducing the Young ‘double-slit’ classical experiment, the 

principles of optical interferometry and its analogy to radar interferometry have been 

established.  In addition, repeat-pass interferometry and differential radar 

interferometry as deformation monitoring techniques have been discussed. 

 

The issue of interferometric phase statistics and sources of errors (decorrelations) 

affecting radar interferometry have been introduced.  Moreover, the major 

decorrelation factors have been identified and discussed.  These factors dramatically 

reduce the capability of the satellite radar interferometry for deformation monitoring 

as well as DEMs production in two different ways: first, by degrading the entire 

signal so the interferometry process cannot be performed; second, by introducing 

additional information to the analysed signal, which can lead to misinterpretation.     
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3 STUDY AREAS AND RESEARCH DATA 

 

 

 

Deformation detection analysis requires a thorough knowledge of the characteristics 

of the study area so that the interpretation of the results is relevant to the actual 

surface deformation that has occurred.  An understanding of the specific satellite 

data, such as radar images or satellite orbit ephemerides is also required. 

 

In this chapter, the two data samples used for small-scale deformation detection 

studies, validation of the new developed filter algorithm, developing the functional 

model for determining the minimum and maximum detectable deformation gradient 

and the advanced analysis of the interferometric phase image are described.  

Furthermore, the key characteristics of the reference data, such as DEM and 

meteorological data are also outlined. 

 

3. 1 Location and Characteristic of the Study Areas 
In order to determine and enhance the ability of radar interferometry to detect small-

scale surface deformation, two different study areas, namely Leinster and Silesia, 

have been selected.  Leinster is located in the middle of the Western Australian 

desert.  While the vast majority of the area is stable, a surface mine site located in its 

centre has experienced some surface deformation.  Nevertheless, it can be recognised 

as an example of stable area.  On the other hand, the Silesia study area, located in 

Poland, is an example of extremely unstable area as numerous underground mines 

have influenced the surface topography.  The following section characterises the 

study areas in greater detail. 

 

3.1.1 The Leinster Study Area 

The Leinster study area is located 370 km north of Kalgoorlie and 700 km northeast 

of Perth in Western Australia (Figure 3.1a).  The main advantage of choosing 

Leinster was its very stable and dry weather conditions, as well as limited vegetation 
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cover, that insure the high quality of SAR data.  Furthermore, Leinster is located on 

the Yilgarn craton (Figure 3.1b), therefore it can be recognised as highly stable. 

 

  
                               (a)                                 (b) 

Figure 3.1 (a) Location of the Leinster study area and (b) map of crustal elements 
(cratonic regions) in Western Australia (after Geoscience Australia 2003).  The 
rectangular frame indicates the location of image frame 4164 (relative scale). 
 

While the majority of this study area is stable, a nickel surface mine located in the 

centre of this study area does experience some surface deformation.  A nickel 

sulphide deposit was discovered there in 1971 and, since December 1988, the 

Leinster nickel operation has belonged to the Western Mining Corporation (WMC).  

The current mine plan estimates continued operation for another 16 years, and this 

will extend even further if the exploration continues to be successful in replacing 

depleted ore (WMC Leinster, 2002). 

 

Underground mining commenced in 1996 and since 1997 some significant surface 

deformation around and inside the open pit has been experienced.  At present, the 

surface deformation occurs approximately 400 m from the crest of the pit as well as 

on its steep slope, and approximately 800 m along the east crest of the pit.  As the 

underground mining develops below the pit, the spatial extent of the surface 
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deformation increases.  Underground transport is conducted via a vertical shaft 

located in the vicinity of the pit.  Due to the close proximity of the mine shaft and 

ventilation shaft to the apparent surface deformation, it is extremely important that a 

deformation monitoring program is implemented.  Figure 3.2 illustrates the type and 

Figure 3.3 the spatial extent of deformation experienced at Leinster Mine site. 

 

                                                                  (a)                                                                   

  
(b) (c) (d) 

Figure 3.2 (a) Deformation at the Leinster mine site, and different scale of surface 
cracks observed at (b) 100 m, (c) 200 m, and 400 m from the pit crest. 

 

Figure 3.3 shows a high-resolution (0.15 m) aerial photograph obtained from the 

Department of Surveying of the WMC Leinster Nickel Operation.  Three different 

zones are identified (i) the surface deformation zone visible at the west crest of the 

pit, (ii) open pit zone and (iii) waste zone. 
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Figure 3.3 Aerial photograph showing the Leinster mine site taken in 2001.  Sparse 
vegetation cover over the deformation zone can be seen. 

 

3.1.2 The Silesia Study Area 

The Upper Silesian Coal Basin is located almost in the south of Poland (Figure 3.4).  

Since the 19th century the Upper Silesian Coal Basin has been one of the largest 

mining centres in Europe, producing over 100 million tonnes of coal from 65 

underground mines each year (Perski and Jura, 1999).  However, due to coal deposits 

running out and the recent restructure of the Polish coal mining industry, the number 

of active coalmines in this region has declined. 

 

Deformation zone 

Open pit 

Waste zone

250 m 
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Figure 3.4 Location of the Silesia study area in Poland (relative scale).  The 

rectangular frame indicates the location of image frame 2592. 
 

Over two hundred years, the mining industry has made this region highly urbanized 

and environmentally degraded.  The major part of the environmental damage is 

caused by surface deformation due to underground mining activities.  There are two 

different types of surface deformation (i) continuous and (ii) discontinuous, 

experienced in the Upper Silesia region.  Vast sag subsidence and local pit 

subsidence are examples of continuous forms of deformation.  Cracks, faults and 

slides are examples of the discontinuous form of deformation. 

 

Continuous surface deformation (subsidence) is the most common cause of changes 

in topography and hydrography.  These changes affect human made structures, such 

as buildings, roads, railways and pipelines.  The velocity of surface subsidence is 

usually a few centimetres per month, but there are areas where the velocity is up to 1 

cm per day (Perski and Jura, 1999).  In 1970, mining was commenced under densely 

urbanized cities, such as Katowice or Bytom, situated at the centre of the Silesia 

coalfields.  Moreover, rapid urban expansion in the city of Katowice, lead to the 

development of suburban housing over the sites of relatively shallow abandoned 

mines or deeper active mines.  Since then, mining deformation has become an 

important problem for the local community and the mining industry.  In some cases, 

subsidence developed resulting in structural damage varying from minor cracking to 
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the collapse of some dwellings.  A deformation-monitoring scheme is required to 

validate the deformation prediction models and to construct land classification maps.  

Such maps can help in the planning of infrastructure development as well as in 

redesigning mining techniques to minimise their impact on the surface. 

 

3. 2 Satellite Radar Data 

3.2.1 Sensor Characteristics 

In this section the essential hardware components of the SAR instrument carried on 

board the ERS-1/2 satellites are discussed. 

 

The first European Remote Sensing Satellite ERS-1 was launched on 17 July 1991 

and finished its mission in July 1996.  The second satellite ERS-2, launched on 20 

April 1995, still operates in a sun-synchronous, near-polar orbit.  Both satellites are 

almost identical; in particular the SAR instrument is the same.  Therefore, the 

description of the satellite ERS-2 covers both sensors. 

 

ERS-2 carries on-board a number of active microwave sensors supported by 

additional, complementary instruments that are capable of measuring, on a global 

scale, the Earth's atmospheric and surface properties with a high degree of accuracy.  

The main instruments are the Active Microwave Instrument (AMI), which combines 

a SAR operating in image or wave mode and a wind scatterometer, the Radar 

Altimeter (RA), the Precise Range and Range-rate Equipment (PRARE), the Along-

Track Scanning Radiometer and Microwave Sounder (ATSR-2), Laser 

Retroreflectors (LRR) and the Global Ozone Monitoring Experiment (GOME) 

device.  The SAR system consists of an antenna of area 10x1 m, a SAR processor, a 

pulse generator, a transmitter, and other supporting systems to collect measurements.  

The main SAR sensor parameters are listed in Table 3.1.  In addition, ERS-2 satellite 

measures many additional parameters not covered by the existing satellite systems, 

including those of sea state, sea surface winds, ocean circulation and sea and ice 

levels (ESA Service, 2002). 
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Table 3.1 ERS-1/2 SAR sensor parameters (after Franceschetti and Lanari, 1999, 
p11) 

Country European Union  
Platform Satellite 

Launch date 7/1991 (ERS-1), 4/1995 (ERS-2) 
Designed Life time (years) 3 

Frequency (GHz) 5.3 (C-band) 
Polarization VV 

Orbit altitude (km) 785 
Orbit inclination (deg) 98.5 

Look angle (deg) 2.3 
Swath width (km) 100 

SAR Antenna dimensions (m) 10 x 1 
Pulse duration (µs) 37.1 

Pulse bandwidth (MHz) 15.5 
Pulse repetition frequency (Hz) 1640-1720 

Transmitted peak power (kW) 4.8 
Data rate (Mb/s) 105 (5 b/sample, I/Q) 

 

3.2.2 Satellite Data Selection 

Suitable image selection is one of the vital decisions in the application of InSAR 

assuming that several images are available.  The main criteria for image selection can 

be based on (i) deformation quantity (ii) the availability of the SAR data, (iii) the 

temporal and spatial distribution of the baseline, and (iv) characteristics of the 

atmospheric conditions during the image acquisitions. 

 

To determine the availability of archival data sets, the Display Earth Remote Sensing 

Swath Coverage (DESCW) version 4.37 software was used (ESA Descw, 2002).  It 

allows a user to perform multi-mission inventory searches on the major ESA 

supported missions by displaying the satellites’ coverage over an Earth map (Figure 

3.5).  In addition, it provides the exact location and baseline information of all 

acquired and planned images (location only). 
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Figure 3.5 DESCW graphical interface. 
 

For the Leinster study area two archival ERS-1/2 SAR SLC images (quarter of the 

frame) were selected and three new acquisitions were scheduled.  Image details are 

listed in Table 3.2.  Selected radar images were requested from ESA Remote Sensing 

Services.  For the Silesia study area two archived images (whole frame) were 

selected.  Image details are listed in Table 3.3. 

 

Table 3.2 Satellite data for Leinster study area (SLC images) 
AQ-No Satellite Date/Time [UT] Track Orbit Frame 

AQ-I ERS-1 14.11.1995 / 1:57:07 117 22650 4164 

AQ-II ERS-2 19.03.1997 / 1:57:04 117 9991 4164 

AQ-III ERS-2* 24.10.2001 / 1:57:00 117 34039 4164 

AQ-IV ERS-2* 01.02.2002 / 1:55:00 117 35041 4164 

AQ-V ERS-2* 13.03.2002 / 1:57:00 117 36043 4164 

{*} scheduled acquisition 
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Table 3.3 Satellite data for Silesia study area (SLC images) 
AQ-No Satellite Date/Time [UT] Track Orbit Frame 

AQ-SI ERS-1 04.10.1992 / 9:38:05 222 6379 2592 

AQ-SII ERS-1 08.11.1992 / 9:38:01 222 6880 2592 

 

3.2.3 SAR Data Limitations at Leinster Study Area 

After researching the ESA image database it was found that there is not sufficient 

archival data sets covering the Leinster study area.  Only the images acquired 

between 1991 and 1997 were available.  Therefore, the new acquisitions and 

synchronised terrestrial measurements were scheduled.  However, due to a defect in 

the gyroscope onboard the ERS-2 satellite, since March 2001 ESA has experienced 

difficulties with the ERS-2 satellite navigation.  Since then, correct navigation has 

been impossible and keeping the satellite on the track with high accuracy has been 

very difficult (ESA Service, 2002).  Therefore, none of the planned acquisition has 

created a suitable couple for interferometry analysis.  The shortage of suitable radar 

images over the Leinster study area was the major limiting factor preventing proper 

observation of small-scale deformations at mine site and its validation against 

terrestrial measurements. 

 

3.2.4 Satellite Orbit Coordinates 

The radar interferometry process requires satellite orbit ephemerides or state vectors 

to determine the interferometric baseline vector and to refer the interferometry 

products to a geodetic reference datum. 

 

According to Closa (1998), accuracy of the satellite position determination directly 

affects the interferometry process and the quality of its products.  Moreover, he 

indicates the high quality of the Delft Institute for Earth-Oriented Space Research 

(DEOS) and the ESA orbits and the similar impact of both sources of orbits on the 

quality of interferometry products. 

 

Precise orbit determination incorporates data adjustment using observations and 

models. In a result, a set of state vectors consisting of time, velocity and position 
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vectors is computed.  For example, the Delft precise orbits of the satellites ERS-1/2 

are computed using Satellite Laser Ranging (SLR) altimeter tracking data and a new 

improved Delft Gravity Model (DGM-E04).  According to Scharroo and Visser 

(1998) the radial and across-track RMS errors of Delft precise orbits are on the order 

of 5 and 8 cm respectively.  In this thesis for the interferometry processing purposes, 

the Delft precise orbits of the satellites ERS-1/2 were used. 

 

The Delft orbits are provided in a binary format called Orbital Data Records (ODRs) 

and contain the position of the satellite at a 60 second interval.  For the ERS-1 

satellite precise orbits were available from 11 April 1992 to 6 June 1996, and for 

ERS-2 satellite from May 1995 and they were realised with a few months delay.  All 

the ODR files are provided via a DEOS ftp services and were downloaded together 

with the supporting software GETORB (Delft Precise Orbits Service, 2002). 

 

The GETORB software contains several utilities to handle the Delft orbit files, such 

as tools to list and interpolate the orbits at any given time.  The software provides 

accurate time as well as the latitude and longitude coordinates of the satellite in 10-7 

degrees (Delft Getorb Software, 2002). 

 

3. 3 Other Reference Data 

3.3.1 Digital Elevation Model 

In order to reduce the topographical effect during the interferometry processing 

(differential interferometry) over the Leinster study area a part of the GEODATA 9 

Second DEM Version 2 was acquired from the Geoscience Australia.  The DEM is a 

grid of ground level elevation points with a grid spacing of 9 seconds in longitude 

and latitude (approximately 250 m).  The height values are with respect to the 

Australian Height Datum (AHD) reference system.  The DEM is a model of the 

terrain in which each data point represents the approximate elevation at the centre of 

each cell.  Theoretical estimates and tests of the DEM against trigonometric data 

distributed evenly across Australia indicate that the standard deviation error of the 

DEM varies between 7.5 m and 20 m for most of the continent (Hutchinson, 2001). 
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The radar interferometry derived ellipsoidal heights are referenced to the surface of 

the WGS84 ellipsoid.  However, the AHD heights are essentially normal orthometric 

heights defined over the geoidal reference system (Holloway, 1988).  Therefore, in 

order to use the 9”DEM, the ellipsoidal heights need to be provided.  To obtain the 

required ellipsoidal heights, the AHD heights were transformed using the geoid-

WGS84-ellipsoid separation (Featherstone and Alexander, 1996).  The Winter v.5.04 

software provided by Geoscience Australia was used to interpolate a geoid-ellipsoid 

separation value (N value) from existing AUSGeoid98 regular grid of N values.  

Then, at each grid point location of the 9”DEM, the N value was subtracted.  

AUSGeoid98 is a gravimetric geoid model of Australia that has been computed using 

data from EGM96 global geopotential model, the 1996 release of the Australian 

gravity database, a national DEM, and satellite altimeter-derived marine gravity 

anomalies (Featherstone et al., 2001).  Finally, the DEM was interpolated to a 20 m 

grid interval using bicubic interpolation. 

 

3.3.2 Meteorological Data 

In order to assist in the selection of archival images and the interpretation of 

interferometry results at the Leinster study area, the meteorological data such as (i) 

daily rainfall, (ii) relative humidity, (iii) temperature, and (iv) pressure were obtained 

and analysed.  The interferometric phase difference caused by atmospheric 

heterogeneity is very often present in the interferometry results.  Thus, the correct 

interpretation of the phase image is sometimes impossible and an additional source 

of information is necessary.  Therefore, the analysis of meteorological data can 

significantly reduce the likelihood of possible misinterpretation of the interferometric 

phase image.  Consequently the meteorological data were obtained from the Bureau 

of Meteorology, Climate and Consultancy Section, West Perth.  All data were 

acquired at the Leinster Aerodrome meteorological station nr: 12314, Latitude: 

27°50'19"S, Longitude: 120°42'11"E, Elevation: 497.0 m. 

 

Table 3.4 and Table 3.5 show the rainfall records at the time of two image 

acquisitions AQ-I and AQ-II (image details in Table 3.2).  These data represent the 

magnitude of daily rainfall ten days before the image acquisition and one day after 

the image acquisition. 
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Table 3.4 Daily Rainfall data at Leinster study area (AQ-I) 
Date: 

1995/Nov/ 
04 05 06 07 08 09 10 11 12 13 14 15 

Rainfall 

[mm] 
0.0 0.0 0.0 0.0 0.0 0.0 n/a 0.0 n/a n/a 0.0 0.0

 

Table 3.5 Daily Rainfall data at Leinster study area (AQ-II) 
Date: 

1997/Mar/ 
09 10 11 12 13 14 15 16 17 18 19 20 

Rainfall 

[mm] 
0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0

 

As can be seen from Table 3.4 and Table 3.5, the rainfall record at the time of the 

image acquisition indicates no rainfall at all.  There were only 5 mm of rainfall 

recorded 5 days prior the acquisition time.  Moreover, relative humidity, temperature 

and mean sea level (MSL) pressure data sampled six times a day are plotted in Figure 

3.6.  At the time of the image acquisitions (AQ-I, AQ-II), all the meteorological 

quantities were almost identical.  Therefore, it leads to a conclusion that weather 

conditions during both image acquisitions were very much comparable and should 

not affect the interferogram interpretation. 
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Figure 3.6 Meteorological data (relative humidity, temperature, and MSL pressure) 
24 hours before and after the image acquisitions AQ-I and AQ-II. 
 

3. 4 Summary 
In this chapter the research data and study areas have been introduced and discussed.  

The selection process of the radar images as well as its limitations were outlined.  

Moreover, the reference data related to the Leinster study area, such as DEM and 

methodological observation were described and interpreted.                                         

Acquisition 
time: 01:57 UT 

Acquisition 
time: 01:57 UT 

Acquisition 
time: 01:57 UT 
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4 INTERFEROMETRY PROCESSING AND INTERFEROGRAM 
INTERPRETATION 

 

 

 

This chapter investigates the processing steps necessary to create a repeat pass 

interferogram, a differential interferogram and a coherence map from the SLC SAR 

data.  Apart from particular software available to perform interferometry processing, 

the fundamental technique and algorithms as well as the most important decisions 

and problems during the interferometry processing are identified and discussed in 

detail.  Finally, the interferometric data of the Leinster and Silesia study areas are 

analysed in terms of small-scale surface deformation detection. 

 

4. 1 Processing Software and Hardware 
To perform the interferometry processing procedure, the Delft Object-oriented Radar 

Interferometric Software (Doris) in conjunction with Matlab 6.0 (Matlab, 2004), 

Snaphu v1.4.2 (Snaphu, 2004), and GMT v3.4 (GMT, 2004) software have been 

used. 

 

The Doris interferometry software was developed at Delft University of Technology 

and is available for all popular platforms.  It is written in C++ and has a modular 

structure.  Each module identifies a different algorithm for a different processing 

step.  The user can select the modules and algorithms that best suit their needs for a 

certain interferometric application.  The current version of Doris v.3.7 is capable of 

processing SLC images for the basic interferometric products (Kampes and Usai, 

1999). 

 

All the interferometry processing has been performed on a SunBlade 100 UNIX 

Workstation.  The major hardware specifications are listed in Table 4.1. 
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Table 4.1 UNIX workstation specifications 
Architecture 500-MHz Ultra SPARC-IIe 

Memory (RAM) 1152-MB 
Hard Drive 20-GB, 7200-rpm, EIDE  

CD-Rom 48X-speed 
Graphics On-board, 24bit, Sun(TM) PXG64 2D 

Graphics 
Monitor 21-inch, colour, 1600x1200 max resolution 

Operating System Solaris 8 release (07/2001) 
 

4. 2 Interferometry Processing 
Figure 4.1 illustrates the entire interferometry processing chain.  It contains all the 

interferometry stages including image acquisition and SAR focusing processing.  

There are six major processing stages necessary to compute a coherence map, 

interferogram and differential interferogram, which are considered in this chapter, 

assuming that radar data have already been acquired and pre-processed (focused) to 

SLC images by a data supplier (PAF centres in the case of ESA).  Thus, the 

interferometry processing stages can be divided into (i) data preparation, (ii) 

coregistration of the radar images, (iii) products generation (coherence, 

interferogram), (iv) filtering of the phase image, (v) topography correction and 

unwrapping and (vi) geocoding.  In the following sections these stages are illustrated 

by following the processing procedures for the Leinster data set. 
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Figure 4.1 Interferometry processing chain. 
 

4.2.1 Image Reading 

For the analysis of interferometry processing steps, two radar images acquired over 

the Leinster study area AQ-I and AQ-II (image details in Table 3.2) were chosen as 

the master and slave, respectively.  The ERS SLC SAR images were delivered on a 

CD-ROM.  In order to perform interferometry processing, parts of the images have 
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been cropped and saved.  Figure 4.2 shows the intensity image (E) of the selected 

part of the master image defined as: 

( ) 2, yxgE =  (4.1)

where ),( yxg  is the amplitude of a complex number (Equation 2.7). 

 

 

Figure 4.2 Intensity image.  The rectangular shape shows the mine site area.  Two 
open pits (P) and the airstrip (A) are clearly visible.  The white colour represents 
high intensity whereas the dark indicates areas of low intensity of the returned 
signal. 
 

4.2.2 Satellite Orbit Interpolation 

To obtain the precise orbit of the satellites, the DEOS program Getorb and satellite 

orbit ephemeredes described in Section 3.2.4 have been used.  Based on the image 

acquisition time and the image size in azimuth direction, the satellite ephemeredes 

were extracted from ODR files and interpolated (cubic splines) into one-second 

intervals.  Accurate time and image size are provided in the image header file.  The 

P

A

5 km 
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satellite ephemeredes are then converted into the output table in the following order: 

second_of_day, x, y, z.  The orbit coordinate system is WGS84.  To avoid boundary 

effects due to the interpolation process, a 6 second interval was applied before and 

after the required image acquisition time. 

 

4.2.3 Image Coregistration 

Before interferogram computation, the coregistration process of lining up two images 

(master and slave) covering the same area must be undertaken.  Coregistration can be 

defined as a geometric image transformation function and subsequent resampling of 

the slave image in such a way that each ground point is located at the same position 

in both images (Franceschetti and Lanari, 1999, p178).  The sub pixel accuracy of the 

coregistration process is necessary to obtain coherent interferometric products.  The 

following sections describe the coregistration procedures. 

 

4.2.3.1 Image Offset Estimation 

If images of the same scene are produced from several acquisitions, which is the case 

for repeat pass interferometry, they will not overlay exactly.  Due to the different 

starting time of image acquisition and nonparallel orbits, the shift in azimuth 

direction can reach several thousands of pixels while the shift in range direction is 

usually smaller and can reach up to several pixels.  Therefore, the offset in range and 

azimuth direction must be evaluated in order to shift the slave image to best fit the 

master image.  Moreover, sometimes a rotation is required to better match both 

images.  Therefore, to estimate the offset between two images, the following steps 

are taken: (i) coarse offset determination, (ii) coarse registration, (iii) azimuth 

filtering and (iv) fine registration. 

 

The coarse offset between the master and slave images can be determined based on 

precise orbit information.  This is the fastest approach to obtain the coarse offset 

within an accuracy of about 30 pixels.  For an arbitrarily chosen point M
RAG ,  (usually 

in the centre) on the master image, the position G(x,y,z) in the satellite orbits 

coordinate system is determined.  Next, given this position, an iterative algorithm 

searches along the slave orbit until the correct Doppler position is found from which 
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point G(x,y,z) was observed, and the coordinates of the corresponding point in the 

slave image S
RAG ,  are determined (Kampes, 2000, p26).  Finally, the difference 

between the azimuth and range coordinates of the slave and master images define the 

offset C
RAO ,  as: 

M
RA

S
RA

C
RA GGO ,,, −=  (4.2)

where A and R are the coordinates in azimuth and range direction, respectively. 

 

After determining the coarse offset, the coarse registration procedure is applied.  The 

purpose of coarse registration is to determine one offset for the entire image, but with 

an accuracy of about one pixel.  To perform this task, the cross-correlation technique 

(Gabriel and Goldstein, 1988) based on the magnitude (squared amplitude) of both 

images, for a number of evenly distributed locations over the entire image, is applied.  

The procedure consists of presenting a set of different offsets for a given position and 

determining the correlation between the images for each offset.  The initial coarse 

offset has been estimated in the previous step based on the satellite ephemerides.  

The offset with the highest correlation is the estimation for a particular position.  

Finally, the offset with the highest number of occurrences over the entire number of 

different positions is recognised as the approximate offset between master and slave 

image.  Although the computations can be performed in the space domain, the FFT 

method in the spectral domain is applied in order to decrease computation time. 

 

Due to differences in Doppler centroid frequency, the spectrum of the master does 

not overlap entirely with the spectrum of the slave image.  This is very often the case 

if the raw radar data have been focused (pre-processed) to SLC format using a fixed 

and different Doppler centroid frequency.  Therefore, by applying band pass 

filtering, the spectrum (in azimuth direction) of the master image that does not 

overlap with the spectrum of the slave image can be filtered out.  This approach 

improves the coherence between both images and reduces the noise in the 

interferogram.  At the same stage, the spectrum of the slave image is also filtered.  

Figure 4.3 shows this process for the master and slave spectrums. 
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Figure 4.3 The spectrum of master (a) and slave (c) images before azimuth filtering.  
Plots (b) and (d) show the overlaying spectrum of both images as a consequence of 
the spectral filtering. 
 

As a result of coarse registration, the offset between master and slave images has 

been determined with an accuracy of approximately one pixel.  Next, the fine 

registration step is performed in order to deliver a large number of offsets at evenly 

distributed locations with sub pixel accuracy.  The same cross-correlation technique 

as described in coarse registration is used.  However, the number of correlation 

windows is significantly increased to a few hundred.  The number of windows 

depends on the size of the image.  Moreover, the distribution of the correlation 

windows should be dense enough to evenly cover the entire image. 

 

To avoid aliasing due to the doubled bandwidth of the cross-correlation product 

compared to master and slave images, both images are oversampled before cross-

correlation.  As suggested by Prati and Rocca (1990) the oversampling factor of 8 

has been applied for the FFT interpolation.  This will ensure a coregistration 

accuracy of about 1/8 of a pixel.  According to Just and Bamler (1994), the 

coregistration error does not introduce a phase bias.  However, it does introduce 



Chapter 4: Interferometry Processing and Interferogram Interpretation 

 

61

additional phase variance.  Furthermore, coregistration to the accuracy of about 1/8 

of a pixel is sufficiently accurate and yields almost negligible decrease in coherence. 

 

4.2.3.2 Offset Vector Modelling 

To determine the offset vector for every pixel in the slave image, the transformation 

model is determined based on the offsets established in the fine registration step.  

Only offsets characterised by coherence values greater than a given threshold are 

selected to determine the model parameters.  As a result, the number of available 

observations is decreased while the accuracy of the model is increased, as the offsets 

characterised by very low coherence are disregarded.  To model the offsets, a two-

dimensional polynomial of degree one is applied.  The observation equations are 

defined as: 
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where Oi are the observed offsets (product of fine registration step), Ai and Ri are the 

locations in azimuth and range direction, respectively, of the observed offsets, and 

CAR are the unknown coefficients of the polynomial. 

 

Figure 4.4 and Figure 4.5 show the absolute errors defined as estimated offsets minus 

the observed offsets for the processed data set, in range and azimuth direction 

respectively.  The absolute errors (e) are small and equally distributed in the range 

and azimuth direction.  However, the correlation of the offset is rather poor, though it 

is sufficiently high for interferometry processing studies. 
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Figure 4.4 The absolute error (e) in range direction  (estimated offset minus 

observed offset) for the number of correlation windows. 
 

 
Figure 4.5 The absolute error (e) in azimuth direction (estimated offset minus 

observed offset) for the number of correlation windows. 
 

4.2.3.3 Resampling 

In this procedure, the slave image is resampled according to the estimated 

transformation model.  This step involves the reconstruction of the continuous signal 

of the slave image from its sampled version, and sampling of the reconstructed signal 

at the new grid location.  The reconstruction of the slave image signal is usually 

achieved by convolution with an interpolation kernel.  The six-point cubic spline 

interpolation kernel is applied, which according to the study conducted by Hanssen 

and Bamler (1999), creates minimal decorrelation and a low level of phase noise in 

the resulting interferogram. 
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Moreover, due to the difference (220.243 Hz) between the Doppler Centroid 

Frequency (FDC) of the master and slave image, the resampling procedure is 

processed with the azimuth spectrum shifted to the zero Doppler frequency before 

interpolation.  Then, the interpolated signal is shifted back to the original FDC. 

 

Slightly different viewing angles of the SAR sensor (different local incidence angles) 

will create a spectral shift in the range direction of the radar data.  It is yet another 

potential source of phase noise in the interferogram.  Thus, range filtering is 

performed before the generation of interferometric products.  The idea of range 

spectral filtering is the same as azimuth spectral filtering described in Section 4.2.3.1 

and consists of filtering out the non-overlapping parts of the spectrum using a band 

pass filter. 

 

4.2.4 Interferometric Product Generation 

In the following section, interferometry products, such as interferogram, coherence 

map and differential interferogram, are generated and discussed in detail. 

 

4.2.4.1 Interferogram 

As defined in Equation 2.11, a complex interferogram is constructed by a point-wise 

multiplication of corresponding pixels in the master and the complex conjugate of 

slave image.  The phase image of the complex interferogram represents the phase 

difference between two SAR data sets while the amplitude image contains the useful 

information on the SNR of the observed phase.  If the images are delivered from two 

repeat SAR acquisitions, usually the resulting phase image is called a repeat pass 

interferogram or interferogram for short.  Figure 4.6 shows the phase image of the 

complex interferogram for the Leinster study area.  The magnification of a small area 

reveals the details of the interferogram.  Vertical fringes corresponding to the 

uniform surface of the Earth are clearly visible and in some places are disturbed by 

the topography or some decorrelations.  Before further analysis and computation, the 

phase corresponding to a reference surface needs to be removed.  This processing 

step is described in the following section. 
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Figure 4.6 Phase image with visible flat Earth pattern (pixel size is 20x20 m). 

 

4.2.4.2 Reference Phase Correction 

The usefulness of the interferometric phase starts at the time when the component 

called the ‘flat Earth’ caused by the reference surface is removed.  The theoretical 

background of the interferometric phase was provided in Chapter 2.  However, at the 

pixel level, the interferometric phase I
ji,φ  can be defined as: 

R
ji

S
ji

M
ji

I
ji ,,,, φφφφ −−=  (4.4)

where the M
ji,φ , S

ji,φ , R
ji,φ  are the phase value of master image, slave image and 

reference phase, respectively, at pixel location i,j. 

 

Since the values of both images are complex, the phase difference also has to be 

evaluated in complex fashion as: 

5 km 
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( )real
ji

imag
ji

I
ji II ,,2, ,arctan=φ    where   *

,
*
,,, jijijiji RSMI ⋅⋅=  (4.5)

where I is the complex interferogram, arctan2 is the four-quadrant arc tangent, and 

(*) is the complex conjugate. 

 

The reference phase is computed for a number of points distributed over the master 

image based on precise satellite orbits.  The reference phase for the entire image is 

than estimated based on those points.  Finally, the reference phase is subtracted at 

each pixel to produce an interferogram as shown in Figure 4.7. 

 

 
Figure 4.7 The phase image of the complex interferogram.  The reference phase has 
been subtracted.  Visible fringes corresponding to local topography (1 fringe ≈ 41 m) 
 

The remaining fringes correspond to the local topography as well as possible 

deformation.  The colour bar shows the interferometric phase in radians.  One whole 

phase cycle corresponds to approximately 41 m difference in elevation.  In this 

5 km 
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interferogram two fringes are visible, which indicates a maximum terrain elevation 

of up to 80 m. 

 

The resolution of the interferogram plays a very important role, especially when the 

purpose of interferometry is to detect deformations of small spatial phenomena, for 

instance, mining related surface subsidence.  Commonly used multilooking requires 

a compromise between reduction of the phase noise and the spatial resolution.  By 

applying the multilooking factor 5:1, only the resolution in the azimuth direction is 

reduced and a pixel of equal size (approximately 20x20 m for ERS-1/2 SLC data) is 

created. 

 

4.2.4.3 Coherence Map 

In the process of coherence map computation it is assumed that the reference phase 

has been subtracted from the interferogram.  The complex coherence (Equation 2.23) 

between two images is estimated based on the assumption that the accuracy of the 

phase observation of a uniform region is stationary.  Therefore, it allows the 

computation of the local complex correlation between any two coregistered complex 

images by complex correlation computation over a small moving window.  To 

estimate the coherence, the maximum likelihood estimator given by Seymour and 

Cumming (1994) is applied: 

∑ ∑
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where Nr is the number of pixels within the correlation window (e.g. 25 pixels for 

5x5 pixels window).  The maximum likelihood estimation is a technique for 

estimating constant parameters associated with random observations or for 

estimating random parameters from random observations when the distribution of the 

parameters is known. 

 

Not only is coherence useful for assessing the accuracy of the interferometric phase, 

the coherence map is also a suitable tool for land classification and change detection 
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in the biomass as shown by Engdahl and Hyyppä (2000), Martinez et al. (1998), 

Strozzi and Wegmüller (1998), and Borgeaud and Wegmüller (1996). 

 

As radar imagery is highly sensitive to changes in soil moisture content, coherence 

maps are particularly useful for soil classification, in terms of highlighting different 

moisture content over arid and dry deserts.  Therefore, such maps can be 

recommended for use as an additional tool in the agriculture industry.  Figure 4.8 

shows the coherence map of the Leinster study area. 

 

 
Figure 4.8 Estimated coherence map over the Leinster study area.  The white colour 
indicates area where the coherence is high.  Simple land classification based on 
coherence value: (1) valley, (2) bush, (3) hills, and(4) streams. 
 

Four distinct areas were recognised and designated certain values according to their 

soil moisture content: (1) valley and (2) bush where the coherence value is low due 

to accumulation of moisture.  This factor intensifies the vegetation and the biomass, 

as compared to (3) hills, where dry soil dominates.  Furthermore, areas of stream 
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flows (4) could be recognised despite the dry season during image acquisitions 

(meteorological data are discussed in Section 3.3.2). 

 

4.2.4.4 DEM Radar Coding 

In order to achieve a differential interferogram, the topography component must be 

removed from the complex interferogram.  Therefore, an additional source of 

information about the surface topography is needed.  In this processing stage, an 

existing 9”DEM is modified via radar coding according to the grid of the 

interferogram.  Radar coding is a process of converting the DEM heights (differences 

in heights, precisely) into the related unwrapped phase value ( DEMφ ) at each pixel 

location.  It is important that both the interferogram and DEM have the same 

sampling size. 

 

 
Figure 4.9 Wrapped phase of the radar coded 9”DEM. 

 

5 km 
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Figure 4.9 shows the wrapped phase of the DEM.  As can be seen, the topography 

fringes match very well with the interferogram (Figure 4.7) generated from SAR 

images. 

 

4.2.4.5 Differential Interferogram 

The differential interferogram (DF) is computed by subtracting the topography-

related phase ( DEMφ ) from the complex radar interferogram (I).  This is performed at 

each pixel location (i,j) according to the following equation: 

)exp( ,,,
DEM

jijiji iIDF φ⋅−⋅=  (4.7)

The resulting differential interferogram can be seen in Figure 4.10.  Since no major 

deformation occurred between image acquisitions, the differential interferogram did 

not reveal any deformation-related phase changes.  However, a residual phase trend, 

which spanned diagonally over the entire differential interferogram, has been 

detected.  Proper identification of such a phase trend would help to eliminate it from 

the differential interferogram, as proposed by Hanssen (2001, p123), or Massonnet 

and Feigl (1998).  However, the correct interpretation of the origin of the diagonal 

strip is not immediately obvious.  Three possible reasons that could cause this long 

wavelength trend in the differential interferogram have been identified.  These are (i) 

atmospheric artefacts, (ii) DEM error, and (iii) satellite orbit error. 

 

Atmospheric artefacts may be rejected because weather conditions were comparable 

during both image acquisitions.  The interpretation of weather conditions over the 

entire scene has been made based on meteorological data collected at one ground 

weather station located in the centre of the imaging scene (see Section 3.3.2).  Such 

an approach is considered to be very reliable.  Although, only one source of 

meteorological data was available, the regular shape of the trend is unlikely to be the 

product of turbulent weather nature. 
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Figure 4.10 Differential interferogram.  Topographic information has been removed 
from the complex interferogram using 9”DEM.  The rectangular window indicates 
the mine site location. 
 

A series of tests were carried out in order to determine if the 9”DEM is the source of 

the long wavelength trend in the differential interferogram.  These tests rely on a 

number of processing steps using the same DEM, but slightly shifted in different 

directions from its original location.  Each time the DEM was shifted, the process of 

radar coding and phase subtraction was performed and the resultant differential phase 

image analysed.  The DEM was shifted from its original location by 120, 240, 440 

and 960 metres in eight different directions (vertical, horizontal and crosswise).  

Each version of the new differential interferogram appeared to increase the phase 

trend.  Thus, the error due to DEM, especially its misregistration with the 

interferogram, was also rejected.  Therefore, the residual phase is most likely caused 

by an orbital error of the satellites. 

 

5 km 
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Figure 4.11 Residual fringes due to radial and across-track state vector RMS errors 
with 95% confidence level that the maximum amount of fringes is less than shown 
(after Hanssen, 2001, p124). 
 

 

Figure 4.12 Reconstructed residual phase trend for the whole frame 4164. 
 

As mentioned in Section 2.9, orbital errors are capable of creating residual phase 

trends in interferograms.  Therefore, such an error was concluded to be the most 
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likely cause of the residual phase trend in Figure 4.10.  The number of residual 

fringes can than be used to estimate the magnitude of the orbital error.  To this aim, 

the graph (Figure 4.11) proposed by Hanssen (2001, p124) was utilised.  Notably, the 

Hanssen graph was build based on the satellite orbits provided by Delft Institute for 

Earth-Oriented Space Research (DEOS), a source that is identical to that used in this 

research. 

 

Since the research images cover one quarter of the whole scene, the residual phase 

has been reconstructed for the whole frame as shown in Figure 4.12.  As a result, 

four residual fringes have been identified for frame 4164.  According to the graph 

(Figure 4.11), these fringes translate to a RMS of about 0.4 m across-track and more 

than 1.0 m along-track of the state vector. 

 

4.2.5 Phase Unwrapping 

The phase signal in the interferogram is given modulo 2π.  Thus, the correct integer 

number of the whole phase cycles has to be found in order to obtain the absolute 

phase signal.  However, due to the presence of the phase noise as well as the layover 

and shadow phenomena, the phase unwrapping process is the most complex and 

crucial of the entire interferometric processing chain. 

 

Applying the filtering techniques to the wrapped phase interferogram will reduce the 

level of noise and improve the unwrapping process.  Therefore, it can improve the 

quality of DEMs as well as deformation maps.  However, while filtering reduces 

noise in the interferogram, it does not necessarily enhance or recover the signal.  

Moreover, the impact of the filter can significantly change the structure of the 

interferogram. 

 

In order to reduce the phase noise, the adaptive radar interferogram filter proposed 

by Goldstein and Werner (1997) has been applied.  However, while using this filter, 

the problem of losing resolution in the filtered phase was identified, which agrees 

with the observation of Goldstein and Werner (1998). 
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Figure 4.13 and Figure 4.14 show the wrapped phase interferogram before and after 

applying the Goldstein radar interferogram filter.  The reduced level of phase noise is 

clearly visible. 

 

 

Figure 4.13 Wrapped phase interferogram – unfiltered. 
 

 
Figure 4.14 Wrapped phase interferogram – filtered using Goldstein radar 

interferogram filter. 
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The unwrapping process was performed using Snaphu v.1.4.2, software that uses a 

statistical-cost, network-flow algorithm proposed by Chen and Zebker (2001, 2000). 

Figure 4.15 shows the unwrapped phase image.  Apart from an area of the 

interferogram that suffered from high decorrelation associated with mining 

development, the phase unwrapping algorithm did not encounter major problems. 

 

 
Figure 4.15 Unwrapped phase image.  Visible phase variation over the mine site 

area (rectangular box). 
 

4.2.6 Phase to Height Conversion 

In this processing step, the interferometric phase is converted into the related 

topographic height.  Different approaches exist to achieve this interferometric phase 

conversion (e.g. Rodriguez and Martin, 1992).  However, the preferred method of 

computing topographic heights based on the height ambiguity has been used.  The 

theoretical relationship between the topographical height and phase difference is 

given in Section 2.5.  Nevertheless, it has to be stressed that the reference phase due 

to the flat Earth has to be removed prior to this processing step.  Furthermore, the 

5 km 
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topographical height remains in the radar coordinate system (range and azimuth) and 

therefore, a transformation procedure is required to provide data in a geo-referenced 

format. 

 

4.2.7 Geocoding 

Interferometry data are useful for further analysis, such as comparisons with external 

surveying and geological maps, as long as they are delivered in a common reference 

system.  Thus, geocoding transforms the radar products from a coordinate system 

related to InSAR geometric configuration (range, azimuth and height) to a 

convenient geodetic reference. 
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Figure 4.16 InSAR geometry with respect to the Cartesian (x,y,z) and geodetic 

(lon,lat,h) reference systems. 
 

To geolocalise a given point G, the necessary set of information includes (i) the state 

vectors (VM,VS), (ii) satellite velocities, and (iii) the range distances (RM, RS) of the 

master and slave satellites.  Figure 4.16 shows the InSAR geometry with respect to 

reference systems.  Provided that the interferometric phase is unwrapped, the 

unknown coordinates of the point G(x,y,z) can be evaluated by solving the nonlinear 

system of four equations as shown by Franceschetti and Lanari (1999, p214). 
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Figure 4.17 DEM derived from InSAR over the Leinster study area. 
 

Once the position of the point G is known in the Cartesian coordinate system, the 

longitude and latitude can easily be derived using any of the available transformation 

methods. 

 

Figure 4.17 shows the geolocalised DEM.  However, since the InSAR technique is 

based on the observation of the relative changes of the interferometric phase values, 

the terrain heights inherit the same characteristic.  Thus, in order to provide the DEM 

in a proper height reference system, the true terrain height has to be known for at 

least one point, so that the DEM can be properly transformed. 

 

4. 3 Interferogram Interpretation of the Leinster Mine Site 
The differential interferogram analysed is a product of two archived images AQ-I 

and AQ-II acquired on 14.11.1995 and 19.03.1997 respectively.  During this period 

of time, no major deformation around the pit occurred.  However, as shown in Figure 

4.18a, the differential interferogram shows extremely large phase variation over the 
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open pit and waste.  This is interpreted as the phase noise due to temporal 

decorrelation associated with the mining development and likely due to the 

deformation that was initiated at the beginning of 1997.  Unfortunately, this cannot 

be proven due to the absence of suitable surveying data.  The coherence map (Figure 

4.18b) corresponding to the same areas also shows very low values (0.3 and less).  

Figure 4.18c illustrates the interferometric phase image superimposed on the 

intensity image for better orientation.  The image acquisition and mine site geometry 

was found to be a major factor reducing the potential application of radar 

interferometry for open pit deformation detection.  In particular, at the pit and waste 

steep walls where the layover and shadow phenomena occur (Figure 4.18d).  Thus, 

the extremely large value of terrain slope reduces the reliability of InSAR as a 

detection method of small-scale deformation associated with surface mining.  The 

slope angle for open pit walls varies between 45° and 65°, and sometimes exceeds 

70° (Lilly, 2000). 

 

Although the absence of proper radar images prevented small-scale deformation 

detection studies at Leinster mine site, the analysis of the available interferogram has 

led to some valid conclusions.  The limited resolution of the interferometry data 

significantly reduces the capability of satellite radar interferometry as an effective 

tool for surface deformation detection over surface mines.  For instance, the most 

common mine wall failure is about the same dimension as one interferogram pixel 

size (20x20 m assuming the finest resolution).  Even larger failures of several pixels 

will be very difficult to recognise due to the presence of the interferometric phase 

noise, layover and shadow phenomena.  Furthermore, the temporal decorrelation 

caused by the dynamics of the deformation will also increase the level of 

decorrelation.  Moreover, the frequency of repeat image acquisition, which is limited 

to 35 days for satellites ERS-1/2 and ENVISAT, could not be sufficient for a 

particular deformation studies.  Therefore, the satellite radar interferometry is not an 

optimal tool for slope stability monitoring with the currently available satellites. 
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(a) (b) 

(c) (d) 

Figure 4.18 (a) differential interferogram, (b) coherence map, (c) magnitude-phase 
mix, and (d) magnitude image of the differential interferogram over the Leinster 
mine site.  Pixel size is 20x20 m. 
 

Certain alternative solutions, such as permanent scatterer (PS) developed by Ferretti 

et al. (2001, 2000, 1999a), can also be applied to detect small-scale deformations 

associated with surface mining.  PS is based on the analysis of single coherent pixels 

on a series of interferograms.  This method can provide reliable elevation and 

deformation measurements even in the absence of visible fringes on a single 

interferogram.  However, the large number of radar images necessary for PS analysis 

can sometime be the limiting factor for this method. 

 

Recently developed terrestrial radar interferometry, based on principles that are 

identical to the space borne InSAR, demonstrates its advantages for ‘close range’ 

deformation detection studies.  Its application to deformation monitoring of 

landslides (Tarchi et al., 2003), engineering constructions (Tarchi et al., 1999), and 

mine slope stabilities (Reeves et al., 2000) proves the high quality of the 

layover

shadow 

open pits

wastes
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interferometric data gathered by the radar system.  At present, this type of radar 

interferometry is recommended for open pit slope stabilities monitoring, as it has 

three great advantages over satellite radar interferometry.  These are (i) very high 

spatial resolution of the system, (ii) the system can be set up at any convenient 

location, and (iii) the system is operational at all times (e.g. day or night). 

 

4. 4 Interferogram Interpretation of the Silesia Study Area 
The analysed interferogram is the product of two images AQ-SI and AQ-SII (image 

details are listed in Table 3.3).  The shortest possible temporal separation (35 days) 

between image acquisitions, the urban character of the study area and the acquisition 

time (autumn season) that reduced the vegetation cover, acted to minimise 

decorrelation contributions.  These conditions increased the overall coherence, as 

seen in Figure 4.19.  In addition, the perpendicular baseline component in this case 

was only 56 meters and the topography variation over the Silesian basin is very low.  

The resultant interferogram did not show any topography related fringes, therefore, 

the differential interferometry step was omitted. 

 

Only a part of the entire scene over the investigation area is analysed.  At a number 

of different locations, interferometric fringes can be observed (Figure 4.20).  These 

fringes are related to surface deformations due to the underground mining that spread 

over the investigation area.  The number of fringes and spatial size of the 

deformation areas vary, although the shape of deformation remains common for most 

cases.  Except when the surface deformation is formed by the superposition of many 

deformations, a circular or elliptical shape was found to be most common.  These 

observations over this region correlate with previous studies conducted by Perski 

(e.g. Perski, 2000; Perski and Jura, 1999).  According to these studies, the 

interferometric phase measurements agreed with the terrestrial surveying 

measurements as it was validated over the rural and urban areas near the city of 

Katowice.  As reported, the interferometric data were able to detect subsidence of 

less than 1 cm/month. 
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Figure 4.19 Coherence map over the Silesia study area. 

 

 
Figure 4.20 Interferogram over the Silesia study area with a number of visible 
fringes corresponding to surface deformation due to underground mining activities. 
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Figure 4.21 shows the set of interferometry-derived data selected over the city of 

Bytom.  The interferometric phase image (Figure 4.21a) shows the group of fringes 

representing surface subsidence due to underground mining spanning over 35 days.  

The large aggregation of underground mining activities in this area contributes to the 

overall surface subsidence.  Thus, a group of superposed elliptical shapes can be 

observed.  Proper interpretation of such a deformation signature can be difficult, or 

even impossible, if the level of noise is too high.  However, after filtering, it was 

possible to correctly interpret the magnitude as well as the spatial extent of most 

surface subsidence. 

 

(a) (b) 

(c) (d) 

Figure 4.21 (a) interferogram, (b) coherence map, (c) magnitude-phase mix, and (d) 
magnitude image of the interferogram over the part of Silesia study area (Bytom 
city).  Pixel size is 20x20 m. 
 

Figure 4.22 shows an example analysis of interferometric phase image and the 

corresponding surface subsidence due to underground mining.  Since a phase 
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difference equals 2π (one fringe) represents approximately 28 mm of surface changes 

along the satellite line of sight with respect to the stable area, the subsidence 

magnitude can be easy reconstructed.  In this particular example, portion of a fringe 

has been identified, which corresponds to a maximum subsidence in the centre of the 

area of about 10 mm (Figure 4.22b).  Moreover, the spatial extent of the deformation 

area can easily be outlined. 

 

  

 

 
(a) (b) 

Figure 4.22 (a) Interferometric phase image (colour bar in radians) and (b) surface 
subsidence (colour bar in millimetres).  Interferogram was filtered using Goldstein 
radar interferogram filter. 
 

 

Figure 4.23 Three-dimensional model of surface subsidence based on InSAR data 
(colour bar in millimetres). 
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In addition, the +6 mm uplift in the vicinity of the subsidence has been revealed. 

According to Gren and Popiołek (1999, p.167) the uplift phenomenon is very often 

associated with the surface subsidence in the Silesia mining region. It is caused by 

the combination of a specific mining system and characteristics of the rock strata 

above the orebody, and occurs in the direct vicinity of surface subsidence.  Finally, 

the surface subsidence is represented as the three-dimensional model that can be seen 

in Figure 4.23. 

 

In conclusion, the analysis of the interferometric phase image over the Silesia study 

area has proven that space borne radar interferometry is able to detect small-scale 

surface deformation.  However, the interferometric phase noise was found to be the 

major factor reducing the performance of phase unwrapping process and correct 

interpretation of the deformation magnitude.  The interferogram filtering enhances 

the robustness of the phase unwrapping process but it reduces the deformation signal. 

 

4. 5 Limitation and Weaknesses of InSAR 

Based on the analyses of the interferometric processing stages and their subsequent 

products, several conclusions were derived and will be discussed in the followed 

section. 

 

Although decorrelations related to the acquisition of radar images are more severe, 

the introduction of interferometric processing decorrelation can also be problematic 

as phase noise is elevated.  Fortunately, certain counter measures may be 

implemented.  For example, obtaining the proper solution in the coregistration step 

will improve the quality of the interferometric products.  In addition, spectral 

filtering and spectrum shifting of the images before the resampling procedure will 

minimize the occurrence of phase noise. 

 

Analysis of the differential interferogram of the Leinster study area revealed a long 

wavelength phase trend.  The origin of this phase trend has been related to the 

satellite orbital error.  Moreover, the high variations of the interferometric phase and 

low coherence values over the mine site have been associated with intensive mining 
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developments.  Due to a failure in a satellite navigation system, new image 

acquisitions were not suitable for interferometric analysis. 

 

Interferometric analysis of the Silesia study area revealed a number of locations 

where surface subsidence has been detected.  For the majority, quantitative 

interpretation was possible.  However, in cases where interferometric data could not 

be interpreted with confidence, significant phase noise was found to be the 

perpetrating factor.  Application of interferogram filtering reduces the level of noise 

but it also decreases the interferogram resolution. 

 

Based on the analysis of interferometry processing stages and its products, three 

outstanding problems may be identified, giving rise to the core aims addressed in the 

following chapters of this thesis.  The first research aim is to reduce interferometric 

phase noise.  This involves the use of a novel adaptive radar interferogram filter, 

which was developed based on a modification to the Goldstein filter (Chapter 5).  

This filter acts to minimise the loss of resolution in the interferogram.  The second 

and third research questions emerged after analyses of the interferometric phase 

image.  What is the minimum and maximum detectible deformation gradient that 

radar interferometry can detect?  Moreover, does a method exist, which can replace 

visual inspection to analyse the interferometric phase related to a small-scale surface 

deformation?  A methodology that leads to a functional model for determining 

minimum and maximum detectable deformation gradient is developed in Chapter 6.  

The extended analysis of the phase image is examined using a wavelet approach in 

Chapter 7. 

 

4. 6 Summary 
The interferometric processing chain has been shown.  All the important stages of 

this process have been discussed and optimal solutions and decisions are proposed.  

Furthermore, the interferometry products, such as coherence maps, interferograms, 

differential interferogram as well as DEM, have been derived and analysed over the 

two study areas introduced in Chapter 3.  Finally, the phase noise was found to be the 

major factor limiting the interpretation of the interferometric phase image.                 
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5 A NEW ADAPTIVE RADAR INTERFEROGRAM FILTER 

 

 

 

The quality of DEMs and displacement maps can be improved by numerous methods 

at different processing levels.  One of them is filtering of the interferometric phase.  

However, while filtering reduces noise in the interferogram, it does not necessarily 

enhance or recover the signal.  Furthermore, the impact of the filter can significantly 

change the structure of the interferogram.  In this chapter the idea of filtering is 

investigated and applied to the wrapped phase interferogram.  In addition, a new 

filter based on modifying the existing Goldstein radar interferogram filter is 

proposed.  The proposed approach makes the filter parameter dependent on 

coherence, so that incoherent areas are filtered more than coherent areas.  This 

modification minimises the loss of signal while still reducing the level of noise.  

Finally, the validation of the new filter is performed on simulated and real data sets. 

This chapter provides a more detailed description of the work that has already been 

published in Baran et al. (2003). 

 

5. 1 Background to the Phase Filtering 
As previously mentioned, a multilooking process can be used as an effective tool for 

phase noise reduction but only at the expense of spatial resolution.  Therefore, in 

order to preserve spatial resolution, a filtering algorithm has to be applied.  There are 

many available filtering techniques that can be applied to the interferometric phase.  

Some of them are more suitable for filtering the interferometric phase image.  For 

instance, in the study conducted by Bezerra-Candeias et al. (1995) three different 

filtering methods based on (i) a morphological filter, (ii) a modified median filter, 

and (iii) a modified mode filter are combined considering the periodic character of 

the interferometric wrapped phase.  The application of such modified filter 

algorithms to the unwrapped phase significantly aids the processing stages (e.g. 

phase unwrapping) and the quality of the interferometry products.  Other filtering 

algorithms developed and applied to the interferometric phase are demonstrated in 
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Hubig (1999), Reeves et al. (1999), Bo et al. (1999) Lee et al. (1998) and Goldstein 

and Werner (1997, 1998). 

 

5.1.1 Filtering in Space Domain 

Filtering in the space domain is usually associated with a discrete convolution of the 

image with a kernel, often called the convolution mask.  The kernel is usually a small 

array of numbers. An example of a mean kernel can be seen in Figure 5.1. 

 

1
n2

1
n2

1
n2

1
n2

1
n2

1
n2

1
n2

1
n2

1
n2

 

Figure 5.1 Kernel of a mean filter with n x n neighbourhood. 
 

The convolution can be seen as a simple mathematical operation in linear system 

theory.  In principle, it is an operation that takes a part of an image (I) at each pixel 

location and multiplies it by the kernel (K) to produce another pixel value on an 

output image (O).  Usually the interaction is a form of multiplication, adding and 

shifting.  Figure 5.2 illustrates the convolution process. 
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O(1,1)

K

O

I

 

Figure 5.2 An example convolution of the image (I) with kernel (K) with the 
boundary effect. 
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The convolution is performed by sliding the kernel over the image, usually starting at 

the top left-hand corner of the image.  The kernel moves through all the positions 

where it fits entirely within the boundaries of the image.  Each kernel position 

corresponds to a single output pixel value.  Multiplying the kernel value by the 

underlying image pixel value for each of the cells in the kernel, and taking the sum of 

all these values, calculates the value of the new pixel.  If image I has M x N pixels 

and the odd kernel dimension is m x n, the convolution can be written as: 
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where i and j run from 1 to M and N while k and l run from 1 to m and n respectively. 

 

In addition, the implementation of convolution produces a smaller output then the 

original size because the kernel has to fit entirely within the image.  This constraint 

can be overcome by centring the kernel on an edge pixel and inventing the input 

pixel value for the location where the kernel extends off the image.  A typically 

chosen value for regions outside the true image is zero. 

 

Figure 5.3 illustrates that case.  Such a solution has the advantage that the output 

image is the same size as the original one, but the disadvantage is that the output 

image is distorted at the edges.  Therefore, the convolution will sacrifice the edge 

pixels in order to achieve true values in the output result. 
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Figure 5.3 An example convolution of image (I) with kernel (K) with no boundary 
effect. 
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Convolution can be used to implement many different operations.  The most 

common are feature detection and spatial filtering.  The basic examples of spatial 

filtering are the mean and median filters.  The mean filter is a simple method of 

smoothing the image by replacing each pixel value in an image with the average 

value of its neighbours, including itself.  The median filter is the most common non-

linear image filter technique.  It is a one or two-dimensional processing operation in 

which the value of the pixel is replaced by the median value of its neighbours, 

including itself. 

 

The advantage of mean and median filters is their simplicity.  However, the main 

disadvantage is that they do not adapt to local noise level variations and the 

geometrical shapes of the objects within the image. 

 

  
(a) (b) 

Figure 5.4 (a) Simulated noisy interferogram (120x120 pixels), (b) Interferogram 
after applying of the mean filter (kernel 3x3). 

 

Figure 5.4 shows the simple example of a simulated phase interferogram with some 

Gaussian noise before and after filtering using the mean filter.  It is clearly visible 

that in the two areas (arrows) the fringe structure was destroyed.  Figure 5.5 shows 

the effect of the median filter on the interferogram structure.  The fringes were 

heavily corrupted especially in areas where high fringe density is experienced.  These 

simple examples demonstrate the effect of spatial filtering on fringe structures. 
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Figure 5.5 Interferogram after applying of the median filter (kernel 3x3). 
 

In the case of the phase unwrapping process, when the correct number of phase 

cycles is crucial, it is extremely important that a filtering algorithm does not change 

the spatial structure of the fringes.  Thus there is a demand for a better filtering 

algorithm which significantly reduces the phase noise but has no or minimum impact 

on the image structure. 

 

5.1.2 Filtering in the Frequency Domain 

A more advanced filtering technique called spatial frequency filtering is based on 

manipulation of the spectral components contained within an image.  To find the 

spatial frequencies within an image, the Discrete Fourier Transform (DFT) is used.  

In principle, DFT is a process of decomposing a signal into a set of sine and cosines 

with the frequency and amplitude of each representing spatial frequencies.  However, 

such process is time consuming due to the large number (order N x N) of complex 

multiplications and additions required to compute the DFT.  To reduce the 

computation time, the more efficient tool called Fast Fourier Transform (FFT) can be 

applied.  The FFT algorithm decomposes the DFT taking into account the periodicity 

of the sine and cosine functions, thus reducing the number of necessary computations 

to order N log2 N.  Since the FFT algorithm works by dividing the input image by 2 

repeatedly, the size of the input image should be the power of 2.  The most important 

part of the FFT process is that, after manipulation of the frequency components, the 

inverse Fourier transform can reconstruct the filtered object in the space domain.  

More details about DFT and FFT can be found in, for example, Buttkus (2000, pp59-

84). 
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By modifying the frequency components, periodic noise can be removed from the 

image using a simple low-pass filter.  Figure 5.6 shows the frequency responses of 

four basic types of ideal one-dimensional frequency filters.  The four filters can be 

described by the following set of equations: 

Ideal low-pass filter 
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Ideal high-pass filter 
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Ideal band-pass filter 
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Ideal notch filter 
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The main purpose of ideal filters is to remove certain frequency components and 

leave other frequency components unmodified. 

 

To apply the above filters to a two-dimensional data set, such as an image, two 

different approaches can be taken.  The first approach is based on the idea of 

applying a one-dimensional ideal filter separately to both frequency directions.  The 

second approach is to use single one-dimensional filter and to apply it radially to all 

frequencies.  In the second solution, all frequency components that lie on a circle of a 

given radial distance from the zero frequency are filtered. 
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Figure 5.6 Four types of ideal filters: (a) low-pass filter, (b) high-pass filter, (c) 

band-pass filter, (d) notch filter. 
 

5.1.3 Adaptive Filters 

The idea behind adaptive filtering is that a filter changes its characteristics depending 

on the type of noise and image content within a local window.  An adaptive filter 

usually consists of two steps.  In the first step a decision of what type of filtering 

should be applied is made.  Such a decision is based on the presented type of noise 

and the content of an image.  In the second step, the final filtering is applied. 

 

Although, there are many different types of adaptive filtering in both the space and 

frequency domains, description and application of all filters are beyond the scope of 

this dissertation.  Thus, in the following section, the most widely used adaptive radar 

interferogram filter, proposed by Goldstein and Werner (1997, 1998), is investigated, 

and analysed.  Furthermore, a modification to this filter is proposed. 
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5. 2 Goldstein Radar Interferogram Filter 
Goldstein and Werner (1997) proposed an adaptive radar interferogram filter based 

on the concept of multiplication of the Fourier spectrum Z(u,v) of a small 

interferogram patch by its smoothed absolute value { }),( vuZS  to the power of an 

exponent α: 

( ){ } ( )vuZvuZSvuH ,,),( ⋅= α  (5.6)

where H(u,v) is the filter response (the spectrum of the filtered interferogram), S{} is 

a smoothing operator, u, v are spatial frequencies, and α is the filter parameter.  

Patches are defined as a small part of the interferogram and are overlapped to prevent 

discontinuities at the boundaries.  The filter parameter α is an arbitrarily chosen value 

between 0 and 1, and has the biggest impact on the filter performance.  For the value 

of α = 0, the multiplication factor becomes one, and no filtering occurs.  However, 

for large values of α, filtering is significant.  A problem using Goldstein radar 

interferogram filter occurs when a high value of parameter α is applied.  By 

subtracting the filtered from unfiltered interferogram a residual systematic phase 

trend appears, which indicates the loss of resolution in the filtered phase (Goldstein 

and Werner, 1998). 

 

5. 3 A New Interferogram Phase Filter 
As explained in Section 2.7.1, the quality of the interferometric phase between two 

complex SAR images (the interferometric pair) can be estimated directly from 

interferometric data as a function of the absolute value of complex coherence |γ| 

(Equation 2.23).  Alternatively, the phase noise can be estimated theoretically based 

on the sensor characteristics, signal processing algorithms, and acquisition 

conditions. 

 

Bamler and Hartl (1998) define the phase standard deviation for a single-look (L=1) 

interferogram as a function of the absolute value of the complex coherence |γ| given 

by: 

( ) ( ) ( )
2

arcsinarcsin
3

2
22

2
2

,
γ

γγππσϕ

Li
L −+−=  (5.7)
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where Li2 is the Euler’s dilogarithm, defined as: 

( ) ∑
∞

=
=

1
2

2
2

2
k

k

k
Li

γ
γ  (5.8)

Figure 5.7 shows the relationship between the coherence |γ| and phase standard 

deviation (σϕ ).  It indicates that by either reducing the number of looks or increasing 

the coherence the phase standard deviation can be improved. 
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Figure 5.7 Phase standard deviation (σϕ ) versus coherence (L indicates the multi-

look number). 
 

From the relationship expressed in Equation (5.7), coherence can be recognised as a 

direct measure of the interferogram phase noise.  Therefore, it can be used to modify 

the Goldstein interferogram filter.  The new filter is created by making the parameter 

α in Equation (5.6) dependent on the coherence: 

( ){ } ( )vuZvuZSvuH ,,),( 1 ⋅= −γ  (5.9)

Equation (5.9) shows the new radar interferogram filter, where exponent α has been 

replaced by γ−1 .  Parameter γ  is the mean value of the absolute coherence 

computed from the effective corresponding patch (patch size minus overlap) on the 

coherence map.  This approach ensures that the coherence and filter response are of 

the same size and in the same place.  Furthermore, it prevents γ  being affected by 
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the coherence from the overlapped part of the patch.  Such a modification adapts the 

Goldstein interferogram filter by preventing areas of high coherence (less noise) 

being over-filtered, but allows stronger filtering in areas where there is low 

coherence (high noise).  Thus, the loss of resolution in the interferogram due to the 

filtering process can be reduced in the areas where coherence is high. 

 

The author of this thesis developed all the necessary filtering functions using Matlab 

6.0 software.  The concept of the new radar interferogram filter is shown in Figure 

5.8.  The interferogram and the coherence map are divided into overlapping 

rectangular patches.  Patches are defined as a small part of the interferogram of even 

size (power of 2) to aid efficiency of the FFT algorithm.  The overlap between 

patches is required to prevent discontinuities at the boundaries.  The maximum 

overlap size is described as the half of the patch size minus one.  Moreover, the trade 

off between the computation time and the minimization of the boundary effect has to 

be taken into account.  For each patch of the interferogram, the spectrum Z(u,v) is 

computed (using the two-dimensional FFT).  At the same time, from the effective 

corresponding patch (patch size minus overlap) on the coherence map, the mean 

value γ  is computed.  Finally, the spectrum of the interferogram patch is weighted 

by multiplying it by its smoothed and scaled absolute spectrum to the power of 

exponent γ−1 .  Smoothing of the absolute spectrum is performed by spatial 

convolution with a block kernel S{}.  As the block kernel, the Fourier spectrum of the 

spatial moving average has been applied.  The size of the smoothing kernel must be 

small to prevent the spectrum being over-smoothed. 
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Figure 5.8 New adaptive radar interferogram filter diagram. 
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5. 4 Data Simulations 
The validation of the new radar interferogram filter was performed using simulated 

and real interferometry data sets.  In the following section the concept of simulation 

of the interferogram and the coherence map is developed. 

 

5.4.1 Simulation of the Interferogram 

The wrapped phase interferogram was simulated by radar coding a given 9”DEM 

(Figure 5.9) and wrapping its phase (Figure 5.10). 

 

 
Figure 5.9 Digital Elevation Model (pixel size is 50 m). 

 

The DEM is a grid of 512 x 512 pixels.  The pixel size is 50 m that creates a scene of 

approximately 25 x 25 km.  All figures in this section are in pixel units in both 

directions unless indicated differently. 
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Figure 5.10 Simulated wrapped phase interferogram based on DEM.  The horizontal 

line indicates the cross-section location (see Section 5.5). 
 

5.4.2 Simulation of the Coherence Map 

To model the coherence map three different decorrelation factors: (i) geometrical, (ii) 

thermal, and (iii) temporal were taken into account (for more details about 

decorrelation factors refer to Section 2.8).  The final coherence map was estimated as 

a product of multiplication of each the above decorrelation factors. 

 

5.4.2.1 Geometrical Decorrelation  

Geometrical decorrelation (γgeom) is estimated based on Equation (2.29) and Equation 

(2.30).  The terrain slopes (αt) were delivered directly from the DEM.  Figure 5.11 

shows the map of the terrain slopes. 
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Figure 5.11 Map of slopes (in degrees) based on the given DEM. 

 

The remaining parameters necessary to simulate the geometrical decorrelation were 

taken from the header of the real ERS-1 SLC radar image (AQ-I) and are listed in 

Table 5.1. 

Table 5.1 Geometrical decorrelation simulation parameters 

Perpendicular baseline ( ⊥B ): 200 m 

Wave length (λ): 0.05666 m 

Range bandwidth (Bw): 15550 kHz 

Speed of light (c): 300000000 m/s 

Range (R): 837560 m 

 

The simulated coherence map based on geometrical decorrelation can be seen in 

Figure 5.12. 
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Figure 5.12 Simulated coherence map based on geometrical decorrelation. 

 

5.4.2.2 Thermal Decorrelation  

Thermal decorrelation (γthermal) is estimated based on Equation (2.27).  The value of 

Signal-to-Noise (SNR = 11.7 dB) evaluated for satellites ERS-1/2 is taken from 

Hanssen (2001, p101). 

92.0
7.111

1
1 =

+
= −thermalγ  (5.10)

Thermal decorrelation is to be assumed equal over the entire interferogram. 

 

5.4.2.3 Temporal Decorrelation 

The temporal decorrelation (γtemporal) is a function of all physical changes on the 

Earth’s surface, which can occur between data acquisitions.  Since this decorrelation 

factor is extremely difficult to model, a fractal surface was adopted to simulate this 

type of decorrelation.  For simplicity of coherence modelling additional decorrelation 

factors, such as Doppler Centroid decorrelation and processing decorrelation are 

assumed to be included in the temporal decorrelation. 
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Figure 5.13 Simulated coherence map based on fractal surface. 

 

Figure 5.13 shows the coherence map, which is simulated by the use of an isotropic 

two-dimensional fractal surface with power law behaviour of normally distributed 

random numbers.  The extremely low coherence (black area) can be associated, for 

instance, with surface water, high soil moisture content, or human activities.  The 

mid coherence values (grey area) could be related, for instance, to changes in 

vegetation cover.  Finally, the white areas simulate very high coherence values where 

the temporal decorrelations are not experienced. 

 

5.4.2.4 Total Decorrelation 

In the final stage, the coherence map is modelled based on total decorrelation (γtotal) 

according to Equation (5.11) based on each simulated decorrelation factors. 

temporalthermalgeomtotal γγγγ ⋅⋅=  (5.11)

Figure 5.14 shows the simulated coherence map. 
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Figure 5.14 Modelled coherence map based on all decorrelation factors. 

 

5.4.3 Phase Noise Modelling 

Based on the concept discussed in Section 5.3 that links phase variance ( 2
ϕσ ) in an 

interferogram with the absolute value of the complex coherence (|γ|), a matrix (Mσϕ) 

of the standard deviations (Figure 5.15) is generated based on the modelled 

coherence map (|γtotal|) (Figure 5.14). 

 

A simulated phase noise NG (Figure 5.16) is generated by point wise multiplication 

of the phase standard deviations matrix (Mσϕ) with a matrix of normally distributed 

random numbers with mean zero and variance one (RN). 

NG RMN ∗= .σϕ  (5.12)

Some of the statistics of the simulated phase noise are shown in Figure 5.17.  Finally, 

the noise is added to the simulated interferogram as shown in Figure 5.18. 
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Figure 5.15 Phase standard deviation (σϕ ) based on coherence map (L=1). 

 

 
Figure 5.16 Simulated interferometric phase noise. 
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Figure 5.17 Histogram showing noise distribution (mean = 0.2, STD = 72.9). 

 

  
Figure 5.18 Simulated interferogram with added noise. 

 

5. 5 Numerical Validation Using Simulated Data Set 
In the first test, the new radar interferogram filter is used to filter the interferogram 

without any noise at all (Figure 5.10) to assess the filter impact on the wrapped phase 

itself in terms of filter parameter γ−1 .  The filter parameters for this test are listed in 
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Table 5.2.  The uniform coherence value is assumed to be over the entire 

interferogram each time the filtering is applied. 

Table 5.2 Filter parameters 

Filter type Patch size Overlap Smoothing operator S{} Filter param. 

Goldstein 32x32 14 Mean kernel (3x3) α = 0.9 

New filter 32x32 14 Mean kernel (3x3) γ−1  

 

The filtering was performed for coherence equal 0.0 up to 0.9 with a step of 0.1.  

Figure 5.19 shows a cross-section over the simulated wrapped phase interferogram 

without noise, which is a sample of a number of cross sections analysed.  The 

location of the cross-section is indicated in Figure 5.10. 
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Figure 5.19 A cross-section over the simulated interferogram without noise.  Each 
line shows the phase after filtering for different value of the filter exponent. The 
phase offset (ϕV) is clearly visible. 
 

Vertical offsets (ϕV) between the original and filtered phase due to the impact of the 

filter can be seen.  The magnitude of the offsets increases as the filter parameter 

γ−1  increases.  Furthermore, the biggest vertical offsets are experienced in the areas 

of large curvature and they always occur in the direction of concavity.  An example 

of this behaviour is shown in Figure 5.19, circle A. 

 

Figure 5.20 shows the characteristics of the Goldstein filter and the new 

interferogram filter in terms of the ±max phase offset caused by the filters, versus the 

mean absolute coherence (γ ).  The graph constructed is based on the differences 

between the interferogram without noise and its filtered versions.  The dashed line on 
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the graph shows the ±max phase differences versus the coherence for the new radar 

interferogram filter.  It can be seen that for high coherence values the phase offsets 

become small. 
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Figure 5.20 ±max phase differences versus coherence caused by the Goldstein filter 

for α = 0.75 and α = 0.5 (bold lines), and the new filter (dashed line). 
 

After analysing the whole interferogram the maximum differences between the 

original and filtered phase were found to be ±98° for γ  = 0 and ±14° for γ  = 0.9.  

On the other hand, the two bold lines show the expected ±max phase offset for the 

Goldstein filter for two different values of parameter α: ± 80° for α = 0.75 and ± 59° 

for α = 0.50.  In this case, the differences between the original and filtered phase are 

high, constant, and strongly dependent on the chosen α value. 

 

In the next test, both filters are used to filter the simulated phase interferogram with 

noise.  The simulated coherence map (Figure 5.10) is also used with the new filter.  

The filter parameters for all tests are listed in Table 5.2.  The filtered interferograms 

were generated and are shown in Figure 5.21 and Figure 5.23 for Goldstein and the 

new filter respectively. 
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Figure 5.21 Filtered wrapped phase of the simulated interferogram using Goldstein 

radar interferogram filter. 
 

 
Figure 5.22 Difference between filtered and not filtered interferogram for Goldstein 

radar interferogram filter.  Remaining features indicate loss of resolution. 
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Figure 5.23 Filtered wrapped phase of the simulated interferogram using the new 

filter. 
 

 
Figure 5.24 Difference between filtered and not filtered interferogram for the new 

filter. Remaining features indicate loss of resolution. 
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The maps of the differences between filtered and original interferogram show the 

systematic phase pattern (trend) indicating some loss of resolution in the filtered 

interferogram.  Both filters lead to some loss of resolution.  However, the new filter 

reduces the loss of resolution over the part of the interferogram that is characterised 

by higher coherence.  The rectangular windows in Figure 5.22 and Figure 5.24 show 

the area where the major differences between the filters occur. 

 

5. 6 Numerical Validation Using Real Data Set 
In the following sections the Goldstein and new filter are applied to the real data sets 

to evaluate their impact on InSAR derived surface heights and small-scale 

deformation detection.  The same filers parameters are used as in previous tests. 

 

5.6.1 Filter Impact on DEMs 

To assess the filters impact on DEMs both filters are applied to the real interferogram 

from the Leinster study area formed by two images (see Chapter 4).  After filtering 

the interferogram, the reduction of the phase noise relative to raw interferogram 

(Figure 4.7) is clearly visible for both filters (Figure 5.25 and Figure 5.26). 

 

 
Figure 5.25 Filtered wrapped phase interferogram using the Goldstein radar 

interferogram filter. 
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Figure 5.26 Filtered wrapped phase interferogram using the new filter.  Horizontal 

line indicates cross-section location. 
 

 
Figure 5.27 Coherence map. 

 

A closer look at the example cross-section (Figure 5.28) over the wrapped phase 

interferogram shows the same characteristics of the Goldstein filter and the new filter 

as observed when used with simulated data set.  The horizontal line on Figure 5.26 

indicates the cross-section location.  In Figure 5.28 circle A, large vertical phase 
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offset (ϕV) can be observed for the Goldstein filter.  At the same time due to the high 

coherence (γ  > 0.7) in this region (Figure 5.27), the new filter does not create a high 

phase offset. 
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Figure 5.28 The cross-section over the unfiltered and filtered wrapped phase 

interferogram. 
 

To check how the phase offset affects terrain heights, phase unwrapping and height 

computation were performed.  Figure 5.29 shows the cross-section over the surface 

heights corresponding to the same location as the wrapped phase indicated in Figure 

5.28. 
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Figure 5.29 The cross-section over the reconstructed surface heights. 

 

As expected, the vertical phase offset propagates directly into the height of the DEM 

introducing additional systematic error (δHϕ).  The quantity of this error depends 

strongly on the ϕV and is proportional to the height ambiguity. 
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5.6.2 Filter Impact on Small-Scale Deformation Detection 

To evaluate the impact of the filter on small-scale surface deformation detection both 

filters are applied to the real interferogram from the Silesia study area formed by two 

images (AQ-IS and AQ-IIS see Chapter 4).  The part of the interferogram that has 

already been analysed in Section 4.4, Figure 4.22 is selected for this test.  It 

represents an example of small-scale surface subsidence due to underground mining.  

Figure 5.30c and d show the interferometric phase images after applying the 

Goldstein and new radar interferogram filter respectively.  The reduction of the phase 

noise is clearly visible for both filters as compared to the raw interferogram (Figure 

5.30a). 

 

  
(a) (b) 

  
(c) (d) 

Figure 5.30 (a) Raw interferogram, (b) coherence map, (c) filtered interferogram 
using the Goldstein (α = 0.9) and (d) the new radar interferogram filter (colour bars 
in radians). 
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The reconstructed surface subsidences show the impact of both filters on the 

deformation signal.  The overall magnitude of reconstructed subsidence (Figure 

5.31a) based on the filtered interferogram using the Goldstein filter is up to 40% less 

than the magnitude of reconstructed subsidence (Figure 5.31b) based on the filtered 

interferogram using the new filter. 

 
 

    
(a) (b) 

Figure 5.31 (a) Surface subsidence reconstructed from the filtered interferogram 
using the Goldstein and (b) the new radar interferogram filter (colour bars in 
millimetres). Horizontal line indicates the cross-section location. 
 

The example cross-section (A-B) along both surface subsidences (Figure 5.32) 

illustrates the quantity of deformation signal that has been lost due to over-filtering.  

As can be seen the largest difference (δD) between both surface subsidences is 

experienced in the centre of the deformation sag. 

 

0 100 200 300 400 500 600 700 800 900 1000
-30 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

S
ub

si
de

nc
e 

[m
m

] 

Range [m] 

             surface subsidence (processed  
with Goldstein filter) 

             surface subsidence (processed 
with new filter) 

             surface subsidence (no filtering 
applied) 

A B

δD 

 
Figure 5.32 The cross-section along the reconstructed surface subsidences. 
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Figure 5.33 shows the map of differences between two reconstructed surface 

subsidences based on filtered interferograms using the new and Goldstein radar 

interferogram filter.  It reveals the loss of deformation signal in the centre part of the 

subsidence sag. 

 

  

Figure 5.33 Loss of deformation signal due to over-filtering.  Based on differences 
between the reconstructed surface subsidences based on filtered interferograms 
using the new and Goldstein radar interferogram filter (colour bar in millimetres). 
 

In conclusion, the phase offset due to filtering using the Goldstein radar 

interferogram filter propagates directly into the deformation map leading to some 

loss of deformation signal.  If the deformation signal is very low, the impact of the 

filter can be severe as it can significantly reduce the quantity of the signal or even 

destroy the entire signal.  The proposed filter, however, reduces the loss of 

deformation signal due to over-filtering.  As it is led by the coherence value it adopts 

better to the actual level of noise.  The high coherence value prevents the phase being 

over-filtered.  Therefore, it prevents the loss of small-scale deformation signal. 

 

Figure 5.34 shows the new redefined three-dimensional model of subsidence based 

on the filtered interferogram using the new radar interferogram filter.  As compared 

to the previous model shown in Figure 4.23 the magnitude of subsidence is 

significantly larger in the centre of the deformation sag but the spatial extent of the 

subsidence has not changed much. 

250 m 
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Figure 5.34 New three-dimensional model of surface subsidence (colour bar in 
millimetres). 

 

5. 7 Discussion 

In this chapter, a new adaptive radar interferogram filter based on the modification to 

the Goldstein filter was proposed.  The Goldstein filter parameter α was replaced 

with a new parameter γ−1 , which is dependent on the value of absolute coherence.  

The effectiveness of the new filter has been evaluated based on simulated and real 

data sets.  As the experiments show, both filters create some phase offset in the 

filtered interferogram.  The phase offset has direct impact on quality of DEMs and 

deformation detection studies as it introduces additional error to the surface heights 

and deformation signal.  However, the new filter reduces the magnitude of the phase 

offset as it prevents the areas characterised by high coherence (less noise) from being 

over-filtered.  On the other hand, it allows stronger filtering in the areas with low 

coherence (high noise).  Therefore, the new filter adapts to the wrapped phase 

interferogram more effectively.  Furthermore, both filters perform almost identically 

in the areas where coherence is low (less then 0.3). 

 

In conclusion, interferograms characterised by high coherence will benefit from the 

new radar interferogram filter, as it decreases the loss of resolution.  In particular, 

regions of rough terrain and small-scale surface deformation (small magnitude) will 

benefit from the new filter being used. 

S
ub

si
de

nc
e 

[m
m

] 



Chapter 5: A New Adaptive Radar Interferogram Filter 

 

114

5. 8 Summary 
This chapter provides the basic filters theory followed by the development of a new 

adaptive radar interferogram filter.  The new filter is based on the modification to the 

Goldstein radar interferogram filter.  In order to evaluate the filter, the interferometry 

data such as the interferogram and coherence map have been simulated.  Finally, the 

Goldstein and the new filters have been applied to the simulated and real wrapped 

phase interferogram.  The results have shown that the new filter performs better as it 

minimises the loss of signal while still reducing the level of noise.                               
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6 A NEW FUNCTIONAL MODEL FOR DETERMINING MINIMUM AND 
MAXIMUM DETECTABLE DEFORMATION GRADIENT 

 

 

 

In this chapter a functional model for determining the minimum and maximum 

detectable deformation gradient in terms of coherence is proposed.  Moreover, this 

model is developed based on a new methodology that incorporates both real and 

simulated data.  Finally, the new model is validated and its advantages and 

disadvantages discussed. 

 

6. 1 Introduction 

Radar interferometry measures the change in range distance between the sensor and 

the ground.  If a part of the ground covered by the imaging scene experiences a 

displacement (DG) along the sensor-ground direction, it changes the round trip 

distance by 2DG, and creates a phase shift with respect to the stable part of the scene.  

Any displacement along the radar viewing direction equal to half a wavelength 

creates one fringe in the interferogram.  Assuming that the wavelength (λ) equals 

0.056 m (ERS-1/2 SAR sensor), one fringe corresponds to 0.028 m of surface 

displacement.  Thus, in the interferogram, within each fringe a given colour 

represents a particular phase difference.  Therefore the accurate displacement for 

each point can easily be established. 

 

However, not all deformations can be detected using radar interferometry.  The 

necessary condition for deformation detection given by Massonnet and Feigl (1998) 

implies that the maximum detectable deformation gradient is one fringe per pixel.  

Furthermore, Massonnet and Feigl (1998) define the maximum detectable 

deformation gradient (dx) as a dimensionless ratio of half the wavelength (λ) to the 

pixel size (ps): 

ps
d x

λ⋅
=

5.0  (6.1)
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Therefore, for the satellites ERS-1/2, the maximum detectable deformation gradient 

(dx) is equal to 1.4x10-3, assuming the interferogram pixel size 20x20 m. 

 

According to the definition, radar interferometry should be able to detect quite a 

wide range of different deformation gradients.  Unfortunately, radar interferometry 

suffers from noise in the interferogram phase measurement, which is caused by the 

decorrelation effects discussed in Section 2.8.  Moreover, the interferogram contains 

biases due to satellite orbit errors, atmospheric heterogeneity and filtering.  Thus, 

very small and large deformation gradients become undetectable if the level of noise 

is too high. 

 

The current definition of the maximum detectable deformation gradient does not 

include the noise factor.  Thus, it does not describe the problem realistically.  In 

addition, a definition describing the minimum deformation gradient does not exist at 

all.  Therefore, to determine the minimum and maximum detectable deformation 

gradient, a new methodology is proposed.  This approach consists of (i) simulation of 

deformation, (ii) generation of deformation phase values, (iii) insertion of the 

simulated deformation phase information into a real SLC image, (iv) DInSAR 

processing, and (v) the analysis of the differential interferogram to estimate the 

signature of the recovered deformation signal, in relation to the original simulated 

deformation model.  Finally, a theoretical set of observations that lead to the 

functional model defining the minimum and redefining the maximum detectable 

deformation gradient is created. 

 

6. 2 Small-Scale Surface Deformation Simulation 

A common shape for small-scale surface deformation is a circular or elliptical trough 

(by mining subsidence).  Thus, to model a small-scale deformation the two-

dimensional elliptical Gaussian function has been adopted: 
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where R and A are the coordinates of the model in the range and azimuth direction 

respectively. Assuming the mean values (µR, µA) equal to 0, by changing the standard 
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deviation components σR and σA, an elliptical shape for the simulated deformation is 

achieved f(R,A).  Furthermore, by scaling the entire model, the amplitude of vertical 

deformation is simulated.  For simplicity, it has been assumed that vertical 

deformation derived from the model expresses surface subsidence along the direction 

of the satellite line of sight. 

R
A

h

 
Figure 6.1 Geometry of the simulated deformation model. 

 

Several models, varying in spatial extent (R/A) and the deformation amplitude (h), 

have been generated (Figure 6.1).  The details of the simulated models are listed in 

Table 6.1. 

Table 6.1 Deformation models parameters 
Name M0 M1 M2 M3 M4 M5 M6 N0 N1 N2 N3 N4 O0 O1 O2 O3 

Fringe 1/8 1/4 1/2 1 2 3 4 1/8 1/4 1/2 1 2 1/8 1/4 1/2 1 

h[mm] 3.5 7 14 28 56 84 112 3.5 7 14 28 56 3.5 7 14 28 

R/A[m] 480/960 280/480 140/220 

 

By converting (wrapping) the simulated deformation model into their associated 

phase values (28mm = 2π), the change in phase (ΦSR) along the radar line of sight is 

computed.  Next, the simulated signal is added as a patch into the phase (ΦS) of a real 

radar image (e.g. slave image).  Finally, the phase (ΦSN) of the new created image is 

defined as: 

SRSSN Φ+Φ=Φ  (6.3)

If the new phase value (ΦSN) is greater than ±π, the phase is wrapped again.  

However, the amplitude of the real image is not changed (|aSN|=|aS|).  Figure 6.2 

indicates the related phase and amplitude values. 
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Figure 6.2 Definitions of amplitude and phase for the new image. 

 

The simulated phase patches are added to areas characterised by different coherence 

values.  It is assumed that no other deformation signal exists in the areas where the 

patches are added.  This approach of incorporating simulated phase according to a 

deformation model into the real image ensures realistic noise over the simulated 

deformation.  For the purpose of testing this methodology, two radar images (AQ-I 

and AQ-II) acquired over the Leinster study area are used.  After the phase 

information of the simulated deformation model is introduced into the slave image, 

both images are processed and a differential interferogram is achieved.  The 

interferometry processing and parameters used are discussed in Chapter 4.  Finally, 

the interferometric phase difference (∆Φ) is defined as: 

( ) nSRSM +Φ+Φ−Φ=∆Φ  (6.4)

where ∆ΦM is the phase of the master image, n describes the noise preserved in both 

images as well as the noise introduced during the interferometry processing 

procedure. 

 

If the perpendicular baseline component is sufficiently short, the topography 

contribution can be neglected.  In practice, however, it is very difficult to obtain 

radar images with a very small perpendicular baseline and usually the topography 

contribution has to be removed from the interferogram in order to obtain the 

signature of deformation.  Therefore, assuming subtracted topography contribution, 

Equation (6.4) can be rewritten as: 

nSR +Φ−=∆Φ  (6.5)
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Finally, the differential interferogram should contain the phase signal related to the 

simulated deformations (ΦSR) and the noise (n).  If the phase of the simulated 

deformation model is recovered on the differential interferogram, it is assumed that a 

particular deformation can be detected. 

 

In the following sections, the phase images of particular deformation models are 

analysed and the functional model determining the min/max detectable deformation 

gradient developed.  Figure 6.3 shows the basic concept of the new methodology. 

 

 

Interferometry processing

Phase image analysis

Simulation of deformation
(different spatial extent and

 deformation amplitude)

Converting the deformation
 into the phase value

Introduction of the simulated
phase into real SAR image

Functional model  
Figure 6.3 Proposed methodology. 

 

6. 3 Interferometry Analysis of the Simulated Deformation Models 
The phase images of the simulated deformation models are compared visually with 

the signatures from their respective differential interferograms after interferometry 

processing.  The visual inspection was aided by the image editing software using 

magnifying tools.  Figure 6.4 to Figure 6.6 show the interferometric phase of the 

simulated deformation models M, N, O (model parameters are defined in Table 6.1) 

and the signature of these models onto the differential interferogram after 

interferometry processing.  The phase related to the modelled deformation was 

introduced into the slave image over the areas characterised by different coherence 

values ranging from 0.3 to 0.55. 
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Figure 6.4 Phase images of the simulated models M0 to M6 and their signature after 
interferometry processing for different coherence value (rows A to E).  The left-hand 
side column shows the corresponding coherence map and the average value over the 
area. 
 

The interferogram based on the given radar images (AQ-I, AQ-II) is characterised by 

overall low coherence, due to the long temporal baseline.  This factor results in the 

limited range of coherence values covered.  However, the covered coherence range is 

good enough to develop a model as the low coherence values play the crucial role in 

determining the model parameters. 

 

It was found that for constant coherence, it becomes increasingly difficult to 

correctly interpret the interferometric phase (∆Φ), as the amount of vertical 

deformation increases.  For instance, for the interferometric phase related to models 

M2, M3, M4, which represent a half, one and two fringes respectively, the number of 

fringes can be measured correctly for given coherence value.  However, for the 

interferometric phase related to model ‘M6’ (4 fringes), it was not possible to 

unequivocally determine the number of fringes.  In addition, as the increasing 

magnitude of deformation becomes more difficult to retrieve, the overall deformation 
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contour pattern is more easily recognised.  The extent of the deformation for the ‘M’ 

family of models could be recognised on the interferogram for coherence values of 

0.35 and above, while for models ‘N’, the coherence threshold was determined at the 

level of 0.40 (Figure 6.5). 

 

 

Figure 6.5 Phase images of the simulated models N0 to N4 and their signature after 
interferometry processing for different coherence value (rows A to E).  The left-hand 
side column shows the corresponding coherence map and the average value over the 
area. 
 

Furthermore, the smallest deformation models ‘O’ could be detected only at 

coherence level greater than 0.50.  The spatial extent of this model (140 x 220 m) 

and deformation amplitude 0.5 and 1 fringe could only be recognised at coherence 

level 0.55 (Figure 6.6). 
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Figure 6.6 Phase images of the simulated models O0 to O3 and their signature after 
interferometry processing for different coherence value (rows A to E).  The left-hand 
side column shows the corresponding coherence map and the average value over the 
area. 
 

6. 4 Functional Model 

In this section a functional model defining the minimum (dmin) and the maximum 

(dmax) detectable deformation gradient is proposed.  The new model extends the 

definition of the maximum detectable deformation gradient by including the 

coherence (γ) factor in its definition.  Moreover, this model defines the previously 

undefined minimum detectable deformation gradient also in terms of coherence 

value. 

 

6.4.1 Model Parameters 

Two parameters of the model are defined: (i) deformation gradient and (ii) 

coherence. 
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The first parameter, deformation gradient (d), is defined as: 

minL
hd =  (6.6)

where h is the deformation magnitude and Lmin is the shortest distance from the edge 

of the deformation model to the place where the maximum deformation magnitude 

occurs.  According to the simulated models, Lmin is equal to the half of the range 

dimension ( RL ⋅= 5.0min ).  Both variables are in the same units, therefore the 

deformation gradient is dimensionless. 

 

The second parameter, coherence (γ), defined in Equation 2.23 and its estimator in 

Equation 4.6, describes the interferometric phase accuracy.  In other words, 

coherence is an indicator of the amount of interferometric phase noise caused by 

many decorrelation factors. 

 

In order to develop the functional model, a set of observations (Table 6.2) based on 

the proposed methodology described in previous sections has been prepared.  Each 

time the simulated model could be detected on the resulting interferogram, a decision 

value (Ω) is set to 1.  Moreover, if the model could not be detected, the decision 

value (Ω) is set to 0.  The correct detection of the model implies that the spatial 

extents as well as the correct number of fringes could be identified. 

 

The detection of the simulated deformation is undertaken by visual inspection of the 

interferogram.  This approach is the major weakness of the resultant model.  

However, no automatic method that could be used for deformation detection analysis 

exists.  In the following chapter one possible approach of using a wavelet transform 

for advanced analysis of the phase image is examined.  If the wavelet approach 

proves successful, the model could be better defined. 
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Table 6.2 Model parameters (observations) 

No. Model Deformation  
Gradient (d) 

Coh.

(γ) 
Decision 

(Ω) No. Model Deformation  
Gradient (d) 

Coh. 
(γ) 

Decision 
(Ω) 

1 M0A 0.000015 0.30 0 41 N1A 0.000050 0.30 0 
2 M0B 0.000015 0.37 0 42 N1B 0.000050 0.32 0 
3 M0C 0.000015 0.41 0 43 N1C 0.000050 0.42 0 
4 M0D 0.000015 0.45 0 44 N1D 0.000050 0.50 1 
5 M0E 0.000015 0.51 0 45 N1E 0.000050 0.54 1 
6 M1A 0.000029 0.30 0 46 N2A 0.000100 0.30 0 
7 M1B 0.000029 0.37 0 47 N2B 0.000100 0.32 0 
8 M1C 0.000029 0.41 0 48 N2C 0.000100 0.42 1 
9 M1D 0.000029 0.45 1 49 N2D 0.000100 0.50 1 
10 M1E 0.000029 0.51 1 50 N2E 0.000100 0.54 1 
11 M2A 0.000058 0.30 0 51 N3A 0.000200 0.30 0 
12 M2B 0.000058 0.37 1 52 N3B 0.000200 0.32 0 
13 M2C 0.000058 0.41 1 53 N3C 0.000200 0.42 1 
14 M2D 0.000058 0.45 1 54 N3D 0.000200 0.50 1 
15 M2E 0.000058 0.51 1 55 N3E 0.000200 0.54 1 
16 M3A 0.000117 0.30 0 56 N4A 0.000400 0.30 0 
17 M3B 0.000117 0.37 1 57 N4B 0.000400 0.32 0 
18 M3C 0.000117 0.41 1 58 N4C 0.000400 0.42 0 
19 M3D 0.000117 0.45 1 59 N4D 0.000400 0.50 1 
20 M3E 0.000117 0.51 1 60 N4E 0.000400 0.54 1 
21 M4A 0.000233 0.30 0 61 O0A 0.000050 0.30 0 
22 M4B 0.000233 0.37 0 62 O0B 0.000050 0.32 0 
23 M4C 0.000233 0.41 1 63 O0C 0.000050 0.40 0 
24 M4D 0.000233 0.45 1 64 O0D 0.000050 0.51 0 
25 M4E 0.000233 0.51 1 65 O0E 0.000050 0.56 1 
26 M5A 0.000350 0.30 0 66 O1A 0.000100 0.30 0 
27 M5B 0.000350 0.37 0 67 O1B 0.000100 0.32 0 
28 M5C 0.000350 0.41 0 68 O1C 0.000100 0.40 1 
29 M5D 0.000350 0.45 0 69 O1D 0.000100 0.51 1 
30 M5E 0.000350 0.51 1 70 O1E 0.000100 0.56 1 
31 M6A 0.000467 0.30 0 71 O2A 0.000200 0.30 0 
32 M6B 0.000467 0.37 0 72 O2B 0.000200 0.32 0 
33 M6C 0.000467 0.41 0 73 O2C 0.000200 0.40 1 
34 M6D 0.000467 0.45 0 74 O2D 0.000200 0.51 1 
35 M6E 0.000467 0.51 0 75 O2E 0.000200 0.56 1 
36 N0A 0.000025 0.30 0 76 O3A 0.000400 0.30 0 
37 N0B 0.000025 0.32 0 77 O3B 0.000400 0.32 0 
38 N0C 0.000025 0.42 0 78 O3C 0.000400 0.40 0 
39 N0D 0.000025 0.50 0 79 O3D 0.000400 0.51 0 
40 N0E 0.000025 0.54 0 80 O3E 0.000400 0.56 1 
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6.4.2 Model Determination 

Figure 6.7 shows the value of the deformation gradient (d) plotted against the 

coherence value (γ) for the observations listed in Table 6.2.  The dots on the plot 

indicate the simulated models that are not detected after the interferometry 

processing.  The asterisks indicate the models that are properly detected after the 

interferometry processing.  As it can be seen, the point clouds related to the models 

that are identified as detected (Ω = 1) form the wedge-like shape among the 

observations.  This very important observation provides the possibility to define a 

model that can relate the deformation gradient and the coherence value defining: dmin, 

and dmax. 
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Figure 6.7 Observations and the linear models: dmin(γ) and dmax(γ). 

 

To define the maximum detectable deformation gradient function dmax(γ), the 

observations data set and the constraint defined in Equation (6.7) have been taken 

into account. 

1max == γfordd x  (6.7)

This constraint ensures that for a coherence value equal to one, the extended 

definition of the model holds for the maximum detectable deformation gradient 
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already defined in Equation (6.1).  Therefore, the linear formula for the new function 

is defined as: 

( ) xm dSd +−= 1max γ  (6.8)

where Sm is the slope of the linear function dmax(γ), which defines the boundary 

between the upper edge of the point clouds (Figure 6.7). 

 

On the basis of Figure 6.7, the value of the slope Sm was empirically determined to 

be approximately 0.002. Therefore, the new definition of the maximum detectable 

deformation gradient in terms of the coherence value is defined as: 

xdd +
−

=
500

1
max

γ  (6.9)

Furthermore, to define the minimum detectable deformation gradient function 

dmin(γ), the observations data set and the constraint defined in Equation (6.10) have 

been taken into account. 

10min == γford  (6.10)

This constraint will ensure that for a coherence value equal to one, the minimum 

detectable deformation gradient is zero.  In other words, if there is no deformation at 

all, the phase value should be constant.  Therefore, the linear formula for the new 

function is defined as: 

( )1min −= γnSd  (6.11)

where Sn is the slope of the linear function dmin(γ), which defines the boundary 

between the lower edge of the point clouds (Figure 6.7). 

 

On the basis of Figure 6.7, the value of the slope Sn was empirically determined to be 

approximately 0.7x10-5.  Therefore, the new definition of the minimum detectable 

deformation gradient in terms of the coherence value is defined as: 

( )100007.0min −−= γd  (6.12)
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Combining the Equation (6.9) and Equation (6.12) the functional model for 

determining the minimum and maximum detectible deformation gradient is created.  

Figure 6.8 shows a new graphical summary of the functional model.  The horizontal 

axis of the graph indicates the coherence value from 0 to 1 while the vertical axis 

indicates the range of possible deformation gradients from 0 to dx.  The value of dx is 

equal to 1.4x10-3 and it is the old definition of the maximum detectable deformation 

gradient for satellite ERS-1/2 as defined in Equation (6.1). 
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Figure 6.8 The new functional model for determination of the min/max detectable 
deformation gradient (d) in terms of coherence value (γ).  This model is valid for the 
satellites ERS-1/2 (λ=5.66 cm) and interferogram resolution 20x20 m. 
 

Figure 6.8 illustrates two zones named YES and NO.  The zone YES shows the 

values of coherence (γ) and deformation gradient (d) for which the deformations on 

the surface can be detected by radar interferometry.  The zone NO, however, shows 

the values of γ and d for which the surface deformation cannot be detected.  Equation 

(6.13) defines the deformation gradient as detectable or not for certain coherence 

values: 


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In addition, for dmin(γ) = dmax(γ) the minimum coherence value, below which any 

deformations cannot be detected, was found to be 0.32. 

 

6.4.3 Validation of the Functional Model 

The purpose of model validation is to establish if the relationship between the 

model’s parameters (coherence and deformation gradient) is valid for other 

interferometry data.  To validate the proposed functional model, the interferogram 

from the Silesia study area based on images AQ-IS and AQ-IIS is used.  The 

interferogram was processed to 20x20 m pixel size.  Since the data from Silesia was 

not used for the model generation it ensures independent validation of the model. 

 

Two different areas over the interferogram to validate the functional model have 

been identified.  Figure 6.9 illustrates the first case (K1), which shows one fringe 

related to the surface deformation caused by the underground mining activities.  The 

task for this assessment is to find out if the deformation gradient and coherence taken 

from this example lies within the YES zone as defined by the model. 

 

  
(a) (b) 

Figure 6.9 (a) Deformation fringe over the Silesia study area and (b) the 
corresponding coherence map (mean coherence over the area is 0.61). 

 

To perform this validation, two parameters of the model are established.  Firstly, the 

deformation gradient between points A and B is found to be 0.12x10-3 (0.028/225).  

Secondly, the average coherence over the area is found to be 0.61.  Finally, the two 

parameters are plotted on the graph as shown on Figure 6.11.  Point K1(γ,d) falls into 

the YES zone what indicates that this deformation gradient can be easily detected at 

this coherence value.  Thus, this example has confirmed the suitability of the new 

K1

225 [m] 

A 
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functional model for determining the min/max deformation gradient in terms of 

coherence. 

 

Figure 6.10 shows the second case (K2).  This example interferogram presents the 

four fringes in form of an elliptical shape that are related to surface deformation 

caused by the underground mining activities.  However, a segment of the fringes is 

too noisy and the correct interpretation of the number of fringes is impossible in that 

area. 

 

The task of this assessment is to find out if the same deformation gradient and 

different coherence taken from this example lies within the proper zone as defined by 

the model.  Therefore, two sub-cases are selected over the area.  The first sub-case, 

K2A, shows a part of the interferogram where the correct number of fringes can be 

identified and the deformation magnitude established.  Sub case K2B indicates a part 

of the interferogram where the correct number of fringes could not be identified at 

all.  Assuming the elliptical shape of the deformation area, the deformation gradients 

between points AB and AC are the same in both sub-cases and are equal to 0.26x10-3 

(Figure 6.10.a). 

 

  
(a) (b) 

Figure 6.10 (a) Deformation fringes over the Silesia study area and (b) the 
corresponding coherence map. 

 

However, the coherence value calculated over the two areas is different and equal to 

0.47 in sub case K2A and 0.37 in sub case K2B.  The coherence is the average value 

calculated over the strips covering the investigation areas as shown in Figure 6.10.b.  
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0.47 0.37
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Finally, the observed parameters related to both sub cases (K2A and K2B) are plotted 

on the graph as shown in Figure 6.11.  As can be seen, the analysed examples have 

further confirmed the prediction of the functional model. 
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Figure 6.11 Validation of the functional model.  (The three test cases (K1, K2A, K2B) 

agree with the new functional model). 
 

6. 5 Discussion 
A new methodology that leads to a functional model for determining the minimum 

and maximum detectable deformation gradient by radar interferometry has been 

proposed.  This methodology is based on both simulated and real data.  The 

advantage of using simulated deformation is that full control over the spatial extent 

and vertical magnitude of deformation is available.  Furthermore, introducing the 

phase information of the simulated deformation models into a real radar image 

ensures the realistic noise within the final differential interferogram.  By comparison 

of the deformation signatures on the differential interferogram with their 

corresponding models, a set of observations that lead to a new model has been 

established.  The new functional model extends the existing definition of the 

maximum detectable deformation gradient by introducing dependence on the 

coherence value γ.  Thus, the new definition decreases the maximum detectable 

deformation gradient as the coherence decreases.  The new and old definitions are 
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identical only for coherence equal to one.  On the other hand, the proposed model 

introduces the previously undefined minimum detectible deformation gradient.  It is 

important to notice that an increasing amount of noise also affects the ability of the 

interferometry technique to detect very small deformation gradients.  For instance, 

taking into account the parameters of the satellites ERS-1/2, the maximum detectable 

deformation gradient is 1.4x10-3 for coherence equal to one and decreases to 

0.04x10-3 at coherence level 0.32.  Moreover, the range of minimum detectable 

deformation gradients decreases from its largest value of 0.04x10-3 to zero as the 

coherence increases to one.  The zero deformation gradient can be explained as no 

deformation at all.  Therefore, according to the conditions of the new model, radar 

interferometry should be able to detect deformations at their maximum detectable 

deformation gradient and resolve the stable areas with the maximum confidence level 

for the coherence value equal to one.  Any coherence smaller than one would result 

in narrowing the range of detectable deformation gradients.  Moreover, below 

coherence value of 0.32, detection of any deformation is virtually impossible. 

 

Even though the developed methodology is consistent, two weaknesses within the 

proposed model may be identified.  These weaknesses should be taken into account 

when using the model in order to prevent any misinterpretations.  The first weakness 

is the model’s dependence on visual inspection.  All the interferometric analyses and 

comparisons between phase images were based on a visual inspection of the 

differential interferogram.  Therefore, the set of observations can be very subjective.  

Thus, the boundaries of the functional model are somewhat uncertain.  However, the 

lowest confidence level is at the lowest coherence values and increases gradually to 

100% when coherence reaches one.  In order to improve the confidence level at the 

boundaries of the model, the visual interpretation of the phase image should be 

replaced by some sort of automatic technique.  Such a technique could provide 

unbiased results.  Moreover, it could extend the image interpretation and reveal 

additional information invisible for the human eye.  Therefore, the definition of the 

functional model could be further adjusted.  In the next chapter the new wavelet 

approach for the extended analysis of phase image is proposed and analysed. 

 

The second concern is related to the spatial geometry of the modelled deformations.  

Although the surface deformation is simulated as an elliptical trough, the resultant 



Chapter 6: Functional Model for Determining Min/Max Detectable Deformation Gradient 

 

132

functional model determining min/max detectable deformation gradient can be 

applied to any other deformation modes.  However, using the same methodology and 

simulating a specific mode of deformation (e.g. local tectonic motion), the functional 

model could be more suitable for a specific application.  Moreover, the functional 

model could be refined by increasing the number of observations base on data from 

different parts of the world. 

 

Although, the proposed model is not perfect, its application can still be very 

beneficial.  By using the model, a user could find out a range of deformation 

gradients that can be detected assuming a given range of coherence values.  

Moreover, the minimum coherence value can be determined for a given deformation 

gradient.  This can be a superb tool for the initial assessment of the suitability of the 

radar interferometry technique for surface deformation monitoring.  The deformation 

gradient can be easily determined from existing knowledge about deformation 

geometry.  The coherence could also be approximated assuming some influence of 

the decorrelation factors.  It is well known that agricultural, forestry, urban, and 

desert areas as well as seasonal weather changes and time between data acquisition 

affect the coherence.  Studies on using coherence for land-cover classification have 

already proved the close link between the coherence value and the land properties 

(e.g. Martinez et al., 1998; Morley et al., 1997).  Therefore, by reversing this 

approach, coherence could be estimated a priori for a particular region of interest. 

 

Having both parameters (deformation gradient and coherence) and using the model, 

it can be easily determined whether the surface deformation is detectable or not.  

Thus, this model can serve as a decision-support tool to determine whether or not to 

apply satellite radar interferometry to study a given surface deformation.  Therefore, 

this model can save money and time. 

 

6. 6 Summary 
This chapter has presented the methodology that led to a functional model defining 

the minimum and redefining the maximum detectable deformation gradient.  Sets of 

representative surface deformation models have been simulated and the associated 

phase from these models introduced into real SAR data acquired by ERS-1/2 
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satellites.  Subsequently, interferograms have been derived and surface deformations 

are estimated.  A number of cases of surface deformation with varying magnitudes 

and spatial extent have been simulated.  In each case, the resultant surface 

deformation has been compared with the 'true' surface deformation as defined by the 

deformation model.  Based on these comparisons, a set of observations that leads to a 

new functional model has been established.  Finally, the proposed model has been 

validated against external data sets and proven viable.  The major weakness of the 

model is its reliance on visual interpretation of interferograms.  One method for 

potentially automatic deformation detection in interferograms is explored in the 

following chapter. 
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7 ADVANCED INTERFEROGRAM ANALYSIS USING A WAVELET 
APPROACH 

 

 

 

Small-scale surface deformation detection using radar interferometry can sometimes 

be a challenging task due to the presence of noise in the interferogram.  Most 

importantly, however, the interpretation of interferometric phase measurements 

based on a visual inspection of the phase image is very much user-dependent, thus, it 

can be biased.  This can lead to a misinterpretation of the interferogram, especially if 

the deformation signal is very weak.  In this chapter, the wavelet approach is 

proposed for the extended analysis of the interferometric phase related to the small-

scale surface deformation.  The ability of the continuous wavelet transform to reveal 

the content of the wrapped phase interferogram, such as (i) discontinuities, (ii) extent 

of the deformation signal, and (iii) the magnitude of the deformation signal, is 

examined. 

 

7. 1 The Wavelet Transform 
The wavelet transform is a relatively new mathematical tool, developed in the mid-

1980s by Grossmann and Morlet (1984).  Subsequently improved, today it is widely 

used in many applications from compression and enhancement (e.g. Wu and Su, 

2000), pattern recognition (e.g. Arivazhagam and Ganesan, 2003), geophysics (e.g. 

Weng and Lau 1994) and any kind of signal analysis.  Recently, the wavelet 

technique has been applied for speckle noise (multiplicative Gaussian noise) 

reduction and enhancement of SAR images (Sveinsson and Benediktsson, 1996; Bao, 

1999; Achim and Bezerianos, 2003).  As the outcomes of these studies show, a 

significant improvement in the change detection and automatic image classification 

after denoising of radar images can be achieved.  Furthermore, the application of the 

wavelet transform has improved the reconstruction of DEMs derived from multiple 

InSAR data, as demonstrated by Ferretti et al. (1999b). 

 

A wavelet is a specially defined wavelike function for which several conditions must 

be satisfied (e.g. Addison, 2002, p9).  Such a function can be recognised as a basic 
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element (wavelet) that can be used to describe any complex function in a process 

called the wavelet transform.  The wavelet transform is in fact a process very similar 

to the Fourier transform although, when using the Fourier transform, it is impossible 

to detect and characterize very narrow transient signal whose spectrum is not 

resolved.  The wavelet transform, however, has the required capability to describe 

and analyse highly localised transient signals (in real space). 

 

Mathematically, the two-dimensional continuous wavelet transform ),( sbW  of a 

function f(x,y) with respect to a wavelet function ),( sbΨ  can be defined as: 

Χ








 −Χ
ΨΧ= ∫ ∫

∞

∞−

∗
∞

∞−

2)()(),( d
s

bfswsbW  (7.1)

where ),( yx bbb =  is the coordinate vector indicating the location of the wavelet over 

f(x,y), ),( yx=Χ  is the coordinate vector, s is the scale (‘width’) of the wavelet, and 

w(s) is a normalisation function that ensures all wavelets at each scale have the same 

unit energy.  Ψ* is the complex conjugate of the wavelet function ),( sbΨ .  The 

above definition of the wavelet transform can be extended to higher dimensions 

simply by extending the length of vectors Χ  and b .  Figure 7.1 shows the basic 

concept of a wavelet transform. 

signal f(x,ywavelet Ψ(b,s)

bx

sf(x
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x
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wavelet
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Figure 7.1 Basic concept of the wavelet transform (one-dimension case at y0). 

 

A signal f(x,y) is convolved with a wavelet kernel ),( sbΨ  at different locations (b ) 

and different scales (s) of the wavelet.  This procedure generates wavelet coefficients 

),( sbW .  In general, the wavelet coefficients are always one dimension greater than 

that of the signal itself.  Due to scaling, some of the dilated wavelets correlate better 
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with the signal than the others.  Therefore, the wavelet transform reveals different 

scale components of the analysed signal. 

 

In small-scale surface deformation using radar interferometry, the signature of 

deformations (fringes) is highly localised in the space domain, thus the wavelet 

transform has a desirable advantage over the Fourier transform in analysing such a 

signal.  Therefore, by transforming the interferometric phase image into the wavelet 

space, deformation signatures that may be hidden to the naked eye can be revealed.  

If this approach proves viable, the deformation detection procedure could be 

enhanced or even automated.  The ability of the wavelet transform to identify abrupt 

discontinuities may even support phase unwrapping procedures. 

 

7. 2 Wavelet Selection 
Some wavelets are more suitable for particular applications than others as they 

correlate better with a specific signal.  The continuous wavelet transform is 

particularly well suited for analysing the local differentiability of a signal, and for 

detecting and characterising its possible discontinuities (Farge, 1992).  Therefore, 

four real (isotropic) two-dimensional continuous wavelet functions were chosen in 

order to select the most suitable for extended analysis of the wrapped phase image.  

These are, the Halo (Dallard and Spedding, 1993), Perrier, Paul (Perrier et al., 1998) 

and Poisson (Grossman and Morlet, 1984) wavelets. 

 

To perform the wavelet analysis, a collection of Matlab functions (Wavelab, 2003) 

and in-house Fortran 2D Wavelet Transform Routines (Kirby, 2003) have been used.  

To ensure identical conditions, all the wavelets were applied to the same uniform and 

representative deformation signal related to the ‘M4’ model (Figure 7.2a).  The ‘M4’ 

model details were listed in Table 6.1. 
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(a) (b) 

Figure 7.2 (a) Wrapped phase of the ‘M4’ deformation model and (b) its 
interferogram signature ‘M4E’ (colour bars in radian). 
 

Two criteria, which the wavelet function has to satisfy in order to become the 

appropriate for further studies, have been established.  They are as follows: 

 

(A) The wavelet power spectrum should match the Fourier power spectrum as 

accurately as possible because Fourier methods is widely accepted as a method of 

computing power spectrum; 

 

(B) The overlap between frequency bands determined by the Fourier power spectrum 

of the wavelet for differed range of scales should be minimal to prevent leakage of 

frequency bands. 

 

The assessment of the wavelet functions against the criterion A is based on the 

comparison of the global wavelet power spectrum with the radially-averaged Fourier 

power spectrum of the deformation signal (interferogram).  The global wavelet 

power spectrum E(s) is defined as the sum of squared amplitude of the wavelet 

coefficients: 

( ) ∑=
b

sbWsE
2

),(  (7.2)

As can be seen on the plotted charts (Figure 7.3), the Halo wavelet (Figure 7.3a) 

gives the best match between their respective global wavelet power spectrum and the 

radially-averaged Fourier power spectrum over the whole range of frequencies.  



Chapter 7: Advanced Interferogram Analysis using a Wavelet Approach 

 

138

Power spectra of the Perrier and Paul wavelets (Figure 7.3b and Figure 7.3c 

respectively) also correspond well.  However, the match is weaker for medium 

frequencies.  On the other hand, the Poisson wavelet (Figure 7.3d) power spectrum 

does not match the Fourier power spectrum over all frequency components of the 

analysed signal. 
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(c) (d) 

Figure 7.3 The global wavelet power spectrum in comparison to the radially-
averaged Fourier power spectrum for (a) Halo, (b) Perrier, (c) Paul, (d) Poisson 
wavelets.  Power spectrum is shown in arbitrary units. 
 

The assessment against the criterion B is based on the analysis of the Fourier power 

spectrum of the wavelets for different scale values (s).  The scales have been 

arbitrarily set up to 25, 50, 100, 150 and 250 metres.  Since the overlap between the 

power spectra for different scale values cannot be fully eliminated, it is the main 

limiting factor of the continuous wavelet transform.  However, the Halo wavelet 

appears to have the best ability to separate different frequency components of the 

analysed signal, as can be seen in Figure 7.4.  For the chosen scales, the Halo 
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wavelet (Figure 7.4a) has the minimum overlap between the corresponding Fourier 

power spectra. 
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(c) (d) 

Figure 7.4 Fourier power spectra of the wavelets (a) Halo, (b) Perrier, (c) Paul, and 
(d) Poisson at different scale values (s).  Scales are shown in meters while the power 
spectrum is shown in arbitrary units. 
 

To undertake the ultimate decision on which wavelet to choose for the enhanced 

analysis of the interferometric phase image, wavelet scalogram plots have been 

computed and analysed for each wavelet function.  The scalogram of a two-

dimensional signal is a three-dimensional graph showing the wavelet power 

spectrum of the signal.  The vertical axis of the scalogram indicates different scale (s) 

components of the signal.  The horizontal plane shows the power spectrum for a 

particular scale, while the vertical plane indicates the power spectrum for all range of 

scales. 
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(a) (b) 

 

 
(c) (d) 

Figure 7.5 The scalograms showing the wavelet power spectra of the interferometric 
wrapped phase image of the ‘M4’ deformation model for the (a) Halo, (b) Perrier, 
(c) Paul, and (d) Poisson wavelet.  The horizontal scale bar illustrates the magnitude 
of the power. 
 

Many different cross-sections of the scalograms have been analysed.  Figure 7.5 

shows the scalograms illustrating the wavelet power spectra of the interferometric 

phase image (wrapped phase) of the ‘M4’ deformation model.  All scalograms 

revealed different scale components of this deformation signature.  However, each 

wavelet shows the power spectrum of the signal in a slightly different way. 

 

The horizontal plane on the scalogram shows the distribution of the wavelet power in 

the azimuth and range direction.  Choosing a particular scale or cross-section over 

the whole range of scales, the phase image can be analysed through studies of its 

wavelet power spectra.  For the highest scale values, the Halo wavelet (Figure 7.5a) 

shows distribution of the wavelet power spectrum in form of circular rings around 

the central kernel, which contains most of the total energy.  Moreover, the vertical 

cross-section reveals the energy over the whole range of scales forming characteristic 
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patterns.  The magnitude of the wavelet power can be related to the deformation 

signal and/or noise.  Furthermore, the patterns of the power spectra show 

discontinuities within the signal where the phase changes its value from -π to +π.  A 

similar distribution of the wavelet power spectra is shown by the Perrier and Paul 

wavelets Figure 7.5b and Figure 7.5c respectively.  However, at the highest scales 

both wavelets exhibit larger energy in the azimuth direction.  Figure 7.5d shows the 

power spectrum for the Poisson wavelet.  This is the worst wavelet power spectrum 

as its energy distribution is very limited, especially at the smallest scale values. 

 

Based on the initial assessment using criteria A and B, as well as the analysis of the 

wavelet power spectrum undertaken in the above section, the Halo wavelet has been 

chosen as the most suitable for the extended analysis of the interferometric phase 

image. 

 

7. 3 Extended Analysis of the Interferogram Using the Halo Wavelet 
The following analysis consists of three stages.  First, the scalograms of the phase 

images of the deformation models and their interferogram signatures are computed.  

Second, the representative horizontal cross-sections over the highest, medium and 

the smallest scale values for corresponding scalograms are analysed.  Finally, the 

most suitable scale is chosen and studied in detail.  All the analyses are performed on 

simulated and real interferometric phase images. 

 

7.3.1 Simulated Interferometric Phase Images 

Although, detailed analysis of the simulated phase images are demonstrated only for 

deformation model ‘M4’ and its interferogram signature ‘M4E’ the final conclusions 

are made based on analyses of all the chosen cases as shown in Figure 7.8 to Figure 

7.13.  Analysing the scalogram plots of the simulated deformation model ‘M4’ 

without noise (Figure 7.6, left-hand side), it appears that the wavelet power at the 

highest scale (1030 m) corresponds to the spatial extent of the model.  As the scales 

gradually decrease, the spectral energy forms into four elliptical strips. 
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M4 M4E 

 

Figure 7.6 Scalograms of the deformation model ‘M4’ (left-hand side) and its 
interferogram signature ‘M4E’ (right-hand side) indicating a series of cross- 
sections at different scale values using the Halo wavelet.  Horizontal scale bar shows 
the magnitude of the power. 
 

At an approximate scale of 180 m, these strips are very clearly formed and they 

correspond to the interferometric phase change from value -π to +π.  As the scales 

get smaller, the energy patterns disappear and their interpretation become impossible.  

The right-hand side of Figure 7.6 shows the scalograms and the cross-sections along 

the wavelet power spectrum of the deformation signature ‘M4E’.  The noise within 
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the interferogram disrupts the spectral energy, which does not form a regular shape.  

However, at the medium scales (110 to 150 m) the wavelet energy seems to 

correspond with the phase discontinuity.  Therefore, the following extended analysis 

of the interferometric phase image will focus on the wavelet energy related to the 

medium scales in particular.  Figure 7.7A shows the scalogram of the deformation 

model ‘M4’ and its interferogram signature ‘M4E’ (Figure 7.7A’).  The horizontal 

planes illustrate the wavelet power spectrum for the 150 m scale.  Figure 7.7B and B’ 

show the cross-sections over the scalograms in azimuth direction, while Figure 7.7C 

and C’ show the cross-sections along the corresponding wrapped phase 

interferograms.  The scalogram plots (A and A’) reveal the spatial distribution of the 

wavelet power.  A comparison of the corresponding spectral density can provide an 

indication of how the noise is affecting the signal.  Furthermore, the parts of the 

spectrum that are less affected by the noise can be identified and the corresponding 

scale values determined.  Such scales could be recognised as the most suitable for 

analysis of any other interferometric phase images. 

 

The wavelet power spectrum of the model ‘M4’ is almost twice as strong as its noisy 

interferogram signature ‘M4E’.  However, at some scales the same spectral features 

can be still recognised on both scalograms.  For the medium scales the wavelet 

energy seems to be less affected by the noise than for extremely long and short 

scales.  At the scale value of 150 m the wavelet energy forms four rings that in some 

parts can be recognised on the scalogram of phase image ‘M4E’ (Figure 7.7A’).  The 

cross-section in Figure 7.7B shows the vertical distribution of the wavelet energy of 

the model ‘M4’.  The high-energy values form into the two groups of spots (2 and 3).  

Since the deformation model is symmetrical its wavelet power spectrum inherited the 

same attribute.  Figure 7.7B’ shows the corresponding cross-section showing the 

vertical distribution of the wavelet energy of the deformation signature ‘M4E’.  The 

group of spots 2’ corresponds with the group 2.  The group of spots 3’, however, 

have different vertical distribution but they still can be recognised. 

 

The spectral features (2,2’ and 3,3’) are interpreted as related to the discontinuities 

within the interferometric phase image (phase changes from the +π to -π value and 

inversely). 
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M4 M4E 

Figure 7.7 The scalograms of the deformation model ‘M4’ representing two fringes 
(left-hand side) and its interferogram signature ‘M4E’ (right-hand side).  (A,A’) 
show horizontal cross-section for scale equal to 150 m, (B,B’) vertical cross-section 
along the Azimuth direction (Range = 600 m), and (C,C’) corresponding cross-
sections along the azimuth direction over the wrapped phase.  Numbers 1 to 4 
indicates spectral features.  The vertical axis illustrates different scale values, while 
the horizontal scale bar is the magnitude of the power. 
 

Furthermore, the largest concentration of wavelet energy (1) is observed in the centre 

of the cross-section (Figure 7.7B) that is slightly shifted (1’) on the scalogram of the 

deformation signature ‘M4E’.  An additional concentration of energy has been 

observed on the scalogram of the deformation signature ‘M4E’ indicated by the 

number 4’.  This is most likely due to the large concentration of the phase noise in 

the upper right corner of the deformation signature ‘M4E’ visible in Figure 7.2b. 
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Following are all the analysed scalograms of different deformation models varied in 

spatial extent, deformation magnitude and level of noise.  The parameters of the 

deformation models can be found in Table 6.1 and its interferometric signatures in 

Figures 6.4 and Figure 6.5.  All the analysed scalograms (Figure 7.7 to Figure 7.13) 

consist of six subfigures: A,A’ illustrating the vertical and horizontal cross-section 

over the scalogram, B,B’ show the vertical cross-section in details, and C,C’ 

illustrate the cross-section along the wrapped phase image. 

 

M2 M2B 

Figure 7.8 The scalograms of the deformation model ‘M2’ representing half of the 
fringe (left-hand side) and its interferogram signature ‘M2B’ (right-hand side).  The 
horizontal scale bar illustrates the magnitude of the wavelet power. 
 

The wavelet power spectrum illustrated in Figure 7.8 of the noise interferogram 

’M2B’, visible at the vertical cross-sections (A’ and B’), reveals the power of the 
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deformation signal and noise.  Both signals can be easily separated at the scale value 

equal to 310 m. 

 

M4 M4B 

Figure 7.9 The scalograms of the deformation model ‘M4’ representing two fringes 
(left-hand side) and its interferogram signature ‘M4B’ (right-hand side).  The 
horizontal scale bar illustrates the magnitude of the wavelet power. 
 

The wavelet transform of the interferogram with the same amount of noise as in 

‘M2B’ phase image in conjunction with higher deformation magnitude (two fringes) 

did not reveal any suitable information (Figure 7.9).  The spectral features visible at 

the horizontal (A’) and vertical (B’) cross-sections of the noisy phase image do not 

match to those of without noise.  Therefore the wavelet power spectrum of ‘M4B’ 

phase image is not useful. 
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M6 M6E 

Figure 7.10 The scalograms of the deformation model ‘M6’ representing four fringes 
(left-hand side) and its interferogram signature ‘M6E’ (right-hand side).  The 
horizontal scale bar illustrates the magnitude of the wavelet power. 
 

The high fringe density makes it difficult to resolve the discontinuities within the 

interferometric phase, which appears in the scalogram (Figure 7.10B) at the smallest 

scale values (80-40m).  However, this scale values usually correspond to noise.  Thus 

the phase discontinuity information can be damaged as seen in Figure 7.10 on the 

scalogram of interferogram ‘M6E’ (B’). 
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N2 N2B 

Figure 7.11 The scalograms of the deformation model ‘N2’ representing half of the 
fringe (left-hand side) and its interferogram signature ‘N2B’ (right-hand side).  The 
horizontal scale bar illustrates the magnitude of the wavelet power. 
 

When the spatial extent of the deformation signal gets smaller it does influence the 

wavelet analysis.  As compared to the analysed phase image’M2B’ (Figure 7.8) the 

same deformation magnitude and level of noise could not be resolved for 

deformation signature ‘N2B’ (Figure 7.11) using the wavelet.  The wavelet power 

spectra of deformation signal and noise are mixed. 
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N2 N2E 

Figure 7.12 The scalograms of the deformation model ‘N2’ representing half of the 
fringe (left-hand side) and its interferogram signature ‘N2E’ (right-hand side).  The 
horizontal scale bar illustrates the magnitude of the wavelet power. 
 

However, the lower level of noise has improved the analysis of wavelet transform of 

the deformation model ‘N2’ (Figure 7.12).  The scalograms (A’,B’) reveal the power 

spectra of deformation signal and noise.  Moreover, analysing the horizontal extent 

and location of the deformation power (the longest scale value 510 m) it is possible 

to resolve the spatial location and extent of the deformation signal. 
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N4 N4E 

Figure 7.13 The scalograms of the deformation model 'N4' representing two fringes 
(left-hand side) and its interferogram signature 'N4E' (right-hand side).  The 
horizontal scale bar illustrates the magnitude of the wavelet power. 
 

In summary, there is a balance between deformation magnitude (number of fringes) 

and phase noise that affects the performance of the wavelet technique and 

interpretation of its power spectrum.  If the number of fringes increases, their wavelet 

power spectrum interferes with the power of noise and therefore reduces the ability 

of the wavelet to resolve phase discontinuity and the spatial extent of deformation 

signal (e.g. Figure 7.13). 
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7.3.2 Real Interferometric Phase Image 

In this section the Halo wavelet is used to analyse the real interferometric phase 

images that have been extracted from the wrapped phase interferogram derived over 

the Silesia study area (Figure 4.20).  The selected images show four, two and one 

interferometric fringes in form of a circular and elliptical shape as can be seen on 

Figure 6.10a and Figure 7.14.  The interferometric fringes are due to the surface 

subsidence induced by underground mining activities.  Therefore, they represent a 

real deformation signal and level of noise. 
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(a) (b) 

Figure 7.14 Interferometric phase images extracted from wrapped phase 
interferogram over Silesia study area. (a) Represents two interferometric fringes and 
(b) one interferometric fringe (colour bars in radian). 
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Silesia 1 

Figure 7.15 The scalogram of the real phase image representing four fringes (Figure 
6.10.a) related to surface subsidence over Silesia study area.  The horizontal scale 
bar illustrates the magnitude of the wavelet power. 
 

Initially, the wavelet transform was applied to the phase image that reveals four 

deformation related fringes (Figure 6.10a).  Unfortunately the phase discontinuities 

as well as the spatial extent of the deformation signal could not be resolved by the 

wavelet power spectrum visible on both horizontal (Figure 7.15A) and vertical 

(Figure 7.15B) cross-sections of the scalogram.  This is due to high density of fringes 

and high level of noise preserved in the phase image.  This confirms the conclusions 

based on the similar study conducted with the simulated deformation model ‘M6’ 

(Figure 7.10), which also contains four interferometric fringes. 
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Silesia 2 

 

Figure 7.16 The scalogram of the real phase image representing two fringes (Figure 
7.14.a) related to surface subsidence over Silesia study area.  The horizontal scale 
bar illustrates the magnitude of the wavelet power. 
 

The next two scalograms (Figure 7.16 and Figure 7.17) reveal the wavelet power 

spectrum of the phase images that contain two and one interferometric fringes 

respectively.  Although, the number of fringes decreases, the phase discontinuities of 

the deformation signal and its spatial extent could not be resolved by the wavelet 

power spectrum visible on both horizontal and vertical cross-sections of the 

scalograms.  The excessive level of noise has destroyed the discontinuities’ patterns 

and the number of fringes cannot be established. 
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Silesia 3 

Figure 7.17 The scalogram of the real phase image representing one fringe (Figure 
7.14.b) related to surface subsidence over Silesia study area.  The horizontal scale 
bar illustrates the magnitude of the wavelet power. 
 

 

7. 4 Discussion 

The main aim of using the wavelet approach to analyse a wrapped phase image was 

to enhance small-scale deformation detection studies.  Therefore, the ability to 

determine phase discontinuities as well as the extent of a deformation signal and its 

magnitude in wavelet space has been examined.  The wavelet analysis of the 

interferometric phase images has shown some interesting results that are discussed in 

this section. 
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The Halo wavelet is able to determine discontinuities (phase change from -π to π 

value) within the wrapped phase interferogram.  It is possible by analysing the 

wavelet energy distribution of the interferogram phase image visible at the vertical 

and horizontal cross-sections over the scalogram.  At the medium and small-scale 

values the wavelet power spectrum corresponds directly to the spatial location of the 

signal thus, the observed phase discontinuities can be directly used to determine their 

spatial location.  However, it was found that the effectiveness of the wavelet 

transform to reveal phase discontinuities depends strongly on the density of fringes 

and the level of noise within the interferogram.  As the fringe density increases 

(deformation magnitude increases), the discontinuities within the phase image are 

resolved by medium to small-scale values of the wavelet function.  Thus, the wavelet 

energy patterns corresponding to the phase discontinuity within the interferogram 

containing a high number of fringes over a small spatial extent are very small and 

difficult to recognise (e.g. Figure 7.10).  Furthermore, the wavelet energy 

corresponding to the noise within the phase measurements is also revealed by the 

smallest scale values.  Therefore this will often interfere with the signs of the phase 

discontinuity (e.g. Figure 7.10 and Figure 7.15) and will reduce the wavelet ability to 

resolve phase discontinuities within the wrapped phase interferogram. 

 

Determination of the spatial extent of a deformation signal using wavelets can be 

problematic, as in principle the wavelet power spectrum at the longest scales does 

not correspond accurately to the spatial location of the signal.  However, as long as 

the deformation magnitude does not exceed a value equal to half of the wavelength 

the analyses of the scalogram cross-sections show that identification of the spatial 

extent of the deformation signal is possible by determining the spatial extent of the 

wavelet energy at its largest scale value.  The Halo wavelet was able to determine the 

spatial extent of the deformation signal (e.g. Figure 7.12) relatively easily as 

compared to the high magnitude deformation signal (e.g. Figure 7.10).  The 

increasing level of noise also affects the ability of the wavelet to resolve the spatial 

extent of the deformation.  For example, in the analysed model ‘M4E’ (Figure 7.7) 

the phase noise (speckle noise) has created a long wavelength phase trend in one part 

of the interferogram that has increased the wavelet energy for the longest scales.  

Therefore, it has damaged the information related to the spatial extent of the 

deformation signal. 
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Determination of the deformation magnitude using wavelets is complex, although, 

not impossible.  Studying the discontinuities’ patterns within the scalogram and 

hence identifying the phase discontinuities can help to establish the number of 

interferometric fringes.  Therefore, deformation magnitude can be determined simply 

by counting the number of fringes.  Unfortunately, a relationship between the 

wavelet energy and deformation magnitude for deformations smaller than half of the 

wavelength (one fringe) was not established.  For this reason, ultimately the use of 

wavelet analysis to detect the deformation magnitude is not recommended, as some 

part of the deformation signal cannot be resolved. 

 

In conclusion, transforming and analysing the wrapped phase image into the wavelet 

space have revealed the phase discontinuities and spatial extent of the deformation 

signal.  Unfortunately, increasing levels of noise and fringe density reduce the 

effectiveness and applicability of the wavelet approach.  Nevertheless, phase 

discontinuities and spatial extent detected by the wavelet transform are potentially a 

source of additional information helping to guide and improve the effectiveness of 

the phase unwrapping algorithms.  In addition, the wavelet transform can also be 

used to identify and filtered out the noise in the interferogram. 

 

7. 5 Summary 
The wavelet transform has been applied for advanced analysis of the interferometric 

phase image.  In order to choose the most suitable wavelet for the analysis, the 

selection criteria have been established.  Based on the criteria the Halo wavelet has 

been chosen for the extended analysis of the wrapped phase interferogram.  Using 

the Halo wavelet, the power spectrum of the simulated and real deformation models 

with and without noise, was derived.  Following, the scalogram plots have been 

constructed and analysed.  The wavelet transform was able to detect phase 

discontinuities and the extent of the deformation signal only under favourable 

conditions.  However, this preliminary study using a rather simple analysis has 

demonstrated that the wavelet technique may have the potential to enhance 

interferometric deformation detection analysis in certain situations.  Further 

development of this technique is a subject for future work. 
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8 CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

8. 1 Summary 
Surface deformation monitoring is a vital component of many geotechnical and 

engineering operations.  As the procedure provides geometrical description of 

deformations, it has become a useful tool in understanding the cause and progress of 

such distortions. 

 

The use of standard monitoring techniques, such as surveying and geotechnical 

methods, can provide accurate and precise information on the positions and 

velocities of discrete points on a deforming surface.  However, these techniques 

require expensive and highly specialised equipment.  In addition, the setup of the 

monitoring system and its operation can be an arduous task.  Thus, remote sensing 

techniques, such as satellite radar interferometry can provide a cheaper and less 

laborious alternative. 

 

The use of InSAR has been demonstrated for DEMs generation and surface 

deformation detection.  Although satellite radar interferometry applications are well 

established, the technique still suffers from problems due to noise associated with 

interferometric phase measurements and caused by a variety of decorrelation factors.  

Furthermore, the interferometry products contain biases due to satellite orbit error 

and atmospheric heterogeneity.  These factors dramatically reduce the capabilities of 

radar interferometry in many applications and, in particular, compromise detection 

and analysis of small-scale surface deformations.  Thus, improvement of the 

interferometry technique and the quality of its products is desirable to further 

enhance its capabilities.  Therefore, the aims of this research were to apply, test and 

enhance the radar interferometry technique for the determination of surface 

deformation.  The main focus was on small-scale surface deformations, such as 

surface subsidence associated with mining activities. 

 



Chapter 8: Conclusions and Recommendations 

 

158

In an effort to identify and address the problems associated with radar interferometry 

products, two different study areas (Leinster in central Western Australia and the 

Upper Silesia region in Poland) were chosen.  Satellite-borne radar data were 

obtained from ESA and processed to create a number of interferometry products, 

such as coherence maps, interferograms and differential interferograms.  These 

products were analysed for the positive detection of surface deformations as well as 

to validate theoretical aspects developed in this thesis. 

 

By studying the interferometry processing stages and analysing their outcomes, 

particular research problems were identified and improvements proposed.  The use of 

a new adaptive radar interferogram filter, which minimises the loss of signal while 

still reducing the level of noise, was recommended.  The validation of the filter 

algorithm was performed on simulated and real data sets.  In order to determine the 

sensitivity of radar interferometry, that is, the minimum and maximum detectable 

deformation gradient, a new functional model has also been developed and tested.  

Finally, the wavelet approach for the advanced analysis of the interferometric phase 

related to small-scale surface deformation detection was examined. 

 

8. 2 Research Outcomes 

8.2.1 Application of InSAR for Small-Scale Deformation Detection 

Satellite radar images acquired over two study areas were processed and analysed.  

However, for a direct assessment of the performance of InSAR in the detection of 

small-scale surface deformations, Silesia was selected as the more suitable.  The 

primary aim of applying radar interferometry over the Silesia site was to determine 

the possibility of locating and assessing the magnitude of small-scale surface 

subsidence due to underground mining activities.  Analysis of the resulting 

interferogram showed a number of locations where interferometric fringes, related to 

surface subsidence, occurred.  The horizontal size of the detected deformations 

varied from several hundreds metres to a few kilometres, and the vertical magnitude 

ranged from a few centimetres up to a few decimetres.  The circular or elliptical 

trough was found to be the most common shape of the deformations.  However, more 

complex shapes occurred in areas affected by a superposition of several subsidences.  
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The associated interferometric phase noise was found to be the major factor reducing 

the reliability of the interferometric data.  Thus, correct interpretation of the 

deformation signature was similarly compromised.  In addition, the limited 

resolution of interferometry data (20 x 20 m) significantly undermined the use of 

InSAR in small-scale surface deformation detection studies. 

 

The Leinster study area was recognised as highly stable.  Therefore, it was mainly 

used to develop the functional model for determining the minimum and maximum 

detectable deformation gradient.  However, the surface mine located in the centre of 

this study area has experienced some small-scale surface deformation at the crest of 

the open pit.  The location and geometric distribution of deformation are well 

documented by terrestrial surveying comparisons between these distinct techniques 

were intended.  However, poor archival data sets and the absence of new data 

prevented the validation of interferometry data against the findings of terrestrial 

surveying.  Therefore, for periodical deformation monitoring, the current operational 

status of the satellite radar system (ERS-2) is unacceptable as it failed to provide new 

SAR data when prompted.  Thus, in considering the application of radar 

interferometry for long-term deformation studies, it is recommended that the ESA 

SAR system be improved to ensure an uninterrupted supply of suitable data sets.  

Despite the fact that the only available data set did not reveal any deformation 

signatures around the investigation area, the analysis of the coherence map and 

differential interferogram did show some interesting results, which are listed below: 

 

• Simple land classification, based on the coherence map, was possible as a 

result of the radar’s ability to detect variations in soil moisture content. 

• Intensive mining development between image acquisitions damaged the 

coherence and created large phase variations over the mining site area. 

• Extreme influence of layover and shadow over open-cut mines and dumps 

would prevent deformation detection on steep slopes. 

• The differential interferogram revealed a systematic phase trend (long 

wavelength) along the imaging scene that was associated with the satellite 

orbit error. 
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8.2.2 Improved Adaptive Radar Interferogram Filter 

The interferometric phase filtering step was found to be an important determinant of 

the outcome of interferometry processing.  Although, as filtering reduces noise in the 

interferogram, it does not necessarily enhance or recover the signal.  This drawback 

was revealed by applying the Goldstein radar interferogram filter to the wrapped 

phase interferogram.  By subtracting the filtered from the unfiltered interferogram, a 

residual systematic phase offset appears, which reflects the loss of resolution in the 

filtered phase.  The magnitude of the offsets rises as the filter parameter alpha 

increases.  In addition, the largest offsets occurred in areas of large curvature, which 

consistently aligned themselves in the direction of concavity.  This phase offset 

reduces the magnitude of surface deformations and the heights of DEMs.  In this 

thesis an improved radar interferogram phase filter has been proposed.  This filter is 

based on a modification to the Goldstein filter and improves the quality of 

interferometry products.  This novel approach converts the Goldstein filter parameter 

alpha into a parameter that is dependent on coherence, so that incoherent areas are 

filtered more than coherent areas.  It has been shown that the new filter reduces 

phase offset as coherence increases.  Therefore, this approach adapts the filter to the 

wrapped phase interferogram more effectively by ensuring that areas characterised 

by high coherence are not over filtered.  Thus, it reduces the filter impact on the 

quality of DEMs and deformation maps.  It has been shown that by filtering the 

interferometric phase related to small-scale surface deformation using the new radar 

interferogram filter, the magnitude of deformation signal was increased up to 40% in 

comparison to Goldstein filter while still reducing the level of noise. 

 

8.2.3 New Functional Model for Determining Minimum and Maximum Detectable 

Deformation Gradient 

According to the definition of maximum detectable deformation gradient, radar 

interferometry can detect a wide range of deformation gradients.  However, radar 

interferometry suffers from the presence of noise in the interferogram phase 

measurement.  In an effort to improve the existing definition, a new methodology 

was developed that not only led to the extension of the existing definition of 

maximum detectable deformation gradient but also defined the minimum detectable 
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deformation gradient.  The resultant model includes the absolute value of coherence 

in its definition and therefore, describes the minimum and maximum detectable 

deformation gradient more realistically.  Although the proposed model is very 

subjective, its application can still be beneficial.  For example, it can be a valuable 

tool for the initial assessment of the suitability of radar interferometry for surface 

deformation detection.  Thus, the information derived from this model can serve as a 

platform on which decisions of whether to use satellite radar interferometry to study 

a given surface deformation are made.  This approach would be both cost- and time-

effective. 

 

8.2.4 Advanced Interferogram Analysis using a Wavelet Approach 

There are numerous wavelet functions that could be potentially used to analyse the 

interferometric phase image.  This study selected several continuous wavelet 

functions to test.  The Halo wavelet was chosen as the most suitable for advanced 

interferogram analysis.  The suitability of the wavelet was determined based on the 

fulfilment of certain selection criteria.  The analysis of the cross-sections over the 

wavelet scalogram revealed a phase discontinuity within the wrapped phase 

interferogram.  As the wavelet power spectrum corresponds directly to the spatial 

location of the signal, phase discontinuities can be used to determine the location and 

the number of interferometric fringes.  Furthermore, information related to spatial 

extent of the deformation signal was determined by the wavelet energy distribution at 

the longest scale values.  For deformation magnitude smaller than half of the 

wavelength the identification of the deformation extent was relatively easy.  

However, increasing level of noise and fringe density reduces the ability of wavelet 

to resolve phase discontinuity and the extent of the deformation signal. 

 

8. 3 Recommendations for Future Research 
There are many areas within radar interferometry that would benefit from continued 

research.  Based on the findings of this research, the following recommendations for 

future work are proposed. 
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The research conducted has investigated the suitability of satellite radar 

interferometry for small-scale surface deformation detection, for instance, surface 

subsidence due to mining activities.  As the studies show, there are limitations that 

have to be considered prior to the use of radar interferometry.  One of the major 

concerns is the limited spatial resolution of the system.  Therefore, hardware-based 

research that could improve the spatial resolution of interferometry products would 

be advantageous. 

 

As interferometry products suffer from the effects of decorrelations, filtering 

techniques can improve phase statistics and therefore, the quality of DEMs and 

deformation maps.  However, while filtering reduces noise, it does adversely affect 

the phase.  Therefore, this thesis proposed the use of a new adaptive radar 

interferogram filter, which is reliant on coherence information and acts to minimise 

the loss of signal while still reducing the level of noise.  The impact of the modified 

filter was demonstrated on both simulated and real data.  Further evaluation of the 

effectiveness of the filter by use of ground truthing is a recommended research topic 

for further studies. 

 

The methodology and functional model proposed in this research for the resolution 

of the minimum and maximum detectable deformation gradient, in terms of 

coherence, was developed for the ESA ERS-1/2 satellites.  The same approach could 

also be applied to other SAR systems, such as JERS-1 and RADARSAT.  Moreover, 

further studies could also produce a more general model for the establishment of the 

relationship between wavelength, pixel size and the coherence value. 

 

As prior establishment of the coherence value is necessary for the use of the 

proposed model additional research is proposed to evaluate the coherence value 

based on land properties. 

 

Finally, further investigation into the application of wavelet transforms to wrapped 

phase interferogram may enhance interferogram interpretation and even improve the 

capabilities of phase reconstruction.  Since phase noise is spatially non-

homogeneous, it damages only a part of the signal.  Thus, reconstruction of the 

interferometric phase in this affected region would be appropriate.  This would 
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significantly improve the robustness of the unwrapping algorithms and make 

automatic deformation detection possible.  Therefore, wavelets could enhance the 

applicability of radar interferometry for deformation detection studies.                       
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