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Abstract  

The interpretation of backscattered echoes collected by a broadband echosounder is a 

challenge due to the complicated dynamics of the acoustic scatterers, the surrounding 

environment and the complexity of the system. This thesis aims to address these 

challenges by examining four particular aspects: 1) calibration of echosounder for target 

strength measurements; 2) characterisation of the geometrical and directional properties 

of the transducer; 3) extraction of the target phase and calibration of the echosounder 

for the target phase measurements; and finally, 4) the application of the three methods 

to obtain the acoustic signatures of in-situ marine organisms. 

An algorithm was developed to calibrate the echosounder using the transducer system 

response as a function of frequency and the off-axis angle. The echosounder was 

calibrated for target strength by exclusively using the amplitude part of the system 

response. Whereas the same instrument was calibrated for the target phase by utilising 

the system response in the complex form. 

A series of experiments were conducted offshore in Hobart using the Simrad EK80 

scientific echosounder set to two transmission ramp settings' fast' and 'slow'. In 

accordance with a standard calibration set up, two spheres were used. Off-axis 

measurements were compensated using the system response calculated for the 

corresponding position. When compared to the compensation achieved with standard 

beam pattern model (modified Bessel function), the results exhibited a lower Root Mean 

Residual Error for both spheres at both ramps. As an advantage, the method did not 

need an evaluation of the effective beamwidth and took into account any variation from 

the nominal value. 

Later the optimum geometrical parameter (the ratio of the distance between two centres 

and the radius) and the directional parameters (beamwidth and the beam pattern) of the 

transducer were determined. The method used an inversion approach by minimising the 

sum of the square of the difference between the measured and the modelled beam 

pattern. Minor variation in the parameters was observed from the respective nominal 

value. The results also confirmed the assumption of the broadband transducer as a 

transducer of a constant geometrical parameter. 

Further, in a novel approach by using the complex system response, the broadband 
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echosounder was calibrated for the phase measurements. Three different variables were 

introduced to visualise the phase; absolute, differential and the residual phases. The 

frequency response of all the three-phase variables exhibited insensitivity to the target 

position within the acoustic beam and to the ramping of the transmit pulse. In spite of 

complications in signal processing, the differential and residual phase spectra agreed to 

the theoretically predicted value. This is significant as it confirms that the broadband 

echosounder can be confidently used to measure the target's phase response 

The research uses the data from the two scientific surveys conducted onboard the RV 

Investigator in the Great Australian Bight region and the Southern Ocean. During the 

investigations, a set of simultaneous acoustic and optics data were collected from the 

mesopelagic depths (~200 – 1000 m) of the regions. Exploiting the developed 

techniques, the frequency spectrum of the target strength and the residual phase of the 

in-situ targets were obtained. A unique 3D spatial transformation technique was 

designed to provide ground-truthing to the single targets detected on the echogram in 

the still image. It was a complicated procedure as it involved three different coordinate 

systems (echosounder, world and camera) and technical operations such as rotation, 

translation, and scaling. Multiple targets were successively matched to their concurrent 

image. Through examples, the acoustic signature of three optically verified organisms; a 

squid, fish and gas inclusion targets were drawn. 

The frequency response of the target strength and the residual phase of a spherical 

target was matched to the prediction, an inclusive numerical scattering model that 

predicted both the signal amplitude and phase. For a given set of parameters, the target 

strength-frequency response was matched to the measured value and for the same set 

of parameters, the residual phase spectra also matched to the predicted output. This 

result verified the concept of a target-induced phase distortion as a possible classifier 

and its potential application in the remote identification of marine organisms. 
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Chapter 1 

 

 

General Introduction 

 

Echosounders are instruments used to detect and locate echoes based on the principle 

of acoustic scattering. A basic echosounder comprises a transmitter, which feeds electric 

signals at a given frequency to a transducer that converts it to short bursts of sound, also 

known as pings. The acoustic waveforms propagate through the surrounding medium 

(water in this case) and undergo scattering from the objects present in the water. The 

backscattered echoes propagate to the receiver where they are converted back to 

electrical signals. They are then amplified by the receiver to compensate for the 

transmission loss and subsequently filtered, decimated and stored. The signals are then 

analysed to retrieve information about the scatterers such as location, size, material and 

even orientation. 

Since the late 1960s echosounders have been used as a non-invasive synoptic tool to 

remotely study the marine organisms (Barham, 1966; Batzler, & Barham, 1963; 

Fernandes et al., 2002). Acoustic scattering is a complex phenomenon strongly 

dependent on the scatterer’s physical and material properties, including its orientation 

and even behaviour (Foote, 1980; Martin Traykovski et al., 1998; McClatchie, Alsop, Ye, 

et al., 1996; Ona, 1990b; Simmonds, & MacLennan, 2005; Warren et al., 2002). Accurate 

interpretation of the backscattered echoes remains a challenge for the marine 

acousticians, especially in an open ocean environment with several biological and non-

biological acoustic sources. Conventionally single-frequency narrowband echosounders 

were used for biomass and abundance estimate for fishes (Ehrenberg, 1974; Foote et 

al., 1986). However, the interpretation of backscattered energy for characterisation 

remained ambiguous due to the variability in the material properties, size and shape of 

the organisms being studied (MacLennan, 1990). 
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The use of multiple frequency echosounders improved the scenario by providing 

additional frequencies for quantifying the scatterer size and distribution from the 

backscattered echo (Holliday et al., 1989; Kloser et al., 2002; Pieper et al., 1990). They 

were successful in classifying in case of significantly different organisms (such as a fish 

and fluid-filled organisms or benthic and planktonic shelled organisms) (Martin et al., 

1996; Stanton et al., 1996; Stanton et al., 2000). 

The application of multi-frequency echosounder for species classification was limited by 

the number of discrete single frequencies available to map the acoustic spectrum of 

single targets. In such a situation, the availability of a continuous wide frequency range 

would enable visualisation of the spectral response of the acoustic energy. Further, the 

variation of the backscattered acoustic energy with frequency could be directly linked to 

a single target’s characteristics, thus helping in their detection and classification. This is 

achieved through what is known as a broadband echosounder, which forms the subject 

of this thesis. 

Theoretically, a broadband acoustic signal refers to one with high energy distributed 

across a wide band of frequency. For the echosounder to be able to resolve two nearby 

targets, they must be separated by at the least spatial resolution (Simmonds, & 

MacLennan, 2005). This could be attained by emitting pulses of shorter duration, which 

would require high signal amplitude and hence high instantaneous power. This would 

require strong convertors or high power, which can be costly and at the same time be 

unsafe to use. An alternative option is to use a broadband echosounder which increases 

the frequency bandwidth by modulating the frequency of the waveforms, to produce a 

swept frequency burst, also known as ‘chirp’. 

A broadband echosounder comes with the advantage of wide frequency bandwidth, 

higher spatial resolution and even higher signal to noise ratio. To utilise the broadband 

echo-sounding technology to its full potential, it is important that efforts are focused on 

the development of new signal processing techniques, use of new acoustic identifiers 

and resolving practical challenges in the implementation. 

1.1 Remote sensing marine organisms (Micronekton) 

The mesopelagic region (~200 to 1000 m ) of the Great Australian Bight (Figure 2.7) and 

the Southern Ocean support a diverse range of micronekton (Figure 1.1 and Figure 1.2) 

(fishes, crustaceans, copepods, krill, squids) (Koslow et al., 1997; Williams, & Koslow, 
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1997; Young et al., 1996). Often perceived as economically and socially less significant, 

these ubiquitous animals form a critical constituent of the marine ecosystem. They are a 

crucial part of the food web dynamics playing an important role in the population 

distribution of the top-level pelagic predators (such as Juvenile southern bluefin tuna, 

turtles, fur seal and marine mammals) (Ward et al., 2008). Distributions of these animals 

are inherently complex, inconsistent and continuously variable under the influence of 

physical oceanographic processes (Béhagle et al., 2016; Sinclair, & Stabeno, 2002). 

Understanding the distribution pattern, biomass and the critical ecological process of this 

enigmatic community can provide a better understanding for future sustainable 

management of this resource. However, the dynamics of this community remains poorly 

understood due to a lack of appropriate sensors, unpredictable environmental conditions 

and selectivity of different sampling methods (acoustic, optics and nets). 

 

Figure 1.1: A selection of samples from net catches collected from the mesopelagic depth of the 
Great Australian Bight region. (Photographs provided by Rudy Kloser). 
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Figure 1.2: A mix of mesopelagic and shallow water fish species (top) and crustacean (below) 
collected from the mesopelagic region. (Photo provided by RV Investigator). 

 

The acoustic scattering method plays an important role in remote sensing and estimating 

the abundance and distribution of these organisms (Benoit-Bird, & Au, 2001; Kloser et 

al., 2002; Koslow et al., 1997; McClatchie, & Dunford, 2003). The unique ability of a 

broadband echosounder to preserve the spectral information of acoustic targets across 

a wide frequency bandwidth has opened new opportunities in the remote detection and 

characterisation of the micronekton community. Combining the broadband acoustic 

sensing technology with advanced operational platforms allows measuring the frequency 
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dependence of scattering from organisms to highest spatial resolution thereby assisting 

in species identification and classification (Dalen et al., 2003; Godø et al., 2014; Kloser, 

1996; Verma et al., 2017). 

1.2 Motivation 

It is hypothesised that the commercial availability of broadband echosounders (for 

example, the Simrad EK80) could lead to a paradigm shift in the acoustic surveying 

technique. The need for unbiased information for identification and classification of 

marine organisms is driving research in the broadband acoustic method. Many new 

algorithms and practices are being applied to assist in the implementation of this new 

technology (Briseño-Avena et al., 2015; Islas-Cital et al., 2011a; Lavery et al., 2010; 

Stanton, & Chu, 2008). It is important to develop systematic processing and analysis 

techniques to provide a precise estimation of the scatter properties and reduce 

uncertainties. This requires the accurate calibration of the echosounder, characterisation 

of the transducer’s parameters, use of additional acoustic identifiers and sufficient 

verification of the sampled organisms. 

1.3 Aim of the thesis  

The specific goals of the thesis were: 

1. To develop an alternative technique to calibrate a broadband echosounder for 

measuring target strength as a function of frequency. 

2. To determine the effective beamwidth of a transducer by using a measurement-

model approach. 

3.  To develop appropriate indices to visualise the target induced phase distortion 

in the backscattered echo. 

4. Calibrate the echosounder for phase measurement and use it to extract the 

frequency response of the target phase. 

5. Demonstrate the application of the technique through the derivation of the in situ 

target strength of different organisms from the Great Australian Bight region. 

6. Derive the frequency response of in situ target strength and phase for example 

targets of different species of micronekton from the Southern Ocean region. 
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7. Develop a technique to verify the presence of acoustic targets on the concurrent 

still image.  

8. Demonstrate the reliability of target phase measurement by inverting the target 

strength and phase measured for an optically verified target. 

1.4 Thesis outline  

This is a hybrid thesis where each work is presented as an independent chapter with a 

separate introduction, method and discussion section. Research method and analyses 

relevant to each chapter are described to detail within the chapters. Efforts have been 

made to reduce the overlap between the introduction and method of each chapter. 

Chapter 2 provides an overview of the different terminologies, methodologies, acoustic 

variables and processes of a broadband echosounder relevant to the research. The 

experiments and surveys undertaken as a part of the research are also briefly described.  

In Chapter 3, a technique to extract the frequency response of the target strength using 

the transducer system response is presented. The technique was applied to calibrate a 

broadband echosounder to determine the on-axis sensitivity and achieve directivity 

compensation for off-axis angles. The feasibility of the technique is established through 

a set of acoustic backscattered signals from two standard sphere targets at two 

amplitude ramp settings. 

In Chapter 4, the system response function is used to derive the effective geometrical 

and directional parameters of a split beam broadband transducer. An inversion approach 

was used to test the frequency dependency of the parameters. The hypothesis of the 

effective radius of a broadband transducer being constant across the frequency band 

was also tested. 

Chapter 5 investigates the target induced phase distortion in the backscattered signal as 

a potential classifier; an algorithm is developed to derive the frequency response of the 

target phase. The concept is based on the use of both the system response and 

backscattered echoes in complex form. Three variables are used to visualise the signal 

phase, absolute, differential and residual phase. The developed technique was applied 

to calibrate the broadband echosounder for phase measurement for the two types of 

transmitting signals at all positions. 
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Chapter 6 is the preliminary application of the technique developed in Chapter 3 to derive 

the in situ target strength from the mesopelagic region of the Great Australian Bight. As 

examples, the frequency spectra of the target strength of two single targets are shown. 

The measured spectra are compared to the output of numerical acoustic scattering 

models. Some of the mathematical notations used in the chapter are different from other 

chapters as it was published in the first year of research (Verma et al., 2017). 

Chapter 7 reports a combined acoustic-optics survey that was carried out in the 

mesopelagic region of the Southern Ocean. A technique is developed to visualise a 

single acoustic target on an echogram and on the concurrent still image. By using this 

transformation technique, the presence of several single targets such as squids, 

mesopelagic fishes and bubble-like targets on the echogram were confirmed. The 

frequency response of the target strength and residual phase of several targets were 

obtained. A numerical acoustic scattering model for a gas-filled sphere is developed to 

predict both the phase and target strength. The target strength and residual phase 

measurements of three resonant targets found at the different depths were fitted to the 

output of the models. This shows the ability of the phase to be used as an acoustic 

classifier. 

Chapter 8 concludes the thesis with a general discussion of the significant findings, 

limitations, and recommendations for future research. 



   8 
 

 
 

Chapter 2 

 

 

Research Background  

 

In this chapter, a brief introduction to the aspects of the broadband echosounder relevant 

to the thesis is given. For in-depth technical information of the acoustic scattering 

techniques, readers are referred to Medwin, and Clay (1998) and Simmonds, and 

MacLennan (2005) for implementation in fisheries. For technically comprehensive 

coverage of broadband methods in fisheries science, readers are referred to Demer et 

al. (2017). 
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2.1 Broadband echosounder 

A broadband echosounder (such as Simrad EK80) transmits frequency-modulated 

waveforms instead of single-frequency waves like a conventional narrowband 

echosounder. This allows the target's scattering characteristics to be measured as a 

function of frequency. The backscattered echoes from consecutive pings are pulse 

compressed in time. The time-compressed pings are stacked to generate a two-

dimensional range and time graph referred to as pulse-compressed echogram (Figure 

2.1). 

 

Figure 2.1: An example of pulse compressed echogram illustrating a single target enclosed in the 
red box. 

2.1.1 Signal processing terminologies 

2.1.1.1 Frequency modulated waveforms 

A narrowband echosounder transmits a sound pulse or ping. This ping consists of 

several cycles at a constant frequency and amplitude. The frequency spread of this 

signal is narrow with most energy concentrated at the operating frequency. A broadband 

echosounder transmits a chirp or linear frequency modulated (LFM) signal. In an LFM 
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signal, the instantaneous frequency varies linearly with the time (Ehrenberg, & 

Torkelson, 2000). The wave has a broader continuous frequency bandwidth, ∆𝑓 (Hz) 

spread on both sides of the centre frequency, 𝑓𝑐 (Hz) covering a continuous range of 

frequency. The simulation of the narrowband and LFM waves in the time domain and 

their power spectra are shown in Figure 2.2. 

 

Figure 2.2: Simulated single frequency narrowband (left) and linear frequency modulated transmit 
pulses (right) in the time domain (top) and their power spectra in the frequency domain (bottom). 
The frequency of the narrowband wave is 127 kHz, and the frequency range of the LFM wave is 
from 95 kHz to 160 kHz. 

 

The power spectrum in the frequency domain is the Fourier transform of the time-domain 

autocorrelation function. 

2.1.1.2 Pulse compression 

Pulse compression (PC) (Chu, & Stanton, 1998; Turin, 1960) is a post-processing 

technique applied to increase the spatial resolution and the signal to noise ratio even at 

low transmit power. This is obtained by correlating the received signal with an 

appropriate match filter; which is a replica of the frequency-modulated transmitted pulse 
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in this case. Pulse compression can be achieved either in the time domain by cross-

correlating the received signal with a replica of the transmit burst, or in the frequency 

domain by multiplying the Fourier transform of the received signal by the complex 

conjugate of the Fourier transform of the transmit signal and then inverse Fourier 

transforming the result. Unlike a narrowband signal, the range resolution of a pulse 

compressed signal is not dependent on the time duration but is inversely proportional to 

the frequency bandwidth (Burdic, 1991). Figure 2.3 shows an echo backscattered from 

a target before and after pulse compression. 

 

Figure 2.3: A signal backscattered from a sphere target before (black line) and after (blue line) 
pulse compression plotted with the range. The target here is a tungsten carbide (6% cobalt binder) 
sphere of diameter 38.1 mm at range 15 m. The frequency bandwidth of the echosounder is 95 
kHz to 160 kHz, and the pulse length of 0.512 ms. 

 

On the downside, a compressed pulse contains responses at other times and ranges 

known as side lobes. The side lobes can interfere with the signal analysis. One of the 

methods to limit the side lobe is by windowing or gating the received signal (Stanton, & 

Chu, 2008). The choice of window length and window type could affect the frequency 

spectrum. 

2.1.1.3 Beamwidth and beam pattern 

When an acoustic waveform is transmitted, the amplitude of the signal is maximum 

(usually at the centre on-axis) and decreases sideways off-axis. The beamwidth, 𝜃−3𝑑𝐵 
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(°) is defined as the angular separation between opposite points off-axis at which the 

transmit signal amplitude is 3 dB lower than at the on-axis centre of the beam (Urick, 

1983). As a result of the acoustic reciprocity principle (Urick, 1983), the receive sensitivity 

will also be 3 dB lower at these points than at the beam centre, so backscattered signals 

from a target will appear 6 dB lower than from the same target at the beam centre. 𝜃−3𝑑𝐵 

of a transducer is proportional to the ratio of the acoustic wavelength to the transducer 

diameter. So the 𝜃−3𝑑𝐵 of a broadband echosounder varies with frequency. For lower 

frequencies, the energy is spread over a larger area compared to the high-frequency 

component, where it is concentrated. The beam pattern, 𝐵(𝑓, 𝜃) is the ratio of the 

transmitted acoustic intensity at an angle and frequency to its maximum value at the 

same frequency. An example of the beam pattern of a broadband circular transducer 

(Simrad ES70-18CD) at three different frequencies of 55 kHz, 70 kHz and 90 kHz is 

shown in Figure 2.4. The beamwidth at the nominal central frequency 70 kHz is 18°. 

 

Figure 2.4: The beam pattern of a broadband circular transducer (Simrad ES70-18CD ) at three 
different frequencies 55 kHz (black), 70 kHz (blue) and 90 kHz (red). The beamwidth at the 
nominal central frequency 70 kHz is 18°. 

 

2.1.1.4 Target strength estimate 

In the far-field, the backscattered energy received from a signal target by the transceiver 

can be characterised as the target strength, 𝑇𝑆 (dB re 1m2). Established as an index in 

fisheries acoustics (Midttun, 1984), 𝑇𝑆 is the logarithmic expression of the backscattering 

amplitude (Medwin, & Clay, 1998). As elaborated in Foote (1991c) 𝑇𝑆 of single targets 

(fish, zooplankton or micronekton) can be estimated in either (1) in-situ or (2) ex-situ 

environment. 
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In ex-situ methods, organisms are removed from their natural environment and retained 

in a controlled condition (tethered (Midttun, 1984; Nakken, & Olsen, 1977) or caged 

(Foote et al., 1986)). While ex-situ measurements have generated valid results 

comparable to outputs of numerical models (Foote, 1983), the effects of confinement on 

the functioning and physiological condition of the organism remain mostly undetermined. 

In-situ 𝑇𝑆 measurements are undertaken in the natural environment of the organisms 

and include direct and indirect methods. Direct in-situ measurements require single 

resolved targets. The common practice was the use of dual-beam (Ehrenberg, 1974) or 

split-beam echosounder (Ehrenberg, & Torkelson, 1996; Foote et al., 1986). Since its 

development in the early 1980s, several researchers have used the split beam method 

for determination of the 𝑇𝑆 (Bodholt, & Solli, 1992; Didrikas, & Hansson, 2004). Usually, 

single or a combination of split-beam echosounder (multi-frequency) are used to 

measure the target strength. Use of multi-frequency echosounders provides a spectrum 

of discrete frequencies to map the TS (Conti et al., 2005; Holliday et al., 1989). 

Combining echosounder with a camera can improve accuracy, as it can verify the target 

position and the ensonified species. Several types of research have reported the use of 

single and stereo vision cameras with the echosounders (Han et al., 2010; Kloser et al., 

2016; Lundgren, & Nielsen, 2008; Sawada et al., 2009; Takahashi et al., 2004). 

𝑇𝑆(𝑓) measurements are dependent on the organism’s orientation (Lee et al., 2012; 

McGehee et al., 1998; Warren et al., 2002), anatomical and morphological structure 

(McCartney, & Stubbs, 1971; McClatchie, Alsop, & Coombs, 1996), material properties 

(Chu et al., 1993) and their physiological condition (Ona, 1990b). Invasive and non-

invasive techniques are used to determine these properties. Recent years have seen an 

increase in the use of advanced methods such as soft x-rays (Sawada et al., 1999), and 

MRI scans (Peña, & Foote, 2008) to determine the physical and morphological properties 

up to mm resolution. 

Since the 2000s, there has been an increase in the use of broadband (single beam and 

split beam) echosounders for remote sensing. The wide frequency bandwidth enables 

the extraction of the frequency spectrum of the 𝑇𝑆(𝑓) (Bassett et al., 2017; Demer, & 

Conti, 2003; Verma et al., 2017). Also, the signal pulse compression increases the ability 

to resolve single targets (Chu, & Stanton, 1998), and the high signal to noise ratio allows 

enhanced detection of backscattered echoes from a single target. It is thus hypothesised 

that the broadband echosounder would enhance the capability of acoustic techniques to 
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obtain in-situ single target 𝑇𝑆(𝑓) measurements for classification of marine organisms. 

Undertaking reliable 𝑇𝑆(𝑓) in –situ measurement with broadband echosounder relies on 

the calibration and characterisation of the instrument, and accurate beam pattern 

compensation. 

2.1.1.5 Equivalent angle 

The equivalent beam angle 𝜓, (sr) is defined as the solid angle at the apex of the conical 

beam that produces the same energy as that of the actual transducer (Urick, 1983). The 

equivalent angle is used to derive the density of scatterers and estimate biomass 

estimating the fish density, biomass and abundance estimates and hence requires 

accurate measurement made after mounting the transducer. It is not required for 

estimates of target strength of individual targets. 

2.1.2 Research challenges  

Broadband echo sounding technology is being integrated into ecosystem acoustics for 

their identification, classification and detection of marine organisms. Many research 

studies imply that broadband echosounders could serve as an improved non-invasive 

remote sensing tool as compared to narrowband echosounders. The last two decades 

have witnessed several research studies directed to develop signal processing 

methodologies, calibration procedures and conduct in-situ surveys with the new tool.  

Some of the research areas and challenges are: 

1. Phase as an acoustic identifier. 

2. Calibration for phase and amplitude measurements. 

3. Characterisation of transducer  

4. Inclusion of phase in numerical acoustic scattering models 

2.1.2.1 Phase as an acoustic identifier 

Target-induced phase distortion in the backscattered signal contains further clues to a 

target’s morphological and material characteristics, which can prove beneficial in remote 

acoustic identification. However, conventional acoustic analyses are typically limited to 

the use of the magnitude of the backscattered signal, ignoring the phase part (Medwin, 

& Clay, 1998). 
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It is speculated that using the target phase as an additional acoustic descriptor may 

assist in the characterisation of acoustically detectable marine organisms (Atkins et al., 

2007; Barr, & Coombs, 2005; Braithwaite, 1973). However, limited literature has been 

published on the application of phase for detection and identification of marine biota. 

Phase suffers from uncertainties owning to the range accumulation effect, low signal to 

noise ratio, and frequency resolution which hinders obtaining appropriate quantitative 

estimates. Several methods have been developed to reduce the sources of ambiguities 

such as the phase gradient or rate of change of phase (Barr, & Coombs, 2005; Yen et 

al., 1990), gross phase shifts (Bolus et al., 1982) and phase differences (Yen et al., 

1990). These methods have limitations owning to their usage and derivation. For reliable 

interpretation, it is important that suitable techniques are established to visualise the 

frequency-dependent phase. 

2.1.2.2 Calibration for phase and amplitude measurements 

Calibration of an instrument is essential for performing quantitative analysis. The 

standard target calibration experiment has been proposed to calibrate a broadband 

echosounder (Demer et al., 2015). The method involves using a standard sphere target 

of a known response and comparing the frequency response of the on-axis sensitivity 

with the theoretical response (Foote, & MacLennan, 1984). Calibration of broadband 

echosounders draws considerable research interest due to its inherent complexities such 

as the frequency dependence of transducer beam patterns and environmental 

parameters (Lavery et al., 2010), resonance effects of calibration spheres (Stanton, & 

Chu, 2008), and anomalies in the phase angles (Islas-Cital et al., 2011a). 

For an in situ application, a system must be calibrated during the survey to account for 

the surrounding environmental variables (Demer, & Renfree, 2008) and even any 

changes in the instrument’s sensitivity (Jech, Chu, et al., 2003). Also, the changes in the 

transducers mounts from the laboratory setup to open ocean can increase the risk of 

beam pattern deviation and hence, the system’s response (Simmonds, 1984). A 

broadband echosounder requires a calibration technique developed specifically to cover 

the entire frequency bandwidth and account for the frequency dependence of the 

transducer’s beam pattern. 

The constructive and destructive interference of the scattered signals from the different 

interfaces of the calibration spheres leads to sharp fluctuations at specific frequencies, 

which introduces uncertainties in calibration at these frequency regions (MacLennan, 
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1981). While a pragmatic approach of partial wave analysis can resolve the frequency 

dependence (Stanton, & Chu, 2008), a logistically complicated but robust approach using 

multiple calibration spheres (Foote, 2000; Foote, 2007a; Lavery et al., 2017) of different 

sizes are also useful to mitigate resonance effects. 

Successful real-world implementation of the target phase requires that broadband 

echosounders are calibrated for phase measurements (Barr, & Coombs, 2005). Islas-

Cital et al. (2011a) conducted calibration with broadband sonar. These experiments on 

custom made sonar system generated good agreement between the theoretical and 

experimental phase values. Given the commercial availability of Simrad EK80 

echosounder, a method similar to that used for amplitude calibration, that accounts for 

the transducer directivity and effect of amplitude ramping would prove beneficial for 

scientific studies. 

2.1.2.3 Characterisation of transducer  

A split-beam broadband transducer is an arrangement of several individual piezo-

ceramic elements (Wilson, 1988) to obtain a desired acoustic field and directivity across 

the frequency range. It is commonly made up of four quadrants that are simultaneously 

used for transmission (Ehrenberg, 1983; Stansfield, & Elliott, 2017). This allows finding 

the target positions by measuring the phase difference between the signals received by 

opposite quadrants. Most of the transducers come with a set of nominal geometrical 

(transducer radius) and directional parameters (beamwidth and beam pattern) provided 

by the manufactures (Bodholt, 2002). 

Numerous factors may contribute to a modification in the transducer functioning from the 

nominal value. Internal factors such as the instrument sensitivity (Islas-Cital et al., 2010), 

design and electronics (Jech, Foote, et al., 2003), ageing, and hardware malfunctioning 

(Knudsen, 2009) may modify the transducer performance. External factors such as the 

mounting arrangement (Knudsen, 2009), nonlinear sound propagation (Tichy et al., 

2003) and environmental parameters (temperature, salinity, pressure and depth) (Dalen, 

& Bodholt, 1991; Demer, & Renfree, 2008; Kloser, 1996) are known to interfere with the 

transducer output. Independent evaluation of the transducer parameters is needed to 

obtain accurate verifiable information. 

Several studies have measured the effective beamwidth (Degnbol, 1988) and 

consequently, the equivalent angles (Reynisson, 1998; Simmonds, 1984) for 

narrowband echosounders at a single frequency. The wide frequency bandwidth of a 
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broadband echosounder complicates the process, and consequently, the possibility of 

the parameters having a frequency dependence needs to be assessed. Moreover, it is 

usually hypothesised that in spite of several elements, the transducer behaves like a 

circular piston of constant radius. Therefore, it is essential that a characterisation 

technique is formulated that can derive the effective parameters, verify the fixed 

transducer radius and probe the frequency dependence of the parameters. 

2.1.2.4 Inclusion of phase in numerical acoustic scattering models 

Prediction of acoustic backscattering from marine organisms using numerical models 

backscatter has been in practice in fisheries acoustic research since the late 1950s 

(Anderson, 1950). Measurements are matched to the backscattering prediction made by 

approximating the organism as a simple geometric structure such as a sphere 

(Anderson, 1950; Love, 1978b), cylinder (Stanton, 1989; Stanton et al., 1993) or a prolate 

spheroid (Furusawa, 1988; Ye, & Hoskinson, 1998) with single or variable material 

properties. However, numerical acoustic scattering models report the scattering 

amplitude only (Jech et al., 2015; Stanton et al., 1996). 

To establish the target phase as a reliable acoustic index it is important that 

measurements from live organisms are matched to the predicted output of the 

appropriate numerical acoustic scattering model. It would be worthwhile to include the 

phase into these mathematical scattering models and compare the obtained phase 

spectrum with the model output. 

2.2 Experiments and surveys 

Three sets of data were used for the thesis. The measurement procedures are outlined 

in detail in each chapter. The following section provides a brief outline  

2.2.1 The calibration experiment 

The first set comprises of data collected from a series of experiments conducted from 5th 

to 13th August 2015 in the estuary of Derwent River in Hobart (Figure 2.5). A scientific 

broadband echosounder, Simrad EK80, with split-beam transducer (ES120 (WBT 

536012), was calibrated across the frequency range 95 – 160 kHz. Two standard target 

spheres were used, and backscattered echoes recorded with different settings and 

configurations such as pulse length, range and ramping. Chapter 3, Chapter 4 and 

Chapter 5 are based on the data collected during this experiment. 
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Figure 2.5: An illustration of the experiment set up. 

2.2.2 The Great Australian Bight region 

A multidisciplinary scientific survey was conducted in the Great Australian Bight region 

on board the RV Investigator from 30th November to 22nd December 2015. The voyage 

was part of the Great Australian Bight Research Program whose overarching goal was 

to understand the environmental, economic and social structure of the region (GABRP, 

2013). The Instrumented Corer Platform (ICP), a custom-designed depth-profiling 

platform (Figure 2.6) was configured with two broadband echosounders (Simrad EK80) 

and ancillary sensors (cameras, pressure sensors and CTD) (Sherlock et al., 2014). The 

whole set up was deployed to depths of 600 – 1000 m at several locations (Figure 2.7). 
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Figure 2.6: The Instrumented Corer Platform (ICP) ready to be deployed. 

 

High-frequency broadband acoustic recordings were collected from deep mesopelagic 

habitat to characterise the organisms distributed in the region. The CTD and other 

ancillary sensors provided the physical environment data such as conductivity, 

temperature, density, roll and pitch along the depth track. These datasets form the basis 

for chapter 6. Additional depth stratified net samples were collected from nearby 

locations using a MID water Opening and Closing (MIDOC) net (Kloser et al., 2011); and 

optical images of the water column were obtained using optical sensors mounted on the 

AOS probe. The catch provided a glimpse of the mesopelagic habitat. However, these 

were not coincident with the acoustic data collection. 
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Figure 2.7: A map of the Great Australian Bight region with the red points indicating the locations 
of data collection. 

2.2.3 The Southern Ocean region 

Opportunistic acoustic-optics samples were collected as a part of the IMOS field survey 

within transects of the Southern Ocean. Acoustic-optics samples were recorded from the 

mesopelagic depth using a depth-profiling platform. The Profiling Langrangian Acoustic 

Optical System (PLAOS) is a custom-designed platform developed by CSIRO based on 

previous research (Kloser et al., 2016; Marouchos et al., 2016). The framework consists 

of a cylindrical steel frame with a rotatable plate at the bottom housing the optical 

sensors, acoustics transducers, pre-amplifiers, transmitters, CTD and a monitoring 

frame (Figure 2.8). 
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Figure 2.8: A Profiling Langrangian Acoustic Optical System ready to be deployed. 

 

PLAOS was configured with two broadband split-beam transducers, one digital video, 

and two single-lens cameras to provide synchronised still images, video and acoustic 

recordings from the water column. Ancillary sensors were attached to sense the motion 

of the whole system and surrounding environmental conditions. Chapter 7 is based on 

the dataset recorded from this survey. 
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Chapter 3 

 

 

Calibration and Compensation of Off-

axis Measurements of a Broadband 

Echosounder using the System 

Response 

 

A technique is developed for the absolute calibration and directivity compensation of 

broadband echosounders. The method is based on the use of the frequency response 

of the system’s combined transmit/receive function (the system response) at the on-axis 

and off-axis positions within the acoustic beam. The technique is applied to calibrate a 

Simrad EK80 scientific broadband echosounder over a frequency range of 95 kHz to 160 

kHz. The performance of the method was studied for both “fast” and “slow” ramp transmit 

pulses. The experimental investigation supported the calibration and compensation 

theory. The results were compared to the directivity compensation achieved with the 

modified Bessel function for the same set of data. The method is explicitly developed to 

cover the wide bandwidth of a broadband echosounder and does not require estimation 

of the variation of the transducer’s effective beamwidth with frequency.
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3.1 Introduction 

There has been an increase in the use of broadband echosounders for discrimination 

(Bassett et al., 2017), classification and characterisation (Jech et al., 2017; Lavery et al., 

2007; Lee, & Stanton, 2015; Reeder et al., 2004) of marine organisms. Obtaining 

accurate acoustic quantitative estimates for input to the prediction of marine ecosystem 

dynamics (Handegard et al., 2013) and sustainable management of resources (Pikitch 

et al., 2004) requires accurate calibration of the echosounder. In a dynamic environment, 

it is important that the calibration accounts for the effects of mounting (Simmonds, 1984), 

ship motion, environment (Brierley et al., 1998; Demer, & Renfree, 2008) and the 

instrument sensitivity (Jech, Foote, et al., 2003). A broadband echosounder transmits 

frequency modulated (FM) waveforms or ‘chirp’ signals. The FM waveforms can 

measure the scattering response as a function of frequency from which potentially useful 

information can be extracted (Holliday, 1972; Stanton, & Chu, 2008; Zakharia et al., 

1996). However, calibration of the instrument across the broad bandwidth is complicated 

by the frequency dependence of the beam pattern (Lavery et al., 2010) and sensitivity to 

resonance induced peaks and nulls in the backscattered amplitude (Stanton, & Chu, 

2008). Thus, a calibration technique specifically developed to cover a wide frequency 

range is required. 

Calibration of a split-beam transducer should account for, the on-axis sensitivity and the 

directivity compensation for measurements with targets situated away from the beam 

axis (Demer et al., 2015; MacLennan, & Svellingen, 1986). Usually, the standard 

calibration method used for the narrowband echosounders is extended to cover the 

broadband range with careful consideration of the sources of uncertainties (Demer et al., 

2015). The on-axis level is derived by comparing the measured and the theoretically 

modelled response of a standard target aligned at the centre of the acoustic beam (Foote 

et al., 1987; MacLennan, 1981). For broad bandwidth single and split-beam transducers 

(Lavery et al., 2017), several approaches have been used to find the on-axis sensitivity, 

using a single sphere (Stanton, & Chu, 2008) or multiple spheres (Foote, 2007b) in the 

near field (Chu, & Eastland, 2015) or the far-field (Islas-Cital et al., 2011a). 

For a constant-radius broadband transducer, the beam pattern is a function of the 

frequency. As a result, the higher frequency components of the FM pulse have a 

narrower angle range than the lower frequency components. The backscattered signals 

from the off-axis target require appropriate correction for the effect of the transducer 
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directivity, which is usually achieved with mathematical beam pattern models (Urick, 

1983). The beamwidth, 𝜃−3𝑑𝐵 (°) at a particular frequency is determined by moving a 

standard target in all directions and recording the backscattered amplitude (Ona, 1990a). 

The point with the maximum backscattered amplitude is the on-axis. The responses from 

different positions are fitted with a best-fit polynomial. The angle between -3dB points on 

two orthogonal directions through the on-axis quantifies 𝜃−3𝑑𝐵(Simmonds, 1984). This 

technique provides the beamwidth only at a single frequency that is sufficient for a 

narrowband system. A broadband system will require the beamwidth to be estimated for 

each frequency component, which is logistically arduous if carried out one frequency at 

a time. An alternative would be to use a technique for directivity compensation, which is 

independent of explicit knowledge of the beamwidth. 

For an electroacoustic system, the transfer function defines the output of the system for 

a given input, summing up all the dynamic processes, including the transmit/receive 

components and electromechanical properties. The transfer function for an echosounder 

can be quantified by using the signal received from a known reference target due to a 

known transmit signal (Hickling, 1962). The transfer function makes up the entire 

transmit, propagation, scattering, propagation, receive and their combination processes 

as shown in Figure 3.1. 

 

Figure 3.1: A block diagram illustrating all the components involved in the conversion from the 
transmit signal to the received signal. 

 

The transfer function of the whole process is the sum of three individual transfer 

functions, the system response, the backscattering response and the response of 

propagation. The system response is the inclusive response of the transmitter, 

transducer and the receiver shown as block 1, 2, 6 and 7 in the figure. Once the system 

response of a system is known, it can easily be used for the calculation of on-axis 

sensitivity (MacLennan, 1990; Vagle et al., 1996). Given that the system response varies 

with the frequency and the position of the reference target, it can, in principle, be utilised 

for directivity compensation, as demonstrated in this study. 

This study uses the two-way combined transmit/receive function to calibrate and to 
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compensate off-axis measurements for the transducer directivity. To include off-axis 

angles within the acoustic beam, the combined transmit and receive or the system 

response of the transducer, 𝐻(𝑓) is modified to an angle-dependent system response 

function 𝐻(𝑓, 𝜃). The application is demonstrated through a calibration experiment using 

standard spheres as targets. Echoes were recorded from two calibration spheres with 

the broadband transmit pulse set to the ‘fast’ and ‘slow’ amplitude ramp. The system 

transfer function for on-axis and different off-axis positions was derived and utilised to 

correct target strength measurements. As a verification of the procedure, the results were 

compared to the theoretical beam pattern models (modified Bessel function and Simrad 

LOBE algorithm) (Simrad, 2001). The algorithm development was done in the frequency 

domain, assuming the transducer is circularly symmetric. The terminology used in the 

chapter is described below in the context of a broadband echosounder. 

3.1.1 Off-axis angle 

A split-beam echosounder measures the target location at the range, 𝑟 (m), in the two 

orthogonal planes as major, 𝛼 (°) and minor, 𝛽 (°) angles from the acoustic centre 

(Raymond Brede, 1990). In spherical coordinates, the location is given by the polar, 𝜃 

(°) and the azimuthal, 𝜑 (°) angles from the acoustic centre (Ehrenberg, 1974). For a 

circularly symmetric transducer, the polar angle or the off-axis angle is sufficient to 

describe the target position (shown in Figure 3.2). 
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Figure 3.2: Geometric representation of a target’s off-axis angle, 𝜃 from the acoustic centre. ∆𝜃 
in the figure is the difference in off-axis angle between two positions. 

 in 

The off-axis angle, 𝜃 is given by Eq. (3.1), where, 𝑥𝑐  (𝑥𝑐 = 𝑟 tan 𝛼) and 𝑦𝑐 (𝑦𝑐 = 𝑟 tan 𝛽). 

𝑥𝑐 and 𝑦𝑐 are the perpendicular distances of a target from the acoustic centre in the x 

and y directions. 

 𝜃 = 𝑡𝑎𝑛−1 (
√𝑥𝑐

2 + 𝑦𝑐
2

𝑟
) (3.1) 

 

3.1.2 Transmission Ramping 

Time-domain pulse shapes and effective bandwidths can be achieved by multiplying FM 

waveforms with a Hann window of discrete lengths (Oppenheim, 1999). The Simrad, 

EK80 software refers to this as ramping (change of amplitude with time) and currently 

offers two ramp settings for transmission ‘fast’ and ‘slow’. Fast ramping tapers the first 

and last 10% of a signal leaving a wide, constant amplitude, frequency sweep in the 

middle. Slow ramping causes half the pulse length to rise and the other half to fall. 

Autocorrelation of a fast ramp signal yields a broader bandwidth, higher signal to noise 

ratio (SNR) and higher sidelobes than autocorrelation of a slow-ramp signal. The high 

side lobes of the fast ramp can overlap when two targets are close to one another, 

especially if one is much stronger than the other, in which case the side lobes of the 
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stronger target can completely obscure the weaker target. However, the slow-ramp leads 

to a smaller bandwidth and hence less information (Demer et al., 2015). The sudden 

truncation of the fast-ramp signal in the time domain leads to ringing in the frequency 

domain. This ringing is known as the Gibbs effect and isn’t present in the slow-ramp 

signal (Oppenheim, & Schafer, 2014). In addition to spectral characteristics, ramping 

also modifies the SNR and the range resolution. This makes the echosounder suitable 

for a diverse range of applications from the detection of single targets especially when 

targets are near to each other or near boundaries to the characterisation of dense 

aggregations at high range (Demer et al., 2017). An optimal calibration approach should 

involve both signals. A simulation of the fast and slow ramped signals and their power 

spectra are shown in Figure 3.3. The power spectrum in the frequency domain is the 

Fourier transform of the time domain autocorrelation function. 

 

Figure 3.3: Simulated fast ramp (left) and slow-ramp (right) transmit pulses in the time domain 
(top) and their power spectra in the frequency domain (bottom). 

 

3.1.3 Compensation for the beam pattern 

The sound scattered by a target due to an incoming plane wave of unit amplitude and 
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frequency, 𝑓 (Hz) is given by the complex backscattering amplitude, 𝐹𝑏𝑠(𝑓) (m). The 

target strength, 𝑇𝑆(𝑓) (dB re 1m2) is the logarithmic expression of the modulus of the 

backscattering amplitude | 𝐹𝑏𝑠(𝑓)|, given in Eq. (3.2) (Urick, 1983). 

 𝑇𝑆(𝑓) = 10 𝑙𝑜𝑔|𝐹𝑏𝑠(𝑓)|2 (3.2) 
 

For a target located at 𝜃 within the acoustic beam, 𝑇𝑆(𝑓) would require appropriate 

compensation for the radiation pattern of the transducer. This is achieved by adding a 

mathematical approximation to the combined transmit and receive beam pattern in the 

log scale in Eq. (3.3) to the measured target strength 𝑇𝑆𝑚𝑒𝑎𝑠(𝑓, 𝜃). 

 𝑇𝑆(𝑓) = 𝑇𝑆𝑚𝑒𝑎𝑠(𝑓, 𝜃) + 10 𝑙𝑜𝑔10|𝐵(𝑓, 𝜃)|2 (3.3) 
 

Where 𝐵(𝑓, 𝜃) is the ratio of the transmitted acoustic intensity at an angle 𝜃 and 

frequency 𝑓 to its maximum value at the same frequency. For an ideal transducer 

consisting of a circular piston in an infinite rigid baffle, the one-way beam pattern is given 

by Eq. (3.4) (Abramowitz, 1965; Urick, 1983). 

 𝐵(𝑓, 𝜃) = (
2𝐽1(𝑘𝑎 𝑠𝑖𝑛 𝜃)

(𝑘𝑎 𝑠𝑖𝑛 𝜃)
)

2

 (3.4) 

 

Here 𝐽1 represents the first order cylindrical Bessel function and 𝑘 (m-1) is the 

wavenumber. The transducer radius is 𝑎 (𝑎 =
29.5×𝜆𝑐

2𝜃−3𝑑𝐵
 ) (m) where, 𝜆𝑐 is the wavelength 

at the centre frequency. The nominal 𝜃−3𝑑𝐵 is adjusted to the local sound speed (Bodholt, 

2002). Figure 3.4 shows the simulated beam pattern (corresponding to the Simrad ES70-

18CD) at frequencies of 50, 70, and 90 kHz. The nominal beamwidth of the transducer 

is 18° at 70 kHz. 
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Figure 3.4: An intensity polar plot illustrating the beam pattern of a circular transducer 
corresponding to the Simrad ES70-18CD at frequencies of 55 kHz (blue), 70 kHz (red) and 90 
kHz (green). The beamwidth at the nominal central frequency 70 kHz is 18°. 

 

An alternative beam pattern calculation method is provided by the Simrad LOBE 

algorithm (Simrad, 2016). The Simrad LOBE algorithm models the two-way beam pattern 

by a mathematical function 𝐵(𝛼, 𝛽)2, 𝑥 =  2(𝛼 − 𝛼0)/𝛼−3𝑑𝐵 and 𝑦 =  2(𝛽 − 𝛽0)/𝛽−3𝑑𝐵. 

Where 𝛼−3𝑑𝐵 and 𝛽−3𝑑𝐵 are the major and minor half-beamwidth and 𝛼0, 𝛽0 are the offset 

angles along the respective axis, Eq. (3.5). 

 10 𝑙𝑜𝑔10 𝐵(𝛼, 𝛽)2 = 6.0206(𝑥2 + 𝑦2 − 0.18𝑥2𝑦2) (3.5) 
 

3.2 Method and Material 

3.2.1 Background theory 

A broadband split-beam transducer inputs a transmit signal, 𝑉𝑇(𝑓) which is converted to 

acoustic waveform by the transmitter. The acoustic signal propagates into the 

surrounding medium (water) as sound waves. On an encounter with an object in the far-

field, the signal is scattered in all directions. The backscattered echo following the 

propagation through the water reaches the receiver where it is converted to the received 

electrical signal,  𝑉𝑅(𝑓). This process can be modelled as a linear time-invariant (LTI) 

system in which the transfer function is given as the ratio of the Fourier transform of the 

received signal from an off-axis target to the Fourier transform of the transmitted signal. 

The transfer function of the whole process can be broken down into the product of three 

individual transfer functions 𝐻(𝑓, 𝜃), 𝐿𝑇𝐿(𝑓) and 𝐹𝑏𝑠(𝑓) as shown in Figure 3.5. 
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Figure 3.5: A block diagram illustrates the transformation of transmitted voltage to the received 
voltage as a function of time (top) and frequency (bottom). Symbols in lowercase represent time 
and uppercase represent the frequency domain. 𝑣𝑇 , 𝑉𝑇 is the transmitted voltage and 𝑣𝑅 , 𝑉𝑅 is the 

received voltage. ℎ(𝑡, 𝜃), 𝐻(𝑓, 𝜃) is the combined transmit and receive system response of the 
transceiver. 𝑙𝑇𝐿(𝑡), 𝐿𝑇𝐿(𝑓) is the transmission function that accounts for the propagation of sound 

to and from the target. 𝑓𝑏𝑠(𝑡), 𝐹𝑏𝑠(𝑓) is the backscattering amplitude of an acoustic target. 

 

It is to be noted that 𝐻(𝑓, 𝜃) here includes the directional sensitivity of the transducer at 

off-axis angle 𝜃. 𝐿𝑇𝐿(𝑓) (𝐿𝑇𝐿(𝑓) =
1

𝑟2 𝑒
𝑖(

4𝜋𝑓

𝑐𝑤
)𝑟

𝑒2𝛼𝑤(𝑓)𝑟) is the transmission function which 

accounts for the two-way propagation effects including spreading, absorption and 

propagation delay. 𝛼𝑤(𝑓) is the absorption coefficient, and 𝑐𝑤 (m/s) is the sound speed. 

The received voltage, 𝑉𝑅(𝑓) can be modelled as a product of the transmitted voltage, 

𝑉𝑇(𝑓) and all the acoustic components of the transceiver system, as in Eq. (3.6) 

(Bracewell, 1986). 

 𝑉𝑅(𝑓) = 𝑉𝑇(𝑓)𝐻(𝑓, 𝜃)𝐿𝑇𝐿(𝑓)𝐹𝑏𝑠(𝑓) (3.6) 
 

Experimentally 𝐻(𝑓, 𝜃) can be determined using a standard target of known theoretical 

backscattering amplitude 𝐹𝑏𝑠,𝑐𝑎𝑙(𝑓) and recording the received signal with the target in 

many positions within the acoustic beam. Thus 𝐹𝑏𝑠(𝑓) in Eq. (3.6) can be replaced by 

𝐹𝑏𝑠,𝑐𝑎𝑙(𝑓), and the equation rearranged to solve for 𝐻(𝑓, 𝜃), leading to Eq. (3.7) (Foote, 

1982; MacLennan, 1981). The transmitted and received signals are match filtered with a 

replica of the transmitted pulse giving 𝐶𝑃𝑇(𝑓), (𝐶𝑃𝑇(𝑓) =  𝑉𝑇(𝑓)𝑉𝑇(𝑓)∗) 

and 𝐶𝑃𝑅(𝑓),  (𝐶𝑃𝑅(𝑓) =  𝑉𝑅(𝑓)𝑉𝑇(𝑓)∗). ∗ indicates the complex conjugate. Alternatively, 

𝐶𝑃𝑇(𝑓) and 𝐶𝑃𝑅(𝑓) can be obtained by cross-correlating transmitted and received signals 

with a replica of the transmitted signal in the time domain and then Fourier transforming 

(Chu, & Stanton, 1998; Turin, 1960). The pulse compression of a signal reduces the 

temporal extent and improves the spatial resolution while maintaining the SNR (Ramp, 

& Wingrove, 1961). 
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 𝐻(𝑓, 𝜃) =
𝐶𝑃𝑅(𝑓)

𝐶𝑃𝑇(𝑓)𝐿𝑇𝐿(𝑓)𝐹𝑏𝑠,𝑐𝑎𝑙(𝑓)
 (3.7) 

 

To derive 𝑇𝑆(𝑓) of an unknown acoustic target,  𝑇𝑆𝑚𝑒𝑎𝑠(𝑓, 𝜃) is obtained by recording 

backscattered signals from many positions within the acoustic beam and substituting the 

theoretical beam pattern as shown earlier in Eq. (3.3). Alternatively, 𝑇𝑆(𝑓) can be 

determined using Eq. (3.8). 𝐻(𝑓, 𝜃) incorporates the directional characteristics of the 

transducer leading to automatic compensation without using mathematical 

approximations such as the Simrad LOBE algorithm (Eq. (3.5)) or the modified Bessel 

function for a circular transducer (Eq. (3.4)). 

 𝑇𝑆(𝑓) = 10 𝑙𝑜𝑔10 |(
𝐶𝑃𝑅(𝑓)

𝐶𝑃𝑇(𝑓, 𝜃)𝐿𝑇𝐿(𝑓)𝐻(𝑓, 𝜃)
)|

2

 (3.8) 

 

For a target located at an off-axis angle 𝜃, using 𝐻(𝑓, 0) in Eq. (3.8) gives the measured 

target strength, 𝑇𝑆𝑚𝑒𝑎𝑠(𝑓, 𝜃), Eq. (3.9). 

 𝑇𝑆𝑚𝑒𝑎𝑠(𝑓, 𝜃) = 10𝑙𝑜𝑔 |(
𝐶𝑃𝑅(𝑓)

𝐶𝑃𝑇(𝑓, 𝜃)𝐿𝑇𝐿(𝑓)𝐻(𝑓, 0)
)|

2

 (3.9) 

 

3.2.2 Experiment 

A series of calibration experiments was performed, at Hobart (Tasmania, 42.88° S, 

147.33° E), from the 5th to13th August 2015. The water depth was ~13 m, and the low 

noise-ambient condition was suitable to conduct calibration. For the experiment, a split-

beam broadband transducer (Simrad ES120-7CD) was used. The transducer was 

positioned facing downward (~1 m beneath the water surface) from a portable platform 

(Figure 3.6). Two tungsten carbide (6% cobalt binder) spheres of diameter 22 mm 

(WC22) and 38.1 mm (WC38) were used for calibration  (Foote, & MacLennan, 1984). 

One sphere at a time was suspended between 7 and 10 m directly below the transducer 

using three monofilament lines. Calculations confirmed that the far-field range was at 

least three times more than the near-field range ~0.88 m at 120 kHz (Medwin, & Clay, 

1998). 
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Figure 3.6: An illustration of the experiment set up. A downward-facing transducer was positioned 
on the platform and connected to the Simrad EK80 software via a cable. A calibration sphere was 
suspended below the transducer, controlled by three monofilament lines attached to fishing reels. 

 

The frequency bandwidth of the echosounder was 95 – 160 kHz with a nominal 

beamwidth of 7.2° at the centre frequency, 120 kHz. (Simrad, 2016). Backscattered 

signals were recorded with the sphere on the beam axis (𝜃 = 0°) and moving radially 

outward in all directions up to 4.0°. Each set of experiments was repeated for both 

spheres using both fast and slow-ramp transmit signals with all other operational settings 

remaining the same. The EK80 data acquisition software operated the echosounder. The 

EK80 software provides a built-in function to calibrate the instrument; however, for the 

experiment, measurements were recorded outside the calibration mode. The output files 

were saved in “raw” format. A summary of the nominal transducer parameters and 

operational settings is given in Table 3.1. 
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Table 3.1: Broadband transducer specifications and operating parameters. 

Parameters  Units Values 

Transducer model    ES120 (WBT 536012) 

Transceiver name   WBT 536012 

Frequency range  kHz 95 - 160 

Centre frequency 𝑓𝑐  kHz 120 

Major (𝛼𝑐) and minor (𝛽𝑐) axis 
angles at 𝑓𝑐 

° 7.3/7.2 

Angle sensitivity    23/23 

Offset angle (𝛼0, 𝛽0) ° 0.03/-0.11 

Transmit power W 200 

Pulse length  ms 0.512 

Ramp   fast, slow 
 

3.2.3 Acoustic data processing 

The backscattered data were match filtered to generate pulse-compressed echograms 

and derive the 3D coordinates and 𝑇𝑆 in the time domain (code provided by Andersen, 

Lars Nonboe from Simrad). Research specific Matlab scripts were developed for further 

investigations and applications. The average winter temperature and salinity of the 

estuary (10 C and 35 p.s.u.) were used to calculate a sound speed of 1491 ms-1 at 10 

m depth (Mackenzie, 1981). 𝛼−3𝑑𝐵, 𝛽−3𝑑𝐵 and 𝛼𝑤 (Francois, & Garrison, 1982) were 

adjusted to the sound speed. The nominal values of 𝛼−3𝑑𝐵 and 𝛽−3𝑑𝐵 were 3.65° and 

3.6° making the split-beam transducer circular to 0.1°. 𝛼 and 𝛽 measured by the split-

beam process were used to estimate the off-axis angle, 𝜃 from Eq. (3.1). 

Sphere signals were time-gated by an appropriate window function of suitable length. 

Empirically, a window function should optimise the spectral content, improve the SNR 

and minimise spectral leakage to other frequencies. Different windows (Rectangular, 

Hanning and Tukey) and lengths varying from 0.1 to 0.8 m were applied, and the RMS 

error of the results were compared. Based on the result with the lowest value of RMS 

error, a Hanning window of 0.4 m length was applied from the peak to both sides of the 

signal. The model developed by Chu (2011) based on Faran (1951) and MacLennan 

(1981) was used to calculate the theoretical target strength, 𝑇𝑆𝑚𝑜𝑑𝑒𝑙(𝑓) of the spheres 

at the nominal material properties and size. 

Measurements using the WC22 sphere were used to compute 𝐻(𝑓, 𝜃) due to this 

sphere's comparatively flat response across the frequency range. Signals recorded 

within off-axis angle 0.0°- 4.0° were divided into eight angle bins, each of a width 0.5°. 
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Due to the open water test site, the possible contamination or interference from other 

mobile acoustic scatterers within the acoustic sampling volume cannot be ruled out. 

Therefore as a precaution, poor data points were identified and removed. Assuming a 

normal distribution of data for each bin only pings within the 95% confidence interval 

from the mean 𝑇𝑆 were selected for analysis. 

First, the on-axis sensitivity of the broadband system was determined. For the fast-ramp 

settings, echoes recorded with off-axis angles between 0.00° and 0.01° were used to 

evaluate the averaged 𝐻(𝑓, 0), which was then substituted to get the averaged 𝑇𝑆(𝑓) 

(Eq. (3.7) and Eq. (3.8)). The theoretical model of the WC22 sphere was applied 

for 𝐹𝑏𝑠,𝑐𝑎𝑙(𝑓). In the case of the slow-ramp setting, the measurement closest to the beam 

axis was 0.06°, and hence recordings between 0.0° and 0.1° were used to derive the 

averaged 𝑇𝑆(𝑓). 

Next, the bin wise averaged 𝑇𝑆(𝑓) of the WC38 and WC22 spheres were derived at 

different positions within the acoustic beam. The averaged 𝐻(𝑓, 𝜃) for all the bins within 

0.0°- 4.0° was estimated using signals from WC22 sphere in Eq. (3.7). To compute 𝑇𝑆(𝑓) 

for each ping, the averaged 𝐻(𝑓, 𝜃) was interpolated to the corresponding 𝜃 value and 

substituted in Eq.(3.8). The calculated 𝑇𝑆(𝑓) was averaged for each off-axis bin. Due to 

the non-linear nature of 𝐻(𝑓, 𝜃), the ‘spline’ interpolation method was selected in Matlab. 

As a test of accuracy, 𝑇𝑆(𝑓) of the spheres were computed using the modified Bessel 

function in Eq. (3.3) for the set of nominal parameters adjusted to the local sound speed. 

The residual target strength, ∆𝑇𝑆(𝑓); (∆𝑇𝑆(𝑓) = 𝑇𝑆(𝑓) −  𝑇𝑆𝑚𝑜𝑑𝑒𝑙(𝑓)) in dB scale, 

characterised the error of the method. Simrad uses 𝐺(𝑓), (𝐺(𝑓) = 0.5(𝑇𝑆(𝑓) −

 𝑇𝑆𝑚𝑜𝑑𝑒𝑙(𝑓))) to express the variation, which is half of the difference between 𝑇𝑆(𝑓) 

and  𝑇𝑆𝑚𝑜𝑑𝑒𝑙(𝑓) (Andersen, 2001). 

3.3 Results 

The procedure outlined in Section 3.2 was applied to calibrate the broadband 

echosounder for both fast and slow-ramp transmit pulses. In total 2595, and 1572 echoes 

were recorded respectively in the fast-ramp and slow-ramp modes, in the off-axis angle 

range from 0.0° to 4.0°. This reduced to 2157 and 1486 after the removal of bad data. 

Selected echoes were binned, as shown in Table 3.2. 
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Table 3.2: Number of pings in each off-axis angle bin for the fast and slow ramp settings. 

Angle bins (°) 
Number of pings 

Fast-ramp  Slow-ramp 

0.0 - 0.5 511 89 

0.5 - 1.0 405 160 

1.0 - 1.5 317 368 

1.5 - 2.0 268 145 

2.0 - 2.5 387 186 

2.5 - 3.0 131 180 

3.0 - 3.5 119 321 

3.5 - 4.0 19 37 
 

3.3.1 On-axis sensitivity 

 

Figure 3.7: Averaged 𝑇𝑆(𝑓) drawn in red for the WC22 for angles between 0.0° and 0.01° for the 
fast-ramp (left) and between 0.0° and 0. 1° for the slow-ramp settings (right). The theoretical 
prediction is shown in black (--) line. 

Figure 3.7 compares the measured and modelled 𝑇𝑆(𝑓) on the beam axis. For the fast-

ramp, the root mean square of the difference between the theoretical and measured 

target strength over the entire frequency was 0.02 dB, including the nulls at 158.5 kHz. 

The RMSE of the slow-ramp was comparatively higher at 0.40 dB, including the nulls. 

The higher value of RMSE is caused due to the difference at the resonant frequency 

158.5 kHz. If we ignore the resonance region, then the curves are almost the same. 
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3.3.2 Directivity compensation  
 

 

Figure 3.8: The averaged system response in dB 20 𝑙𝑜𝑔10|𝐻(𝑓, 𝜃)|) plotted against the frequency 
for different angle bins for the fast (left) and the slow ramp (right). Angle ranges are shown in the 
legend. 

The frequency spectrum of the system response amplitude, 20 log10|(𝐻(𝑓, 𝜃))| averaged 

for each angle bin is shown in Figure 3.8 for both fast and slow cases. From a maximum 

amplitude for the bin, 𝜃 = 0.0° − 0.5° the response decreased with increasing bin off-axis 

angles in both cases. For a given bin, the deviation from the maximum at 0.0° - 0.5° 

increased non-linearly with the frequency. For example in the fast-ramp case, the 

difference from the on-axis (0.0° – 0.5°) to the off-axis (3.5° – 4.0°) bin is -3 dB at 95 kHz 

compared to -12 dB at 160 kHz. This non-linear decrease in the amplitude is a result of 

the transducer beamwidth becoming narrower at higher frequencies. The shape of the 

curve is different for fast and slow ramp cases. For the slow-ramp, it has a higher 

amplitude in the centre which drops significantly at the frequency ends whereas in the 

fast-ramp case the amplitude is comparatively higher across a larger bandwidth but 

fluctuates across the band. The reason for the difference is unclear, but it is likely due to 

the details of the transceiver operation. The presence of distinct sharp spikes at ~158.5 

kHz in both cases is due to resonances of the WC22 sphere. The formation of spikes is 

explained by the peaks and nulls formed by the constructive and destructive interference 

of the different waves (Hickling, 1962). 
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Figure 3.9: 𝑇𝑆(𝑓) (top row) and ∆𝑇𝑆, (∆𝑇𝑆(𝑓) = 𝑇𝑆(𝑓) − 𝑇𝑆𝑚𝑜𝑑𝑒𝑙(𝑓)) (second row)  plotted for the 

WC22 sphere, derived with the system response and 𝑇𝑆(𝑓) (third row) and  ∆𝑇𝑆 (bottom row), 
derived with the modified Bessel function for the fast (left) and slow ramp (right). The off-axis 
angles from (0.0° - 3.5°) are shown in legend (top row). 
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Figure 3.9 compares the averaged 𝑇𝑆(𝑓) and ∆𝑇𝑆(𝑓) obtained for the fast and slow ramp 

signals using the system response and the modified Bessel function method. The 

resonant frequency region from 158 - 160 kHz was ignored when calculating ∆𝑇𝑆(𝑓). 

The observation confirmed that using 𝐻(𝑓, 𝜃) corresponding to the ping angle 

compensates for the transducer directivity at all positions within the central beamwidth. 

The RMSE of ∆𝑇𝑆(𝑓) with 𝐻(𝑓, 𝜃) was 0.08 dB versus 0.28 dB using 𝐵(𝑓, 𝜃) up to 3.5°. 

Similarly, for the slow-ramp the compensation with 𝐻(𝑓, 𝜃) yield RMSE of 0.14 dB versus 

0.37 dB with 𝐵(𝑓, 𝜃) for angles between 0.0° to 3.5°. For the slow ramp, the 

compensation was uniform for all bins except for the outermost bin, 3.0° – 3.5° (grey 

line), which led to a relatively higher RMSE. Also, the low SNR at ends of the frequency 

band increased the RMSE as compared to the fast-ramp signal. An interesting aspect is 

that even 𝐻(𝑓, 𝜃) of the farthest off-axis bin (3.5° – 4.0°), which is beyond the nominal 

half beamwidth (3.6°), completely compensated the signal due to the transducer’s 

directivity. 

By using the WC38 sphere as a target, it was demonstrated that 𝐻(𝑓, 𝜃) is a useful metric 

to calculate 𝑇𝑆(𝑓) of other single targets. Acoustic data from a WC38 sphere were 

recorded with the same operational configurations used for the WC22 sphere 

measurements (pulse length 512 µs, fast and slow ramp, Hann window, 0.4 m). 𝑇𝑆(𝑓) 

for each ping was derived by substituting 𝐻(𝑓, 𝜃), interpolated to the corresponding off-

axis angle value, in Eq. (3.8). The same set of echoes were also compensated 

with 𝐵(𝑓, 𝜃). For slow-ramp, signals were recorded at off-axis angles up to 3.5°; however, 

no data were recorded beyond 3.0° for the fast ramp. 
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Figure 3.10: Averaged 𝑇𝑆(𝑓) for the WC38 sphere (top) and ∆𝑇𝑆 (∆𝑇𝑆(𝑓) = 𝑇𝑆(𝑓) −
 𝑇𝑆𝑚𝑜𝑑𝑒𝑙(𝑓)) derived with the system response method (middle) for the fast (left) and 

slow ramp (right). ∆𝑇𝑆 obtained with the Bessel function (bottom) for fast (left) and slow 

ramp (right). 

 

The averaged 𝑇𝑆(𝑓) and ∆𝑇𝑆(𝑓) for each off-axis bin, obtained using 𝐻(𝑓, 𝜃) and 𝐵(𝑓, 𝜃) 

for the fast and slow ramp transmitted signals, are plotted against frequency in Figure 

3.10. 𝑇𝑆(𝑓) responses from both settings were similar in amplitude and behaviour. Using 

the system response method, the RMSE for fast and slow ramp signals were 0.94 dB 

and 0.96 dB respectively, compared to 0.96 dB and 1.021 dB for the Bessel function 

method. The higher RMSE was mainly due to the inclusion of two resonance regions at 
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116 kHz and 135.5 kHz. Variations were observed between 110 kHz and 120 kHz, and 

between 130 kHz and 140 kHz, which were consistent for all angles and for both types 

of transmitting signals. Excluding the regions around the resonances reduced the RMSE 

from 0.94 dB to 0.96 dB to 0.53 dB and 0.58 dB, for the fast and slow ramp respectively, 

which is more representative of the ability of the system to characterise smoothly varying 

scattering responses. 

3.4 Discussion  

The self-consistency of the method was demonstrated by first calibrating the system 

using the WC22 sphere and then using it to determine the target strength versus 

frequency curve of the same sphere. Overall the averaged 𝑇𝑆(𝑓) of the WC22 sphere 

for the on-axis position matched closely to the theoretical value (Figure 3.7) over the 

frequency bandwidth. There was a comparatively higher residual error in the averaged 

𝑇𝑆(𝑓) for the slow-ramp, 0.4 dB as compared to 0.02 dB for the fast ramp. This was due 

to the difference of about 1.65 dB at the bottom of the null. When the resonance region 

was omitted, the slow-ramp 𝑇𝑆(𝑓) agreed with the theoretical value with the error 

reducing to 0.004 dB. The resonance effect of the standard sphere has been discussed 

in detail in earlier studies (Chu, & Eastland, 2015; Stanton, & Chu, 2008). One option to 

reduce the ambiguity is using several calibration spheres of different sizes with 

resonances at different frequencies and combining the results (Foote, 2007b; Lavery et 

al., 2017). It should be noted that data were not drawn precisely for the on-axis position 

instead were averaged values between 0.0° to 0.01° for the fast and 0.0° to 0.1° for the 

slow-ramp signals. Even after careful manoeuvring, the closest position to the nominal 

beam axis was 0.016° for fast and 0.065° for the slow-ramp data. 

Even though the amplitude (20 𝑙𝑜𝑔10|𝐻(𝑓, 𝜃)|) and the variation of the system response 

curve was different for the fast and slow ramp; the directional sensitivity was consistent 

(Figure 3.8). When 𝐻(𝑓, 𝜃) was used for directivity compensation for the WC22 sphere, 

the obtained 𝑇𝑆(𝑓) matched closely to the theoretically predicted value confirming the 

self-consistency of the method. The proposed algorithm compensated the 

measurements effectively up to 3.5° beyond which deviations begin to appear, indicating 

the limitation to the half beamwidth (Figure 3.9). The RMS error attained with the system 

response method (RMSE 0.06 dB and 0.07 dB) was lower than that achieved with the 

modified Bessel function method (RMSE 0.28 dB and 0.37 dB). In the case of the 

modified Bessel function method, the deviation increased with the off-axis angle. The 
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probable cause of this discrepancy was that the effective beamwidth of the transducer 

was lower than the nominal value causing an under-compensation that increases with 

the off-axis angles. Compensating with the LOBE algorithm (that users a modified Bessel 

function) produces a similar result for pings up to 3.5° (not shown in the chapter) (Simrad, 

2016). The discrepancy highlights the importance of computing the effective beamwidth 

for accurate measurements. Using 𝐻(𝑓, 𝜃) had the benefit of taking into account any 

spatial or temporal change in the acoustic properties of the transducer (Knudsen, 2009) 

thus making it an appropriate method to calibrate a broadband echosounder. 

The analysis in the chapter uses angles (𝛼/𝛽) from the split-beam processing rather than 

the actual geometric angles. The angle sensitivity of the transducer is critical to enable 

zero biased measurements. Computing the angle sensitivity was not attempted during 

the study. Evaluating the angle sensitivity would require an independent measure of the 

target’s actual location (Reynisson, 1998). Measurements performed by the 

manufacturer confirmed that the acoustic centre corresponds to the on-axis position. 

Suspending the sphere accurately at the on-axis position would require a special 

mechanism to carefully manoeuvre the sphere across the three planes (Reynisson, 

1998). 

The compensated target strength of the WC38 sphere derived with the system response 

method was uniform for all off-axis angle bins but showed consistent deviation from the 

theoretical response (Figure 3.10). Other researchers have also reported variability of up 

to 0.8 dB between the WC22 and WC38 spheres (Hobæk, & Forland, 2013; Lavery et 

al., 2017). Some potential contributors to explain this observed difference are discussed. 

1. Potential error in the 𝐻(𝑓, 𝜃) derived from the WC22 sphere: The 𝑇𝑆𝑚𝑜𝑑𝑒𝑙(𝑓) used 

here was computed using the nominal size and material properties of the 

spheres. The model used; density = 14900 kg/m3, longitudinal sound speed = 

6853 m/s and transversal (shear) sound speed = 4161 m/s. A variation in the 

effective properties of the experimental sphere from the nominal values could 

lead to bias, especially at the material resonance (MacLennan, & Dunn, 1984). 

To achieve a precise result, it is suggested to test the parameters of the 

calibration sphere. Hobæk, and Forland (2013) recommend an iterative inversion 

approach to verify the wave speeds. Given the objective of the chapter was to 

develop a method for the calibration and beam compensation, verification of 

sphere parameters was not attempted. 
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2. Contamination from other scattering sources: For no overlap from any nearby 

targets, the minimum distance for separation from the sphere was (𝑐𝜏
2⁄ = 0.38  

m). Time gating the sphere with a window of length 0.4 m ensured that there were 

no overlapping side lobes from the seafloor or other nearby targets. The 

experiment was conducted in an estuary and the possibility of the presence of 

scatterers of biological or non-biological origin within the window could not be 

ruled out. However, the presence of biological organisms would have resulted in 

ping to ping variations which were not visible in the data, which makes this 

unlikely to be the cause of the observed discrepancies. 

3. Interference or reverberations: The WC38 sphere was about 2 m from the 

seafloor and ~3m from the sidewall. Interference from reflections from these 

boundaries could contaminate the direct echo from the sphere. Normally in a 

laboratory tank calibration, the transducer is shielded from the sources of 

reverberation; which was hard to achieve due to the open environment (Islas-

Cital et al., 2010). 

4. Bubbles: Presence of bubbles on the sphere surface, water column and 

suspension lines can be potential contributors to the discrepancy observed. To 

mitigate bubbles from the sphere surface, they were submerged in soap solution 

for ten minutes; however, some authors propose a soaking time of up to 4 hours 

to achieve a consistent result (Hobæk, & Forland, 2013). 

Further experimentation is required to identify which of the sources are responsible for 

the variations observed. 

3.4.1 Future Work  

A technique to characterise the effective calibration parameters of a broadband 

echosounder would ensure accurate compensation of measurements. The system 

response method illustrated in this study can be extended to determine the effective 

geometrical and directional parameters, as shown in Chapter 4. 

 A complex broadband scattered signal contains information of the scatterer’s 

morphological and material characteristics embedded in the time-accumulated signal 

phase. The broadband echosounder is designed to store the received signals as 

complex waveforms. By retaining the complex waveforms, the complex system response 
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can be obtained which allows the extraction of the phase spectra of single targets. This 

target phase (shown in Chapter 5) can be used as a complementary measurement to 

the amplitude and can be utilised as an additional indicator for remote identification of 

marine organisms (Barr, & Coombs, 2005). 

3.5 Conclusion 

The theoretical formulation and experimental verification of the combined system 

response of a broadband echosounder are presented for calibration and directivity 

correction. The direction sensitive system response function included the effects of the 

transceiver settings and the target. The advantage of the method is that it does not 

require the estimation of the effective beamwidth. Precise calibrations with the WC22 

sphere using the fast and slow ramp transmit signals supported the flexibility of the 

method. The results for the transducer tested provided improved accuracy with RMSE 

0.08 dB and 0.14 dB as compared to the standard beam model (Bessel function and 

LOBE algorithm) with RMSE 0.28 dB and 0.37 dB for the fast and slow ramp settings. 

For a different target (WC38 sphere) the proposed method generated RMSE of 0.94 dB 

and 0.96 dB versus RMSE of 0.96 dB and 1.02 dB obtained with the modified Bessel 

function method for the fast and slow ramp signals.  

The technique could be used for laboratory and in situ measurements by choosing an 

appropriate target. An interesting application would be to obtain compensated target 

strength measurements of marine organisms’ in-situ. This study used the amplitude of 

the system response and ignored the phase part. By using the system response in the 

complex form, the broadband echosounder could be calibrated for the phase 

measurements, as demonstrated in Chapter 5. 
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Chapter 4 

 

 

A Measurement Model Approach to 

Characterise a Broadband Split-beam 

Transducer. 

Acoustic measurements made by an echosounder depend on the geometrical (ratio of 

the radius to the segment distance) and directional (beamwidth and beam pattern) 

parameters (GDP) of the transducer. At an in-situ condition, the ‘effective’ values of these 

parameters may differ from the manufacturer quoted ‘nominal’ values. This paper 

describes an inversion (measurement-model) approach to characterise a broadband 

split-beam transducer. The theoretical modelled beam pattern of a circular transducer, a 

modified Bessel function, was parametrised to the ratio of the transducer radius to the 

segment distance. This ratio is referred to as the geometrical parameter (GP) in this 

study. In a standard calibration sphere set-up, the experimental beam pattern was 

measured using the on-axis system response. The difference between the measured 

and modelled beam pattern was minimised in the least-squares sense by allowing the 

GP to vary within a specified range. Numerical optimisation was carried out by using the 

Levenberg–Marquardt algorithm to compute the optimum GP. The accuracy and 

precision of the approach were tested through simulations of target strength. For the 

combined system (Simrad EK80 and transducer nominal frequency range 95 – 160 kHz), 

variations of 3 - 4% was observed in the GDP from the manufacturer values for the 

transducer alone. Once verified, this method could be used to have a simple independent 

calibration of a systems GP in the field. This particular measurement-model approach is 

explicitly developed for a wide frequency bandwidth and useful in that it is independent 

of the local sound speed profile. 
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4.1 Introduction 

There is an increased research interest in the use of broadband echosounders for the 

high resolution, spectral characterisation and classification of marine organisms (Jech et 

al., 2017; Reeder et al., 2004; Stanton et al., 2012; Zakharia et al., 1996). A broadband 

echosounder quantifies the frequency spectra of target strength, 𝑇𝑆(𝑓) (dB re 1m2) and 

/ or volume backscattering strength, 𝑆𝑣(𝑓) (dB) from the backscattered sound. These 

variables are a direct or indirect function of the transducer’s beamwidth, 𝜃−3𝑑𝐵 (°) and 

beam pattern, 𝐵(𝑓, 𝜃) (dB) which are functions of the effective radius of the transducer’s 

active area. In particular, 𝑇𝑆(𝑓) varies with the target position and requires compensation 

for the beam parameters. The nominal value of the transducer directional parameters 

(𝜃−3𝑑𝐵 and 𝐵(𝑓, 𝜃) ) are estimated by the manufacturer using a controlled laboratory 

setup (Bodholt, 2002). Large deviations from the manufacturer beam pattern estimate 

can lead to ~15 - 20% errors in estimated biomass and independent checks of the beam 

pattern parameters are required (Haris et al., 2017). Also, when transducers are used in 

the field with a specific echosounder, these parameters may vary from their nominal 

values due to system response delays and mounting issues (Simmonds, 1984). In such 

a situation, effective or measured values, rather than the nominal values, are used to 

describe the behaviour of the transducer. Determination of the transducer’s effective 

geometric and directional parameters (GDP) is also termed as characterisation (Lerch et 

al., 1996). 

At a constant frequency, several studies had earlier quantified the variation of the 𝜃−3𝑑𝐵 

from its nominal values (Ona, & Vestnes, 1985; Reynisson, 1998). The directivity of a 

transducer was usually evaluated by mapping the beam at several positions and fitting it 

with a mathematical function (bicubic spine or a modified Bessel function) (Degnbol, 

1988; Kieser, & Ona, 1988; MacLennan, & Svellingen, 1986; Ona, 1990a). At a survey 

location, it is often challenging to repeat the experiments due to the complicated setup 

and a lengthy procedure. Consequently, the use of the nominal values adjusted to the 

local sound speed is an accepted practise during a survey (Demer et al., 2015). A major 

challenge to find effective values in a broadband echosounder involves consistent 

prediction over the bandwidth of the system. The methods mentioned above provide 

effective values only for a fixed frequency and are thus sufficient only for narrowband 

systems operating at a specific frequency. Extrapolating 𝜃−3𝑑𝐵 computed at one 

frequency to the entire bandwidth can bias the measurements. What is needed for a 

broadband echosounder is a characterisation or a measurement technique that covers 
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a range of frequencies. 

A transducer consists of several individual piezo-ceramic elements (Wilson, 1988). 

𝐵(𝑓, 𝜃) of a circularly symmetric transducer is usually modelled in terms of the modified 

Bessel function (Urick, 1983). The model assumes the transducer behaves like a rigid 

piston with a fixed radius of 𝑎 (𝑎 =
29.5×𝜆𝑐

2𝜃−3𝑑𝐵
) at the nominal centre frequency, 𝑓𝑐 (Hz) and 

wavelength 𝜆𝑐 (m-1). Any frequency dependence of 𝑎 is usually ignored. Past works 

indicate that this is an adequate approximation for many purposes (Kieser, & Ona, 1988; 

Medwin, & Clay, 1998). However, in the case of a broadband echosounder, the 

assumption of a constant radius over the wide frequency bandwidth needs to be verified. 

𝐵(𝑓, 𝜃) of a transducer depends on the speed of sound in the immersion medium (Urick, 

1983). Ecosystem acoustics is witnessing a paradigm shift in survey methods to explore 

the deep-water ecosystems with echosounders mounted on profiling platforms (Kloser 

et al., 2016; Verma et al., 2017). A downward moving echosounder can experience a 

change in the sound speed from the value at the water surface which can bias 𝐵(𝑓, 𝜃) if 

not adjusted appropriately (Haris et al., 2017). Knudsen (2009) proposed using a sound-

speed probe for automatic compensation. Moreover, in the absence of an accurate 

sound speed profile, many research studies use an approximate value of sound speed. 

Theoretically, the compensation for the beam pattern could be made independent of the 

local sound speed with an appropriate selection of parameters in the modified Bessel 

function. This would enable reliable estimates even in the absence of accurate 

knowledge or considerable change in the sound speed. 

The two-way transmit-receive function or the system response of an echosounder 

system includes the transmitter electrical response, transducer transmit and receive 

response and the receiver electrical response. Earlier studies in ultrasonics, have 

demonstrated the use of an on-axis transceiver or system response for the 

characterisation of spherical transducers (Lerch et al., 1996). In active acoustics, the 

system response was used to characterise the directional properties of a monostatic 

echosounder in an in-situ location (Vagle et al., 1996). As an advantage, the system 

response incorporates the entire process at a given time, including the effects of 

hardware impairment, ageing or the system mounting. The on-axis system response can 

be to measure the beam pattern of a broadband echosounder, as shown in this chapter. 

The theoretical development, set up and processing is presented in section 4.2, followed 
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by the result in section 4.3. Finally, the results and limitations of the method are 

discussed in section 4.4, followed by a conclusion in 4.5. 

4.2 Method 

4.2.1 Parametrised beam pattern model or Modified Bessel 
function parametrised to the Geometrical Parameter (GP) 

An electroacoustic transducer converts electric signals to acoustic waves at the 

transmitter end and vice versa at the receiver end (Simmonds, & MacLennan, 2005; 

Stansfield, & Elliott, 2017). Figure 4.1 shows a schematic view of a split-beam transducer 

cross-section made up of four quadrants. 

 

 

Figure 4.1: A schematic representation of the cross-section of a circular split-beam transducer 
with four quadrants. The radius of the active area is 𝑎, and the separation between the centres of 

two halves is 𝑑. 

 

Here, 𝑎 is the radius of the transducer’s active area and, 𝑑 is the separation between the 

two halves, known as the segment distance. The one-way beam pattern of a circular 

transducer is approximated by Eq. (4.1) (Urick, 1983). 𝐵𝑚𝑜𝑑𝑒𝑙(𝑓, 𝜃) is the ratio of the 
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transducer response at a given off-axis angle to the maximum value in the direction of 

the beam axis.  

 𝐵𝑚𝑜𝑑𝑒𝑙(𝑓, 𝜃) = (
2𝐽1(𝑥)

(𝑥)
)

2

 (4.1) 

 

where 𝑥 is given by Eq. (4.2). 

 𝑥 = 𝑘𝑎 𝑠𝑖𝑛 𝜃 (4.2) 
 

𝐽1 is the first order cylindrical Bessel function at wavenumber, 𝑘 (𝑘 = 2𝜋𝑓 𝑐𝑤⁄ ) (m-1), at 

the sound speed, 𝑐𝑤 (m/s-1). A split-beam transducer measures the phase difference, 𝜙 

(º), between signals arriving at a pair of transducer segments Eq. (4.3) (Bodholt, 2002; 

Burdic, 1991). 

 𝜙 = 𝑘𝑑 𝑠𝑖𝑛𝜃 (4.3) 
 

 

Assuming the phase is measured at the nominal centre frequency,  𝑓𝑐 gives sin 𝜃 =

𝑐𝑤𝜙 2𝜋𝑓𝑐𝑑⁄  or 𝑥 as Eq. (4.4). 

 𝑥 =
𝑓𝑎

𝑓𝑐𝑑
𝜙 (4.4) 

 

The angular sensitivity, 𝛬 (dimensionless) of a transducer is the ratio of the phase angle 

to the geometric angle and is given by, Λ = 𝜙/𝜃 (Ona, 1999). The manufacturer provides 

the nominal value of the angular sensitivity, Λ′ and the measurement of 

beamwidth, 𝜃′
−3𝑑𝐵 at the sound speed, 𝑐′

𝑤 at which the calibration was carried out. At 

an in-situ site, Λ (Λ = Λ′ cw
′

cw
⁄ ) and θ−3𝑑𝐵 (θ−3𝑑𝐵 = θ′

−3𝑑𝐵
𝑐𝑤

′

𝑐𝑤
⁄ ) are adjusted to the 

local sound speed 𝑐𝑤. At the full beamwidth position, 𝑥−3𝑑𝐵 = 𝑘′𝑎 sin 𝜃′
−3𝑑𝐵 = 1.614 

(Kieser, & Ona, 1988), where 𝑘′ = 2𝜋𝑓𝑐 𝑐′𝑤⁄ . For small angles, sin 𝜃 ≅ 𝜃 and the angular 

sensitivity is approximated as Λ′ = 𝑘′𝑑. This gives 

 𝜉 =
𝑎

𝑑
=

1.614

𝛬′ 𝑠𝑖𝑛(𝜃′−3𝑑𝐵)
 (4.5) 

 

 𝜉 (𝜉 = 𝑎/𝑑) in Eq. (4.5) is the ratio of the transducer radius to the segment distance. In 

this study, 𝜉 is referred to as the geometrical parameter or GP of a split-beam broadband 
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transducer. If the one-way beam pattern, 𝐵𝑚𝑜𝑑𝑒𝑙(𝑓, 𝜃) in Eq. (4.1) is parameterised by 𝜉 

in Eq. (4.6) then as 𝐵𝑚𝑜𝑑𝑒𝑙(𝑓, 𝜃; 𝜉) is independent of 𝑐𝑤. 

 𝐵𝑚𝑜𝑑𝑒𝑙(𝑓, 𝜃; 𝜉) = (
2𝐽1(𝑥)

(𝑥)
)

2

 (4.6) 

 

where  

 𝑥 =
𝑓

𝑓𝑐
𝜉𝜙 =

𝑓

𝑓𝑐

1.614

𝛬′𝑠𝑖𝑛(𝜃′−3𝑑𝐵)
𝜙 (4.7) 

 

Eq. (4.7) is obtained by substituting Eq. (4.5) in Eq. (4.4). It is important that 𝜃′−3𝑑𝐵 and 

Λ′ in Eq. (4.7) are evaluated at the same sound speed even if it is not the same as the 

field sound speed. At 𝑐′𝑤 = 𝑐𝑤, 𝜃 will be the exact geometric angle. An assumption has 

been made in the study that the phase angle and the beamwidth were determined at the 

same frequency. 

4.2.2 Measured beam pattern 

The system response, 𝐻(𝑓) is the combined transmit and receive function of the 

echosounder system at frequency 𝑓. In Chapter 3, 𝐻(𝑓) was extended to 𝐻(𝑓, 𝜃) to 

include the directional sensitivity of the transducer at different positions within the 

acoustic beam. The on-axis response, 𝐻(𝑓, 0) can be derived by deconvolving the 

recorded echoes from a standard calibration sphere located on the beam axis (𝜃 = 0°) 

and substituting the theoretical backscattering amplitude,  𝐹𝑐𝑎𝑙(𝑓), Eq. (4.8) (Stanton, & 

Chu, 2008). 

 𝐻(𝑓, 0) =
𝐶𝑃𝑅(𝑓, 0)

𝐶𝑃𝑇(𝑓)𝐿𝑇𝐿(𝑓)𝐹𝑐𝑎𝑙(𝑓)
 (4.8) 

 

𝐶𝑃𝑇(𝑓) and 𝐶𝑃𝑅(𝑓, 0) are the auto spectrum of the transmit signal and the cross-spectrum 

of the received and the transmitted signals at the on-axis position (Chu, & Stanton, 1998; 

Turin, 1960). 𝐿𝑇𝐿(𝑓), is the two-way transmission loss due to the propagating medium 

(seawater). Mathematical development of the method is outlined in section 3.2.1. Once 

𝐻(𝑓, 0) of a system is known, the uncompensated backscattering amplitude,  𝐹𝑏𝑠.𝑡(𝑓, 𝜃) 

of any acoustic target can be derived as shown in Eq. (4.9) 

 𝐹𝑏𝑠,𝑡(𝑓, 𝜃) =
𝐶𝑃𝑅(𝑓, 𝜃)

𝐶𝑃𝑇(𝑓)𝐿𝑇𝐿(𝑓)𝐻(𝑓, 0)
 (4.9) 
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It is to be noted that  𝐹𝑏𝑠.𝑡(𝑓, 𝜃) is not corrected for the transducer directivity due to the 

use of 𝐻(𝑓, 0) instead of 𝐻(𝑓, 𝜃). The difference between the uncompensated measured 

target strength when the target is off-axis, 𝑇𝑆𝑚𝑒𝑎𝑠(𝑓, 𝜃), (𝑇𝑆𝑚𝑒𝑎𝑠 = 10 log|𝐹𝑏𝑠,𝑡(𝑓, 𝜃)|
2
 and 

when the target is on-axis, 𝑇𝑆𝑚𝑒𝑎𝑠(𝑓, 0) gives the experimental beam pattern 𝐵𝑚𝑒𝑎𝑠(𝑓, 𝜃), 

Eq. (4.10). 

 10𝑙𝑜𝑔10|𝐵𝑚𝑒𝑎𝑠(𝑓, 𝜃)|2 = 𝑇𝑆𝑚𝑒𝑎𝑠(𝑓, 𝜃) − 𝑇𝑆𝑚𝑒𝑎𝑠(𝑓, 0) (4.10) 

 

4.2.3 Inversion algorithm 

An inversion problem was formulated by adopting a measurement-model approach. The 

objective was to estimate the GP that resulted in a modelled beam pattern that matched 

the measured beam pattern as closely as possible. The cost function, 𝑄, of the inversion 

algorithm was the sum of the square of the difference between the measured and 

modelled beam patterns as shown in Eq. (4.11). The function was weighted by the sum 

of the averaged standard deviation, 𝜎𝑚̅̅ ̅̅  of the signals in each frequency bin. 𝐿 and 𝐻 

were the lower and the upper limit of the frequency range. 

 𝑄 = ∑ (
𝐵𝑚𝑒𝑎𝑠(𝑓

𝑚
, 𝜃) − 𝐵𝑚𝑜𝑑𝑒𝑙(𝑓

𝑚
, 𝜃; 𝜉)

𝜎𝑚̅̅ ̅̅
)

2𝐻

𝑚=𝐿

    (4.11) 

 

The inversion was a nonlinear least square minimisation problem. The standard 

Levenberg-Marquardt (LM) method was therefore selected for the parameter estimation. 

A detailed description of the Levenberg-Marquardt method can be found in Chapter 11 

of Press et al. (1988). 𝐵𝑚𝑜𝑑𝑒𝑙(𝑓𝑚, 𝜃; 𝜉) explicitly depends on 𝜉 which was the property to 

be fitted. Using a priori information 𝜉 was varied within a confined search space until a 

minimum 𝑄 value was found. To verify the hypothesis of a fixed piston, two different 

optimisations, both using the LM model were carried out. In the first optimisation, 𝜉 was 

assumed independent of the frequency and inverted for the single parameter 𝜉𝑒1. 

Whereas in the second optimisation, 𝜉 was assumed a linear function of 

frequency, 𝜉𝑒2(𝑓) and inverted for 𝜉0 and 𝜉1 . 𝜉0 was a frequency-independent offset and 

𝜉1 was the coefficient of the term that varies linearly with frequency, as shown in Eq. 

(4.12). 
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 𝜉𝑒2(𝑓) = 𝜉0 +
𝜉1

107
(𝑓 − 𝑓𝑐) (4.12) 

 

A scale factor of 107 was included so that 𝜉0 and 𝜉1 were of similar magnitude, which 

aided the convergence of the cost function minimisation. It was determined by several 

trials based on the relative importance of each term (Dosso et al., 1993). Once 𝜉𝑒1 and 

𝜉𝑒2(𝑓) were obtained, the corresponding beamwidth,(𝜃−3𝑑𝐵𝑒1  𝜃−3𝑑𝐵𝑒2 )  and the beam 

pattern,(𝐵(𝑓, 𝜃)𝑒1  𝐵(𝑓, 𝜃)𝑒2 ) could be predicted. The 𝑇𝑆(𝑓) compensated for the 

directivity were simulated using 𝜉𝑒1 and 𝜉𝑒2(𝑓) in Eq. (4.13). 

 𝑇𝑆(𝑓) = 𝑇𝑆𝑚𝑒𝑎𝑠(𝑓, 𝜃) + 10log10|𝐵(𝑓, 𝜃; 𝜉)|2 (4.13) 

 

The residual target strength, Δ𝑇𝑆(𝑓) in dB scale calculated by Eq. (4.14) was used to 

assess the performance of the algorithm. 

 𝛥𝑇𝑆(𝑓) = 𝑇𝑆(𝑓) − 𝑇𝑆𝑚𝑜𝑑𝑒𝑙(𝑓) (4.14) 
 

4.2.4 Setup 

A series of experiments were conducted in the Port of Hobart, which is situated near the 

mouth of the Derwent River, Tasmania, Australia, (42.88° S, 147.33° E) from the 7th to 

13th August 2015. The water depth was approximately 13 - 14 m. A Simrad EK80, 

echosounder was configured with a split-beam transducer (ES120-7CD) covering the 

frequency range, 95 – 160 kHz. The nominal beamwidth was 7.2° at the nominal centre 

frequency, 120 kHz. Facing vertically downward, the transducer was positioned ~1 m 

under the water surface using a pole. The whole system was connected to a temporary 

platform attached to the dock. A standard tungsten carbide sphere with 6% cobalt binder 

of diameter 22 mm (WC22) was used as a reference target (Foote et al., 1987; Foote, 

1982). The sphere was suspended ~7 - 8 m below the transducer using three 

monofilament lines. The range confirmed to the far-field at 𝑓𝑐 was 𝐷2 𝜆⁄ = 0.88 (m). 

𝐷 ( 𝐷 = 2𝑎) is the diameter of the active area of the transducer (Foote, 1991b). 

The sphere was centred on the beam axis (𝜃 = 0°) and systematically moved to different 

positions within the main lobe. Acoustic backscatter measurements were recorded for 

both fast and slow ramp transmit pulses, with all other settings kept the same (Table 

4.1). Data were recorded outside the calibration settings and stored as complex samples 

with a “.raw” extension. Refer to section 3.2 for a detailed description of the experimental 



Chapter 4: Characterisation of Transducer Parameters 52 
 

 
 

setup and procedure. 

Table 4.1: Operational configuration of the broadband echosounder. 

Parameters  Units Values 

Transducer model    
ES120 (WBT 
536012) 

Transceiver name   WBT 536012 

Frequency range  kHz 95 - 160 

Centre Frequency 𝑓𝑐  kHz 120 

Beamwidth at 𝑓𝑐 (𝜃−3𝑑𝐵) ° 7.28 

Angle sensitivity    23/23 

Offset angle (𝛼0, 𝛽0) ° 0.03/-0.11 

Transmit power W 200 

Pulse length  ms 0.512 

Amplitude ramping   fast, slow 

4.2.5 Data processing 

The “.raw” files were processed to generate the compensated and uncompensated target 

strength values in the temporal domain along with the 3D coordinates (range, major and 

minor axis angle) and time (Matlab codes provided by Andersen, Lars Nonboe from 

Simrad). Specific codes were developed for further analysis in the frequency domain. 

The nominal values were used in the study. The calibration sheet confirmed a circular 

symmetry to 0.1°, (7.3°/7.2°). Using the local variables, (temperature ~10°C and salinity 

~35 p.s.u), the sound speed, 1492 m/s (Mackenzie, 1981) and the absorption coefficient 

(Francois, & Garrison, 1982) were estimated.  

To time gate signals from the sphere, a 0.4 m Hanning window was applied from the 

peak to both sides of the signal. Recorded echoes from 0° and 3.5° off-axis angles were 

divided into bins of angle width 0.5°. To check for anomalies or random errors due to 

reverberation and contamination from other sources, bad data points were identified. For 

each bin, outliers beyond two standard deviations (95% confidence interval for a 

Gaussian probability) from the mean 𝑇𝑆 were rejected. 𝑇𝑆𝑚𝑜𝑑𝑒𝑙(𝑓) of the WC22 sphere 

was derived using a Matlab script (Chu, 2011) based on the theoretical backscattering 

model (Faran, 1951; MacLennan, 1981). 

The averaged 𝐻(𝑓, 𝜃) of the bin 0° - 0.5° was estimated (section 4.2.2) and extrapolated 

to derive 𝐻(𝑓, 0), using the nearest neighbour method. 𝑇𝑆𝑚𝑒𝑎𝑠(𝑓, 𝜃) was computed using 

𝐻(𝑓, 0) as shown in Eq. (4.9). Numerical optimisation of the cost function (section 4.2.3) 

provided an estimate of, 𝜉𝑒1 and 𝜉𝑒2(𝑓). The prior value of GP 𝜉𝑛 was 1.105. Wide and 
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reasonable boundaries were assigned to 𝜉 to allow for an appropriate inversion result. 

To avoid uncertainties in the regions close to the null at 157 kHz, and the low SNR ratio 

from 95 to 100 kHz, samples below 100 kHz and above 155 kHz were excluded from the 

analysis. Due to the memory limitations of the computer, 150 pings from each off-axis 

bin were randomly selected, and every 10th frequency point of each ping was input to the 

minimisation model. To investigate the convergence of the model, the direction 

parameters (𝜃−3𝑑𝐵, 𝐵(𝑓, 𝜃)) and 𝑇𝑆(𝑓) spectrum were generated using 𝜉𝑒1 and 𝜉𝑒2(𝑓). 

The Root Mean Square Error (RMSE) of ∆𝑇𝑆, Eq. (4.15) gave the errors estimate. 

 
𝑅𝑀𝑆𝐸 =  [𝑛−1 ∑|Δ𝑇𝑆|2

𝑛

𝑖=1

]

1
2

 
(4.15) 

4.3 Results 

The use of the parameterised beam pattern, 𝐵(𝑓, 𝜃; 𝜉) for beam compensation, as 

proposed in section 4.2.1, was evaluated. As 𝐵𝑚𝑜𝑑𝑒𝑙(𝑓, 𝜃; 𝜉) is a parametrised form of 

𝐵(𝑓, 𝜃), it is anticipated that the compensated 𝑇𝑆(𝑓) derived with it should match to the 

one obtained with 𝐵(𝑓, 𝜃). 

Recorded echoes from the sphere (WC22) were processed to generate 

compensated 𝑇𝑆(𝑓), in Eq. (4.13) using 𝐵𝑚𝑜𝑑𝑒𝑙(𝑓, 𝜃) Eq. (4.1) and 𝐵𝑚𝑜𝑑𝑒𝑙(𝑓, 𝜃; 𝜉) Eq. (1-

6). Signals from both fast and slow ramped transmission were processed. 
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Figure 4.2: Frequency spectrum of bin-wise averaged compensated 𝑇𝑆(𝑓) of the WC22 

sphere, derived using the parametrised beam pattern, 𝐵(𝑓, 𝜃; 𝜉) (top) and the modified 

Bessel function, 𝐵(𝑓, 𝜃) (bottom) for the fast (left), and slow ramp (right) transmitted 
waveforms. A black (--) line shows the theoretically predicted value. Off-axis angles are 
shown in the legend. 

 

Figure 4.2 compares the averaged 𝑇𝑆(𝑓) of each off-axis bin derived with both the 

models. As the proposed beam pattern model is a parametrised version of the modified 

Bessel function, it would be expected that they both yield the same value of  𝑇𝑆(𝑓). As 

anticipated, the compensated 𝑇𝑆(𝑓) from both models matched closely, ~0.4 dB, 

validating the parametrisation of the beam pattern as a function of GP. Compensation 

with 𝐵𝑚𝑜𝑑𝑒𝑙(𝑓, 𝜃; 𝜉) produced similar results with RMS errors of 0.40 and 0.41 dB 

respectively for the fast and slow ramp. The RMSE of the residual target strength ∆𝑇𝑆(𝑓) 

was 0.40 dB for all sets, inclusive of the nulls at 157 kHz. The nulls were due to the 

constructive and destructive interference of the waves from the different interfaces of the 

sphere (Marston et al., 1990; Williams, & Marston, 1986). 

4.3.1 Effective parameters 

The optimisation provided two outputs for GP a constant, 𝜉𝑒1 and the frequency-
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dependent  𝜉𝑒2(𝑓). The beamwidth, (𝜃−3𝑑𝐵𝑒1 𝜃−3𝑑𝐵𝑒2), and the one-way beam pattern, 

((𝐵(𝑓, 𝜃)𝑒1 , 𝐵(𝑓, 𝜃)𝑒2 ) corresponding to 𝜉𝑒1and  𝜉𝑒2(𝑓), were generated as shown 

inFigure 4.3..  

 

Figure 4.3: The nominal and the inferred GP, 𝜉𝑛 𝜉𝑒1and  𝜉𝑒(𝑓) plotted against frequency for fast 
(top left) and slow (top right) ramp signals. The beamwidth (middle) and one-way beam pattern 
(bottom) derived using 𝜉𝑛, 𝜉𝑒1 𝑎𝑛𝑑 𝜉𝑒2(𝑓) for fast (left) and slow (right) ramp signal plotted versus 

frequency. A *, o and ^ on each curve is the value at, 𝑓𝑐 (120 kHz) also shown in the legend. 

Overall, the effective GDP was comparable for the fast and slow ramp signals with some 

minor deviations. For the fast and slow ramps, the derived GP 𝜉𝑒1 was 1.150 and 1.146 

rather than the nominal value of 1.105.  𝜉𝑒2(𝑓) was weakly dependent on the frequency, 
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leading to an almost constant flat response with frequency. At the centre frequency 

 𝜉𝑒2(𝑓) was higher (1.158 and 1.155) than  𝜉𝑒1 (1.150 and 1.146) for both fast and slow 

ramp. The derived beamwidth and the one-way beam pattern were lower than the 

respective nominal value. In all cases, the deviation was lower in the slow ramp (<~0.5%) 

than that for the fast ramp. The results of the LM based inversion are summarised in 

Table 4.2. 

Table 4.2: Transducer nominal and derived parameters at the centre frequency. 

Transducer parameters  
ES120 (WBT 536012) 

 
Symbols Fast ramp Slow ramp 

The nominal GP, 𝜉𝑛 
𝜉𝑛 1.105 1.105 

Frequency independent GP, 𝜉𝑒1 
𝜉𝑒1 1.150 1.146 

Frequency-dependent GP, 𝜉𝑒2(𝑓) 
 

𝜉0 
𝜉1 

1.158 
-5.253 

1.155 
-5.552 

Nominal beamwidth at the centre frequency 
𝜃−3𝑑𝐵𝑛(°) 7.28 7.28 

Effective beamwidth at the centre frequency 
derived with 𝜉𝑒1 

 
𝜃−3𝑑𝐵𝑒1(°) 6.99 7.02 

Effective beamwidth at the centre frequency 
derived with 𝜉𝑒2(𝑓) 

 
𝜃−3𝑑𝐵𝑒2(°) 6.94 6.96 
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4.3.2 Compensated target strength 

  

  

  

Figure 4.4: The frequency response of the averaged residual target strength (∆𝑇𝑆 =
𝑇𝑆(𝑓) − 𝑇𝑆𝑚𝑜𝑑𝑒𝑙(𝑓) for each off-axis bin with 𝜉𝑛, (top) 𝜉𝑒1 , (middle) and 𝜉𝑒2(𝑓) (bottom) 

for the fast (left) and slow (right) ramp. 

 

The implications of the effective parameters for the 𝑇𝑆(𝑓) measurements were 

investigated. 𝑇𝑆(𝑓) for each signal was calculated by substituting,  𝜉𝑛, 𝜉𝑒1 and  𝜉𝑒2(𝑓) in 

Eq. (4.13) and the averaged ∆𝑇𝑆(𝑓) for each off-axis bin is drawn in Figure 4.4. Using 

𝜉𝑒1 improved the performance from RMS error from 0.28 to 0.15 dB and from 0.34 to 

0.15 dB for the fast and slow ramping respectively. The plot revealed that including 
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frequency dependence through  𝜉𝑒2(𝑓)had little effect on the RMSE, with a slight 

increase from 0.15 dB to 0.16 dB in the case of the fast ramp and a slight decrease from 

0.15 dB to 0.13 dB in the case of the slow ramp. The minimisation algorithm led to uneven 

compensation across the frequency bandwidth. In the case of the fast ramp, 

compensation in the lower frequency range (<130 kHz) led to overcompensation at 

higher frequencies (>130 kHz). It was the reverse in the case of the slow ramp where 

compensation at the higher frequencies (>122 kHz) lead to under-compensation at lower 

frequencies (<122 kHz).  

In a different approach, 𝑥 (𝑥 = 𝑘𝑎 𝑠𝑖𝑛 𝜃) from 0 to 2 was divided into bins with a width of 

0.1, and corresponding ∆𝑇𝑆 values for each signal were binned. To visualise the extent 

of the distribution, the 5th, 25th, 50th, 75th and the 95th percentiles of each bin were drawn 

(Figure 4.5). 
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Figure 4.5: Scatter plot of the residual target strength against 𝑥 (𝑥 = 𝑘𝑎 sin 𝜃) for 𝜉𝑛, 

(top) 𝜉𝑒1  (middle) and 𝜉𝑒2(𝑓), (bottom) for fast (left) and slow (right) ramp. The 95th, 75th, 
50th, 25th and 5th percentiles of each bin are drawn, also shown in the legend. 

 

Using 𝑥 enabled visualisation of the combined influence of all frequencies and angles. 

The value of 𝑥 varied from 0.0 - 1.15 at 90 kHz, 0.0 – 1.54 at the centre frequency 120 

kHz and 0 – 2.06 at 160 kHz. The ∆𝑇𝑆(𝑓) distribution calculated from the slow ramp was 

skewed toward the negative side, whereas the fast ramp data had a normal distribution. 

Using  𝜉𝑒1 improved RMSE from 0.43 dB to 0.25 dB in the slow ramp, as compared to 

0.33 dB to 0.27 dB in the fast ramp. No significant improvement was observed using the 
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frequency-dependent function 𝜉𝑒2(𝑓), which resulted in RMS errors of 0.27 dB and 0.23 

dB respectively for the fast and the slow ramp. 

4.4 Discussion  

In this chapter, a broadband specific technique was developed to characterise the 

transducer's geometrical and directional parameters across the entire frequency 

bandwidth. As a part of the process, the modified Bessel function was parametrised to 

the GP, and the assumption of a constant GP piston and the frequency dependence of 

both geometrical and directional parameters were also tested.  

4.4.1 Parametrised beam pattern model performance 

The parametrisation of the beam pattern in terms of the GP through, 𝐵(𝑓, 𝜃, 𝜉) removed 

the dependence on the sound speed. This was unlike the modified Bessel function, which 

requires the beamwidth fitted to the sound speed to avoid any bias in the output. The 

validity of 𝐵(𝑓, 𝜃, 𝜉) was backed by compensating 𝑇𝑆(𝑓) of the WC22, standard 

calibration sphere for two different transmission pulses (fast and slow ramp) and 

comparing it to the output achieved with the modified Bessel function. An advantage of 

the new beam pattern parameterisation is that estimates can be made even using the 

nominal beamwidth. This result could be significant in the deep ocean surveys, where 

the use of 𝐵(𝑓, 𝜃; 𝜉) would ensure accurate beam compensation despite variable 

oceanographic conditions or modification if any in the beam parameters due to the 

transducer mounting. 

4.4.2 Implications of transducer characterisation 

The GP of the Simrad EK80 ES120 (WBT 536012) was found to be constant across the 

frequency range 95 – 160 kHz. This result was obtained by fitting two relationships for 

the GP, one constant and the other as a linear function of frequency. No noticeable 

improvement was found using the frequency-dependent GP. However, a set of 

measurements achieved with only one transducer is not enough to generalise the notion 

and therefore, verification with other transducers of different sizes and frequency 

bandwidths is recommended. 

The inversion algorithm demonstrated that; for the broadband split-beam transducer 

used in the experiment, the GP was 3.5 – 4 %, higher and the beamwidth was 3 – 4% 

lower than the nominal values provided by the manufacturer. For this specific transducer, 
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working with the nominal beamwidth could lead to a variation in the 𝑇𝑆(𝑓) by ~0.12 dB 

when modified Bessel function is used for beam compensation. Given the importance of 

𝑇𝑆(𝑓) of single targets in the echo-integration and echo counting, this variation could 

impact the translation of 𝑇𝑆(𝑓) into meaningful ecological attributes such as mesopelagic 

animal abundance (Benoit-Bird, & Au, 2001) or fish abundance (MacLennan, 1990). For 

example, 𝑇𝑆(𝑓) of several myctophids and deep water fishes are linked to the physical 

and morphological characteristics of the fish (Kloser et al., 2011) . Nevertheless, using 

the system response function method, elaborated in Chapter 3, or the parametrised 

beam model for beam pattern compensation would ensure that 𝑇𝑆(𝑓) is precise even if 

the effective beamwidth differed from the nominal value. 

For the transducer used in these experiments, the effective GP and beamwidth for the 

fast ramp showed larger differences from the nominal values than the slow ramp (Figure 

4.3). This was probably due to a higher level of fluctuations that gave data a noisier 

appearance. These fluctuations in the frequency domain were caused by the sudden 

truncation of the signal in the time domain (10% slope for the fast ramp) (Oppenheim, & 

Schafer, 2014). Further investigations would prove beneficial to confirm the observation. 

The improvement in the residual (∆𝑇𝑆 = 𝑇𝑆(𝑓) − 𝑇𝑆𝑚𝑜𝑑𝑒𝑙(𝑓)) obtained by using the 

measured, rather than nominal GP, was quantified in terms of its distribution with off-axis 

angle and frequency (Figure 4.4). With the effective GP, a consistent decline in ∆𝑇𝑆(𝑓) 

was achieved up to 2.5°, beyond which compensation at one end leads to 

overcompensation or under-compensation at the other. This was seen for both types of 

amplitude ramping. One possible explanation could be an increasing departure of the 

true beam pattern from the theoretical beam pattern at angles beyond 2.5°. 

From the statistical distribution of ∆𝑇𝑆(𝑓) with 𝑥 (Figure 4.5), it can be seen that the 

spread of ∆𝑇𝑆(𝑓) with the nominal GP, increases with 𝑥. The increase in the width is due 

to the increase in the uncertainty as the sphere moves further out in the beam pattern. 

In both cases, moving from nominal to fitted GP does not make any difference to the 

width of the distribution but reduces the variation with 𝑥. Using the effective GP, the mean 

∆𝑇𝑆(𝑓) gets closer to the 0 dB and depends less on 𝑥. The standard deviation increases 

with the increasing value of 𝑥 but is essentially independent of the method used to 

measure the GP. However, the improvement in the 95% confidence interval of the 

∆𝑇𝑆(𝑓) distribution to less than ∓1 dB suggested that the effective GP describes the 

system better than the nominal value. 
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The volume backscattering remains an important index in the echo-integration method 

for fisheries stock assessments and biomass estimates (Simmonds, 1984). The volume 

backscattering depends on the actual geometric beamwidth. The analysis presented 

here was based on the electric angles determined by the split-beam processing and not 

the actual geometric angles (Bodholt, 2002). Estimation of the geometrical beamwidth 

would be needed to estimate the effective angle sensitivity, which requires independent 

measurements of the target’s geometric position (Reynisson, 1998), and was not 

attempted. Independent measurements would require setting up a mechanism that could 

control the movement of the target This limits the application of the transducer 

characterisation method described here only to 𝑇𝑆(𝑓) measurements and not to the 

volume backscattering. Both beamwidth and equivalent angle were characterised in 

Lavery et al. (2010), though the paper does not state whether geometric angles or split-

beam electric angles were used. 

The proposed characterisation technique is explicitly developed for a broadband 

echosounder to cover a wide range of frequencies. For turning this experiment to an in-

situ operational method, some of the issues that need to be addressed are: (1) an 

independent experiment to confirm if the material properties of the spheres used in the 

experiment match to the theoretical values, and (2) extension of the method to 

characterise an elliptical or rectangular transducer by including the angles along the two 

planes. 

4.5 Conclusion  

The characterisation of a broadband split-beam transducer is presented which uses the 

parametrised beam pattern and on-axis system response in conjunction with the 

Levenberg-Marquardt (LM) inversion algorithm. Both effective GP and beamwidth 

differed by 3 - 4% from the respective nominal values. The improvement in the residual 

target strength distribution supported the use of effective GP and beamwidth. Results 

indicated that characterisation of the transducer's parameters is crucial to enhance the 

accuracy of 𝑇𝑆(𝑓) measurements primarily when used for classification of marine 

organisms based on size. This result is significant as nominal parameters are often used 

in fisheries acoustics. Allowing the GP to vary with frequency did not result in a reduction 

in RMS residuals, which supports the assumption that a constant GP piston is a good 

model for the Simrad EK80, ES120, at least when angles are measured in terms of split-

beam electrical angles. 
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Chapter 5 

 

 

A Technique for Target Phase 

Extraction and Calibration of a 

Broadband Echosounder. 

 

There is a growing interest in the application of broadband echosounders to improve 

remote sensing of marine organisms. The phase of the backscattered signal contains 

information about the scatterer's material properties and geometry. There is, therefore, 

the potential to improve classification methods by measuring both the phase and 

amplitude of the target's scattering function. A technique is developed to perform a 

calibration of both the amplitude and phase responses of a Simrad EK80 broadband 

echosounder. This calibrated response is then used to determine the phase of an 

unknown target's scattering function. The backscattered signals are retained in complex 

form and used to obtain the system response with real and imaginary parts. The 

consistency of the system response phase for different positions within the main lobe 

indicated insensitivity to the transducer directivity. Three different variables: absolute, 

differential and residual phase were experimentally measured for two standard spheres 

(a 22 mm and a 38.1 mm diameter, tungsten carbide sphere with 6% cobalt binder) for 

fast and slow amplitude ramped transmit signals. When compared to their respective 

theoretical values; the absolute phase showed offsets and inversions, whereas the 

differential and residual phase were consistent and free from offsets. Inclusion of phase 

when comparing measured data to numerical acoustic scattering models has the 

potential to reduce uncertainties in remote sensing applications and may help to classify 

targets with similar amplitude responses. 
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5.1 Introduction 

Classifying scatterers using the frequency response of backscattered signals has drawn 

considerable interest in fisheries acoustics (Au, & Benoit-Bird, 2003; Lee et al., 2012; 

Stanton, & Chu, 2010). The current sensing techniques typically exploit the signal 

amplitude, the target strength, 𝑇𝑆(𝑓) (dB re 1m2) or the volume backscattering 

strength, 𝑆𝑣(𝑓), overlooking the presence of additional phase information (Medwin, & 

Clay, 1998). In situ amplitude measurements are routinely affected by marine diversity 

(Lavery et al., 2007), organism’s behaviour modification (Henderson, & Horne, 2007; 

Kloser et al., 1997) and interspecies variability within an acoustic sampled volume 

(Kieser, & Ona, 1988; Stanton et al., 2012). A broadband echosounder receives the 

backscattered signals from a target with real and imaginary components. The signal 

includes the target induced phase shift, which if extracted, could serve as an additional 

descriptor to characterise the scatterer (Atkins et al., 2007; Barr, & Coombs, 2005). 

However, before phase shift is recognised as a reliable acoustic index, it is important to 

develop a technique for the calibration of the instrument. 

Phase can be a useful parameter in signal processing (Oppenheim, & Lim, 1981). The 

propagation of a signal through a non-dispersive medium leads to a time-based deviation 

in the phase that is capable of delivering source information (Mitri et al., 2008). Earlier, 

the phase has been exploited for image reconstruction and segmentation (Skarbnik et 

al., 2010) and even speech processing (Shi et al., 2006). In ultrasound imaging, 

researchers have emphasised the calibration of phase for accurate determination of the 

sensitivity of the hydrophone (Hayman, & Robinson, 2013; Koch, 2003; Luker, & Van 

Buren, 1981). 

In fisheries acoustics, the first work on phase dates back to the early 1970s when species 

discrimination was proposed based on hard and soft echoes, (Tucker, & Barnickle, 1969)  

and was also supported by experimental measurements (Braithwaite, 1973). Later, 

researchers recommended its feasibility as a classifier for biological species (Chestnut 

et al., 1979; Giryn, 1982). However, there were no immediate follow-ups due to the 

computational limitations and the lack of instruments capable of measuring complex 

waveforms. In the early 2000s, Barr, and Coombs (2005) exploited the rate of change of 

target phase to classify fishes from planktons with similar target strength. The need for 

calibration of echosounders for phase measurements was also pointed out. Sonar 

systems were calibrated for the phase by extending the standard calibration approach 
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for dual-frequency continuous waves (CW) (Islas-Cital et al., 2011b) and linear frequency 

modulated (LFM) transmission pulses (Islas-Cital et al., 2011a). Substantial agreement 

between the measurements and the theoretical prediction implied the feasibility of the 

method. The work was performed in controlled conditions, and the sphere limited to the 

on-axis position without addressing the effect of the transducer directivity. 

For exploitation in fisheries, several technical aspects need to be addressed to uncover 

a scatterer’s information from the phase (Horne, 2000; Nakken, & Olsen, 1977). Defined 

as the arctangent of the ratio of the imaginary to real parts of the Fourier Transform of a 

signal, the phase remains wrapped within 360° (2𝜋 radians) (Tribolet, 1977) which masks 

the actual response. Unmodeled propagation delays lead to a range dependent linear 

phase accumulation, posing challenges in delivering quantifiable phase information 

(Lyon, 1984). Additional sources of uncertainties such as the low signal to noise ratio 

(SNR), frequency resolution and dispersion effects, control the measurement accuracy. 

The presence of additive noise and interference from other acoustic sources can further 

degrade the analysis (Matsumoto, 1990). Thus, incorporation of phase for target 

characterisation requires advanced techniques to process complex signals, computation 

tools to work in the frequency domain, and quantifiable variables to negate the 

propagation delay effects. 

To provide meaningful phase measurement, instrument calibration across the frequency 

bandwidth is of utmost importance. For a split-beam transducer, this would involve 

addressing two main aspects (1) the on-axis sensitivity and (2) correction of off-axis 

measurements for the transducer directivity. Phase calibration can be attained by 

extending the standard sphere calibration approach (Demer et al., 2015; Stanton, & Chu, 

2008). The Simrad EK80, broadband echosounder comes with two choices for shaping 

the transmit pulse (fast and slow ramping) achieved by applying Hann windows of 

different lengths to the transmit signal in the time domain (Oppenheim, 1999). The 

calibration of an echosounder on both settings would ensure optimum phase 

measurement in different circumstances. 

This study investigates the use of the complex system response for extraction and 

calibration of phase measurements. Three variables, absolute, differential and residual 

phase, are presented for visualisation of target-induced distortion. The paper is 

organised as follows. The terminology is introduced in section 5.2, followed by the 

description of the theoretical development, experimental setup and the processing 
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technique. In section 5.3, measurements from two standard calibration spheres are 

presented. The uncertainties and possible application to target classification are 

discussed in section 5.4, followed by a conclusion in 5.5. 

5.2 Methods  

Some key terminology associated with analysis is described below. Note that all the 

variables are discussed in the frequency domain. 

5.2.1.1 Absolute phase 

The frequency, 𝑓 (Hz) spectrum of the non-linear back scatterer phase, 𝑊𝜑𝑏𝑠(𝑓), (°) is 

wrapped within modulo 360° for every circular rotation which gives it a sawtooth shape 

(Lyon, 1983). Several algorithms have been developed to avert the wrapping (Al-Nashi, 

1989; Spagnolini, 1995). The Matlab ‘unwrap’ function adjusts the angle by 

adding ±360°, whenever the jump between consecutive elements is higher than the 

default value ±180°. Unwrapping of the signal reveals the actual phase, 𝜑𝑏𝑠(𝑓) (°) 

information Eq. (5.1). 

 𝜑𝑏𝑠 (𝑓) = 𝑢𝑛𝑤𝑟𝑎𝑝(𝑊𝜑𝑏𝑠 (𝑓)) (5.1) 
 

Extra care should be taken while using ‘unwrap’ to avoid sudden jumps due to low-

frequency resolution, discontinuities and additive noise (Nadeborn et al., 1996). The 

location of zeros can introduce uncertainties during unwrapping (Quatieri, & Oppenheim, 

1981; Tribolet, 1977). In addition, the propagation of a signal through a non-dispersive 

medium leads to a distance-dependent, linear accumulation in the phase (Lyon, 1983, 

1984) removal of which is crucial to reveal the modification caused by the scatterer. 

5.2.1.2 Differential phase. 

One approach is to visualise the differential (gradient) of the phase with respect to 

frequency, 𝐷𝑃(𝑓) (°/Hz) which magnifies the target induced properties (Yen et al., 1990). 

Calculating the differential converts the linear ramp in 𝜑𝑏𝑠(𝑓) to an offset in 𝐷𝑃(𝑓) (Eq. 

(5.2)). The 𝐷𝑃(𝑓) was also applied by Mitri et al. (2008) and referred to as the rate of 

change of phase or RCP. 

 𝐷𝑃(𝑓) =
𝑑𝜑𝑏𝑠

𝑑𝑓
 (5.2) 
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5.2.1.3 Residual phase 

Although 𝐷𝑃(𝑓) removes the range accumulation, sudden jumps can make clear 

interpretation difficult. The changes due to the range errors are linear functions of 

frequency, which if removed, would enable visualisation of the target induced phase shift. 

This can be achieved by estimating the linear least-squares fit and then removing it. For 

this purpose, we use the residual phase, 𝑅𝑃(𝑓) (°) which is obtained by subtracting the 

product of the frequency and the median of the differential phase from the absolute 

phase (Eq. (5.3)). 

 𝑅𝑃(𝑓) =  𝜑𝑏𝑠(𝑓) − (𝑓 × 𝑚𝑒𝑑𝑖𝑎𝑛(𝐷𝑃(𝑓)) (5.3) 
 

The median is used to minimise the effect of substantial changes in the differential phase 

due to the target response. The proposed method to calculate the residual phase 

improves on the linear least-squares fit. A linear fit would distort the residual phase as 

the target-induced phase is non zero whereas the median is a more robust estimator. 

This procedure can lead to a frequency-independent offset between the residual phase 

and the actual phase that can be removed by subtracting the mean of the residual phase. 

An example of  𝑊𝜑𝑏𝑠(𝑓), 𝜑𝑏𝑠(𝑓), 𝐷𝑃(𝑓) and 𝑅𝑃(𝑓) spectra for a tungsten carbide (6% 

cobalt binder) sphere of 22 mm diameter are shown in Figure 5.1. 
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Figure 5.1: The frequency spectrum of the wrapped (top left), absolute (top right), differential 
(bottom left) and residual phase (bottom right) for a tungsten carbide (6% cobalt binder) sphere 
of 22 mm diameter. 

5.2.2 Theoretical development  

The theoretical development of a procedure to calibrate a broadband echosounder for 

both its phase and amplitude response is described. Note that the background treatment 

discussed in this section is relatively brief; for a more in-depth description refer to 

Chapter 3. 

A transmitter transmits frequency modulated (FM) waveforms that undergo modifications 

due to scattering by a single target in the far-field. The receiver receives the 

backscattered sound. An echosounder can be modelled as a linear time-invariant (LTI) 

system (Foote, 1983). The received voltage, 𝑉𝑅(𝑓, 𝜃), can be expressed as a product of 

the transmitted voltage, 𝑉𝑇(𝑓, 𝜃), and the transfer function of the three individual 

components, 𝐿𝑇𝐿(𝑓), 𝐻(𝑓, 𝜃) and 𝐹𝑏𝑠(𝑓) (He, 1999) as shown in Eq. (5.4). 𝑉𝑅(𝑓, 𝜃), 

𝑉𝑇(𝑓, 𝜃) and 𝐻(𝑓, 𝜃) are functions of both frequency and off-axis angle, 𝜃 (°). 

 𝑉𝑅(𝑓, 𝜃) = 𝑉𝑇(𝑓, 𝜃)𝐻(𝑓, 𝜃)𝐿𝑇𝐿(𝑓)𝐹𝑏𝑠(𝑓) (5.4) 
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In the equation, 𝐿𝑇𝐿(𝑓) (𝐿𝑇𝐿(𝑓) =
1

𝑟2 𝑒
𝑖(

4𝜋𝑓

𝑐𝑤
)𝑟

𝑒2𝛼𝑤(𝑓)𝑟) is the two-way transmission loss 

function, which includes the effect of signal propagation and wave spreading. Here 𝑟 (m) 

is the range, 𝑐𝑤 (m/s) is the sound speed in water and 𝛼𝑤(𝑓) (dB/m) is the absorption 

coefficient. The system response 𝐻(𝑓, 𝜃) sums up the responses of all components of 

an echosounder, including the transmitter and receiver electrical responses and the 

transducer transmit and receive responses at a given frequency and off-axis angle. 

Incorporating 𝜃 compensates for the effect of transducer directional sensitivity. 

Mathematically 𝐻(𝑓, 𝜃) is a complex function, (𝐻(𝑓, 𝜃) = 𝐴(𝑓, 𝜃)𝑒𝑖𝜑(𝑓,𝜃)) with an 

amplitude, 𝐴(𝑓, 𝜃), and a phase, 𝜑(𝑓, 𝜃)(Heyser, 1969; Islas-Cital et al., 2011b). For a 

target on the beam axis, (𝜃 =  0°) with no directional dependence, 𝐹𝑏𝑠(𝑓) is the 

backscattered amplitude. The target strength is the modulus of the backscattered 

amplitude in the logarithmic scale given by Eq. (5.5) (Urick, 1983). 

 𝑇𝑆(𝑓) = 10 𝑙𝑜𝑔10|𝐹𝑏𝑠|2 (5.5) 
 

Experimentally, 𝐻(𝑓, 𝜃) can be approximated by recording backscattered signals from a 

standard target of a known backscattering amplitude 𝐹𝑏𝑠,𝑐𝑎𝑙(𝑓) positioned at different 

positions within the main lobe of the transducer's beam pattern (Eq. (5.6)). The pulse 

compressed received, 𝐶𝑃𝑅(𝑓, 𝜃) and transmitted signals, 𝐶𝑃𝑇(𝑓, 𝜃) are computed by 

multiplying each with the complex conjugate of the replica of the transmitted signal (Chu, 

& Stanton, 1998; Turin, 1960). 

 𝐻(𝑓, 𝜃)   =
𝐶𝑃𝑅(𝑓, 𝜃)

𝐶𝑃𝑇(𝑓, 𝜃)𝐿𝑇𝐿(𝑓)𝐹𝑏𝑠,𝑐𝑎𝑙(𝑓)
 (5.6) 

 

Once 𝐻(𝑓, 𝜃) is determined,  𝐹𝑏𝑠(𝑓) of an unknown target can be derived via Eq. (5.7). 

 𝐹𝑏𝑠(𝑓)  =
𝐶𝑃𝑅(𝑓, 𝜃)

𝐶𝑃𝑇(𝑓, 𝜃)𝐿𝑇𝐿(𝑓)𝐻(𝑓, 𝜃)
 (5.7) 

 

The objective of using 𝐻(𝑓, 𝜃) is to compensate the transducers directivity. The angle or 

the arctangent function of 𝐹𝑏𝑠(𝑓), yields  𝑊𝜑𝑏𝑠(𝑓) which can be unwrapped to give 

𝜑𝑏𝑠(𝑓) (Eq. (5.8)). The complex exponential term in the transmission function removes 

the phase ramp in Eq. (5.6) if the transmit/receive delay is known exactly. In practice, 

the transmit/receive delay has to be estimated from the data and estimation uncertainties 

lead to some residual phase ramp. 
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 𝜑𝑏𝑠 (𝑓) = 𝑢𝑛𝑤𝑟𝑎𝑝(𝑎𝑛𝑔𝑙𝑒( 𝐹𝑏𝑠(𝑓)) (5.8) 
 

5.2.3 Experimental setup  

A series of standard calibration experiments was conducted in the estuary of the Derwent 

River in Hobart, Tasmania, from 10th to 13th August 2015. The water was approximately 

13 m deep. A Simrad EK80 split-beam broadband echosounder (ES120-7CD) with 

frequency bandwidth 95 – 160 kHz was used. The nominal beamwidth at its centre 

frequency of 120 kHz was 7.2°. The transducer was mounted facing vertically downward 

under the water surface (~1 m) using a pole connected to an onshore platform. 

For the first trial, a 22 mm diameter, tungsten carbide sphere with 6% cobalt binder 

(WC22) was suspended in the far-field region of the transducer, (~7 - 8 m) using three 

monofilament lines. Backscattered sounds were recorded by moving the sphere from on-

axis to many off-axis positions within the acoustic beam. Next, a 38.1 mm diameter 

(WC38) sphere made of the same material, was used (Foote, & MacLennan, 1984) and 

recordings were obtained by repeating the process. Two sets of recordings were 

obtained for each sphere. The first set was with a fast ramp transmit pulse and the 

second set was with a slow ramp transmit pulse. The pulse length was 0.512 μs in both 

cases. 

5.2.4 Signal processing 

The initial processing read “*.raw” files to derive backscattered energy and the 3D 

coordinates and plot pulse-compressed echograms using Matlab code provided by Lars 

Nonboe Anderson from Simrad, Kongsberg Maritime. Specific Matlab programs were 

then developed by the authors to compute the complex system response and the spectra 

of phase variables.  

A WC22 sphere was used to compute the system response, 𝐻(𝑓, 𝜃) for the frequency 

range 95 – 160 kHz, although not ideal (Demer et al., 2015),. The frequency response is 

flat between95 – 160 kHz, except for - nulls at 158.5 kHz due to resonance. The nulls 

are caused by constructive and destructive interference of the backscattered signals 

from the different interfaces of the sphere (Marston et al., 1990; Überall, 1973; Williams, 

& Marston, 1986). To time gate the sphere signal, a Hann window of length 0.7 m was 

applied from the peak to both sides of the pulse-compressed waveform. Recordings from 

0° - 4° off-axis angles were partitioned into bins of angle width 0.5°. Due to the sensitivity, 

pings lying outside two standard deviations from the mean 𝑇𝑆 values (95% confidence 
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error for a Gaussian distribution) for each bin were removed. The bin wise averaged 

𝐻(𝑓, 𝜃) was obtained by substituting the 𝐹𝑏𝑠,𝑐𝑎𝑙(𝑓) in Eq. (5.6). A free to download Matlab 

based code developed by Chu (2011)was used to compute the 𝐹𝑏𝑠,𝑐𝑎𝑙(𝑓) based on Faran 

(1951) and Foote, and MacLennan (1984). It was assumed that the material properties 

and the size of the experimental spheres matched to their modelled values. 

To derive the 𝐹𝑏𝑠(𝑓) of the spheres, recordings from each were divided into off-axis bins 

of width 0.5° from 0.0° – 3.5° and pings from each bin outside the 95% confidence 

interval were removed. The averaged 𝐻(𝑓, 𝜃) was interpolated to the off-angle of the 

ping, and the resulting values used in Eq. (5.7) to obtain 𝐹𝑏𝑠(𝑓). The 𝜑𝑏𝑠 (𝑓), 𝐷𝑃(𝑓) and 

𝑅𝑃(𝑓) for each ping were determined using Eq. (5.8), Eq. (5.2) and Eq. (5.3) and 

averaged for each angle bin. 

5.3 Results 

To derive the frequency response of the phase and demonstrate the effect of transducer 

directivity the system response at the on-axis and off-axis positions were obtained for 

both the fast and the slow ramp transmission. The self-consistency of the method is 

depicted through the phase variables plotted for the WC22 sphere at both the ramps. 

Once verified the application of the method to extract the phase of other targets is shown 

via the WC38 sphere. 

5.3.1 System response (on-axis and off-axis) 

Figure 5.2 and Figure 5.3 shows the frequency response of the amplitude and the 

absolute, differential and residual phase of 𝐻(𝑓, 0)  for the fast ramp and slow ramp 

transmitted waveforms. It is to be noted that the 𝐻(𝑓, 0) response shown here was not 

measured at a constant range and angle, but was determined by averaging 511 (fast) 

and 89 (slow) pings between 0° and 0.5°. 
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Figure 5.2: The amplitude and the absolute, differential and residual phases of the system 
response of the echosounder for the fast ramp transmitted waveforms. 
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Figure 5.3: The amplitude and the absolute, differential and residual phases of the system 
response of the echosounder for the slow ramp transmitted waveforms. 

For the fast-ramp, the amplitude, (20 log10|𝐻(𝑓, 0)|) had a broader peak than that for the 

slow-ramp. Moreover, it was smoother for the slow ramp versus oscillating for the fast 

ramp. 𝜑(𝑓, 0) (𝑓), appeared the same for both cases, decreasing nonlinearly with 

frequency. Because of the high slope (-0.385 °/Hz), the actual response of the 

transceiver could not be visualised. Computing the differential phase removed 

accumulation with increasing range. 𝐷𝑃(𝑓) for both ramps was consistent and exhibited 

the characteristic resonance at the 158.5 kHz. The null is an artefact of the calibration 

process due to the use of the WC22 sphere and is not part of the true system response. 

The overall structure remained masked due to the null. The linear slope (-2.7x10-6.°/Hz2) 

observed in 𝐷𝑃(𝑓) was likely due to the delay caused by the time difference between the 

original and assumed travel time of the signal. The nulls were higher for the fast and 

lower for the slow ramp signals. The 𝑅𝑃(𝑓) computed for 𝐻(𝑓, 0) for both the ramps was 

quadratic in nature with the lowest point at 127 kHz. No significant difference was noticed 

between the results obtained using the two different transmit signals.  

𝐻(𝑓, 𝜃)  averaged for each off-axis bin 0.5° from 0° to 4° was computed as outlined in 
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section5.2.4. The half beamwidth extended up to 3.5°, the bin 3.5° - 4.0° was included 

to examine the response beyond. Figure 5.4 shows the bin wise frequency response of 

the 𝜑(𝑓), 𝐷𝑃(𝑓) and 𝑅𝑃(𝑓) derived for 𝐻(𝑓, 𝜃). 

 

Figure 5.4: The absolute (top), differential (middle) and the residual phase (bottom) of the 
system response drawn for the fast (left) and slow (right) ramp transmitted waveforms. Sharp 
nulls at 158.5 kHz are due to the resonance effect of backscattered signals. 

 

 𝜑𝑏𝑠(𝑓), 𝐷𝑃(𝑓) and 𝑅𝑃(𝑓) derived for all the off-axis bins were equal to the on-axis value 

(𝑎𝑛𝑔𝑙𝑒(𝐻(𝑓, 𝜃)) = 𝑎𝑛𝑔𝑙𝑒(𝐻(𝑓, 0))) except at the nulls where the peaks were different for 
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each bin. There was no influence of the transducer directivity on the phase 

measurements within the main beam. It could be concluded that the system phase 

response will be the same at different off-axis angles and can be derived by either 

substituting 𝐻(𝑓, 0) or 𝐻(𝑓, 𝜃) in Eq.(5.6). 

5.3.2 The frequency response of phase 

 

 

Figure 5.5: Bin wise averaged absolute (top), differential (middle) and residual phase (bottom) 
drawn to the frequency for the WC22 sphere for the fast (left) and slow (right) ramp waveforms. 
The off-axis angle varied from 0° and 3.0° as shown in the legend. A black dashed line shows the 
respective theoretical value in all plots. 
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Figure 5.5 illustrates the bin-wise averaged 𝜑𝑏𝑠(𝑓), 𝐷𝑃(𝑓) and the 𝑅𝑃(𝑓) computed for 

the WC22 sphere at the on-axis (red line) and off-axis positions for the fast and slow 

ramp. These were computed using 𝐻(𝑓, 0) in Eq.(5.7) irrespective of the angle of the 

target. 

The theoretically modelled value of each variable is drawn (black dashed line) for 

comparison. An offset of 360° occurred between the measured 𝜑𝑏𝑠(𝑓) and the theoretical 

value, for all angle bins and both the transmit pulse amplitude ramps. Taking the gradient 

of 𝜑𝑏𝑠(𝑓) removed the offsets, however; the high resonant spikes at 158.5 kHz 

dominated the 𝐷𝑃(𝑓) curves and appeared to have different amplitudes in the measured 

and the modelled response. The 𝑅𝑃(𝑓) provided a magnified depiction of the target 

phase, highlighting the variation over the entire frequency bandwidth. 𝑅𝑃(𝑓) was more 

consistent for the fast ramp as compared to the slow, but both were in good agreement 

to the modelled value. The transmit pulse ramping and off-axis angle had a negligible 

effect on all three phase variables. 
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Figure 5.6: Bin wise averaged absolute (top), differential (middle) and residual phase (bottom) 
spectra for WC38 sphere, derived for the (left) fast and (right) slow ramp transmit signals. The 
off-axis angle varied from 0° to 3.0°, as shown in the legend. The black dashed line shows the 
respective theoretical response. 

 

The frequency response of averaged 𝜑𝑏𝑠(𝑓), 𝐷𝑃(𝑓) and 𝑅𝑃(𝑓) for the WC38 sphere are 

shown in Figure 5.6. The frequency bandwidth was limited to 158.5 kHz to remove the 

artefact at 158.5 kHz due to the use of WC22 sphere as the reference target to 

compute 𝐻(𝑓, 𝜃). An offset of 360 ° and range-induced ramps appeared between 𝜑𝑏𝑠(𝑓) 

and 𝜑𝑏𝑠(𝑚𝑜𝑑𝑒𝑙)(𝑓) in all bins for both transmission settings. Taking the gradient, removed 
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the offset resulting in the convergence of measured 𝐷𝑃(𝑓) to the theoretical value. 

Nevertheless, the rapid phase change at the resonance leads to high amplitudes 

masking the response at other frequency regions. The 𝑅𝑃(𝑓) clearly showed variations 

over the entire frequency range, even in the presence of two resonance peaks. The 

curves agreed with the theoretical values for all bins, although there was a small offset. 

Though 𝐷𝑃(𝑓) removed the ramping it suffered from the resonance effects, which lead 

to high peaks as seen in the horizontal zoomed graph, in Figure 5.7. 

 

Figure 5.7: Horizontal zoomed plot of the differential phase of WC38 for the fast (left) and slow 
(right) ramp. A black dashed line plots the theoretical modelled value. 

 

On the other hand, 𝑅𝑃(𝑓) was consistent in delivering the actual phase change of the 

target between slowly changing (100 to 130 kHz) and rapid changing phase (130 and 

140 kHz). 

5.4 Discussion 

5.4.1 Phase calibration  

For the echosounder used in these tests (Simrad EK80, ES120-7CD), the transmit 

amplitude ramping (slow and fast) had almost no impact on the phase components of 

the system response function. This was unlike the amplitude component, where the 

ramping controls the magnitude, shape and the effective bandwidth. Further 

investigations with other transducers would be advisable to confirm this result. 

In the study, the phase calibration was found to be independent of the transducer 

directivity. The frequency spectrum of 𝜑𝑏𝑠(𝑓), 𝐷𝑃(𝑓) and 𝑅𝑃(𝑓) were consistent for all 

the off-axis bin angles confirming their insensitivity to the sphere’s position within the 
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acoustic beam. The result is in accordance with the theoretical radiation pattern of a 

plane circular transducer, the phase component of which is zero within the main lobe in 

the far-field region (Kinsler et al., 1999). 

This insensitivity is significant because it implies that for phase measurements, an 

echosounder only needs to be calibrated on-axis, or at any other convenient off-axis 

angle within the main beam. The process of applying the calibration to the data is greatly 

simplified as the same calibration can be used for all target off-axis angles. This is 

completely different from the amplitude measurements, which require calibration of 

directivity compensation for each off-axis angle (Degnbol, 1988; MacLennan, & 

Svellingen, 1986). Further, it makes the phase independent of the beamwidth of the 

transducer and thus measurements would be unaffected even if there is a deviation in 

the effective beamwidth from the manufacturer provided value (Simmonds, 1984). Given 

this is the first set of results for one transducer type, the finding that the phase is 

independent of the position of the target cannot be assumed valid for all transducers, so 

would need further verification. 

5.4.2 Phase variables 

The study shows how different phase methods could be used to detect scatterer’s 

information by using three variables ( 𝜑𝑏𝑠(𝑓), 𝐷𝑃(𝑓) and 𝑅𝑃(𝑓)). Indirect methods such 

as derivative of absolute phase (Mitri et al., 2008), gross phase shifts (Bolus et al., 1982) 

and phase difference (Atkins et al., 2007) have been proposed before. Murty, and 

Yegnanarayana (2006) computed linear prediction (LP) residual of speech signals to 

extract information about the excitation source. In fisheries, Barr, and Coombs (2005) 

used target strength as a function of the rate of phase change plots to demonstrate the 

phase which was validated through the resemblance of the modelled and measured 

work. 

The measured 𝜑𝑏𝑠(𝑓) was qualitatively similar to the theoretically modelled value, but it 

was distorted by the presence of offsets and ramps. The ramps formed due to the range 

accumulation in the 𝜑𝑏𝑠(𝑓) masked the target features, making it difficult to use for target 

classification. Offsets by 360° have previously been reported for the dual-frequency 

transmission for the 84 mm and 40 mm spheres (Islas-Cital et al., 2011b). Inversion by 

180° was found in 𝜑𝑏𝑠(𝑓) at resonant frequencies of the spheres with a processing 

window length of 0.4 m, as used for the amplitude calibration (Chapter 3). This was 

probably due to incomplete unwrapping caused by frequency-domain smoothing as a 
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result of the limited length of the windowed received signal (Cook et al., 2017; Flax et al., 

1978). This inversion was averted by increasing the window length to 0.7 m, which 

reduced the effective smoothing of the scattering function with the frequency. 

Differentiating the 𝜑𝑏𝑠(𝑓) with respect to frequency removed the range accumulation, but 

the sudden change in the phase due to the mechanical resonance of the spheres led to 

a high fluctuation in 𝐷𝑃(𝑓) concealing the secondary structures at other frequencies. 

The newly proposed variable, 𝑅𝑃(𝑓) which was evaluated by subtracting the product of 

the frequency and the median of 𝐷𝑃(𝑓) gave consistent results. Regardless of the 

presence of the noise, offsets and high resonant peaks, the spectra of 𝑅𝑃(𝑓) showed 

the target’s contribution across the entire frequency bandwidth. Minor variations were 

clearly visible, even in the immediate vicinity of the large phase changes that occur at 

resonances. 

The phase calibration can be implemented using the standard calibration set up 

recommended for the broadband echosounder (Demer et al., 2015). Extraction and 

processing of phase variable would require retaining the recorded data in complex form. 

5.4.3 Phase as a target classifier 

Measurements from the test target, the WC38 sphere (Figure 5.6) supported the 

extraction of the phase of an unknown target and possible application towards remote 

characterisation. These results indicate that phase can play a role as a potential classifier 

in fisheries acoustic complementing 𝑇𝑆(𝑓) from the target classification perspective. The 

selection of appropriate variables for interpretation of target phase could be important. 

Two key acoustic groups that inhabit the world’s ocean are fluid-like and gas-bearing 

organisms (Stanton et al., 1996). The boundary condition of the gas bubbles forms a 

sharp hard and soft contrast surface resulting in a sudden fluctuation in the 

backscattered echo (Anderson, 1950; Love, 1978a), while the fluid-filled interface leads 

to slowly varying peaks and nulls (Stanton et al., 1996; Stanton, Chu, et al., 1998). 

Depending on the variation, a suitable phase index needs to be selected. While 𝑅𝑃(𝑓) 

could be useful in case of high fluctuations to highlight minor changes, the 𝐷𝑃(𝑓) can 

prove beneficial in regions with significant structures and a slowly varying phase. This 

would allow the target phase to be used as a supporting identifier towards remote 

classification. However, this would need further verification from surveys conducted in 

the open ocean. 
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The long processing window length of 0.7 m was possible during the experiment as the 

target sphere was the strongest scatterer in the water column. In the open ocean, it may 

be hard to achieve only one target within a window length of 0.7 m due to the presence 

of multiple organisms of similar strength in the water column. Similarly, in low signal to 

noise ratio environments noise spikes in 𝐷𝑃(𝑓) can occur, which could interfere with the 

analysis, especially in case of a weak target with low echo strength. Extracting the phase 

of multiple targets within the window would be challenging with the current technique. 

5.4.4  Future applications  

As showed here, extracting phase can be easily integrated into the process of 𝑇𝑆(𝑓) 

determination. With the equipment used here, the phase has an advantage of not 

requiring directivity compensation, as the system response is independent of the angle 

within the main lobe. The commercial availability of the broadband echosounder could 

play a significant role in the further development of this indicator. The computational and 

technological advancement has made working in complex domain easier and faster. 

Before the target phase is integrated into fisheries acoustics, it is important that the 

technique be tested with different transducers and a diverse range of parameters. Some 

other possible steps that could be undertaken are as follows: 

1) Evaluate the impact of different pulse lengths, ranges and powers on the phase 

measurements. 

2) Most existing numerical acoustic scattering codes work in the complex domain and 

therefore inherently calculate target phase. However, they need to be modified so that 

they could predict both amplitude and phase for comparison to the obtained 

measurements. 

5.5 Conclusions 

The chapter presented a complex transfer function-based approach to calibrate the 

commercially available Simrad EK80 broadband echosounder and extract the scatterer 

induced phase modification. Experimental implementation of the technique was 

demonstrated at two transmission settings, fast and slow ramp using two standard 

spheres. Two standard phase measures, absolute phase,  𝜑𝑏𝑠(𝑓) and differential phase, 

𝐷𝑃(𝑓) were compared with a new measure, residual phase, 𝑅𝑃(𝑓) developed in this 

chapter. All the three variables if processed correctly (unwrapping, window length) 
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preserve the target information. 𝑅𝑃(𝑓) was easier to interpret than 𝐷𝑃(𝑓) and  𝜑𝑏𝑠(𝑓), 

as it was precise and consistent across the entire frequency bandwidth, irrespective of 

whether the phase varied rapidly or gradually. 

Phase measurements were found to be independent of the transducer directivity pattern 

and the ramping of the transmitted signals. It was confirmed that phase conserves a 

scatter’s information and could be integrated into acoustic remote sensing. No earlier 

publications known to the candidate have addressed phase extraction and calibration of 

broadband echosounders, particularly for different amplitude slope parameters and off-

axis angles. In the next chapter, the developed method will be applied to open ocean 

conditions and possible application of phase towards in-situ target identification and 

classification. 
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Chapter 6 

 

 

Potential use of broadband acoustic 

methods for micronekton classification. 

Broadband acoustic methods are an emerging technology with potential use in 

identification and classification of marine organisms. The application of broadband 

methods to scientific surveys of mesopelagic micronekton (animals of 2 - 20 cm length 

found at depths of 200 m to 1000 m) is described. The principles of the broadband 

system are briefly outlined with particular emphasis on its use for micronekton detection 

and identification employing the TS-frequency curve of single targets. The use of 

acoustic scattering models to determine characteristics of the marine organism such as 

size and material properties are also discussed. 

As an example of the application of this technique, broadband echosounders mounted 

on a depth-profiling platform were used to collect high-frequency (55 - 160 kHz, some 

gaps in between) acoustic data from mesopelagic depths (up to 600 - 1000 m) of the 

Great Australian Bight region. Some example results from narrowband and broadband 

echosounders are compared. The resulting frequency-dependent target strength curves 

of selected targets enabled classification into different acoustic groups, demonstrating 

the significant advantage provided by the broadband system. 

There is still a large gap between the obtainable acoustic classification and the ultimate 

aim of species-level classification, and to this end some limitations of broadband 

echosounder systems in identifying targets are discussed along with the use of video 

and still cameras to assist in the interpretation of acoustic data. 

The text of this chapter is a reprint of the material as is appears in Verma, A., Kloser, R. 

J., & Duncan, A. J, “Potential use of broadband acoustic methods for micronekton 
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6.1 Introduction 

Characterization and biomass estimates of micronekton (2 – 20 cm length animals 

including crustaceans, fish, squid and gelatinous organisms) inhabiting the mesopelagic 

region (200 m -1000 m), are primary inputs to ecosystem models to understand 

ecosystem function and make reliable forecasts for management (Benoit-Bird, & Au, 

2001; Brodeur et al., 2005; Davison et al., 2015; Jason Phillips et al., 2009; Kloser et al., 

2016; Lehodey et al., 2015; Lehodey et al., 2010; Robison et al., 1998; Scoulding et al., 

2015). Sampling mesopelagic species is often challenging and logistically arduous, due 

to their depth, movement, and behaviour (diel vertical migration) (Béhagle et al., 2014; 

Brodeur et al., 2005; Davison et al., 2015; Jason Phillips et al., 2009; Lehodey et al., 

2015; Lehodey et al., 2010). Echosounders are widely adopted for remote monitoring 

and quantification of the micronekton biomass (Kloser et al., 2009; MacLennan, & 

Holliday, 1996; Smith et al., 2013). Compared to other sampling methods, such as nets 

and optics, active acoustic methods discussed here are less intrusive and can sample at 

large temporal and spatial scales which can be post-processed afterwards (Gunderson, 

1993; Horne, 2000; Koslow, 2009; Medwin, & Clay, 1998; Simmonds, & MacLennan, 

2005). 

Echosounders transmit acoustic signals and receive the acoustic signals backscattered 

by the targets. Acoustic signals backscattered by targets can be converted into useful 

qualitative and quantitative biological information (Horne, 2000; Simmonds, & 

MacLennan, 2005). The complex interaction of transmitted acoustic signals, 

environmental parameters and animal properties including shape, size, orientation, 

behaviour, and even the physiological state can affect the backscattered acoustic signal 

(Foote et al., 1987; Kloser et al., 2002; Misund, 1997; Stanton, Wiebe, et al., 1998). The 

Target Strength (𝑇𝑆, dB re 1m2) is the lograthmic expression of the backscattering cross-

section ( 𝜎𝑏𝑠, m2) of a target. 𝑇𝑆 represent the echo strength of a single point target and 

is often used to classify acoustic targets or groups of targets into biological units of 

species groups, numbers, size and biomass (Greenlaw, 1977; Holliday, 1972; 

Maclennan et al., 2002; Pieper et al., 1990; Zakharia et al., 1996). The 𝑇𝑆 can have a 

non-linear dependence on the transmitted signal frequency, animal size and composition 

(gas and fluid-filled) due to the complex diversity and depth distribution of species at 

mesopelagic depths. Hence 𝑇𝑆 measurements obtained at a single frequency, or a few 

discrete frequencies, may not allow the identification of the species present and therefore 

may not allow determinations of size and biomass. The broadband acoustic method 
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potentially offers considerable advancement over single frequency systems by providing 

a wider frequency bandwidth that is finely sampled in frequency (Chu, & Stanton, 1998; 

Demer et al., 2015; Horne, 2000; Jech et al., 2015; Kloser et al., 2011; Lavery et al., 

2010; Stanton et al., 2012; Verma et al., 2016). Broadband acoustic data can be 

processed to provide the frequency dependence of the 𝑇𝑆, allowing identification of 

targets based on the shape and amplitude of the curve (Demer, & Conti, 2005; Stanton 

et al., 1996; Stanton, Chu, et al., 1998; Stanton et al., 2000). 

The sampling volume is the measure of the physical volume of water that contributes to 

the acoustic backscattered signal received by the transducer at a particular instant. The 

sampling volume is a function of equivalent beam angle, range, sound speed and pulse 

duration of the signal (Foote, 1991a; Medwin, & Clay, 1998). To measure the 𝑇𝑆 of an 

individual animal, it is necessary that it be the only target within the sampling volume of 

the acoustic system defined by the pulse resolution, the angular beamwidth and the 

range (Simmonds, & MacLennan, 2005). 

 𝑉𝑜𝑙 =
𝑐𝜏

2
× 𝜋(𝑟 × 𝜃(𝜔))2 (6.1) 

 

Where 𝜔 (Hz) the angular frequency (2𝜋𝑓), 𝑐 is is the sound speed (ms-1), 𝜏 is the pulse 

duration (s), and 𝑟 is the range (m) from the echosounder. 
𝑐𝜏

2
 in Eq. (6.1) is the pulse 

length of the signal (m). 

For a circular transducer, the frequency-dependent beamwidth 𝜃(𝜔) radians, is defined 

as the angle between the  −3  dB differences in intensity on both sides of the beam of 

the transducer (Foote, 1991a; Lee, & Stanton, 2015). In case of a narrowband 

transducer, the range of frequencies emitted is very small, and the beamwidth is 

constant. Due to variation in the beamwidth with frequency, the sampling volume of a 

broadband transducer is different for different transmitted frequencies. To extract useful 

information and maximize the SNR output, broadband scattered signals are pulse 

compressed by applying a proper matched filter (Chu, & Stanton, 1998; Turin, 1960). 

The pulse duration of a matched filtered signal is given by Eq. (6.2). 

 𝜏 ≈
1

𝑊
  (6.2) 

 

where 𝑊 is the bandwidth of the signal (Burdic, 1991).  
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Figure 6.1: The plot of sampling volume versus range for transducer beamwidths of 14°, 18° and 
22° without pulse compressions and a beamwidth of 18° with pulse compression.  The bold black 
curve is the sampling volume of the narrowband transducer with fixed beamwidth (18°). The 
frequency bandwidth is 55 kHz to 90 kHz. The uncompressed pulse duration is 1 ms, and the 
compressed pulse length is 0.0214 m. The bold dashed line is obtained by applying pulse 
compression to the broadband signal. 

 

Pulse resolution for pulse compressed signals may be longer for off-axis targets due to 

change with the frequency spectrum of the transmit signal with off-axis angle that results 

from the frequency dependent transducer beampattern. Matched filtering of broadband 

signals combines all frequencies, which introduces considerable complexity when 

considering the pulse length for off-axis targets, so a full discussion of this effect is 

beyond the scope of this paper. For this paper, the sampling volume after pulse 

compression has been approximated by using the beamwidth at the central frequency 

and the pulse resolution for on-axis targets. Unlike narrowband where sampling volume 

is controlled by pulse duration, the sampling volume of a broadband system is controlled 

by the bandwidth and the wider the bandwidth the better is the spatial resolution after 

matched filtering. 

The variability in sampling volume with range, for different beamwidths of a circular 
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transducer (SIMRAD 70 kHz, bandwidth 55 – 90 kHz) and a pulse duration of 1 ms is 

drawn in Figure 6.1 (log scale). The curves in the figure illustrate the change in the 

sampling volume of a broadband system at different beamwidths including the pulse 

compressed and narrowband beamwidth values. The beamwidth was 18° at the center 

frequency, 14° at the highest frequency and 22° at the lowest frequency for a broadband 

sonar system. For the narrowband echosounder and pulse-compressed broadband 

signals the nominal center frequency beamwidth (18°) is considered. Pulse compression 

of signals reduced the pulse length from 0.75 m to 0.03 m. The sampling volume 

increases quadratically with the product of range and beamwidth. Pulse compression of 

a signal significantly reduces the sampling volume, hence improving the likelihood of 

being able to isolate a single target and therefore carry out 𝑇𝑆 measurements (Chu, & 

Stanton, 1998). 

Single target detection using a ship mounted system is challenging due to large sampling 

volume at a higher range from the sonar system. Lowered platforms are often used to 

allow sampling targets at shorter range, and hence smaller sampling volume and 

absorption loss, leading to better single target detection. Recent deployments of lowered 

combined acoustic and optical platforms have shown positive results in estimating the 

density and size distribution of the deep scattering layer (Kloser, 1996; Kloser et al., 

2016; Kloser et al., 2009). An extension of that work is to upgrade the single frequency 

echosounders used in a profiling system with broadband echosounders.  

The Great Australian Bight Research Program (GABRP), is a joint initiative of industries 

and research institutions to map a part of the deep water habitat of the region. One of its 

objectives is to monitor, identify, classify and quantify the mesopelagic habitat of the 

Great Australian Bight (GAB) region consisting primarily of mesopelagic crustaceans, 

squids, fishes, and gelatinous organisms (e.g. siphonophores) (Anthony et al., 1994; 

GABRP, 2013). The micronekton distribution and abundance in the GAB are believed to 

influence the local ecological features impacting the population dynamics of apex 

predators in the region (Rogers et al., 2013). As a part of the GABRP, a customized 

depth profiling platform fitted with two broadband transducers was used to sample the 

mesopelagic zone at depths to 1000 m.  This paper highlights some results from the 

initial trials of the broadband system demonstrating its capabilities and discusses its 

future application. The potential use of the broadband acoustic system to identify and 

classify targets is exhibited through characteristic TS-frequency curves of some selected 

targets. The obtained TS-frequency spectra are compared with the output of relevant 
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acoustic scattering models to anticipate the acoustic features of the targets. 

6.2 Material and Methods 

As a part of the GABRP, mesopelagic regions in the Great Australian Bight were 

acoustically sampled from 29 November to 22 December 2015 on the RV Investigator 

operated by the Marine National Facility [51]. The broadband acoustic system (SIMRAD 

EK80) consisted of two split-beam circular transducers; SIMRAD 70 kHz (𝑇𝐿), and 

SIMRAD 120 kHz  (𝑇𝐻), fitted to a custom designed depth profiling platform, the 

Instrumented Corer Platform (ICP) (Sherlock et al., 2014; Simrad, 2016). The ICP was 

deployed to maximum depths of 600 m to 1000 m at selected locations, and broadband 

acoustic data were recorded. Transducer 𝑇𝐿 and 𝑇𝐻 transmitted waveforms consisting of 

linear frequency sweeps across frequency ranges of 55 – 90 kHz and 95 – 160 kHz, with 

beamwidths of 18° and 7°at nominal center frequencies of 70 kHz and 123.2 kHz 

respectively. The uncompressed pulse duration of 𝑇𝐿 and 𝑇𝐻 were 0.512 ms and 0.256 

ms. Multifrequency acoustic datasets were collected at six distinct frequencies (18, 38, 

70 and 120 and 200 and 330 kHz) using a SIMRAD EK60 fitted on the lowered vessel 

keel for the whole survey period.  

 

Figure 6.2: An illustration of the acoustic ensonified volume by a vessel mounted echosounder, 
and a broadband sonar system mounted on a depth-profiling platform (ICP). 𝑥 (m3) represent the 
sampling volume of the narrowband sonar at 100 m whereas 𝑦 (m3) is the sampling volume of the 
broadband sonar at the same depth. Using a lowered depth probe facilitates smaller and constant 
sampling volume at all depths. 

 

Results from 70 kHz narrowband echosounder have been included to compare with the 

results from broadband echosounder system. The pulse duration for 70 kHz narrowband 
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transducer was 2.048 ms, and the beamwidth was 6.6°/6.4° (major axis/minor axis). A 

graphic representation of the whole setup is shown in Figure 6.2  Using a depth-profiling 

system (ICP) enabled short-range acoustic images to be obtained from the deeper ocean 

at a constant sampling volume which is not the case with vessel mounted transducers 

(Lavery et al., 2010). 

The preliminary analysis of acoustic datasets were carried using Matlab codes provided 

by Simrad and Echoview (Echoview, 2017; Simrad, 2016). Specific Matlab codes were 

developed to process broadband acoustic data to obtain the range, time, target strength 

(TS) and phase angles (Verma et al., 2016). Pulsed compressed echograms were 

generated after appropriate compensation for the absorption loss and two way spreading 

loss (𝑇𝑉𝐺 = 40 log 𝑅) (Francois, & Garrison, 1982). The TS frequency curve of selected 

targets were extracted using the system response of respective off-axis position. The 

obtained curves were further fitted with output of relevant acoustic scattering model 

(Distorted Wave Born Approximation (DWBA) and resonant scattering) to predict the 

probable features. Both broadband and narrowband echosounders were calibrated with 

the standard target calibration method (Demer et al., 2015; Stanton, & Chu, 2008). A 

38.1 mm tungsten carbide calibration sphere with 6% cobalt (WC38) was suspended 

below the transducers for the calibration. The broadband sonar systems were also 

calibrated for the depth dependent variability and frequency dependent beamwidth 

sensitivity. Results indicated the consistent performance of the broadband system with 

depth and off-axis angles for targets within the beamwidth of both transducers. 

6.3 Narrowband and broadband acoustic images 

High-resolution echograms of the mesopelagic habitat were generated using acoustic 

data recorded by the vessel mounted narrowband echosounder and the broadband 

echosounder mounted on the ICP. The echogram in Figure 6.3 (top)is the volume 

backscattering (𝑆𝑣, dB re 1m-1) of a section of the water column extending from 50 m to 

150 m depth recorded by the narrowband echosounder at 70 kHz frequency. Scatterers 

distributed between 50 – 100 m have high volume backscattering intensity as compared 

to ones below 100 m. A long pulse length (0.75 m), a large sampling volume of 591.0 m3 

at 100 m range from the vessel and high target density results in low spatial resolution. 

The area within the red lines in the echogram corresponds to the region mapped by the 

broadband sonar system. (Note: the regions do not overlap). Although both 

measurements were taken at the same time there, was a spatial separation of 10 m 
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between the two recordings.   

 

Figure 6.3: Echogram of the volume backscattering measured by 70 kHz narrowband system 
mounted on the vessel. The area within the red lines corresponds to the region sampled by the 
broadband sonar system (EK80). b) is the pulse compressed 𝑇𝑆  obtained from TL transducer (55 
– 90 kHz), corresponding to the region bounded by a black rectangle in the narrowband 
echogram.  

 

A pulse compressed 𝑇𝑆 echogram using broadband signals for a section of echogram 

(black rectangle) is drawn in Figure 6.3 (bottom). In the broadband echogram, individual 

targets are visible. Using a depth profiling platform had advantages of reduced range 

and constant sampling volume even at larger depths. (Note: that the apparent 

synchronous vertical movement of the targets in Figure 6.3 (bottom) is an artefact of the 

motion of the ICP caused by its taught-cable connection to the ship).Recording just 

above the biota at a lower range (10 m) in the second echogram and small pulse length 

(0.03 m) after pulse compression leads to decreased sampling volume of (0.23 m3) and 

hence improved possibility of single target detection. Also, the reduced range leads to 
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less absorption and transmission loss, providing a high signal to noise ratio (SNR) 

compared to the narrowband system (Stanton, & Chu, 2008). 

6.4 Broadband acoustic spectra and target 
identification 

Determining a target’s characteristic features and physical nature from echograms or 𝑇𝑆 

measurements at a few distinct frequencies can be a challenge as targets with the same 

echo intensity could arise from entirely different groups of marine organisms (Benfield et 

al., 2003). Using frequency-modulated broadband signals enables the extraction of 

spectral characteristics of the backscattered signal, which can greatly aid in target 

identification. To illustrate this, the 𝑇𝑆 frequency curves of two single targets measured 

at the same depth, ~600 m during an ICP deployment were constructed and 

subsequently fitted with the predictions of suitable numerical scattering models.  

 

Figure 6.4 Two different targets in a pulse compressed echogram and their acoustic signatures. 
a) location of two single targets (within red rectangle) identified in the pulse compressed 𝑇𝑆 
echogram measured by the transducer TL (55 – 90 kHz) at ~600 m depth. The region of high echo 
level at ~14 m is due to the calibration sphere suspended below the transducers. b) acoustic 
signature of a scatterer at ~600 m depth and 15 m range with 𝑇𝑆 oscillating around -55 dB. c) 𝑇𝑆 
versus frequency plot of a target at 8 m  range indicates a gas enclosure resonant at 62 kHz. The 

averaged 𝑇𝑆 value of all pings are plotted as a black line in both b) and c). 
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To obtain these results, pulse compressed echograms generated using broadband 

datasets recorded by both 𝑇𝐿 and 𝑇𝐻 transducers were visually inspected for targets to 

confirm the presence of only one target in the volume defined by the transducer’s centre-

frequency beamwidth, the uncompressed pulse length and the target’s range. The target 

strength versus frequency curves was then obtained by a method described in detail in 

a recently submitted publication by the authors that conceptually involves dividing the 

spectrum of the received signal by the spectrum of the signal incident on the target. 

Figure 6.4 (a) is a pulse compressed echogram generated using the data recorded by 

transducer TL across 55 – 90 kHz at ~600 m depth. The region of high echo level (~50 

dB) originates from the calibration sphere (WC38) suspended below the transducers. 

Two single targets enclosed in red rectangles in the echogram were selected, and their 

𝑇𝑆-frequency curves are drawn in Figure 6.4 (b) and (c). 

 

Figure 6.5: TS-frequency spectrum of the first target. The grey lines are the 𝑇𝑆 value of individual 
pings, the thin black line is the averaged TS, and the thick black line represents the predicted TS 
from the DWBA model, based on material properties of a squid (length = 13.1 cm, density ratio = 
1.01 and sound speed contrasts = 1.01). 

 

A small gap between 90 – 95 kHz in TS frequency curves is due to the frequency gap 

between TL and TH transducers. The 𝑇𝑆-frequency spectra of the first target illustrated in 

Figure 6.4 (b) highlight high 𝑇𝑆 amplitude (-55 dB), recurring oscillations with peaks and 

nulls at a constant frequency interval (10 kHz) across the entire frequency band. In 
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contrast, the TS-frequency curve of the second target exhibits a single peak,-46.14 dB 

at 62.7 kHz (Figure 6.4 (c)). 

 

Figure 6.6: Modeled resonant scattering 𝑇𝑆 curve as a function of frequency of a target at 600 m 
depth with -46.14 dB  𝑇𝑆 at the resonant frequency of 62.7 kHz. 𝑇𝑆 value of individual pings (grey), 

averaged 𝑇𝑆 (black) and modeled 𝑇𝑆 (bold black bold) are shown in the figure. 

 

To obtain insight into the characteristics of the two targets, their 𝑇𝑆 curves were fitted 

with the prediction of appropriate numerical models, assuming the targets could be 

modelled as simple geometrical shapes with fixed material properties. The 𝑇𝑆 spectrum 

of the first target is typical of a weakly scattering fluid-filled organism though the 𝑇𝑆 has 

a higher amplitude (-55 dB) than most fluid-filled animal (Chu et al., 1993; Demer, & 

Conti, 2004; Jech et al., 2015; Stanton, & Chu, 2000; Stanton et al., 1996). The TS 

amplitude and shape of the first scatterer (Figure 6.4 (b)) match closely to squid 

signatures given in Jones et al. (2009). The obtained TS spectrum was manually fitted 

with the predicted output from a model based on the Distorted Wave Born Approximation 

(DWBA) developed for fluid-filled animals (Figure 6.5) (Stanton et al., 1996; Stanton, 

Chu, et al., 1998). The predicted TS (bold black line) was obtained assuming the target 

to be a squid, 13.2 cm in length, with an aspect ratio of 2.5, and sound speed and density 

contrasts of 1.01. The predicted 𝑇𝑆 is a reasonable fit to the data for nulls and peaks 

positions and 𝑇𝑆 amplitude in the high-frequency region. However, in the absence of 

proper ground-truthing, the species of the organism cannot be uniquely determined, as 
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the possibility of other organisms or parameters providing an equally good or better fit 

cannot be ruled out. 

The spectra of the second target (Figure 6.4 (c) exhibited a resonant scattering often 

linked to gas-enclosed organisms (Love, 1978b; Stanton, & Chu, 2010). This is 

confirmed by fitting the TS curves with the prediction of a resonant scattering model 

(Figure 6.6) as in Kloser et al. (2002). The model assumes that the target acts as a gas-

filled spherical bubble at the target’s measured depth, with a volume and damping factor 

fitted to the measured 𝑇𝑆 (Andreeva, 1974; Weston, 1967; Ye, 1997a).   The fitted values 

of these parameters correspond to a bubble radius of 0.4 mm and a resonance quality 

factor, Q, of 10. This typical resonant scattering curve could either be attributed to 

micronekton with a gas enclosure of  radius 0.4 mm or slightly larger or something of 

larger volume enclosed within a more substantial membrane, muscle layer etc. that itself 

has significant elasticity (Baik, 2013; Love, 1978b). 

Although these results illustrate the insights that can be obtained using such a system 

they also highlight that definitively identifying targets in the absence of a visual 

verification remains a challenge due to the complexities of the scattering mechanism. 

6.5 Discussion and Conclusion 

This study highlights the advantages of a depth-profiling broadband sonar system over 

vessel mounted narrowband systems for monitoring of mesopelagic habitat.  A brief 

review of principles of broadband acoustics is presented with the potential application to 

target detection and identification using TS-frequency curves of selected targets. Single 

target analyses using conventional vessel mounted narrowband echosounders are often 

challenging due to large sampling volume at a longer range, low spatial resolution, and 

the availability of a backscattered signal only at certain discrete frequencies [30]. Using 

a broadband sonar system on a depth profiling platform allowed high spatial resolution 

data to be obtained over a wide range of depths, and also the characterization of 

individual targets through measurement of their TS-frequency curves. Fitting, numerical 

scattering models to these TS-frequency curves provides a means of relating them to 

the physical characteristics of the scatterer, but there is much more still to be done in 

this regard. Measured broadband spectra of organisms may change due to size, shape, 

orientation or depth (in the case of gas-filled cavities), and therefore may not be unique 

to a species or size class of a species. This introduces uncertainties in using geometry-

based acoustic scattering models to infer the species and size of the targets from the 
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measured values in the absence of appropriate visual verification. 

Through comparison with the ship mounted narrowband system in Section 3, we have 

shown that pulse compressed broadband signals provide an enhanced resolution on the 

vertical scale allowing smaller micronekton to be acoustically imaged. Mounting the 

broadband echosounder on a depth-profiling platform enabled sampling mesopelagic 

depths at a finer spatial scale and constant smaller sampling volume. Recording targets 

at a small range may also enable extraction of acoustic properties of individual organisms 

which will aid in the identification and classification of other similar organisms. This will 

also assist in the interpretation of vessel-based volume scattering measurements for 

species composition and density (Kloser et al., 2009). 

The disadvantage of a lowered platform include that it is only possible to make 

measurements when the vessel is stationary, and it could potentially modify the 

behaviour and response of organisms more than a vessel mounted system, leading to 

biased measurements (Stanton, & Chu, 2010). The former problem can be alleviated by 

using a variable depth towed system, but such a system would sample a smaller 

proportion of the water column at any one time than typical vessel mounted systems. 

In theory, broadband systems have smaller sampling volumes and potentially better 

noise performance than narrowband systems. However, given the current transducer 

technology with frequency-dependent beamwidth, achieving these are practically 

challenging. Further, in a broadband sonar system, changes in the position of a target 

within the frequency dependent beam pattern induces variability to the 𝑇𝑆 

measurements. Hence, removal of the beam pattern effect is critical to improving the 

accuracy of measurements (Ehrenberg, 1979; Stanton, 2012). Measurements from both 

the targets Figure 6.4 (b) and (c)) were compensated for their position using a method 

developed by the authors (paper in review). 

It remains a challenge to incorporate the broadband technology into methods that 

quantify and characterise the distribution and abundance of key species and quantify 

their size and biomass (Godø et al., 2014). An integrated set-up simultaneously using 

acoustics, optics, and net sensors could provide the visual ground truthing, of the 

sampled biota(Kloser et al., 2016; Kloser et al., 2009). The Profiling Lagrangian 

Acoustical Optical System (PLAOS) allows active acoustics instruments to be merged 

with high-resolution optical stereotypes and video cameras for use in qualitative and 

quantitative analysis [69]. Future work will be to integrate the broadband acoustic system 
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with the optical still images and video camera of Kloser et al. (2016). This would enable 

validated acoustic measurements providing added information for interpreting 

broadband measurements. 
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Chapter 7 

 

 

In situ Target Strength and Target Phase 

Measurements of Optically Verified 

Micronekton 

 

Broadband echosounders complemented with optical sensors (video and still cameras) 

were used to investigate live micronekton in the mesopelagic region (~200 – 1000 m) of 

the Southern Ocean. To verify the presence of an acoustically sampled organisms, a 

technique was developed to transform a scatterer’s position in the pulse-compressed 

echogram to its position in the concurrent photograph taken by the camera. The acoustic 

signature (frequency response of the target strength, 𝑇𝑆(𝑓) and the residual 

phase, 𝑅𝑃(𝑓)) of several optically verified micronekton were used to classify them into 

acoustic groups thereby demonstrating the classification capacity of a broadband 

acoustic system. Further, to confirm the utility of 𝑅𝑃(𝑓) in acoustic analysis, the acoustic 

signature of three different targets exhibiting resonant scattering were inverted using a 

numerical scattering model to infer its physical characteristics. The theoretically 

predicted 𝑇𝑆(𝑓) and 𝑅𝑃(𝑓) of the modelled targets matched the measured 𝑇𝑆(𝑓) and 

𝑅𝑃(𝑓) values for all pings confirming the possibility of using 𝑅𝑃(𝑓) as an acoustic 

classification metric. Further work is required to substantiate the technique by 

undertaking measurements from different organisms and matching them to the output of 

appropriate numerical scattering models. A detailed description of the system 

configuration, algorithm, and the processing is provided along with the discussion of 

advantages and challenges.
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7.1 Introduction  

The mesopelagic region of the Southern Ocean forms a habitat to many species of 

micronekton (fishes, cephalopods and crustaceans, and gelatinous organisms (Koslow 

et al., 1997; Williams et al., 2001; Williams, & Koslow, 1997; Young et al., 1996). These 

organisms are known to play a central part in the ocean’s food web dynamics, linking the 

lower level zooplankton to the top-level pelagic predators (Brodeur et al., 1999; Sinclair 

et al., 1999). An insight into their distribution patterns, biomass abundance and 

ecological processes can provide valuable inputs for their sustainable conservation 

management (Handegard et al., 2013; Lehodey et al., 2010). The primary sampling tools 

to do this have been acoustic, net and optical samplers. A significant need is the 

improvement of these tools for broad-scale monitoring and in particular, the use and 

interpretation of new acoustic sensing methods (Verma et al., 2016). 

The implementation of ecosystem-based management system strategies requires an 

increased focus on the quantification of micronekton biomass and more species-level 

information. Broadband acoustic scattering techniques are being used to investigate the 

individual and community level structures of these organisms (Au, & Benoit-Bird, 2008; 

Bassett et al., 2017; Verma et al., 2017). The extraction of the spectral response of 

backscattered energy over a wide frequency range and increased spatial-resolution from 

the signal pulse compression improves the detection of individual scatterers’ (fish, squid 

or crustacean) (Lavery et al., 2010; Stanton, & Chu, 2010). 

The frequency response of the target strength, 𝑇𝑆(𝑓), (dB re 1 m2) is a critical parameter 

for remote detection of individually resolvable targets as it depends on the organism’s 

shape, size, orientation, behaviour, and even physiological condition (Foote, 1980; 

Martin Traykovski et al., 1998; Ona, 1990b; Simmonds, & MacLennan, 2005). In situ, 

𝑇𝑆(𝑓) remains one of the most effective ways to characterise an organism despite 

numerous challenges (Ehrenberg, 1983; Foote, 1991c). Nonetheless, obtaining the 

precise 𝑇𝑆(𝑓) of individual scatterers’ from a hull-mounted echosounder can be 

challenging due to the long sampling range and large acoustic sampling volume (Foote, 

1991a). An alternative solution to using near-surface mounted transducers is to lower 

the transducer into the deep regions of the ocean using various hardware platforms 

(Kloser et al., 2002). A shorter range from the transducer minimises propagation loss, 

decreases the acoustic volume and increase the chances of sampling a single organism 

while minimising interpretation of multiple organisms as a single target (Soule et al., 
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1995). 

The target induced phase distortion in the backscattered signal has the potential to be 

used as an additional acoustic classifier for detection and identification purposes (Barr, 

& Coombs, 2005; Braithwaite, 1973). Unlike narrowband echosounders, a broadband 

echosounder conserves the signal in its complex form (Medwin, & Clay, 1998) from 

which the target phase, 𝜑𝑏𝑠 (𝑓) (°) can be extracted as a function of frequency ( shown 

in Chapter 5). However, uncertainties due to the wrapping (Al-Nashi, 1989) and the range 

accumulations (Lyon, 1984) in the signal phase causes challenges in obtaining 

meaningful information. As a result, several methods are used to minimise the 

propagation and range effects. Consequently, despite several controlled studies in the 

last few decades, there is a lack of application of the target phase to detection and 

classification of marine organisms. 

In Chapter 5, two variables, differential phase, 𝐷𝑃(𝑓), (𝐷𝑃(𝑓) =
𝑑(𝜑𝑏𝑠 (𝑓)

𝑑𝑓
) (°/kHz) and 

residual phase, 𝑅𝑃(𝑓) (𝑅𝑃(𝑓) = 𝜑𝑏𝑠 (𝑓) − 𝑓 × 𝑚𝑒𝑑𝑖𝑎𝑛(𝐷𝑃(𝑓)) (°) were used to visualise 

the implicit target induced phase distortion in the signal. 𝐷𝑃(𝑓) was found prone to the 

effect of noise, and thus, the target’s specific features were masked. 𝑅𝑃(𝑓) provided 

useful information, even when the signal to noise ratio was low. 

For accurate interpretation, it is important that targets detected with echosounders are 

identified by using complementary techniques (McClatchie et al., 2000). Several 

methods such as nets (Didrikas, & Hansson, 2004; Ryan et al., 2009), or optical sensors 

(Kloser et al., 2016; Sawada et al., 2004) have been used, all with various limitations and 

advantages. The main issue with net capture is that the catch may not be representative 

of the acoustically sensed organism (Kloser et al., 1997; Koslow et al., 1995). Nets 

sample a large volume and capture a high diversity of organisms in the mesopelagic 

region. Allocation of the many net species to the independent acoustic system is not 

possible. Additionally, most gelatinous zooplanktons are severely damaged beyond 

recognition (in particular the gas-bearing siphonophores). To provide in situ visual 

verification, a synchronised camera is an attractive option as it can produce exact three-

dimensional information of the acoustically sampled target (species, size, texture, and 

orientation) (Jaffe et al., 1998). On the downside, the use of a camera is limited by the 

small sampled volume, multiple targets in the optical field (Barange et al., 1996) and 

possible modification in the behaviour of organism due to the use of light (Sawada et al., 

2009). In fisheries and ecosystem research, the use of complementary acoustic-optics 
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sensors is often used to provide visual verification of acoustic ensonified targets 

(Johnson et al., 1956; Kloser et al., 2016). 

By utilising visually verified spectra the potential corruption of the in situ, 𝑇𝑆(𝑓) and 

𝜑𝑏𝑠 (𝑓) by microbubbles, microstructure, or other small organisms in the pulse resolution 

volume can be minimised (Henderson, & Horne, 2007). Due to optical range resolution 

(<10 m) and the need for artificial light, the behaviour of organisms is often modified. 

Therefore it is not often possible to directly use 𝑇𝑆(𝑓) and 𝜑𝑏𝑠 (𝑓) of the observed spectra 

without understanding how behaviour induced tilt orientations influence 𝑇𝑆(𝑓) 

and 𝜑𝑏𝑠 (𝑓). 

Acoustic scattering models are often developed and used to assist in the interpretation 

of in-situ data and its extrapolation. In a measurement-model approach, the experimental 

acoustic backscatter is matched to the output of the theoretical numerical acoustic 

scattering models (Jech et al., 2015). In situ, 𝑇𝑆(𝑓) can be adequately modelled using 

the morphological and material information of the acoustically sampled scatterer. Using 

the known properties, these models approximate an organism as a simple or complex 

geometric shape, with homogenous or heterogeneous material properties and simulate 

the 𝑇𝑆(𝑓) (Anderson, 1950; Love, 1978b; Reeder et al., 2004; Stanton, 1990; Stanton et 

al., 1993). For a given model, the parameters such as the size, shape and material 

properties are varied to find a match with the measured 𝑇𝑆(𝑓). Though these models 

predict the complex backscattering amplitude, 𝐹𝑏𝑠(𝑓) (m) only the absolute part or the 

amplitude (|𝐹𝑏𝑠(𝑓)|) is usually used in the analysis (Clay, & Horne, 1994; Horne, 2000; 

Medwin, & Clay, 1998). By expanding these models to predict 𝑅𝑃(𝑓), the capability of 

present models towards identification could be improved, especially when attempting to 

distinguish between targets with similar 𝑇𝑆(𝑓). This would enable a two-parameter 

classification where both amplitude and phase are matched for identification. 

The study aims to obtain 𝑇𝑆(𝑓) and 𝑅𝑃(𝑓) responses of optically verified live micronekton 

from the mesopelagic region. The question of whether 𝑅𝑃(𝑓) can be used as a reliable 

acoustic classifier is also addressed. For this study, synchronised acoustic and optics 

data collected from the Profiling Langrangian Acoustic Optics System, (PLAOS), 

platform deployed in the Southern Ocean were used. The PLAOS has been designed 

and developed by the Marine National Facility, CSIRO, in Hobart, to collect high-

resolution integrated acoustic-and optics data from the deep ocean at depths to ~1000 

m (Marouchos et al., 2016). A method to visualise a target detected on the echogram on 
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the corresponding photo was developed. The acoustic signatures were drawn. The 

empirical values of different scatterers exhibiting resonance were matched to the output 

of an optimal numerical scattering model. 

The theoretical development, PLAOS configuration and processing is detailed in section 

7.2. The results are presented in section 7.3. The strengths, limitations of the technique 

and the future direction are discussed in section 7.4, followed by the conclusion in section 

7.5. 

7.2 Method 

7.2.1 Data collection 

As part of a Southern Ocean Time Series Voyage onboard Australians’ Marine National 

Facility vessel, RV Investigator a Profiling Lagrangian Acoustic Optical System (PLAOS) 

was deployed to characterise the mesopelagic micronekton (Marouchos et al., 2016). 

For this work, we review data from the PLAOS (Figure 7.1) deployed to a mesopelagic 

depth of 1000 m at S 45.938°, E 142.060° from 08:50 to 10:13 UTC on the 23rd March 

2017. This corresponds to local night time (19:20 to 20.40 hrs) as it captures the vertical 

diel migration of these animals to epipelagic (0 to 200 m) depths.  

 

Figure 7.1: The PLAOS ready to be deployed. The platform carried two broadband and a 
narrowband echosounder, two optical cameras, a video recorder and two optical strobes. The 
buoys (green) on top allow the platform to maintain the motion. 
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The PLAOS has been designed and developed by CSIRO in Hobart, to collect high-

resolution integrated acoustic-and optics data from the deep ocean at depths to ~1000 

m based on a previous instrument (Marouchos et al., 2016). For the experiment, the 

PLAOS platform housed two broadband split-beam transducers (Simrad ES70-18CD 

and ES120-7CD), two single-lens reflex cameras (Canon EOS-1D X) and a video 

camera (GBO S1080 1’’ Network). Two optical strobes were mounted to illuminate the 

sampled region. The platform held a motion sensor (Microstrain 3DM-GX1) and a CTD 

profiler (Seabird Electronics SBE37DO, SN 11417). A split-beam single frequency 

transducer (ES120-7CD) was also mounted on to the platform, but data from this 

instrument were not included. A detailed configuration of the acoustic and optics sensors 

PLAOS system configuration are shown in Table 7.1 and.Table 7.2. 

Table 7.1: The configuration parameters of the two broadband echosounders. 

Parameters Units Values 
  

ES70 - 18 CD ES120-7CD 

Transceiver EK 80 
WBT 562899-

15  
WBT 536012-15     

Serial number  116 109 

Frequency kHz 70 120 

Beamwidth Degrees 17.3 7.2 

Power W 400 250 

Pulse length µs 2048 2048 

Pulse type  FM FM 

Frequency range  kHz 55 - 90 95-160 

Equivalent beam 
angle 

dB re 1 
Steradian 

-13 -20.7 

Transducer Gain dB 18 25 

Sound speed ms-1 1493 1493 

Angle sensitivity  10 23 

Sphere range m 5.5 4.4 
 

 

 

 

Table 7.2: The configuration of the still and the video camera. 

Variables Units 
Oblique 
camera 

Vertical 
camera 

Vertical video 
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Model  Canon EOS-1D 
X 

Canon EOS-1D X GBO S1080 

Type  DSLR DSLR Network camera 

Sensor size mm 36 X 24 36 X 24 12.8 X 9.6 

Focal 
length 

mm 35 25 12.5 

Dimensions pixels 5184 X 3456 5184 X 3456 1920 X 1080 

Resolution dpi 72 72  

F-stop  f/6.3 f/11  

Exposure sec 1/250 1/250  

ISO speed  6400 3200  
 

The transducers, ES70-18CD and ES120-7CD, operated at the frequency range 55 – 90 

kHz and 95 – 160 kHz. The beamwidths were 18° and 7° at their centre frequencies of 

70 kHz and 120 kHz. One of the cameras was installed so that its field of view included 

the acoustic axis of the 70 kHz echosounder. The other camera was placed at an oblique 

angle to capture the surrounding biota. The video camera was fitted to capture live 

recordings of the acoustic sampling volume. Additional datasets, conductivity, 

temperature, and depth and platform orientation were obtained from the CTD profiler and 

motion sensor. All the instruments were synchronised to the same time. During the 

deployment, the platform was lowered into the water and allowed to fall freely at its 

terminal velocity of approximately 0.4 m/s. The system was monitored from an onboard 

controller, and a rope tether was used for retrieval. 

The echosounders recorded acoustic reflection with the maximum range set to 50 m. 

The cameras captured one photograph every two seconds. To perform in situ calibration, 

two tungsten carbide spheres (6% cobalt binder) 38.1 mm (WC38) and 22 mm (WC22) 

in diameter were suspended at 4.4 m and 5.5 m below the transducer. The intention of 

using two spheres was to optimise the entire frequency bandwidth from 55 – 160 kHz. 

The spheres need to be placed in the far-field range of the transducers. The near to far-

field transition occurred around the range (𝑟 > 𝑑2

𝜆⁄ ) (Table 7.3), where d is the 

operational diameter of the transducer and 𝜆 is the wavelength. Three optical tags were 

placed at 1, 2 and 3 m below the transducer to provide a sense of depth in the photos. 

Table 7.3: The near to far-field transition range of the transducers. 

Parameter  Units  ES70-18 CD  ES120-7CD (m)  

Frequency  kHz 55, 70, 90 95, 120, 160  

Near to far-field transition 
range 

m 
0.31, 0.25, 0.19  1.01, 0.80,.0.61 
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7.2.2 The frequency response of the target strength and 
residual phase  

To convert the raw broadband acoustic data collected by PLAOS to a single target 

amplitude and residual phase frequency response the following method was applied. 

𝐹𝑏𝑠(𝑓) of any unknown acoustic target can be determined via Eq. (7.1)  

 𝐹𝑏𝑠(𝑓)  =
𝐶𝑃𝑅(𝑓)

𝐶𝑃𝑇(𝑓)𝐿𝑇𝐿(𝑓)𝐻(𝑓, 𝜃)
 (7.1) 

 

In the equation, 𝐶𝑃𝑇(𝑓) is the autocorrelation of the transmitted signal and 𝐶𝑃𝑅(𝑓) the 

cross-spectrum of the received and transmitted signals. 𝐻(𝑓, 𝜃) is the combined 

transmit/receive response of the transducer at the frequency, 𝑓 and off-axis angle 𝜃 

within the acoustic beam. Including 𝜃 allows us to include the directivity response of a 

circular transducer. 𝐿𝑇𝐿(𝑓) is the two-way transmission loss due to the signal 

propagation, spreading and absorptions (𝐿𝑇𝐿(𝑓) =
1

𝑟2 𝑒
𝑖(

4𝜋𝑓

𝑐𝑤
)𝑟

𝑒2𝛼𝑤(𝑓)𝑟) where 𝑟 (m) is the 

range, 𝑐𝑤 (m/s) is the speed of sound in water and 𝛼𝑤(𝑓) is the absorption loss. Once 

𝐹𝑏𝑠(𝑓) is determined 𝑇𝑆(𝑓) and 𝑅𝑃(𝑓) of the target can be derived via Eq. (7.2) and (7.3). 

For a detailed description of the background theory, refer to section 3.2.1 and section 

5.2.2. 

 𝑇𝑆(𝑓) = 10 𝑙𝑜𝑔10|𝐹𝑏𝑠(𝑓)|2 (7.2) 
 

and  

 𝜑𝑏𝑠(𝑓) = 𝑢𝑛𝑤𝑟𝑎𝑝(𝑎𝑛𝑔𝑙𝑒(𝐹𝑏𝑠(𝑓))  (7.3) 
 

The computed 𝑇𝑆(𝑓) are corrected for the transducer directivity due to the use of 𝐻(𝑓, 𝜃) 

corresponding to the position within the acoustic beam. In Chapter 5 it was shown that 

the phase values within the main lobe are independent of 𝜃. Therefore, to 

calculate 𝑅𝑃(𝑓), 𝐻(𝑓, 0) is used in Eq. (7.1) instead of 𝐻(𝑓, 𝜃). 

7.2.3 Data analysis  

The acoustic and video datasets were first investigated using Echoview (Echoview, 

2017) and later a detailed analysis of all three (acoustic, video and photograph) was 

carried in Matlab (Toolbox, 2016). 
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7.2.3.1 Preliminary processing  

A preliminary investigation was conducted using Echoview as it allowed simultaneous 

inspection of the video and acoustics data. Organisms within the 90° field of view of the 

camera could be distinguished at ranges up to ~6 m. The region between 0 and 2 m was 

in the near field of the transducer and hence was ignored. The Echoview single target 

detection algorithm (wideband) was run between 2 - 8 m. The variables for the algorithm 

were set to -70 dB for the compensation TS threshold, 6 dB the pulse length 

determination level (PLDL). The minimum and maximum normalised pulse length were 

0.01 and 1.5, and the frequency graph size window was 0.15 m above and below the 

target. The maximum standard deviation of the major and minor axis angles was 0.6°, 

and the maximum beam compensation parameter was 12 dB (Echoview, 2017). 

The pulse-compressed echogram was synchronised to the video file to link imaged and 

acoustic recordings. The video was inspected to confirm the presence of micronekton. 

Regions with multiple organisms were ignored. When a single acoustic target 

corresponded to an organism in the video, the frequency versus 𝑇𝑆(𝑓) curve was drawn 

to make an initial impression of the scatterer’s features. The objective was to include 

micronekton with different scattering characteristics. Micronekton seen on the video and 

as a single target in the echogram were searched for their presence in the corresponding 

photograph taken by the vertical camera. Once an organism’s occurrence was confirmed 

by all three methods, the echogram, video and the photograph, the time and range were 

logged. Due to the poor frame rate of the camera, very few animals could be identified 

simultaneously in all the three datasets. Further processing was then carried out with 

custom-designed Matlab codes specially developed for the purpose. 

7.2.3.2 Conversion from 3D acoustic to 2D pixel coordinates. 

A split-beam transducer measures a scatter’s location in the three dimensions: range 

and major and minor angles from the transducers central axis (Ehrenberg, 1981). It was 

assumed that the water within the sampling volume was homogenous at a constant 

density and sound speed. A single vision camera generates photographs in a two-

dimensional pixel coordinate system from one viewpoint. An algorithm was formulated 

to transfer 3D acoustic coordinates of a scatterer to 2D pixel coordinates in the 

photograph. There were four coordinate systems, the PLAOS (𝑥𝑝, 𝑦𝑝, 𝑧𝑝), echosounder 

(𝑥𝑎, 𝑦𝑎 , 𝑧𝑎) camera ((𝑥𝑜, 𝑦𝑜, 𝑧𝑜) and the photo (𝑢, 𝑣). The position and the tilt of the 

echosounder and the camera, to the centre of the PLAOS coordinate system, are given 

in Table 7.4. 
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Table 7.4: The tilt angles and distance of the camera and transducer to the centre of the PLAOS 
coordinate system. 

Variables Units ES70-18CD  Canon EOS-1D X 

Tilt in XZ plane  (°) 2.5 7.5 

Tilt in YZ plane (°) 1.5 1.5 

Distance from 70 kHz (x, y and z)  mm (0,0,0) (-310,-140,0) 
 

 

Assuming that a target, T1 was sampled simultaneously by the echosounder and the 

vertical camera.T1 was seen at (𝑥𝑎1, 𝑦𝑎1, 𝑧𝑎1) in the echosounder coordinate system, 

and at (𝑥𝑜1, 𝑦𝑜1, 𝑧𝑜1) in the camera coordinate system. In the PLAOS coordinate system, 

T1 was situated at (𝑥𝑤1, 𝑦𝑤1, 𝑧𝑤1). The same T1 could be seen at (𝑢𝑜1, 𝑣𝑜1) in the 

photograph. 

The transfer of T1 from (𝑥𝑎1, 𝑦𝑎1, 𝑧𝑎1) to (𝑢𝑜1, 𝑣𝑜1) was realised in three steps (a) 

conversion from the echosounder to the PLAOS coordinate system, Eq. (7.4); (b) the 

transformation from the PLAOS to the camera coordinate system Eq. (7.5); and, finally 

(c) conversion from the 3D coordinate system of the camera to the 2D system of the 

photo Eq. (7.6) and Eq. (7.7). In the equation, 𝑅𝑎 = [𝑅𝑎𝑧𝑅𝑎𝑦𝑅𝑎𝑥] and 𝑅𝑜 =

[𝑅𝑜𝑧𝑅𝑜𝑦𝑅𝑜𝑥] were the rotational matrix and [

Txa

Tya

Tza

] and [

Txo

Tyo

Tzo

] were the translation vector 

along x, y and z directions in the echosounder and camera coordinate system. 

 [

𝑥𝑤1

𝑦𝑤1

𝑧𝑤1

]  = [𝑅𝑎] [

𝑥𝑎1

𝑦𝑎1

𝑧𝑎1

] + [

𝑇𝑥𝑎

𝑇𝑦𝑎

𝑇𝑧𝑎

] (7.4) 

 

Similarly,  

 [

𝑥𝑜1

𝑦𝑜1

𝑧𝑜1

]  = [𝑅𝑜] [

𝑥𝑤1

𝑦𝑤1

𝑧𝑤1
] + [

𝑇𝑥𝑜

𝑇𝑦𝑜

𝑇𝑧𝑜

] (7.5) 

 

The focal length, 𝑓𝑜𝑎 (m-1) of the camera in air modifies to 𝑓𝑜𝑤, (𝑓𝑜𝑤 = 𝑓𝑜𝑎/𝑛𝑤) in water 

with refractive index 𝑛𝑤. The horizontal and vertical sensor size of the camera were ℎ 

and 𝑤 (mm) given in Table 7.2 and ℎ𝑟𝑒𝑠 and 𝑤𝑟𝑒𝑠 were the horizontal and vertical 

resolution in pixels. 
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 𝑢𝑜1  = (𝑓𝑜𝑤 (
𝑥𝑜1

𝑧𝑜1
) +

ℎ

2
) × ℎ𝑟𝑒𝑠 (7.6) 

 

 𝑣𝑜1  = (𝑓𝑜𝑤 (
𝑦𝑜1

𝑧𝑜1
) +

𝑤

2
) × 𝑤𝑟𝑒𝑠 (7.7) 

 

To test the accuracy of the transformation technique acoustic coordinates of the optical 

tags and the calibration spheres were transformed (Figure 7.2). In another example, a 

single target identified at 3 m matched to a squid in the corresponding image file. The 

squid was also seen in the video at the same time. 

 

 

Figure 7.2: The optical tags at 2 and 3 m and spheres at 4.2 and 5.5 m marked with a red box in 
the echogram (top left) transformed to the image (top right). The range of each is shown in the 
legend. A single target at 3 m in the echogram (red box) was identified as a squid from the video 
(bottom left). The acoustic coordinates, when transformed pointed at the squid in the photo 
(bottom right). 

7.2.3.3 Acoustic processing  

To calibrate the acoustic system backscattered signals from the WC22 sphere was used 

to determine 𝐻(𝑓, 𝜃) of the transceivers. Although the WC22 sphere is not a preferred 

target for calibration in the frequency range 95- 160 kHz, it was chosen, due to a 
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comparatively flat response between 55 and 160 kHz as compared to the WC38 sphere 

(Demer et al., 2015). A Matlab code (Chu, 2011) was used to derive the 𝐹𝑏𝑠,𝑐𝑎𝑙(𝑓) (Faran, 

1951; MacLennan, 1982). Signals were time-gated using a Hanning window of length 

0.4 m from the peak to both sides. Recordings between 0.0° and 3.5° off-axis angle and 

200 – 500 m depth, were divided into bins, each of an angle width 0.5°. To remove noise 

from unwanted scatters and reverberation, recordings beyond one standard deviation of 

the mean TS for each bin were excluded (assuming the data distribution to be a 

Gaussian). A conservative 68% confidence interval based on a normal distribution was 

used to ensure that no error was introduced. The absorption and the transmission loss 

was found as a function of frequency at the recorded sound speed, salinity and 

temperature (Francois, & Garrison, 1982; Mackenzie, 1981). The averaged 𝐻(𝑓, 𝜃) for 

each bin was found by substituting match filtered transmitted and received signal and 

theoretical value of 𝐹𝑏𝑠(𝑓) of the sphere derived using a Matlab code developed by Chu 

(2011) based on Faran (1951) and (Foote, & MacLennan, 1984). 

Once a single target in the echogram was confirmed as an organism of interest, the 

acoustic data was extracted by windowing the pulse-compressed signals with a Hanning 

window, that extends 0.4 m on either side of the peak. Extra care was taken to ensure 

that there were no other scatterers in the vicinity. Earlier in Chapter 5, a window length 

of 0.7 m was used to extract 𝑅𝑃(𝑓), but it was not possible to use a window that long in 

the open ocean due to the presence of multiple organisms. The signals from 0° – 3.5° 

were divided into off-axis bins of width 0.5°. To provide a conservative estimate data 

beyond a 68% confidence interval from the mean 𝑇𝑆 were removed. This could eliminate 

several signals but was deemed imperative as a precautionary measure to minimise the 

artefacts and interference from other sources within the window. For each ping, 𝑇𝑆(𝑓) 

was computed by substituting the magnitude of 𝐻(𝑓, 𝜃) interpolated to the off-axis angle 

𝜃 in Eq. (7.2) and Eq. (7.3).To derive 𝑅𝑃(𝑓) the complex 𝐻(𝑓, 0) function was used in 

the Eq. (7.2) and Eq. (7.4). 

7.2.4 Scattering model 

In this study, a simple scattering model consisting of a gas-filled sphere with 

homogenous acoustic properties has been used. The model is an approximation to 

predict backscatter from fishes with swim bladders or gaseous bubbles and has been 

previously used in fisheries with different modifications (Andreeva, 1974; Weston, 1967; 

Ye, 1997b). The complex backscattering amplitude, 𝐹𝑏𝑠(𝑓) from a gas-filled sphere of 
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equivalent radius, 𝑎 (m) can be expressed as Eq. (7.8) (Morse et al., 1969). The sphere 

acts as a point source independent of the orientation. 

 
𝐹𝑏𝑠(𝑓)  =

𝑎

𝑓0
2

𝑓2 − 1 −
1𝑖
𝑄

 
(7.8) 

 

Here 𝑓0 is the resonant frequency, and 𝑄 is the quality factor that is the inverse of the 

damping constant 𝛿). Various components (thermal, viscous and radiation) contribute to 

the damping constant (Devin Jr, 1959). For a typical fish swim bladder, the value of Q is 

5 (Diachok, 2001), which is also used as an approximation in the absence of accurate 

values (Lavery et al., 2007). 𝑓0 remains a function of the radius and the depth, D (m) as 

given by Eq.(7.9). 

 𝑓0 =
1

2𝜋𝑎
(

3𝛾(𝑃0(1 + 0.1𝐷))

𝜌
)

1
2

  (7.9) 

 

Here 𝛾, (𝛾 = 1.4) is the ratio of the specific heat of the body, and the outer fluid, 𝑃0 (𝑃0 =

1.103 × 105 Pa) is the pressure at the surface, and the density is 𝜌 (𝜌 = 1027 kg/m3. In 

the absence of any empirical data, the values used were from earlier literature (Medwin, 

& Clay, 1998). 𝑇𝑆(𝑓) and 𝜑𝑏𝑠(𝑓) can be computed via Eq. (7.10) and (7.11). 

 𝑇𝑆(𝑓) = 10 𝑙𝑜𝑔10 |𝑎2 ((
𝑓0

2

𝑓2
− 1)

2

+
1

𝑄2
)

−1

|  (7.10) 

 

 𝜑𝑏𝑠(𝑓) = 𝑢𝑛𝑤𝑟𝑎𝑝 (𝑡𝑎𝑛−1 (𝑄−1 (
𝑓0

2

𝑓2
− 1)

−1

))  (7.11) 

7.3 Results  

The PLAOS deployment of approximately 2.5 hours generated 12 GB of acoustic 

recordings with scattering from many single scatterers (2-20 cm fishes, squid, 

crustaceans and gelatinous), multiple scatterers and noise. The vertical and oblique 

cameras took approximately 5000 photographs (~40 GB) in 1 hour and 19 minutes 

duration.  2.78 GB of video footage was recorded. When taut, the tether coupled wave-

induced ship motion to the PLAOS, causing it to undergo significant periodic vertical 

motion during the upward movement of the platform. Thus the investigation was limited 
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to the time the PLAOS was free-falling downward with a loose tether. 

Many resonant scatterers were identified although some, which existed in the acoustic 

data, were not discoverable in the photographs. Several myctophids were observed but 

identifying them on the photographs was difficult due to their swimming patterns and 

avoidance of the platform. The spectra of five selected targets are presented as 

examples. 

Even though the information obtainable from the photographs was insufficient to allow 

theoretical 𝑅𝑃(𝑓) curves to be computed for the organisms, it was significant to 

determine whether in practice, it can be used as an acoustic discriminator and if it 

depends on the target’s characteristic features. An approach to test the proposition was 

to fit both 𝑇𝑆(𝑓) and 𝑅𝑃(𝑓) to the prediction of a numerical scattering model by adjusting 

the model’s parameters. Three examples of resonant scatterers found at different depths 

and with distinct resonant frequencies were fitted to the output of a resonant gas filled 

numerical scattering model. The spectra of an unknown fish and a squid is also shown, 

however no attempt has been made to fit these to data. 

In the first example, the acoustic signature of a possible gas-filled target was matched to 

the output of a numerical scattering model of a gas-filled sphere (Figure 7.3). A single 

target could be seen in the echogram from ~11 m to ~5m. The target at ~7 m (green box) 

when transformed to image coordinates pointed to a group of targets. From the photo, it 

could not be confirmed if the targets were of biological or non-biological origin and if they 

had gas inclusions. It can be concluded that this target was not a large mesopelagic 

organism. 
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Figure 7.3: A single target detected on the video (not marked) and (top left) echogram (top right). 
The transformation at ~7 m (green box) to the still image points to small targets (middle). The left 
middle image is zoomed to produce middle right image. It could not be confirmed if the targets 
were biological or non-biological. The 𝑇𝑆(𝑓) (bottom left) and 𝑅𝑃(𝑓) (bottom right) between 55 – 
90 kHz at all the three points matched to the output of the numerical model of a gas-filled sphere 
(red dotted line). The line colours blue, green and black on the bottom row correspond to the 
target positions seen in the top right echogram 

The 𝑇𝑆(𝑓) and 𝑅𝑃(𝑓) of the target were plotted at different ranges, ~9 m, ~7.5 m and 

~6.5 m, from the transducer (shown by blue, green and the black box). 𝑇𝑆(𝑓) was 

consistent at all three points, exhibiting resonance at 69.5 kHz with a maximum target 

strength of -54 dB. The corresponding 𝑅𝑃(𝑓) curve moved from +29° to -20° passing 
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through 0° at the resonant frequency, 69.5 kHz. The low signal to noise ratio at the high 

range (~9 m) led to larger fluctuations in the 𝑅𝑃(𝑓) as compared to 𝑇𝑆(𝑓) but improved 

as the target came nearer to the transducer. The simple numerical model for a gas-filled, 

homogenous sphere outlined in section 1.2.2 was fitted to the data. For the set of 

features, 𝑄 =  5 𝑎 =  0.39 mm and 𝛾 = 1.4, the model output (red dotted line) 

simultaneously fits 𝑇𝑆(𝑓) and 𝑅𝑃(𝑓) responses. 

In another example, the acoustic signature of a single target at 633 m depth and 3.5 

range from the transducer was plotted (Figure 7.4). 

 

Figure 7.4: A single target (red box) observed between 3 and 4 m from the transducer (top). The 
𝑇𝑆(𝑓) (bottom left) and 𝑅𝑃(𝑓) (bottom right) between 55 – 90 kHz fitted to the output of the 
numerical model of a gas-filled sphere (red dotted line). 

The target could not be verified optically in the photograph. The 𝑇𝑆(𝑓) exhibited resonant 

characteristics with a peak of -51.8 dB at 64 kHz. The 𝑅𝑃(𝑓) moved from a maximum of 

43 0° to minimum 23.1° between 58 kHz to 69 kHz passing through 0° at the resonant 
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frequency, 64 kHz. The signal was noisy between 100 kHz and 160 kHz. Both the 𝑇𝑆(𝑓) 

and 𝑅𝑃(𝑓) of the scatterer matched to the theoretically predicted output values for a 

modelled gas-filled sphere of radius 0.37 m and Q of 7. 

A fish was seen in the video directly below the sphere when the platform was at a depth 

of 469 m (Figure 7.5). 

 

Figure 7.5: A fish below the sphere in the video clip (top left.) The corresponding target enclosed 
in a red box on the echogram (top right). The conversion of acoustic to the pixel coordinates points 
(in red circles) to a fish in the image (middle left). A zoomed view of the image showing fish and 
stationary targets (middle right). The target strength (bottom left) and the residual phase (bottom 
right) drawn to the frequency. 
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This corresponded to a single target in the echogram, which pointed to a fish in the still 

image after the transformation. The mark on the photograph encircled the whole fish. But 

when zoomed in, a few small targets were also seen and therefore, the possibility of 

them as a scattering source could not be ignored. The stationary target could not be 

verified and is unlikely to be a large fish as the fish was mobile and not seen in 

subsequent images. A target in an image can be at any range that could be resolved by 

stereo optics depending on the object size and optical resolution. 

The 𝑇𝑆(𝑓) was typical for a resonant target ranging from --75 dB at 55 kHz to a maximum 

of -54 dB at the resonant frequency 87 kHz, beyond which it dropped to -70 dB at 160 

kHz. 𝑅𝑃(𝑓) progressed from maxima to the minima through 0° at the resonant frequency. 

Both the curves simultaneously matched to the output of the numerical model (red dotted 

line) for gas-filled spheres for, 𝑄 =  8, 𝑎 =  0.24 mm and 𝛾 = 1.4. The noise degraded 

the 𝑅𝑃(𝑓) curves affecting the interpretation, especially below 60 kHz.  
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Another fish was seen in the video ~2.5 m and as a single target on the echogram (Figure 

7.6). 

 

Figure 7.6: A fish visible at the ~3 m in the video (top left). A single target corresponding to the 
same depth and time enclosed within a red box in the echogram (top right). The conversion from 
the acoustic coordinate to the photo pointed to the fish (middle left). A zoomed view of the fish 

(middle right). The 𝑇𝑆(𝑓) (bottom left) and the 𝑅𝑃(𝑓) (bottom right) plotted to the frequency. 

The spatial transformation confirmed the single target in the echogram as a fish. 𝑇𝑆(𝑓) 

was steady at -60 dB but structures were noticed at 80 and 150 kHz. 𝑅𝑃(𝑓) followed the 
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same pattern starting from ~0° and a sudden dip to -100° at 80 kHz and 150 kHz. This 

particular acoustic signature was observed several times in the acoustic recording. In the 

echogram, the target was seen to modify its movement as the platform came nearer to 

it (~8 m). This particular example was chosen because of the close range to the camera. 

The sphere and the strobe light attracted squid near the platform providing some good 

imagery and acoustic datasets. However, most of the time they were observed near the 

sphere. A squid at a range ~5 m was seen in the video at a platform depth of 611 m 

(Figure 7.7). 
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Figure 7.7: A squid is seen in the video clip (top left). A single target corresponding to the time 
and range in the echogram is highlighted by a red box (top right). The conversion of acoustic to 
the pixel coordinates in the image points to a squid (red circles) (middle). The 𝑇𝑆(𝑓) (bottom left) 
and the 𝑅𝑃(𝑓) (bottom right) obtained from the acoustic data. The plotted 𝑇𝑆(𝑓) and phase results 

were from a single ping. 

The time and the range matched a specific target in the echogram. The acoustic 

coordinates, when transformed pointed to a squid in the corresponding photograph. The 

𝑇𝑆(𝑓) was at -52 dB, with alternate nulls varying up to -20 dB due to the destructive 

interference from waves at the different interface. No definite pattern was visible in the 

𝑅𝑃(𝑓). This does not mean that 𝑅𝑃(𝑓) was inefficient. The pattern was meagre because 
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of the inversion in the phase between, 65 and 130 kHz probably due to the incomplete 

unwrapping and and the particular target orientation. 

7.4 Discussion  

The study measured the acoustic signatures of five different micronekton and at the 

same time tried to establish if 𝑇𝑆(𝑓) and 𝑅𝑃(𝑓) drawn together could be of any 

significance in remote detection of marine organisms. Though many targets were 

observed, the synchronous analysis was limited to five targets of different behaviours 

and responses as the goal of the chapter was to demonstrate the realisation of the 

method. Three techniques were used in the study. 

1. The application of geometric transformations to allow acoustic targets to be 

localised in optical images. 

2. Broadband acoustic signatures consisting of both 𝑇𝑆(𝑓) and 𝑅𝑃(𝑓) spectrum. 

3. An amplitude and phase inclusive numerical acoustic scattering model for gas-

filled sphere targets. 

The challenges and limitation of each are discussed. 

7.4.1 Acoustic-optics conversion.  

The unification of the acoustics, video and photos via the spatial transformation 

technique (section 7.2.3.2) enabled visual of all the targets analysed. In some cases, 

bias was noticed in the transformation outcome, especially when the photographs were 

zoomed out. This could be due to specific issues that remained unresolved by the 

algorithm.  

1. The location of a scatter in the echogram was determined in the electric angles 

by the split-beam processing. It was assumed that the geometrical angles 

matched to the electrical angles, but this could not be confirmed by an 

independent experiment.  

2. The tilt angles of each instrument were evaluated at the time of onboard 

installation. Any variation in these values could lead to significant errors as these 

act as input to the algorithm. 
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3. The camera specifications provided by the manufacturer were used. It is usually 

recommended to perform an independent assessment of the camera 

specification. However, this was not attempted due to logistic and time 

constraints. 

The frame rate of the camera (one every two seconds) was lower than the ping rate of 

the echosounder. As a result, many organisms (more than 50) were rejected even though 

they were visible on the echogram and the video. Conversely, several times, animals 

were detected in the photo and the video but were outside the acoustic sampling volume. 

Furthermore, matching mesopelagic fishes was a challenge due to their constant and 

fast swimming movement. The fishes showed sensitivity to the flashlight (seen in the 

video), and the platform motion and hence very few came within the acoustic sampled 

volume at ranges at which they could be optically identified. As a result, the analysis of 

the 1.5 hours of data was a time consuming and lengthy procedure. 

In this study, single lens, camera and echosounder measurements were quantitatively 

integrated. A single-lens camera is usually limited to qualitative scrutiny of the sampled 

biota such as size estimation, species identification (Dunlop et al., 2018; Warren, & 

Wiebe, 2008) or behavioural modification (Macaulay et al., 2012). Using a single camera 

had several limitations. Even if the position of a specific acoustic target is known, it 

cannot be distinguished optically from targets at other ranges that appear at the same 

location in the image. Thus, it is not possible to verify if the acoustic and optical targets 

are the same without more spatial or temporal information such as multiple images with 

acoustic registration. By contrast, a stereo vision or set of two cameras 3D system can 

optically determine the target range, which makes misidentification much less likely 

(Kang et al., 2005). A sophisticated stereo video was used by Takahashi et al. (2004) to 

identify and estimate the length of fish up to 300 m and by Sawada et al. (2009) to 

measure the tilt angles and length of anchovies. Briseño-Avena et al. (2015) used an 

advanced system to undertake broadband measurements from single copepods with 

stereoscopically calibrated microscopes. 

The effectiveness of a camera is limited by its optical resolution or the real dimension a 

pixel represents. The size of the smallest object a camera can detect or the optical 

resolution plays an important role in the verification of the target. Targets smaller than 

this optical resolution cannot be verified. The spatial resolution is determined by the 

physical specification of the camera, surrounding environment and field of view. For the 
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vertical camera (Canon EOS-1D X).Table 7.5 gives the horizontal distance 

corresponding to one pixel as a function of range. 

Table 7.5: The optical resolution of the vertical camera as a function of range 

Range (m) 

Optical resolution of 
the vertical camera 
(Canon EOS-1D X) 

(mm) 

1 0.8 

2 1.5 

3 2.3 

4 3.0 

5 3.8 

8 6.0 

10 7.5 

 

A 1-pixel resolution of the photograph corresponds to an object 1.5 mm at 2 m range, or 

6 mm at 8 m range. In practice, multiple pixels are required to detect and identify an 

object, for example, a 3 cm fish at 4 m would have at most 10 pixels. This limits the size 

of the smallest object that can be resolved by the camera. Even if the transformation 

matrix points to an object in a photograph, the possibility of it corresponding to the single 

target detected in the echogram is limited by the optical resolution at that range. Thus, 

in all the examples shown in the result section, a possibility of the acoustic backscattering 

coming from a surrounding target smaller than the optical resolution cannot be ruled out. 

Further, even if stereo cameras are used, the ability to differentiate two objects will be 

limited by its resolution. 

7.4.2 Broadband acoustic signature  

One of the main improvements with the broadband echosounder was the simultaneous 

extraction of both 𝑇𝑆(𝑓) and 𝑅𝑃(𝑓) from the backscattered echoes. 𝐻(𝑓, 𝜃) was 

computed during the deployment, which included any modification in the transducer 

parameters due to the mounting or the platform motion. 

The consistency of 𝑇𝑆(𝑓) and 𝑅𝑃(𝑓) plots of the small gas-filled target at all three ranges 

verified that the acoustic signature of a single target is unique and that together 𝑇𝑆(𝑓) 

and 𝑅𝑃(𝑓) can be reliably used for characterisation of acoustic targets. The position of 

the gas-filled target changed within the acoustic beam due to the continuous movement 

but 𝑅𝑃(𝑓) spectra remained consistent for different pings. This result validated the 

insensitivity phase to the target position (in Chapter 5) and thus the use of on-axis system 
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response in the computation. This result could be significant for the identification of 

organisms without the need for compensation for the directivity as done for 𝑇𝑆(𝑓) 

measurements. The acoustic signature of other two resonant targets (an unknown and 

a fish) further confirmed the stability of 𝑅𝑃(𝑓)for each target. On the downside, 𝑅𝑃(𝑓) 

profiles were prone to the presence of noise that significantly impeded visualisation of 

the actual target induced phase in some cases. This was evident at the extremes of the 

frequency bands, which was probably due to the lower SNR. 

The 𝑇𝑆(𝑓) of the squid (Figure 7.7) matched the spectra shown in Jones et al. (2009) 

and Lee et al. (2012). The ping-to-ping variation (not shown in the figure) was probably 

due to the change in the orientation and scattering from different parts such as the 

tentacles or the mantle. The squid was found near to the sphere, which is a strong 

scatterer as compared to the squid. Hence, possibilities of contamination due to the 

overlap of side lobes could not be ruled out. In the video footage, each time a squid was 

found, it was near the sphere leaving no chance to derive their acoustic spectra without 

contamination. Therefore, it would be worthwhile investigating the acoustic spectra of 

squid in other deployments without the calibration sphere. The 𝑇𝑆(𝑓) of the fish in Figure 

7.5 is typical of adult mesopelagic fish, where the gas-filled thin-walled swim bladders 

contribute to the overall backscattering (Butler, & Pearcy, 1972). The signature was 

noisier due to the low signal to noise ratio at the higher range. This acoustic signature 

shown in Figure 7.6 was observed several other times during the deployment. However, 

the quality of the optical images was insufficient to allow identification of the fish species  

The difference in the 𝑅𝑃(𝑓) plots confirmed its link to the shape, size and the material 

properties of the organisms. The calibration would be simple, as it would only require 

determining the on-axis system response or off-axis response. One of the challenges 

would be to avert the incomplete unwrapping that leads to an abrupt jump in the phase 

by ±360°, as seen in the case of squid. In the previous chapter, the window length was 

increased to 0.7 m. This was not realistic in an open ocean due to the presence of several 

targets in proximity. 

The current study presents the first set of frequency responses of the target phase of in 

situ live organisms. Despite an extensive set of literature available on the processing and 

analysis of phase, the measurements achieved so far could not indicate its efficacy as a 

reliable acoustic index for characterisation. Earlier, Barr, and Coombs (2005) obtained 

the target phase of three fishes and compared the result to the model output. This was 
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achieved at a single frequency of 38 kHz, and the precision could be argued due to the 

absence of system calibration. Atkins et al. (2007) presented phase measurements in 

angles from copepods and euphausids with LFM across 1600 – 2500 kHz. 

7.4.3 A comprehensive numerical scattering model. 

A common practice in marine acoustics is to estimate the relationship between an 

organisms characteristics and the target strength by using numerical scattering model 

(Horne, & Clay, 1998). This study attempted to investigate if like target strength, residual 

phase could also be linked to the target physical and morphological features. The 

comparison of the measured 𝑅𝑃(𝑓) from three different resonant targets to the output of 

a numerical scattering model for gas-filled sphere verified that 𝑅𝑃(𝑓) describes the target 

characteristics in the same way as the echo amplitude or 𝑇𝑆(𝑓). The in situ 𝑅𝑃(𝑓) 

measurements were consistent (from ping to ping) at the different range and in the case 

of the resonant target agreed with the theoretical phase at all points (Figure 7.3). Even 

for the two other resonant targets with a disparate resonant frequency, the 𝑇𝑆(𝑓) and 

𝑅𝑃(𝑓) simultaneously fitted to the output of the numerical scattering models. This 

provided a strong basis to the hypothesis that 𝑅𝑃(𝑓) can be useful as an acoustic metric. 

For all the three resonant targets, 𝑇𝑆(𝑓) was maximum, and the corresponding 𝑅𝑃(𝑓) 

was 0° at the resonant frequency. 

The results presented in this chapter are preliminary and intensive efforts are required 

to substantiate the use of  𝑅𝑃(𝑓) as an acoustic classifier. For example, ex-situ 

experiments can be performed with a fish of known geometric and physical parameters 

and the acoustic backscatter be recorded. A comparison of the 𝑅𝑃(𝑓) value derived with 

the output of the numerical model will enable assessment of phase as an acoustic 

classifier. Furthermore, exact or approximate analytical models for different shapes 

should be extended to predict the theoretical 𝑅𝑃(𝑓) values (Jech et al., 2015). This would 

enable evaluation of 𝑅𝑃(𝑓) for other acoustic groups such as zooplankton, cephalopods 

or crustaceans. 

7.5 Conclusion  

The remote sensing of the mesopelagic micronekton is presented in this chapter. The 

broadband echosounder together with the video and still camera mounted on PLAOS 

platform, served as a comprehensive tool to sample micronekton. The combination of 

the acoustic and optics coordinates provided qualitative verification of the single targets 
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observed in the echogram, although due to the small size of the resonance gas 

inclusions this was sometimes ambiguous. The frequency response of the target strength 

and residual phase of five different targets (a squid, mesopelagic fish, two small targets 

gas-filled unknown target) enabled confirmation of the proposed method. The target 

strength and residual phase of each target (except the squid) was consistent from ping 

to ping. The matching of the numerical acoustic scattering model outputs to the 

measured acoustic signature of an in-situ small gas-filled target, an unknown target and 

a mesopelagic fish provided validation to the inclusion of the residual phase as a reliable 

acoustic index. The implementation of this technique in the future could provide an 

avenue to study the spatial-temporal dynamics of micronekton and investigate their 

distribution. 
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Chapter 8 

 

 

Discussion, recommendations and 

conclusion. 

 

The research presented in this thesis focuses on the development and implementation 

of a technique for the calibration of a broadband echosounder to allow it to measure the 

frequency response of target strength and phase. The feasibility of the method was 

explored through its application to in-situ micronekton distributed in the mesopelagic 

regions of the Great Australian Bight and the Southern Ocean. A procedure was 

developed to simultaneously calibrate the echosounder for both target strength and 

phase measurements, and an evaluation was carried out to explore its capabilities and 

limitations. The approach uses the same system response function to derive the target 

strength and phase by keeping the variables in complex form. It was also important to 

ascertain that the outputs were not affected by variations in the transducer parameters 

from the manufacturer provided nominal values due to external factors (such as 

mounting and local environmental variables). This research makes a significant 

contribution to the field of remote sensing using broadband echosounders by providing 

a distinct calibration and characterisation technique and exploring a new acoustic 

classifier. The main goals achieved were 

1. Development of a technique to calibrate the target strength measurements of a 

broadband echosounder and extract the frequency response of target strength of 

a target compensated for the transducer directivity for its position. This was 

achieved by calculating the system response function for all off-axis positions 

within the main lobe using a calibration sphere. Instead of a mathematical 

function, the system response function was used to compensate the
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 measurements. The technique was explored for fast and slow ramp transmission 

settings. 

2. The system response function was extended to measure the effective 

geometrical and directional parameters of the transducer. In the same calibration 

experiment, the difference between the measured and modelled beam pattern 

was minimised in the least-squares sense by allowing the geometrical parameter 

to vary within a specified range. The effective GP of the transducer was found to 

be constant across the entire frequency. 

3. A new acoustic variable; residual phase was quantified to visualise the target 

induced phase distortion in the backscattered echo. This was done to overcome 

difficulties in interpreting the absolute phase due to its inherent phase wrapping 

and high fluctuations in the differential phase. 

4. A Simrad EK80 broadband echosounder was calibrated for the phase 

measurements. Later the frequency response of all the three-phase variables 

(absolute, differential and residual) were derived for two sphere targets in all the 

positions within the main lobe. This was obtained by using the system response 

in the complex form. 

5. The developed technique was applied to derive the in situ 𝑇𝑆(𝑓) of different 

organisms from the Great Australian Bight region. For the purpose, the system 

response was calculated by suspending a sphere underneath the transducer and 

allowing it to move to all positions. 

6. The frequency response of the target strength and phase of in-situ micronekton 

from the Southern Ocean region was derived. This was achieved by determining 

the in-situ system response function of the transceiver in complex form for a large 

number of target positions. Depending upon the requirement, the magnitude or 

the complex form of system response function was used in subsequent 

processing. 

7. A technique to combine the acoustic and optical measurements was formulated. 

The basis was the use of transformation matrices which allowed the rotation and 

translation of the target position from one coordinate system to the other. 

8. The utility of target phase measurements was demonstrated by inverting the 
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target strength and phase measured for an optically verified target to predict the 

characteristics. 

8.1 Contribution and significance 

8.1.1 Calibration for the target strength 

Chapter 3 investigates the calibration of a broadband echosounder for the frequency 

response of the target strength variable. The approach was based on the work of 

Stanton, and Chu (2008) with the extension that the frequency-dependent system 

response function was expanded to include the off-axis angles. The performance of the 

calibrated system was explored using scattering from standard sphere targets, WC22 

and WC38, which allowed comparison between the measured and theoretically 

predicted values. The suggested system response function efficiently includes the beam 

pattern effect, the amplitude ramping and even the response of the system phase 

function. 

For the transducer used in these tests, the compensated 𝑇𝑆(𝑓) achieved with system 

response function showed improvement in comparison with the modified Bessel function 

method. The process was stable enough to compensate data beyond the half beamwidth 

(3.5°). The system response function was found to change when the echosounder's 

transmit amplitude ramping was changed. However, 𝑇𝑆(𝑓) was adequately 

compensated for the position of the target within the beam by whichever system 

response function was appropriate to the transmit amplitude ramping used for the 

measurement. 

Calibrating an echosounder in a survey location is difficult, particularly when the 

instrument accuracy is restricted by the preciseness of the parameters provided by the 

manufacturer. The result from this particular study indicated that the system response is 

capable of extracting the compensated 𝑇𝑆(𝑓), irrespective of the knowledge of the 

effective beamwidth. 

A somewhat similar concept was adapted by MacLennan, and Svellingen (1986), for a 

single-beam transducer where the mean sensitivity was determined for the entire beam 

by partitioning it into seven cross-sections of equal areas. The number of data points 

was as low as 30. In the current study, even though the sensitivity was averaged for each 

off-axis bin, the intention was to collect as many samples as possible. Even though a 

similar result could be achieved with fewer data points, it is not recommended as it could 
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compromise the accuracy of the calibration result. 

8.1.2 Calibration for the target phase  

One of the main aims of the thesis was to substantiate the target phase as a new metric 

in acoustic analysis and apply it to identify a scatterer's characteristics from the 

backscattered echo. Chapter 5 theoretically and experimentally investigated the 

application of the system response function for phase extraction and calibration. To the 

candidate's knowledge, the result comprises the first set of phase measurements 

undertaken with Simrad EK80 and includes the effects of transducer directivity and 'fast' 

and 'slow' amplitude ramping. A crucial aspect of this study is that it confirmed the 

theoretical prediction that the system phase response should be independent of the 

target position within the transducer's main beam. This is a significant result for fisheries 

acoustic surveys because any target moving in the acoustic beam would have a 

consistent phase irrespective of its position within the beam. However, if the target 

changes orientation when moving through beam possibly both the amplitude and phase 

response would change depending on the structure of the organism. 

Earlier studies had indicated the difficulty of using absolute phase, 𝜑𝑏𝑠 (𝑓) as a 

quantitative indicator, as it was prone to the effects of the range and frequency 

accumulation. To rectify the effect variables such as the rate of change of phase (Barr, 

& Coombs, 2005), gross phase shifts (Bolus et al., 1982) and phase differences (Atkins 

et al., 2007) have been proposed each with its own set of merits and limitation. The 

current study introduced two variables, the differential 𝐷𝑃(𝑓) and the residual phase 

𝑅𝑃(𝑓) to visualise the target induced phase distortion. 

𝐷𝑃(𝑓) was calculated by differentiating the absolute phase with respect to the frequency. 

𝑅𝑃(𝑓) was obtained by subtracting the product of frequency and median of the 

differential phase from the absolute phase. The obtained spectra of 𝜑𝑏𝑠 (𝑓), 𝐷𝑃(𝑓) and 

𝑅𝑃(𝑓) for the two spheres (WC22 and WC38) were evaluated through comparison with 

the respective modelled response. Even though 𝐷𝑃(𝑓) exhibited the target-induced 

phase, this was overshadowed by the resonant induced nulls of the sphere, which made 

interpretation of the phase at another frequency difficult. The frequency response of 

𝑅𝑃(𝑓) appeared stable and displayed the more subtle target induced phase variations 

even near its resonant frequency. 
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8.1.3 Characterisation of the geometrical and directional 
parameters of a broadband split-beam transducer 

One of the research topics was the development of a broadband specific method for the 

determination of the transducer parameters. In Chapter 4, the algorithm framework was 

used to quantify the effective values of the transducer’s geometrical (ratio of transducer 

radius to segment distance) and directional parameters (beamwidth, beam pattern). An 

optimisation model was formulated that allowed selecting the most suitable geometrical 

parameter from a set of available values for the minimisation of the cost function. For the 

specific transducer, the effective geometrical parameter and the beamwidth both were 

found to be almost independent of frequency. The GP was higher (4 - 5%) from the 

nominal value, whereas the directional parameter was slightly lower (3 - 4%) than the 

nominal value. The results were verified by estimating 𝑇𝑆(𝑓) with the derived and 

manufacturer-quoted values. In this case, using the nominal value leads to an under-

compensated 𝑇𝑆(𝑓) that was rectified by the use of derived effective parameters. 

Several studies had earlier quantified the variation of the beamwidth from the nominal 

values (Ona, & Vestnes, 1985; Reynisson, 1998) for a constant frequency. In these 

earlier studies, the directivity of a transducer was usually evaluated by mapping the beam 

at several positions and fitting it with a mathematical function (bicubic spine or a modified 

Bessel function) (Degnbol, 1988; Kieser, & Ona, 1988; MacLennan, & Svellingen, 1986; 

Ona, 1990a). In the case of a broadband echosounder, uncertainties in the parameters 

due to the wide frequency bandwidth need to be tested and verified. The model 

employed in this study is simple and could be useful in a survey for assessing the 

beamwidth even with fewer data points across the acoustic beam. Measurements should 

be carried out on other transducers to substantiate the model. 

8.1.4 In situ target strength and residual phase of optically 
verified micronekton 

Although the results in Chapter 3 and Chapter 5 demonstrated the capability of the 

proposed algorithm for the calibration and processing of broadband echosounder data 

for target strength and phase measurements, it remained pertinent to investigate the 

practicality of applying the proposed algorithm to in-situ live micronekton. Chapter 6 uses 

a preliminary set of data collected from mesopelagic depths of the Great Australian Bight 

to extract the frequency-dependent target strength from selected single targets (Verma 

et al., 2017). Plausible results were obtained for targets with different acoustic scattering 

features; however, in the absence of any visual verification, the target types could not be 
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verified. The problem motivated the installation of an EK80 broadband echosounder on 

the PLAOS platform to allow simultaneous optical and acoustic sampling of the 

mesopelagic biota. This formed the basis for chapter 7. 

Chapter 7 used acoustic data taken from the improved PLAOS system deployed in the 

Southern Ocean that provided live video recordings and real-time images of the 

organisms sampled by the echosounder. An attempt was made to ensure that the 

signatures of only optically identified micronekton were processed. The 3D 

transformation model allowed checking for the identity of the acoustic targets, yet the 

investigation of just 2 hours of data proved to be a substantial effort. Even though 

hundreds of organisms were found by the echosounder, they rarely matched the 

concurrent photo. Moreover, the use of a single camera limited range resolution and 

organism avoidance made the task difficult. 

The first set of acoustic signatures (frequency response of target strength and residual 

phase) from different types of organisms (fish and small gas-filled targets) appear 

promising, as they were consistent for all the pings and at different depths. The new 

variable, residual phase, proved to be more prone to noise than the target strength but 

gave consistent results from ping to ping when the signal to noise ratio was sufficient. 

Squid were strongly attracted to the calibration sphere, which made it impossible to 

obtain uncontaminated acoustic signatures of these animals from data collected during 

this deployment. However, this should be possible during future PLAOS deployments 

without calibration spheres. 

The underlying algorithms on which most acoustic scattering models are based 

inherently calculate both the amplitude and phase of the scattering function, but usually 

only output the amplitude component in the form of target strength. Relatively simple 

modifications, such were made here for a resonant bubble model, would be required to 

allow these models to also output the modelled phase so that this can be compared to 

measured phase as an aid to target classification. 

8.2 Limitations 

1. A significant aspect of the echosounder is the application for echo integration for 

abundance and density estimates that requires calibration of the equivalent beam 

angle. The evaluation of the effective equivalent beam angle involves the 

determination of the actual angles evaluated by a geometrical method instead of 



Chapter 8: Discussion and Conclusion   132 
 

 
 

the split-beam processing as exhibited by Simmonds (1984) and Ona, and 

Vestnes (1985) or even Reynisson (1998). This requires an independent 

measurement of the absolute position of the target. In the study undertaken, the 

electrical angles were used and hence estimating volume backscattering strength 

using a system calibrated by this method is not recommended unless an 

independent measurement of equivalent beam angle is available. 

2. In fisheries acoustics, elliptical or rectangular transducers are sometimes used. 

The system response in this study was formulated for the off-axis angle of circular 

transducers. Nonetheless, the process can easily be extended to non-circular 

transducers by making appropriate adjustments to include the angles along the 

major and minor axis. 

3. The resonance peak of the calibration sphere introduces an artefact into the 

system response function that leads to unwanted spikes in the target response 

curves. During the experiment, the peak was removed by ignoring the 

corresponding frequency region, but this could be undesirable in a situation 

where the system bandwidth includes multiple calibration sphere resonances. 

Methods to avoid this could comprise interpolating the system response in the 

resonant frequency region or using multiple calibration spheres with resonances 

at different frequencies. 

4. The 3D transformation model presented in chapter 7 provided a reasonable 

estimate of the expected location of acoustically sampled objects in the still 

photographs. There is, however, still a certain degree of ambiguity in the 

identification of the target. This was mainly due to the use of the single-lens 

camera, which lacked a sense of depth. Moreover, the model was complicated 

due to the inclusion of several coordinate systems in the transformation model. 

To avoid this ambiguity in future, further research should be conducted using 

synchronised stereo cameras. 

8.3 Summary of thesis contribution 

The contributions achieved in the thesis are described below: 

1. Developing a method to calibrate a broadband echosounder that allows it to 

measure both the amplitude (target strength) and phase of a target’s scattering 
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response as a function of frequency (Chapter 3 and Chapter 5). 

2. Establishing that this method correctly compensates the target strength 

measurements for the target’s position in the beam and that, at least for the tested 

transducer, the phase measurements are independent of the position of the 

target in the beam. Theory suggests that this latter result is likely to apply to the 

majority of fisheries transducers, providing the target is within the main lobe of 

the beam pattern (Chapter 5). 

3. Developing a measure of the phase response of a target (residual phase) that 

minimises distortions caused by uncertainties in the measured range to the 

target, making it much easier to compare the measured phase response to 

scattering models (Chapter 5). 

4. Demonstrating that these methods can be applied to in-situ field data from 

descending platforms.  These field data sets included small, resonant targets, 

from which consistent results were obtained for both target strength and phase 

as the target’s range and position in the beam changed, and larger optically 

verified targets such as fish and squid that had much greater ping to ping variation 

because of their larger size and rapid movement, but gave results consistent with 

expectations. For the resonant targets, the measured phase responses were 

consistent with the predictions of a scattering model that was fitted to the 

measured frequency-dependent target strength (Chapter 6 and Chapter 7). 

These contributions required several additional tasks to be carried out, including: 

5. Characterising the geometrical and directional parameters of a split-beam 

broadband echosounder and verifying that the effective GP of the transducer is 

independent of frequency (Chapter 4). 

6. Developing a method to convert a target’s three-dimensional coordinates 

measured by an echosounder to its two-dimensional pixel coordinates in a 

photograph (Chapter 7). 

7. Extending the theoretical numerical acoustic scattering model of a gas-filled 

sphere to predict the frequency response of the residual phase (Chapter 7). 

8. Participating in two research surveys during which broadband acoustic data were 
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collected from the mesopelagic zone using descending platforms. In the second 

survey, the platform also acquired still photographs and video, allowing optical 

verification of targets. (Chapter 6 and Chapter 7). 

8.4 Recommendation for future work  

Target phase is not routinely used in the detection and classification of marine 

organisms, however, for the transducer used in this project, it was found to be unaffected 

by the position of the target in the main lobe. This result is significant for the classification 

of targets moving within the acoustic beam. This is in accordance with theoretical results 

for ideal piston transducers (Kinsler et al., 1999), but it is important that it be 

experimentally verified for other transducers. 

Many different numerical scattering models are described in the literature, appropriate to 

a variety of marine organisms (Jech et al., 2015). Although backscattered signals from a 

range of target types were collected during the deployments described in this thesis, only 

the simplest numerical scattering model (gas-filled sphere) was matched to the 

measured data. Straightforward extensions to other scattering models should allow them 

to be used to predict the frequency-dependent phase response of other types of targets. 

Some of the models that could be explored in this respect are Distorted Wave Born 

Approximation (Chu et al., 1993; Stanton et al., 1993), Kirchhoff approximation (Foote, 

& Francis, 2002) and the Finite element method (Ihlenburg, 2006). The weak targets, 

which are modelled as liquid-filled shapes, are ecologically and biologically important so 

this would greatly extend the applicability of this method. 

Lately, there has been an increase in the use of deep profiling platforms and towed 

bodies (Fernandes et al., 2003). Accurate interpretation of the output from broadband 

echosounders mounted on these platforms requires that any pressure-dependent effects 

on the transducer be compensated for by calibrating the system for both the target 

strength (Haris et al., 2017) and phase across all depths (Dalen et al., 2003; Kloser, 

1996; Koslow et al., 1997). This would enable an accurate estimation of the abundance 

and remove the uncertainties. The determination of depth sensitivity would be straight 

forward with the system utilised in chapter 7 and would require analysing the data with 

respect to the depth of the echosounder. 

The measurement of the acoustic signature of live in-situ squid shows the potential of 

the broadband acoustic method. However, the presence of the calibration sphere 
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restricted the usefulness of the data. The work could be further explored by carrying out 

other PLAOS deployments without a calibration sphere. 

One of the challenges of fisheries acoustics is developing specifies level classification 

algorithms using both target strength and phase, and investigation of how effective they 

are compared to methods that rely solely on target strength. 

8.5 Conclusions 

The thesis aimed at presenting an improved processing and analysis technique for the 

derivation of the target strength and phase spectra using a broadband echosounder. The 

system response function was flexible and included provision for the extraction of both 

the target strength and phase. The calibrations of the phase and the target strength were 

derived by using the obtained complex transfer function, which also allowed appropriate 

compensation for the target strength measurements. The method was simple but as 

accurate as of the compensation achieved with the directivity pattern models. The 

technique was successful even in the case of different ramp settings. The evidence 

supporting the flexibility of the method with both fast and slow ramped transmit signals 

was encouraging. The technique described was shown to be in good agreement with the 

standard beam models (Bessel function and LOBE algorithm). 

The non-linear optimisation model allowed verification of the effective geometrical and 

the directional parameters of the transducer. The inversion algorithm had to deal with a 

large number of variables to represent the directionality for each frequency and angle 

component. The obtained parameters provided a snapshot of the variability of the beam 

parameters within the frequency. The assumption of the broadband split-beam 

echosounder as a constant geometrical parameter transducer was confirmed. 

The thesis provides the first set of phase measurements made with the Simrad EK80 

scientific echosounders. The ‘residual phase’ was introduced as a new phase variable. 

The consistency of phase obtained across all off-axis angles from the standard sphere 

provides a basis to the hypothesis of phase as a target classifier made at the beginning 

of the research. The method was accurately implemented using a set of acoustic-sensors 

to characterise marine organism from the open ocean, which demonstrates the success 

of the method. The consistent target strength and residual phase of the real organisms 

across different pings and the matching of both the variables to the output of the 

numerical scattering model verified the method for the case of resonant targets.



    136 
 

 
 

List of Agreements  

 



   137 
 

 
 

 



    138 
 

 
 

 



   139 
 

 
 

 



   140 

 
 

List of References  

Abramowitz, M., and Irene A. Stegun, eds. (1965). Handbook of mathematical functions 

with formulas, graphs, and mathematical tables: US Government printing office, 

1948. 

Al-Nashi, H. (1989). Phase unwrapping of digital signals. IEEE Transactions on 

Acoustics, Speech, and Signal Processing, 37(11), 1693-1702. doi: 

https://doi.org/10.1109/29.46552 

Anderson, V. C. (1950). Sound Scattering from a Fluid Sphere. The Journal of the 

Acoustical Society of America, 22(4), 426-431. doi: 

https://doi.org/10.1121/1.1906621 

Andreeva, I. (1974). Scattering of sound by air bladders of fish in deep sound-scattering 

ocean layers. Sov. Phys. Acoust, 10(1), 17-20. doi:  

Anthony, K. J., et al. (1994). The mid-slope demersal fish community off southeastern 

Australia. Deep Sea Research Part I: Oceanographic Research Papers, 41(1), 

113-141. doi: https://doi.org/10.1016/0967-0637(94)90029-9 

Atkins, P. R., et al. (2007). Transmit-Signal Design and Processing Strategies for Sonar 

Target Phase Measurement. IEEE Journal of Selected Topics in Signal 

Processing, 1(1), 91-104. doi: https://doi.org/10.1109/jstsp.2007.897051 

Au, W. W., & Benoit-Bird, K. J. (2003). Acoustic backscattering by Hawaiian lutjanid 

snappers. II. Broadband temporal and spectral structure. The Journal of the 

Acoustical Society of America, 114(5), 2767-2774. doi: 

https://doi.org/10.1121/1.1614257 

Au, W. W., & Benoit-Bird, K. J. (2008). Broadband backscatter from individual Hawaiian 

mesopelagic boundary community animals with implications for spinner dolphin 

foraging. The Journal of the Acoustical Society of America, 123(5), 2884-2894. 

doi: https://doi.org/10.1121/1.2902187 

Baik, K. (2013). Comment on "Resonant acoustic scattering by swimbladder-bearing 

fish"  J. Acoust. Soc. Am. 64, 571-580 (1978) (L). Journal of the Acoustical 

https://doi.org/10.1109/29.46552
https://doi.org/10.1121/1.1906621
https://doi.org/10.1016/0967-0637(94)90029-9
https://doi.org/10.1109/jstsp.2007.897051
https://doi.org/10.1121/1.1614257
https://doi.org/10.1121/1.2902187


   141 

 
 

Society of America, 133(1), 5-8. doi: https://doi.org/10.1121/1.4770261 

Barange, M., et al. (1996). Empirical determination of in situ target strengths of three 

loosely aggregated pelagic fish species. ICES Journal of Marine Science:, 53(2), 

225-232. doi: https://doi.org/10.1006/jmsc.1996.0026 

Barham, E. G. (1966). Deep scattering layer migration and composition: observations 

from a diving saucer. Science, 151(3716), 1399-1403. doi: 

https://doi.org/10.1126/science.151.3716.1399 

Barr, R., & Coombs, R. F. (2005). Target phase: An extra dimension for fish and plankton 

target identification. The Journal of the Acoustical Society of America, 118(3), 

1358-1371. doi: https://doi.org/10.1121/1.1979503 

Bassett, C., et al. (2017). Broadband echosounder measurements of the frequency 

response of fishes and euphausiids in the Gulf of Alaska. ICES Journal of Marine 

Science. doi: https://doi.org/10.1093/icesjms/fsx204 

Batzler, W., & Barham, E. (1963). Acoustic Scattering from a Layer of Siphonophores. 

The Journal of the Acoustical Society of America, 35(5), 792-793. doi: 

https://doi.org/10.1121/1.2142469 

Béhagle, N., et al. (2016). Acoustic micronektonic distribution is structured by 

macroscale oceanographic processes across 20–50 S latitudes in the South-

Western Indian Ocean. Deep Sea Research Part I: Oceanographic Research 

Papers, 110, 20-32. doi: https://doi.org/10.1016/j.dsr.2015.12.007 

Béhagle, N., et al. (2014). Mesoscale features and micronekton in the Mozambique 

Channel: An acoustic approach. Deep Sea Research Part II: Topical Studies in 

Oceanography, 100(0), 164-173. doi: https://doi.org/10.1016/j.dsr2.2013.10.024 

Benfield, M. C., et al. (2003). Distributions of physonect siphonulae in the Gulf of Maine 

and their potential as important sources of acoustic scattering. Canadian Journal 

of Fisheries and Aquatic Sciences, 60(7), 759-772. doi: 

https://doi.org/10.1139/f03-065 

Benoit-Bird, K. J., & Au, W. W. (2001). Target strength measurements of Hawaiian 

mesopelagic boundary community animals. The Journal of the Acoustical Society 

of America, 110(2), 812-819. doi: https://doi.org/10.1121/1.1382620 

https://doi.org/10.1121/1.4770261
https://doi.org/10.1006/jmsc.1996.0026
https://doi.org/10.1126/science.151.3716.1399
https://doi.org/10.1121/1.1979503
https://doi.org/10.1093/icesjms/fsx204
https://doi.org/10.1121/1.2142469
https://doi.org/10.1016/j.dsr.2015.12.007
https://doi.org/10.1016/j.dsr2.2013.10.024
https://doi.org/10.1139/f03-065
https://doi.org/10.1121/1.1382620


   142 

 
 

Bodholt, H. (2002). The effect of water temperature and salinity on echo sounder 

measurements. Paper presented at the ICES Symposium on Acoustics in 

Fisheries. 

Bodholt, H., & Solli, H. (1992). Application of the split-beam technique for in-situ, target-

strength measurements. Paper presented at the World Fisheries Congress, 

Athens. 

Bolus, R. L., et al. (1982). Subbottom acoustic impedance profiles from magnitude and 

phase analysis of echoes. IEEE Transactions on Geoscience and Remote 

Sensing(3), 338-342. doi: https://doi.org/10.1109/tgrs.1982.350452 

Bracewell, R. N. (1986). The Fourier transform and its applications (Vol. 31999): 

McGraw-Hill New York. 

Braithwaite, H. (1973). Discrimination between sonar echoes from fish and rocks on the 

basis of “hard” and “soft” characteristics. Journal of Sound and Vibration, 27(4), 

549-IN541. doi: https://doi.org/10.1016/0041-624x(74)90109-7 

Brierley, A., et al. (1998). Variations in echosounder calibration with temperature, and 

some possible implications for acoustic surveys of krill biomass. Ccamlr Science, 

5, 273-281. doi:  

Briseño-Avena, C., et al. (2015). ZOOPS-O2: A broadband echosounder with 

coordinated stereo optical imaging for observing plankton in situ. Methods in 

Oceanography, 12, 36-54. doi: https://doi.org/10.1016/j.mio.2015.07.001 

Brodeur, R. D., et al. (2005). Micronekton–What are they and why are they important. 

Pac Mar Sci Org Pices Press, 13, 7-11. doi:  

Brodeur, R. D., et al. (1999). Forage fishes in the Bering Sea: distribution, species 

associations, and biomass trends. Dynamics of the Bering Sea, 509-536. doi:  

Burdic, W. S. (1991). Underwater acoustic system analysis: Prentice Hall. 

Butler, J. L., & Pearcy, W. G. (1972). Swimbladder Morphology and Specific Gravity of 

Myctophids off Oregon. Journal of the Fisheries Research Board of Canada, 

29(8), 1145-1150. doi: https://doi.org/10.1139/f72-170 

https://doi.org/10.1109/tgrs.1982.350452
https://doi.org/10.1016/0041-624x(74)90109-7
https://doi.org/10.1016/j.mio.2015.07.001
https://doi.org/10.1139/f72-170


   143 

 
 

Chestnut, P., et al. (1979). A sonar target recognition experiment. The Journal of the 

Acoustical Society of America, 66(1), 140-147. doi: 

https://doi.org/10.1109/icassp.1979.1170631 

Chu, D. (2011). "TS Package", ComputeSolidElasticSphereTS Matlab Gui. from NOAA 

Chu, D., & Eastland, G. C. (2015). Calibration of a broadband acoustic transducer with 

a standard spherical target in the near field. The Journal of the Acoustical Society 

of America, 137(4), 2148-2157. doi: https://doi.org/10.1121/1.4916281 

Chu, D., et al. (1993). Further analysis of target strength measurements of Antarctic krill 

at 38 and 120 kHz: Comparison with deformed cylinder model and inference of 

orientation distribution. The Journal of the Acoustical Society of America, 93(5), 

2985-2988. doi: https://doi.org/10.1121/1.405818 

Chu, D., & Stanton, T. K. (1998). Application of pulse compression techniques to 

broadband acoustic scattering by live individual zooplankton. The Journal of the 

Acoustical Society of America, 104(1), 39-55. doi: 

https://doi.org/10.1121/1.424056 

Clay, C. S., & Horne, J. K. (1994). Acoustic models of fish: The Atlantic cod (Gadus 

morhua). The Journal of the Acoustical Society of America, 96(3), 1661-1668. 

doi: https://doi.org/10.1121/1.410245 

Conti, S. G., et al. (2005). An improved multiple-frequency method for measuring in situ 

target strengths. ICES Journal of Marine Science:, 62(8), 1636-1646. doi: 

https://doi.org/10.1016/j.icesjms.2005.06.008 

Cook, M. R., et al. (2017). Coherence-based phase unwrapping for broadband acoustic 

signals. Paper presented at the Proceedings of Meetings on Acoustics 173EAA. 

Dalen, J., & Bodholt, H. (1991). Deep towed vehicle for fish abundance estimation 

concept and testing. 

Dalen, J., et al. (2003). A comparative acoustic-abundance estimation of pelagic redfish 

(Sebastes mentella) from hull-mounted and deep-towed acoustic systems. ICES 

Journal of Marine Science:, 60(3), 472-479. doi: https://doi.org/10.1016/s1054-

3139(03)00045-6 

https://doi.org/10.1109/icassp.1979.1170631
https://doi.org/10.1121/1.4916281
https://doi.org/10.1121/1.405818
https://doi.org/10.1121/1.424056
https://doi.org/10.1121/1.410245
https://doi.org/10.1016/j.icesjms.2005.06.008
https://doi.org/10.1016/s1054-3139(03)00045-6
https://doi.org/10.1016/s1054-3139(03)00045-6


   144 

 
 

Davison, P., et al. (2015). Mesopelagic fish biomass in the southern California current 

ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography, 112, 

129-142. doi: https://doi.org/10.1016/j.dsr2.2014.10.007 

Degnbol, P. (1988). A calibration method for split beam echo sounders including 

calibration of directivity compensation and level: Danmarks Fiskeri-og 

Havundersøgelser. 

Demer, D., et al. (2017). Evaluation of a wideband echosounder for fisheries and marine 

ecosystem science. ICES Cooperative research report(336). doi:  

Demer, D., et al. (2015). Calibration of acoustic instruments. ICES Cooperative research 

report(326). doi:  

Demer, D. A., & Conti, S. G. (2003). Validation of the stochastic distorted-wave Born 

approximation model with broad bandwidth total target strength measurements 

of Antarctic krill. ICES Journal of Marine Science, 60(3), 625-635. doi: 

https://doi.org/10.1016/j.icesjms.2003.12.002 

Demer, D. A., & Conti, S. G. (2004). Validation of the stochastic distorted-wave Born 

approximation model with broad bandwidth total target strength measurements 

of Antarctic krill. ICES Journal of Marine Science:, 61(1), 155-156. doi: 

https://doi.org/10.1016/j.icesjms.2003.12.002 

Demer, D. A., & Conti, S. G. (2005). New target-strength model indicates more krill in 

the Southern Ocean. ICES Journal of Marine Science:, 62(1), 25-32. doi: 

https://doi.org/10.1016/j.icesjms.2004.07.027 

Demer, D. A., & Renfree, J. S. (2008). Variations in echosounder–transducer 

performance with water temperature. ICES Journal of Marine Science, 65(6), 

1021-1035. doi: https://doi.org/10.1121/1.4787073 

Devin Jr, C. (1959). Survey of thermal, radiation, and viscous damping of pulsating air 

bubbles in water. The Journal of the Acoustical Society of America, 31(12), 1654-

1667. doi: https://doi.org/10.1121/1.1907675 

Diachok, O. (2001). Interpretation of the spectra of energy scattered by dispersed 

anchovies. The Journal of the Acoustical Society of America, 110(6), 2917-2923. 

doi: https://doi.org/10.1121/1.1413996 

https://doi.org/10.1016/j.dsr2.2014.10.007
https://doi.org/10.1016/j.icesjms.2003.12.002
https://doi.org/10.1016/j.icesjms.2003.12.002
https://doi.org/10.1016/j.icesjms.2004.07.027
https://doi.org/10.1121/1.4787073
https://doi.org/10.1121/1.1907675
https://doi.org/10.1121/1.1413996


   145 

 
 

Didrikas, T., & Hansson, S. (2004). In situ target strength of the Baltic Sea herring and 

sprat. ICES Journal of Marine Science, 61(3), 378-382. doi: 

https://doi.org/10.1016/s1054-3139(04)00005-0 

Dosso, S. E., et al. (1993). Estimation of ocean-bottom properties by matched-field 

inversion of acoustic field data. IEEE Journal of Oceanic Engineering, 18(3), 232-

239. doi: https://doi.org/10.1109/joe.1993.236361 

Dunlop, K. M., et al. (2018). Detection and characterisation of deep-sea benthopelagic 

animals from an autonomous underwater vehicle with a multibeam echosounder: 

A proof of concept and description of data-processing methods. Deep Sea 

Research Part I: Oceanographic Research Papers, 134, 64-79. doi: 

https://doi.org/10.1016/j.dsr.2018.01.006 

Echoview. (2017). Echoview software, version 8.0  Hobart, Australia.: Echoview 

Software Pty Ltd (2017).  

Ehrenberg, J. (1974). Two applications for a dual-beam transducer in hydroacoustic fish 

assessment systems. Paper presented at the Engineering in the Ocean 

Environment, Ocean'74-IEEE International Conference on. 

Ehrenberg, J. (1981). Analysis of split beam backscattering cross section estimation and 

single echo isolation techniques. Applied Physics Labratory, University of 

Washington, APL-WU, 8108. doi:  

Ehrenberg, J. (1983). A review of in situ target strength estimation techniques. FAO 

Fisheries Report, 300, 85-90. doi: https://doi.org/10.1007/978-94-009-2289-1_17 

Ehrenberg, J. E. (1979). A comparative analysis of in situ methods for directly measuring 

the acoustic target strength of individual fish. IEEE Journal of Oceanic 

Engineering, 4(4), 141-152. doi: https://doi.org/10.1109/joe.1979.1145434 

Ehrenberg, J. E., & Torkelson, T. C. (1996). Application of dual-beam and split-beam 

target tracking in fisheries acoustics. ICES Journal of Marine Science, 53(2), 329-

334. doi: https://doi.org/10.1080/00344899028438932 

Ehrenberg, J. E., & Torkelson, T. C. (2000). FM slide (chirp) signals: a technique for 

significantly improving the signal-to-noise performance in hydroacoustic 

assessment systems. Fisheries Research, 47(2-3), 193-199. doi: 

https://doi.org/10.1016/s1054-3139(04)00005-0
https://doi.org/10.1109/joe.1993.236361
https://doi.org/10.1016/j.dsr.2018.01.006
https://doi.org/10.1007/978-94-009-2289-1_17
https://doi.org/10.1109/joe.1979.1145434
https://doi.org/10.1080/00344899028438932


   146 

 
 

https://doi.org/10.1016/s0165-7836(00)00169-7 

Faran, J. J. (1951). Sound Scattering by Solid Cylinders and Spheres. The Journal of 

the Acoustical Society of America, 23(4), 405-418. doi: 

https://doi.org/10.1121/1.1906780 

Fernandes, P. G., et al. (2002). Acoustic applications in fisheries science: the ICES 

contribution. Paper presented at the ICES Marine Science Symposia. 

Fernandes, P. G., et al. (2003). Autonomous underwater vehicles: future platforms for 

fisheries acoustics. ICES Journal of Marine Science:, 60(3), 684-691. doi: 

10.1016/s1054-3139(03)00038-9 

Flax, L., et al. (1978). Theory of elastic resonance excitation by sound scattering. The 

Journal of the Acoustical Society of America, 63(3), 723-731. doi: 

https://doi.org/10.1121/1.381780 

Foote, K., et al. (1987). Calibration of acoustic instruments for fish density estimation: a 

practical guide. doi:  

Foote, K. G. (1980). Importance of the swimbladder in acoustic scattering by fish: A 

comparison of gadoid and mackerel target strengths. The Journal of the 

Acoustical Society of America, 67(6), 2084-2089. doi: 

https://doi.org/10.1121/1.384452 

Foote, K. G. (1982). Optimizing copper spheres for precision calibration of hydroacoustic 

equipment. The Journal of the Acoustical Society of America, 71(3), 742-747. doi: 

https://doi.org/10.1121/1.387497 

Foote, K. G. (1983). Linearity of fisheries acoustics, with addition theorems. The Journal 

of the Acoustical Society of America, 73(6), 1932-1940. doi: 

https://doi.org/10.1016/0198-0254(83)96413-0 

Foote, K. G. (1991a). Acoustic sampling volume. The Journal of the Acoustical Society 

of America, 90(2), 959-964. doi: https://doi.org/10.1121/1.2027231 

Foote, K. G. (1991b). Comparison of two 120-kHz split-beam transducers. 

Foote, K. G. (1991c). Summary of methods for determining fish target strength at 

https://doi.org/10.1016/s0165-7836(00)00169-7
https://doi.org/10.1121/1.1906780
https://doi.org/10.1121/1.381780
https://doi.org/10.1121/1.384452
https://doi.org/10.1121/1.387497
https://doi.org/10.1016/0198-0254(83)96413-0
https://doi.org/10.1121/1.2027231


   147 

 
 

ultrasonic frequencies. ICES Journal of Marine Science, 48(2), 211-217. doi: 

https://doi.org/10.1093/icesjms/48.2.211 

Foote, K. G. (2000). Standard‐target calibration of broadband sonars. The Journal of the 

Acoustical Society of America, 108(5), 2484-2484. doi: 

https://doi.org/10.1121/1.4743169 

Foote, K. G. (2007a). Acoustic robustness of two standard spheres for calibrating a 

broadband multibeam sonar. Paper presented at the OCEANS 2007-Europe. 

Foote, K. G. (2007b, 18-21 June 2007). Acoustic Robustness of Two Standard Spheres 

for Calibrating a Broadband Multibeam Sonar. Paper presented at the OCEANS 

2007 - Europe. 

Foote, K. G., et al. (1986). Measurement of fish target strength with a split‐beam echo 

sounder. The Journal of the Acoustical Society of America, 80(2), 612-621. doi: 

https://doi.org/10.23919/oceans.2011.6107261 

Foote, K. G., & Francis, D. T. I. (2002). Comparing Kirchhoff-approximation and 

boundary-element models for computing gadoid target strengths. The Journal of 

the Acoustical Society of America, 111(4), 1644-1654. doi: 

https://doi.org/10.1121/1.1458939 

Foote, K. G., & MacLennan, D. N. (1984). Comparison of copper and tungsten carbide 

calibration spheres. The Journal of the Acoustical Society of America, 75(2), 612-

616. doi: https://doi.org/10.1121/1.390489 

Francois, R. E., & Garrison, G. R. (1982). Sound absorption based on ocean 

measurements. Part II: Boric acid contribution and equation for total absorption. 

The Journal of the Acoustical Society of America, 72(6), 1879-1890. doi: 

https://doi.org/10.1016/0198-0254(83)90034-1 

Furusawa, M. (1988). Prolate spheroidal models for predicting general trends of fish 

target strength. Journal of the Acoustical Society of Japan (E), 9(1), 13-24. doi: 

https://doi.org/10.1250/ast.9.13 

GABRP. (2013). Great Australian Bight Research Program.   Retrieved from 

www.misa.net.au/GAB 

https://doi.org/10.1093/icesjms/48.2.211
https://doi.org/10.1121/1.4743169
https://doi.org/10.23919/oceans.2011.6107261
https://doi.org/10.1121/1.1458939
https://doi.org/10.1121/1.390489
https://doi.org/10.1016/0198-0254(83)90034-1
https://doi.org/10.1250/ast.9.13
http://www.misa.net.au/GAB


   148 

 
 

Giryn, A. (1982). A Species Classifier of Sea Creatures Compiled on the Basis of Their 

Echo Sounder Signals. IEEE transactions on pattern analysis and machine 

intelligence(6), 666-671. doi: https://doi.org/10.1109/tpami.1982.4767323 

Godø, O. R., et al. (2014). Marine ecosystem acoustics (MEA): quantifying processes in 

the sea at the spatio-temporal scales on which they occur. ICES Journal of 

Marine Science, 71(8), 2357-2369. doi: https://doi.org/10.1093/icesjms/fsu116 

Greenlaw, C. F. (1977). Backscattering spectra of preserved zooplankton. The Journal 

of the Acoustical Society of America, 62(1), 44-52. doi:  

Gunderson, D. R. (1993). Surveys of fisheries resources: John Wiley & Sons. 

Han, J., et al. (2010). Automated three-dimensional measurement method of in situ fish 

with a stereo camera. Paper presented at the OCEANS'10 IEEE SYDNEY. 

Handegard, N. O., et al. (2013). Towards an acoustic‐based coupled observation and 

modelling system for monitoring and predicting ecosystem dynamics of the open 

ocean. Fish and Fisheries, 14(4), 605-615. doi: https://doi.org/10.1111/j.1467-

2979.2012.00480.x 

Haris, K., et al. (2017). Deep-water calibration of echosounders used for biomass 

surveys and species identification. ICES Journal of Marine Science, 75(3), 1117-

1130. doi:  

Hayman, G., & Robinson, S. P. (2013). Phase calibration of hydrophones by the free-

field reciprocity method. Proceedings of Meetings on Acoustics, 17(1), 070026. 

doi: https://doi.org/10.1121/1.4770061 

He, P. (1999). Direct measurement of ultrasonic dispersion using a broadband 

transmission technique. Ultrasonics, 37(1), 67-70. doi:  

Henderson, M. J., & Horne, J. K. (2007). Comparison of in situ, ex situ, and backscatter 

model estimates of Pacific hake (Merluccius productus) target strength. 

Canadian Journal of Fisheries and Aquatic Sciences, 64(12), 1781-1794. doi: 

10.1139/f07-134 

Heyser, R. C. (1969). Loudspeaker phase characteristics and time delay distortion: Part 

1. Journal of the Audio Engineering Society, 17(1), 30-41. doi:  

https://doi.org/10.1109/tpami.1982.4767323
https://doi.org/10.1093/icesjms/fsu116
https://doi.org/10.1111/j.1467-2979.2012.00480.x
https://doi.org/10.1111/j.1467-2979.2012.00480.x
https://doi.org/10.1121/1.4770061


   149 

 
 

Hickling, R. (1962). Analysis of echoes from a solid elastic sphere in water. The Journal 

of the Acoustical Society of America, 34(10), 1582-1592. doi: 

https://doi.org/10.1016/0011-7471(63)90077-9 

Hobæk, H., & Forland, T. N. (2013). Characterization of target spheres for broad-band 

calibration of acoustic systems. Acta Acustica United with Acustica, 99(3), 465-

476. doi:  

Holliday, D. V. (1972). Resonance Structure in Echoes from Schooled Pelagic Fish. The 

Journal of the Acoustical Society of America, 51(4B), 1322-1332. doi:  

Holliday, D. V., et al. (1989). Determination of zooplankton size and distribution with 

multifrequency acoustic technology. ICES Journal of Marine Science, 46(1), 52-

61. doi:  

Horne, J. K. (2000). Acoustic approaches to remote species identification: a review. 

Fisheries Oceanography, 9(4), 356-371. doi:  

Horne, J. K., & Clay, C. S. (1998). Sonar systems and aquatic organisms: matching 

equipment and model parameters. Canadian Journal of Fisheries and Aquatic 

Sciences, 55(5), 1296-1306. doi: 10.1139/f97-322 

Ihlenburg, F. (2006). Finite element analysis of acoustic scattering (Vol. 132): Springer 

Science & Business Media. 

Islas-Cital, A., et al. (2011a). Broadband amplitude and phase sonar calibration using 

LFM pulses for high-resolution study of hard and soft acoustic targets. Paper 

presented at the OCEANS 2011 IEEE-Spain. 

Islas-Cital, A., et al. (2010, 24-27 May 2010). Standard target calibration of broad-band 

active sonar systems in a laboratory tank. Paper presented at the OCEANS 2010 

IEEE - Sydney. 

Islas-Cital, A., et al. (2011b). Phase calibration of sonar systems using standard targets 

and dual-frequency transmission pulses. The Journal of the Acoustical Society of 

America, 130(4), 1880-1887. doi: 10.1121/1.3628325 

Jaffe, J., et al. (1998). OASIS in the sea: measurement of the acoustic reflectivity of 

zooplankton with concurrent optical imaging. Deep Sea Research Part II: Topical 

https://doi.org/10.1016/0011-7471(63)90077-9


   150 

 
 

Studies in Oceanography, 45(7), 1239-1253. doi:  

Jason Phillips, A., et al. (2009). Micronekton community structure in the epipelagic zone 

of the northern California Current upwelling system. Progress in Oceanography, 

80(1–2), 74-92. doi:  

Jech, J. M., et al. (2003). Calibrating two scientific echo sounders. Paper presented at 

the OCEANS 2003. Proceedings. 

Jech, J. M., et al. (2003, 22-26 Sept. 2003). Comparing two scientific echo sounders. 

Paper presented at the OCEANS 2003. Proceedings. 

Jech, J. M., et al. (2015). Comparisons among ten models of acoustic backscattering 

used in aquatic ecosystem research. The Journal of the Acoustical Society of 

America, 138(6), 3742-3764. doi:  

Jech, J. M., et al. (2017). Wideband (15–260 kHz) acoustic volume backscattering 

spectra of Northern krill (Meganyctiphanes norvegica) and butterfish (Peprilus 

triacanthus). ICES Journal of Marine Science, 74(8), 2249-2261. doi: 

10.1093/icesjms/fsx050 

Johnson, H. R., et al. (1956). Suspended echo-sounder and camera studies of midwater 

sound scatterers. Deep Sea Research (1953), 3(4), 266-272. doi:  

Jones, B. A., et al. (2009). Use of the distorted wave Born approximation to predict 

scattering by inhomogeneous objects: Application to squid. The Journal of the 

Acoustical Society of America, 125(1), 73-88. doi:  

Kang, D., et al. (2005). The influence of tilt angle on the acoustic target strength of the 

Japanese common squid ( Todarodes pacificus ). ICES Journal of Marine 

Science, 62(4), 779-789. doi: 10.1016/j.icesjms.2005.02.002 

Kieser, R., & Ona, E. (1988). Comparative analysis of split beam data. 

Kinsler, L. E., et al. (1999). Fundamentals of acoustics. Fundamentals of Acoustics, 4th 

Edition, by Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. 

Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December 1999., 560. doi: 

https://doi.org/10.1063/1.3051072 

https://doi.org/10.1063/1.3051072


   151 

 
 

Kloser, R., et al. (1997). Problems with acoustic target strength measurements of a 

deepwater fish, orange roughy (Hoplostethus atlanticus, Collett). ICES Journal of 

Marine Science, 54(1), 60-71. doi:  

Kloser, R. J. (1996). Improved precision of acoustic surveys of benthopelagic fish by 

means of a deep-towed transducer. ICES Journal of Marine Science:, 53(2), 407-

413. doi: https://doi.org/10.1006/jmsc.1996.0057 

Kloser, R. J., et al. (2002). Species identification in deep water using multiple acoustic 

frequencies. Canadian Journal of Fisheries and Aquatic Sciences, 59(6), 1065-

1077. doi:  

Kloser, R. J., et al. (2016). Deep-scattering layer, gas-bladder density, and size 

estimates using a two-frequency acoustic and optical probe. ICES Journal of 

Marine Science, fsv257. doi:  

Kloser, R. J., et al. (2011). In situ measurements of target strength with optical and model 

verification: a case study for blue grenadier, Macruronus novaezelandiae. ICES 

Journal of Marine Science:, 68(9), 1986-1995. doi: 

https://doi.org/10.1093/icesjms/fsr127 

Kloser, R. J., et al. (2009). Acoustic observations of micronekton fish on the scale of an 

ocean basin: potential and challenges. ICES Journal of Marine Science:, 66(6), 

998-1006. doi:  

Knudsen, H. P. (2009). Long-term evaluation of scientific-echosounder performance. 

ICES Journal of Marine Science, 66(6), 1335-1340. doi: 

https://doi.org/10.1093/icesjms/fsp025 

Koch, C. (2003). Amplitude and phase calibration of hydrophones by heterodyne and 

time-gated time-delay spectrometry. IEEE transactions on ultrasonics, 

ferroelectrics, and frequency control, 50(3), 344-348. doi: 

https://doi.org/10.1109/tuffc.2003.1193629 

Koslow, J. A. (2009). The role of acoustics in ecosystem-based fishery management. 

ICES Journal of Marine Science. doi: 10.1093/icesjms/fsp082 

Koslow, J. A., et al. (1995). Avoidance of a camera system by a deepwater fish, the 

orange roughy (Hoplostethus atlanticus). Deep Sea Research Part I: 

https://doi.org/10.1006/jmsc.1996.0057
https://doi.org/10.1093/icesjms/fsr127
https://doi.org/10.1093/icesjms/fsp025
https://doi.org/10.1109/tuffc.2003.1193629


   152 

 
 

Oceanographic Research Papers, 42(2), 233-244. doi:  

Koslow, J. A., et al. (1997). Pelagic biomass and community structure over the mid-

continental slope off southeastern Australia based upon acoustic and midwater 

trawl sampling. Marine Ecology Progress Series, 146, 21-35. doi: 

https://doi.org/10.3354/meps146021 

Lavery, A. C., et al. (2017). Exploiting signal processing approaches for broadband 

echosounders. ICES Journal of Marine Science, 74(8), 2262-2275. doi: 

https://doi.org/10.1093/icesjms/fsx155 

Lavery, A. C., et al. (2010). Measurements of acoustic scattering from zooplankton and 

oceanic microstructure using a broadband echosounder. ICES Journal of Marine 

Science:, 67(2), 379-394. doi: https://doi.org/10.1093/icesjms/fsp242 

Lavery, A. C., et al. (2007). Determining dominant scatterers of sound in mixed 

zooplankton populations. The Journal of the Acoustical Society of America, 

122(6), 3304-3326. doi: https://doi.org/10.1121/1.2793613 

Lee, W.-J., et al. (2012). Orientation dependence of broadband acoustic backscattering 

from live squid. The Journal of the Acoustical Society of America, 131(6), 4461-

4475. doi: https://doi.org/10.1121/1.3701876 

Lee, W. J., & Stanton, T. K. (2015). Statistics of Broadband Echoes: Application to 

Acoustic Estimates of Numerical Density of Fish. IEEE Journal of Oceanic 

Engineering(99), 1-15. doi: https://doi.org/10.1109/joe.2015.2476619 

Lehodey, P., et al. (2015). Optimization of a micronekton model with acoustic data. ICES 

Journal of Marine Science, 72(5), 1399-1412. doi: 10.1093/icesjms/fsu233 

Lehodey, P., et al. (2010). Bridging the gap from ocean models to population dynamics 

of large marine predators: A model of mid-trophic functional groups. Progress in 

Oceanography, 84(1–2), 69-84. doi: 

https://doi.org/10.1016/j.pocean.2009.09.008 

Lerch, T., et al. (1996). Characterization of spherically focused transducers using an 

ultrasonic measurement model approach. Research in Nondestructive 

Evaluation, 8(1), 1-21. doi: https://doi.org/10.1007/bf02434041 

https://doi.org/10.3354/meps146021
https://doi.org/10.1093/icesjms/fsx155
https://doi.org/10.1093/icesjms/fsp242
https://doi.org/10.1121/1.2793613
https://doi.org/10.1121/1.3701876
https://doi.org/10.1109/joe.2015.2476619
https://doi.org/10.1016/j.pocean.2009.09.008
https://doi.org/10.1007/bf02434041


   153 

 
 

Love, R. H. (1978a). RESONANT ACOUSTIC SCATTERING BY SWIMBLADDER-

BEARING FISH. Journal of the Acoustical Society of America, 64(2), 571-580. 

doi:  

Love, R. H. (1978b). Resonant acoustic scattering by swimbladder‐bearing fish. The 

Journal of the Acoustical Society of America, 64(2), 571-580. doi:  

Luker, L., & Van Buren, A. (1981). Phase calibration of hydrophones. The Journal of the 

Acoustical Society of America, 70(2), 516-519. doi: 

https://doi.org/10.1121/1.2004688 

Lundgren, B., & Nielsen, J. R. (2008). A method for the possible species discrimination 

of juvenile gadoids by broad-bandwidth backscattering spectra vs. angle of 

incidence. ICES Journal of Marine Science, 65(4), 581-593. doi: 

https://doi.org/10.1093/icesjms/fsn031 

Lyon, R. H. (1983). Progressive phase trends in multi‐degree‐of‐freedom systems. The 

Journal of the Acoustical Society of America, 73(4), 1223-1228. doi: 

https://doi.org/10.1121/1.389269 

Lyon, R. H. (1984). Range and frequency dependence of transfer function phase. The 

Journal of the Acoustical Society of America, 76(5), 1433-1437. doi: 

https://doi.org/10.1121/1.391426 

Macaulay, G. J., et al. (2012). In situ target strength estimates of visually verified orange 

roughy. ICES Journal of Marine Science:. doi: 

https://doi.org/10.1093/icesjms/fss154 

Mackenzie, K. V. (1981). Nine‐term equation for sound speed in the oceans. The Journal 

of the Acoustical Society of America, 70(3), 807-812. doi: 

https://doi.org/10.1121/1.386920 

MacLennan, D. (1981). The theory of solid spheres as sonar calibration targets: Scottish 

Fisheries Research Report. 

MacLennan, D., & Dunn, J. (1984). Estimation of sound velocities from resonance 

measurements on tungsten carbide calibration spheres. Journal of Sound and 

Vibration, 97(2), 321-331. doi: https://doi.org/10.1016/0022-460x(84)90325-0 

https://doi.org/10.1121/1.2004688
https://doi.org/10.1093/icesjms/fsn031
https://doi.org/10.1121/1.389269
https://doi.org/10.1121/1.391426
https://doi.org/10.1093/icesjms/fss154
https://doi.org/10.1121/1.386920
https://doi.org/10.1016/0022-460x(84)90325-0


   154 

 
 

MacLennan, D., & Svellingen, I. (1986). Simple calibration of a split-beam echo-sounder. 

Paper presented at the International Council for the Exploration of the Sea. 

MacLennan, D. N. (1982). Target strength measurements on metal spheres: Librarian 

Department of Agriculture and Fisheries for Scotland, Marine …. 

MacLennan, D. N. (1990). Acoustical measurement of fish abundance. The Journal of 

the Acoustical Society of America, 87(1), 1-15. doi: 

https://doi.org/10.1121/1.399285 

Maclennan, D. N., et al. (2002). A consistent approach to definitions and symbols in 

fisheries acoustics. ICES Journal of Marine Science:, 59(2), 365-369. doi: 

https://doi.org/10.1006/jmsc.2001.1158 

MacLennan, D. N., & Holliday, D. V. (1996). Fisheries and plankton acoustics: past, 

present, and future. ICES Journal of Marine Science, 53(2), 513-516. doi: 

https://doi.org/10.1006/jmsc.1996.0074 

Marouchos, A., et al. (2016). A profiling acoustic and optical system (pAOS) for pelagic 

studies; Prototype development and testing. Paper presented at the OCEANS 

2016-Shanghai. 

Marston, P. L., et al. (1990). Rayleigh, Lamb, and whispering gallery wave contributions 

to backscattering from smooth elastic objects in water described by a 

generalization of GTD. Elastic Wave Propagation and Ultrasonic Nondestructive 

Evaluation, 211-216. doi:  

Martin, L. V., et al. (1996). Acoustic classification of zooplankton. ICES Journal of Marine 

Science, 53(2), 217-224. doi: https://doi.org/10.1575/1912/5351 

Martin Traykovski, L. V., et al. (1998). Effect of orientation on broadband acoustic 

scattering of Antarctic krill Euphausia superba: Implications for inverting 

zooplankton spectral acoustic signatures for angle of orientation. The Journal of 

the Acoustical Society of America, 104(4), 2121-2135. doi: 

https://doi.org/10.1121/1.423726 

Matsumoto, H. (1990). Characteristics of SeaMARC II phase data. IEEE Journal of 

Oceanic Engineering, 15(4), 350-360. doi: https://doi.org/10.1109/48.103531 

https://doi.org/10.1121/1.399285
https://doi.org/10.1006/jmsc.2001.1158
https://doi.org/10.1006/jmsc.1996.0074
https://doi.org/10.1575/1912/5351
https://doi.org/10.1121/1.423726
https://doi.org/10.1109/48.103531


   155 

 
 

McCartney, B. S., & Stubbs, A. R. (1971). Measurements of the acoustic target strengths 

of fish in dorsal aspect, including swimbladder resonance. Journal of Sound and 

Vibration, 15(3), 397-420. doi: https://doi.org/10.1016/0022-460x(71)90433-0 

McClatchie, S., et al. (1996). A re-evaluation of relationships between fish size, acoustic 

frequency, and target strength. ICES Journal of Marine Science, 53(5), 780-791. 

doi: https://doi.org/10.1006/jmsc.1996.0099 

McClatchie, S., et al. (1996). Consequence of swimbladder model choice and fish 

orientation to target strength of three New Zealand fish species. ICES Journal of 

Marine Science, 53(5), 847-862. doi: https://doi.org/10.1006/jmsc.1996.0106 

McClatchie, S., & Dunford, A. (2003). Estimated biomass of vertically migrating 

mesopelagic fish off New Zealand. Deep Sea Research Part I: Oceanographic 

Research Papers, 50(10–11), 1263-1281. doi: https://doi.org/10.1016/s0967-

0637(03)00128-6 

McClatchie, S., et al. (2000). Ground truth and target identification for fisheries acoustics. 

Fisheries Research, 47(2), 173-191. doi: https://doi.org/10.1016/s0165-

7836(00)00168-5 

McGehee, D. E., et al. (1998). Effects of orientation on acoustic scattering from Antarctic 

krill at 120 kHz. Deep Sea Research Part II: Topical Studies in Oceanography, 

45(7), 1273-1294. doi: https://doi.org/10.1016/s0967-0645(98)00036-8 

Medwin, H., & Clay, C. (1998). Fundamentals of Acoustical Oceanography Academic. 

New York, 11-12. doi:  

Midttun, L. (1984). Fish and other organisms as acoustic targets. Rapports et Procès-

Verbaux des Réunions du Conseil International pour l’Exploration de la Mer, 184, 

25-33. doi:  

Misund, O. A. (1997). Underwater acoustics in marine fisheries and fisheries research. 

Reviews in Fish Biology and Fisheries, 7(1), 1-34. doi:  

Mitri, F., et al. (2008). Investigating the absolute phase information in acoustic wave 

resonance scattering. Ultrasonics, 48(3), 209-219. doi:  

Morse, P. M., et al. (1969). Theoretical acoustics: American Society of Mechanical 

https://doi.org/10.1016/0022-460x(71)90433-0
https://doi.org/10.1006/jmsc.1996.0099
https://doi.org/10.1006/jmsc.1996.0106
https://doi.org/10.1016/s0967-0637(03)00128-6
https://doi.org/10.1016/s0967-0637(03)00128-6
https://doi.org/10.1016/s0165-7836(00)00168-5
https://doi.org/10.1016/s0165-7836(00)00168-5
https://doi.org/10.1016/s0967-0645(98)00036-8


   156 

 
 

Engineers Digital Collection. 

Murty, K. S. R., & Yegnanarayana, B. (2006). Combining evidence from residual phase 

and MFCC features for speaker recognition. IEEE signal processing letters, 

13(1), 52-55. doi: https://doi.org/10.1109/lsp.2005.860538 

Nadeborn, W., et al. (1996). A robust procedure for absolute phase measurement. Optics 

and Lasers in Engineering, 24(2-3), 245-260. doi: https://doi.org/10.1016/0143-

8166(95)00017-8 

Nakken, O., & Olsen, K. (1977). Target strength measurements of fish. 

Ona, E. (1990a). Optimal acoustic beam pattern corrections for split beam transducers. 

Ona, E. (1990b). Physiological factors causing natural variations in acoustic target 

strength of fish. Journal of the Marine Biological Association of the United 

Kingdom, 70(1), 107-127. doi: https://doi.org/10.1017/s002531540003424x 

Ona, E. (1999). Methodology for target strength measurements. ICES Cooperative 

research report, 235, 59. doi:  

Ona, E., & Vestnes, G. (1985). Direct measurements of equivalent beam angle on hull-

mounted transducers. 

Oppenheim, A. V. (1999). Discrete-time signal processing: Pearson Education India. 

Oppenheim, A. V., & Lim, J. S. (1981). The importance of phase in signals. Proceedings 

of the IEEE, 69(5), 529-541. doi: https://doi.org/10.1109/proc.1981.12022 

Oppenheim, A. V., & Schafer, R. W. (2014). Discrete-time signal processing: Pearson 

Education. 

Peña, H., & Foote, K. G. (2008). Modelling the target strength of Trachurus symmetricus 

murphyi based on high-resolution swimbladder morphometry using an MRI 

scanner. ICES Journal of Marine Science, 65(9), 1751-1761. doi: 

https://doi.org/10.1093/icesjms/fsn190 

Pieper, R. E., et al. (1990). Quantitative zooplankton distributions from multifrequency 

acoustics. Journal of Plankton Research, 12(2), 433-441. doi: 

https://doi.org/10.1093/plankt/12.2.433 

https://doi.org/10.1109/lsp.2005.860538
https://doi.org/10.1016/0143-8166(95)00017-8
https://doi.org/10.1016/0143-8166(95)00017-8
https://doi.org/10.1017/s002531540003424x
https://doi.org/10.1109/proc.1981.12022
https://doi.org/10.1093/icesjms/fsn190
https://doi.org/10.1093/plankt/12.2.433


   157 

 
 

Pikitch, E. K., et al. (2004). Ecosystem-Based Fishery Management. Science, 

305(5682), 346-347. doi: Ecosystem-Based Fishery Management 

Press, W. H., et al. (1988). Numerical recipes in C. Cambridge University Press, 1, 3. 

doi:  

Quatieri, T., & Oppenheim, A. (1981). Iterative techniques for minimum phase signal 

reconstruction from phase or magnitude. IEEE Transactions on Acoustics, 

Speech, and Signal Processing, 29(6), 1187-1193. doi: 

https://doi.org/10.1109/tassp.1981.1163714 

Ramp, H. O., & Wingrove, E. R. (1961). Principles of Pulse Compression. IRE 

Transactions on Military Electronics, MIL-5(2), 109-116. doi: 

https://doi.org/10.1109/iret-mil.1961.5008328 

Raymond Brede, F. H. K., Haakon Solli, and Egil Ona (1990). Target  tracking with a 

split-beam echo sounder International Symposium on Fisheries Acoustics. doi: 

https://doi.org/10.23919/oceans.2011.6107261 

Reeder, D. B., et al. (2004). Broadband acoustic backscatter and high-resolution 

morphology of fish: Measurement and modeling. The Journal of the Acoustical 

Society of America, 116(2), 747-761. doi: https://doi.org/10.1121/1.4784938 

Reynisson, P. (1998). Monitoring of equivalent beam angles of hull-mounted acoustic 

survey transducers in the period 1983–1995. ICES Journal of Marine Science, 

55(6), 1125-1132. doi: https://doi.org/10.1006/jmsc.1998.0369 

Robison, B. H., et al. (1998). Seasonal abundance of the siphonophore, Nanomia bijuga, 

in Monterey Bay. Deep Sea Research Part II: Topical Studies in Oceanography, 

45(8), 1741-1751. doi: https://doi.org/10.1016/s0967-0645(98)80015-5 

Rogers, P. J., et al. (2013). Physical processes, biodiversity and ecology of the Great 

Australian Bight region: a literature review: CSIRO (Australia). 

Ryan, T. E., et al. (2009). Measurement and visual verification of fish target strength 

using an acoustic-optical system attached to a trawlnet. ICES Journal of Marine 

Science:, 66(6), 1238-1244. doi: https://doi.org/10.1093/icesjms/fsp122 

Sawada, K., et al. (2009). Target-strength, length, and tilt-angle measurements of Pacific 

https://doi.org/10.1109/tassp.1981.1163714
https://doi.org/10.1109/iret-mil.1961.5008328
https://doi.org/10.23919/oceans.2011.6107261
https://doi.org/10.1121/1.4784938
https://doi.org/10.1006/jmsc.1998.0369
https://doi.org/10.1016/s0967-0645(98)80015-5
https://doi.org/10.1093/icesjms/fsp122


   158 

 
 

saury (Cololabis saira) and Japanese anchovy (Engraulis japonicus) using an 

acoustic-optical system. ICES Journal of Marine Science, 66(6), 1212-1218. doi: 

https://doi.org/10.1093/icesjms/fsp079 

Sawada, K., et al. (2004). Development of an acoustic-optical system (J-QUEST) for 

fisheries surveys, 1: Acoustic system. Technical Report of National Research 

Institute of Fisheries Engineering (Japan). doi:  

Sawada, K., et al. (1999). Target strength measurements and modeling of walleye 

pollock and Pacific hake. Fisheries science, 65(2), 193-205. doi: 

https://doi.org/10.2331/fishsci.65.193 

Scoulding, B., et al. (2015). Target strengths of two abundant mesopelagic fish species. 

The Journal of the Acoustical Society of America, 137(2), 989-1000. doi: 

https://doi.org/10.1121/1.4906177 

Sherlock, M., et al. (2014). An instrumented corer platform for seabed sampling and 

water column characterisation. Paper presented at the OCEANS 2014-TAIPEI. 

Shi, G., et al. (2006). On the importance of phase in human speech recognition. IEEE 

transactions on audio, speech, and language processing, 14(5), 1867-1874. doi: 

https://doi.org/10.1109/tsa.2005.858512 

Simmonds, E. J. (1984). A comparison between measured and theoretical equivalent 

beam angles for seven similar transducers. Journal of Sound and Vibration, 

97(1), 117-128. doi: https://doi.org/10.1016/0022-460x(84)90472-3 

Simmonds, J., & MacLennan, D. N. (2005). Fisheries acoustics: theory and practice: 

John Wiley & Sons. 

Simrad. (2001). EK60 Scientific echo sounder instruction manual (pp. 246). Simrad 

Subsea A/S, Horten, Norway. 

Simrad. (2016). Simrad EK80 Scientific wide band echo sounder.    

Sinclair, E., et al. (1999). Distribution and ecology of mesopelagic fishes and 

cephalopods. Dynamics of the Bering Sea (TR Loughlin and K Ohtani, eds.), 

Alaska Sea Grant College Program AK-SG-99-03, University of Alaska 

Fairbanks, 485-508. doi:  

https://doi.org/10.1093/icesjms/fsp079
https://doi.org/10.2331/fishsci.65.193
https://doi.org/10.1121/1.4906177
https://doi.org/10.1109/tsa.2005.858512
https://doi.org/10.1016/0022-460x(84)90472-3


   159 

 
 

Sinclair, E., & Stabeno, P. (2002). Mesopelagic nekton and associated physics of the 

southeastern Bering Sea. Deep Sea Research Part II: Topical Studies in 

Oceanography, 49(26), 6127-6145. doi: https://doi.org/10.1016/s0967-

0645(02)00337-5 

Skarbnik, N., et al. (2010). The importance of phase in image processing. CCIT Report# 

773. doi:  

Smith, J. N., et al. (2013). A distorted wave Born approximation target strength model for 

Bering Sea euphausiids. ICES Journal of Marine Science:, 70(1), 204-214. doi: 

https://doi.org/10.1093/icesjms/fss140 

Soule, M., et al. (1995). Evidence of bias in estimates of target strength obtained with a 

split-beam echo-sounder. ICES Journal of Marine Science:, 52(1), 139-144. doi: 

https://doi.org/10.1016/1054-3139(95)80022-0 

Spagnolini, U. (1995). 2-D phase unwrapping and instantaneous frequency estimation. 

IEEE Transactions on Geoscience and Remote Sensing, 33(3), 579-589. doi: 

https://doi.org/10.1190/geo2016-0185.1 

Stansfield, D., & Elliott, A. (2017). Underwater electroacoustic transducers: Peninsula 

Publishing. 

Stanton, T. K. (1989). Sound scattering by cylinders of finite length. III. Deformed 

cylinders. The Journal of the Acoustical Society of America, 86(2), 691-705. doi: 

https://doi.org/10.1121/1.398193 

Stanton, T. K. (1990). Sound scattering by spherical and elongated shelled bodies. The 

Journal of the Acoustical Society of America, 88(3), 1619-1633. doi: 

https://doi.org/10.1121/1.400321 

Stanton, T. K. (2012). 30 years of advances in active bioacoustics: A personal 

perspective. Methods in Oceanography, 1–2(0), 49-77. doi: 

https://doi.org/10.1016/j.mio.2012.07.002 

Stanton, T. K., & Chu, D. (2000). Review and recommendations for the modelling of 

acoustic scattering by fluid-like elongated zooplankton: euphausiids and 

copepods. ICES Journal of Marine Science:, 57(4), 793-807. doi: 

https://doi.org/10.1006/jmsc.1999.0517 

https://doi.org/10.1016/s0967-0645(02)00337-5
https://doi.org/10.1016/s0967-0645(02)00337-5
https://doi.org/10.1093/icesjms/fss140
https://doi.org/10.1016/1054-3139(95)80022-0
https://doi.org/10.1190/geo2016-0185.1
https://doi.org/10.1121/1.398193
https://doi.org/10.1121/1.400321
https://doi.org/10.1016/j.mio.2012.07.002
https://doi.org/10.1006/jmsc.1999.0517


   160 

 
 

Stanton, T. K., & Chu, D. (2008). Calibration of broadband active acoustic systems using 

a single standard spherical target. The Journal of the Acoustical Society of 

America, 124(1), 128-136. doi: 

https://doi.org/10.1109/oceanskobe.2008.4530923 

Stanton, T. K., & Chu, D. (2010). Non-Rayleigh echoes from resolved individuals and 

patches of resonant fish at 2–4 kHz. IEEE Journal of Oceanic Engineering, 35(2), 

152-163. doi: https://doi.org/10.1109/joe.2009.2035240 

Stanton, T. K., et al. (1996). Acoustic scattering characteristics of several zooplankton 

groups. ICES Journal of Marine Science:, 53(2), 289-295. doi: 

https://doi.org/10.1006/jmsc.1996.0037 

Stanton, T. K., et al. (1998). Sound scattering by several zooplankton groups. II. 

Scattering models. The Journal of the Acoustical Society of America, 103(1), 236-

253. doi: https://doi.org/10.1121/1.421110 

Stanton, T. K., et al. (1993). Average echoes from randomly oriented random‐length finite 

cylinders: Zooplankton models. The Journal of the Acoustical Society of America, 

94(6), 3463-3472. doi: https://doi.org/10.1121/1.407200 

Stanton, T. K., et al. (2000). Acoustic scattering by benthic and planktonic shelled 

animals. The Journal of the Acoustical Society of America, 108(2), 535-550. doi: 

https://doi.org/10.1121/1.429584 

Stanton, T. K., et al. (2012). Resonance classification of mixed assemblages of fish with 

swimbladders using a modified commercial broadband acoustic echosounder at 

1–6 kHz. Canadian Journal of Fisheries and Aquatic Sciences, 69(5), 854-868. 

doi: https://doi.org/10.1139/f2012-013 

Stanton, T. K., et al. (1998). Differences between sound scattering by weakly scattering 

spheres and finite-length cylinders with applications to sound scattering by 

zooplankton. The Journal of the Acoustical Society of America, 103(1), 254-264. 

doi: https://doi.org/10.1121/1.421135 

Takahashi, H., et al. (2004). Development of a stereo TV camera system to complement 

fish school measurements by a quantitative echo sounder. Paper presented at 

the Oceans' 04 MTS/IEEE Techno-Ocean'04 (IEEE Cat. No. 04CH37600). 

https://doi.org/10.1109/oceanskobe.2008.4530923
https://doi.org/10.1109/joe.2009.2035240
https://doi.org/10.1006/jmsc.1996.0037
https://doi.org/10.1121/1.421110
https://doi.org/10.1121/1.407200
https://doi.org/10.1121/1.429584
https://doi.org/10.1139/f2012-013
https://doi.org/10.1121/1.421135


   161 

 
 

Tichy, F., et al. (2003). Non-linear effects in a 200-kHz sound beam and the 

consequences for target-strength measurement. ICES Journal of Marine 

Science, 60(3), 571-574. doi: https://doi.org/10.1016/s1054-3139(03)00033-x 

Toolbox, M. a. S. (2016). Release 2016a The MathWorks, Inc., Natick, Massachusetts, 

United States.  

Tribolet, J. (1977). A new phase unwrapping algorithm. IEEE Transactions on Acoustics, 

Speech, and Signal Processing, 25(2), 170-177. doi:  

Tucker, D., & Barnickle, N. (1969). Distinguishing automatically the echoes from 

acoustically “hard” and “soft” objects with particular reference to the detection of 

fish. Journal of Sound and Vibration, 9(3), 393-397. doi: 

https://doi.org/10.1016/0022-460x(69)90179-5 

Turin, G. (1960). An introduction to matched filters. IRE transactions on Information 

theory, 3(6), 311-329. doi: https://doi.org/10.1109/proc.1976.10274 

Überall, H. (1973). Surface waves in acoustics Physical acoustics (Vol. 10, pp. 1-60): 

Academic Press. 

Urick, R. J. (1983). Principles of underwater sound. 

Vagle, S., et al. (1996). A technique for calibration of monostatic echosounder systems. 

IEEE Journal of Oceanic Engineering, 21(3), 298-305. doi: 

https://doi.org/10.1109/48.508160 

Verma, A., et al. (2016). Developing active broadband acoustic methods to investigate 

the pelagic zone of the Great Australian Bight. Paper presented at the 2nd 

Australasian Acoustical Societies Conference, ACOUSTICS 2016. 

Verma, A., et al. (2017). Potential use of broadband acoustic methods for micronekton 

classification. Acoustics Australia, 45(2), 353-361. doi: 

https://doi.org/10.1007/s40857-017-0105-8 

Ward, T. M., et al. (2008). Ecological importance of small pelagic fishes in the Flinders 

Current System (D. o. t. E. a. W. Resources, Trans.): SARDI Aquatic Sciences. 

Warren, J. D., et al. (2002). Effect of animal orientation on acoustic estimates of 

https://doi.org/10.1016/s1054-3139(03)00033-x
https://doi.org/10.1016/0022-460x(69)90179-5
https://doi.org/10.1109/proc.1976.10274
https://doi.org/10.1109/48.508160
https://doi.org/10.1007/s40857-017-0105-8


   162 

 
 

zooplankton properties. Oceanic Engineering, IEEE Journal of, 27(1), 130-138. 

doi: https://doi.org/10.1109/48.989899 

Warren, J. D., & Wiebe, P. H. (2008). Accounting for biological and physical sources of 

acoustic backscatter improves estimates of zooplankton biomass. Canadian 

Journal of Fisheries and Aquatic Sciences, 65(7), 1321-1333. doi: 

https://doi.org/10.1139/f08-047 

Weston, D. E. (1967). Sound propagation in the presence of bladder fish. Underwater 

acoustics, 2, 55-88. doi: https://doi.org/10.1016/0022-460x(82)90394-7 

Williams, A., et al. (2001). Feeding ecology of five fishes from the mid-slope micronekton 

community off southern Tasmania, Australia. Marine Biology, 139(6), 1177-1192. 

doi: https://doi.org/10.1007/s002270100671 

Williams, A., & Koslow, J. A. (1997). Species composition, biomass and vertical 

distribution of micronekton over the mid-slope region off southern Tasmania, 

Australia. Marine Biology, 130(2), 259-276. doi: 

https://doi.org/10.1007/s002270050246 

Williams, K. L., & Marston, P. L. (1986). Synthesis of backscattering from an elastic 

sphere using the Sommerfeld–Watson transformation and giving a Fabry–Perot 

analysis of resonances. The Journal of the Acoustical Society of America, 79(6), 

1702-1708. doi: https://doi.org/10.1121/1.393231 

Wilson, O. B. (1988). Introduction to theory and design of sonar transducers (Vol. 3): 

Peninsula Publishing Los Altos, CA. 

Ye, Z. (1997a). Acoustic resonant scattering by an ellipsoid air bubble in a liquid. Physical 

Review E, 56(2), 2318-2320. doi: https://doi.org/10.1103/physreve.56.2318 

Ye, Z. (1997b). Low-frequency acoustic scattering by gas-filled prolate spheroids in 

liquids. The Journal of the Acoustical Society of America, 101(4), 1945-1952. doi:  

Ye, Z., & Hoskinson, E. (1998). Low-frequency acoustic scattering by gas-filled prolate 

spheroids in liquids. II. Comparison with the exact solution. The Journal of the 

Acoustical Society of America, 103(2), 822-826. doi: 

https://doi.org/10.1121/1.421470 

https://doi.org/10.1109/48.989899
https://doi.org/10.1139/f08-047
https://doi.org/10.1016/0022-460x(82)90394-7
https://doi.org/10.1007/s002270100671
https://doi.org/10.1007/s002270050246
https://doi.org/10.1121/1.393231
https://doi.org/10.1103/physreve.56.2318
https://doi.org/10.1121/1.421470


   163 

 
 

Yen, N. c., et al. (1990). Time–frequency analysis of acoustic scattering from elastic 

objects. The Journal of the Acoustical Society of America, 87(6), 2359-2370. doi: 

https://doi.org/10.1121/1.399082 

Young, J., et al. (1996). Biomass of zooplankton and micronekton in the southern bluefin 

tuna fishing grounds off eastern Tasmania, Australia. Marine Ecology Progress 

Series, 138, 1-14. doi: https://doi.org/10.3354/meps138001 

Zakharia, M. E., et al. (1996). Wideband sounder for fish species identification at sea. 

ICES Journal of Marine Science, 53(2), 203-208. doi: 

https://doi.org/10.1006/jmsc.1996.0023 

 
 "Every reasonable effort has been made to acknowledge the owners of copyright material. I 

would be pleased to hear from any copyright owner who has been omitted or incorrectly 

acknowledged." 

https://doi.org/10.1121/1.399082
https://doi.org/10.3354/meps138001
https://doi.org/10.1006/jmsc.1996.0023

