59 research outputs found

    The COST IRACON Geometry-based Stochastic Channel Model for Vehicle-to-Vehicle Communication in Intersections

    Full text link
    Vehicle-to-vehicle (V2V) wireless communications can improve traffic safety at road intersections and enable congestion avoidance. However, detailed knowledge about the wireless propagation channel is needed for the development and realistic assessment of V2V communication systems. We present a novel geometry-based stochastic MIMO channel model with support for frequencies in the band of 5.2-6.2 GHz. The model is based on extensive high-resolution measurements at different road intersections in the city of Berlin, Germany. We extend existing models, by including the effects of various obstructions, higher order interactions, and by introducing an angular gain function for the scatterers. Scatterer locations have been identified and mapped to measured multi-path trajectories using a measurement-based ray tracing method and a subsequent RANSAC algorithm. The developed model is parameterized, and using the measured propagation paths that have been mapped to scatterer locations, model parameters are estimated. The time variant power fading of individual multi-path components is found to be best modeled by a Gamma process with an exponential autocorrelation. The path coherence distance is estimated to be in the range of 0-2 m. The model is also validated against measurement data, showing that the developed model accurately captures the behavior of the measured channel gain, Doppler spread, and delay spread. This is also the case for intersections that have not been used when estimating model parameters.Comment: Submitted to IEEE Transactions on Vehicular Technolog

    Measurement Based Channel Characterization and Modeling for Vehicle-to-Vehicle Communications

    Get PDF
    Vehicle-to-Vehicle (V2V) communication is a challenging but fast growing technology that has potential to enhance traffic safety and efficiency. It can also provide environmental benefits in terms of reduced fuel consumption. The effectiveness and reliability of these applications highly depends on the quality of the V2V communication link, which rely upon the properties of the propagation channel. Therefore, understanding the properties of the propagation channel becomes extremely important. This thesis aims to fill some gaps of knowledge in V2V channel research by addressing four different topics. The first topic is channel characterization of some important safety critical scenarios (papers I and II). Second, is the accuracy or validation study of existing channel models for these safety critical scenarios (papers III and IV). Third, is about channel modeling (paper V) and, the fourth topic is the impact of antenna placement on vehicles and the possible diversity gains. This thesis consists of an introduction and six papers: Paper I presents a double directional analysis of vehicular channels based on channel measurement data. Using SAGE, a high-resolution algorithm for parameter estimation, we estimate channel parameters to identify underlying propagation mechanisms. It is found that, single-bounce reflections from static objects are dominating propagation mechanisms in the absence of line-of-sight (LOS). Directional spread is observed to be high, which encourages the use of diversity-based methods. Paper II presents results for V2V channel characterization based on channel measurements conducted for merging lanes on highway, and four-way street intersection scenarios. It is found that the merging lane scenario has the worst propagation condition due to lack of scatterers. Signal reception is possible only with the present LOS component given that the antenna has a good gain in the direction of LOS. Thus designing an antenna that has an omni-directional gain, or using multiple antennas that radiate towards different directions become more important for such safety critical scenarios. Paper III presents the results of an accuracy study of a deterministic ray tracing channel model for vehicle-to-vehicle (V2V) communication, that is compared against channel measurement data. It is found that the results from measurement and simulation show a good agreement especially in LOS situations where as in NLOS situations the simulations are accurate as far as existing physical phenomena of wave propagation are captured by the implemented algorithm. Paper IV presents the results of a validation study of a stochastic NLOS pathloss and fading model named VirtualSource11p for V2V communication in urban street intersections. The reference model is validated with the help of independent channel measurement data. It is found that the model is flexible and fits well to most of the measurements with a few exceptions, and we propose minor modifications to the model for increased accuracy. Paper V presents a shadow fading model targeting system simulations based on channel measurements. The model parameters are extracted from measurement data, which is separated into three categories; line-of-sight (LOS), LOS obstructed by vehicles (OLOS), and LOS blocked by buildings (NLOS), with the help of video information recorded during the measurements. It is found that vehicles obstructing the LOS induce an additional attenuation in the received signal power. The results from system level vehicular ad hoc network (VANET) simulations are also presented, showing that the LOS obstruction affects the packet reception probability and this can not be ignored. Paper VI investigates the impact of antenna placement based on channel measurements performed with four omni-directional antennas mounted on the roof, bumper, windscreen and left-side mirror of the transmitter and receiver cars. We use diversity combining methods to evaluate the performance differences for all possible single-input single-output (SIMO), multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) link combinations. This investigation suggests that a pair of antennas with complementary properties, e.g., a roof mounted antenna together with a bumper antenna is a good solution for obtaining the best reception performance, in most of the propagation environments. In summary, this thesis describes the channel behavior for safety-critical scenarios by statistical means and models it so that the system performance can be assessed in a realistic manner. In addition to that the influence of different antenna arrangements has also been studied to exploit the spatial diversity and to mitigate the shadowing effects. The presented work can thus enable more efficient design of future V2V communication systems

    A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

    Full text link
    The vehicle-to-vehicle (V2V) propagation channel has significant implications on the design and performance of novel communication protocols for vehicular ad hoc networks (VANETs). Extensive research efforts have been made to develop V2V channel models to be implemented in advanced VANET system simulators for performance evaluation. The impact of shadowing caused by other vehicles has, however, largely been neglected in most of the models, as well as in the system simulations. In this paper we present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios. The measurement data is separated into three categories, line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non line-of-sight due to buildings, with the help of video information recorded during the measurements. It is observed that vehicles obstructing the LOS induce an additional average attenuation of about 10 dB in the received signal power. An approach to incorporate the LOS/OLOS model into existing VANET simulators is also provided. Finally, system level VANET simulation results are presented, showing the difference between the LOS/OLOS model and a channel model based on Nakagami-m fading.Comment: 10 pages, 12 figures, submitted to Hindawi International Journal of Antennas and Propagatio

    Intra- and Out-of-Vehicle Channel Measurements and Modeling

    Get PDF
    Disertační práce je zaměřena na měření a modelování kanálu uvnitř a vně vozidla pro komunikaci a lokalizaci. Pro účely vytvoření integrovaného inteligentního dopravního systému ITS (Intelligent transportation system) je důležitý odhad vlastnosti kanálů pro vnitřní a venkovní scénáře. Za tímto účelem je vhodné provést řadu činností, které jsou obsahem disertační práce: Simulace fyzické vrstvy 802.11p, její srovnávání s 802.11a, měření kanálu pro různé scénáře pro 802.11p a pro širokopásmový systém (UWB), vytvoření modelů kanálů pro 802.11p a UWB a výzkum vlastností lokalizace založené na měření v pásmu UWB. Výzkum komunikace vozidla s okolím založená na IEEE 802.11p standardu. Jedním z cílů disertační práce je ukázat rozdíly mezi standardy fyzické vrstvy IEEE 802.11a a IEEE 802.11p prostřednictvím simulace s použitím modelu kanálu HIPERPLAN/2. V práci je uvedena simulace přenosu signálu 802.11p kanálem ITU-R M.1225 s odlišným zpožděním a středním výkonem (pro chodce a vozidla). Vliv kanálu na signál je analyzován za použití simulace v prostředí MATLABu pomocí vyhodnocení chybovosti. Určení vlastností kanálů v kmitočtovém pásmu 5,8 GHz pro standard IEEE 802.11p a UWB. Experimenty byly prováděny pro vnitřní a vnější prostředí vozidla. Bylo zjištěno, že pro protokol 802.11p může být trend (dlouhodobý vývoj) profilu PDP (power delay profile) nejlépe aproximován pomocí modelu obsahujícího dvě klesající exponenciální funkce, na rozdíl od Saleh-Valenzuelova (S-V) modelu, který je více vhodný pro UWB systémy pracující v pásmu 3 až 11 GHz. Vytvoření odpovídající impulzní odezvy (CIR) s využitím trendu PDP. Informace o CIR byla použita pro simulaci 802.11p za účelem vyhodnocení chybovosti při použití Ricianova modelu. Výsledky odhadu BER ukazují vhodnost protokolu pro vnitřní a vnější prostředí bezdrátových aplikací. Výsledky simulací dále ukazují, že se chybovost zásadně nemění a proto je možné určit střední křivku BER pro celou sadu změřených dat. Určení vlivu malé změny polohy antény na vlastnosti kanálu. Práce ukazuje náhodnost parametrů UWB kanálu pro malé změny polohy antény okolo vozidla, zaparkovaného v podzemní garáži. Ztráty šířením jsou monotónně rostoucí se vzdáleností, avšak náhodně se mění v závislosti na úhlu a výšce antén, a proto je vyhodnocení vzdálenosti pomocí síly signálu pro tyto scénáře nevhodné. Na druhé straně může být pro spolehlivé určení vzdálenosti bez ohledu na úhel nebo výšku antény použita doba příchodu prvního svazku. Ověření vlivu změn konfigurace kanálu na parametry S-V modelu. Práce demonstruje závislost parametrů Saleh-Valenzuela modelu v na vzdálenosti a výšce antén, avšak ukazuje, že jejich průměrné hodnoty jsou blízké IEEE 802.15.3 standardu. Ověření možnosti lokalizace pomocí metody TOA (time of arrival). Vzdálenost mezi anténami byla určena z profilu PDP s využitím lineární závislosti vzdálenosti na zpoždění. Souřadnice vysílací antény byly nalezeny pomocí dvou přijímacích antén pomocí 2-D lokalizační techniky TOA. Porovnání vypočtených souřadnic s původními vykazuje chybu menší než 6%, což ukazuje vhodnost navrženého přístupu pro lokalizaci vozidel.The dissertation is focused on channel measurements and modeling for vehicle-to-X communication and on localization. In order to realize an integrated intelligent transportation system (ITS), it is important to estimate channel features for intra-vehicle and out-of-vehicle scenarios. For this propose the following activities are carried out: simulation of the 802.11p PHY; comparison with 802.11a; channel measurements for different scenarios based on the 802.11p and ultra-wideband (UWB); creating channel models for 802.11p and UWB; UWB measurements to assess performance of localization. The vehicle-to-X communication is supposed on the IEEE 802.11p standard. The dissertation presents the differences between IEEE 802.11a and IEEE 802.11p physical layer standards through the simulation results of the transmission over a HIPERPLAN/2 channel. Further, the simulation of the 802.11p signal transmission over ITU-R M.1225 channel, which includes pedestrian and vehicle models with different relative delays and average power, is presented. The influence of the channel on the signal is analyzed using MATLAB simulation in terms of bit error rate (BER). The dissertation reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard and for UWB (3-11 GHz). Experiments for both intra-vehicle and out-of-vehicle environments are carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best approximated through a two-term exponential decay model for the 802.11p protocol, in contrast to the Saleh-Valenzuela (S-V) model which is suitable for UWB systems. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR). Next, the CIR is used in 802.11p simulation to evaluate the BER performance, following a Rician model. The results of the BER simulation shows the suitability of the protocol for in-car as well as out-of-car wireless applications. The simulation for out-of-car parameters indicate that the error performances do not vary much and it is possible to determine an average BER curve for the whole set of data. The randomness in UWB channel for small positional variations around a car, parked in an underground garage, is reported. The path loss (PL) is found to be monotonically increasing with distance but varies randomly with angle and height and thereby renders signal strength based ranging inaccurate for such scenarios. On the other hand, arrival time of the first ray can be used for reliable estimation of distance, independent on transmitter angle or height. The number of clusters in the PDP is reduced with distance but the nature of the profile remains fairly consistent with angle. The S-V model parameters also vary with distance and height but their average values are close to the IEEE 802.15.3 recommended channel model. For localization applications the distance between the antennas is calculated exploiting the linear dependence of distance on delay from PDP. The coordinates of a transmitting antenna are found with the help of two receiving antennas following a two-dimensional (2-D) time-of-arrival (TOA) based localization technique. A comparison of the calculated coordinates with the original ones exhibits an error of less than 6% which supports the suitability of the proposed approach for localization of the cars.

    Extending TDL based non-WSSUS vehicle-to-everything channel model

    Get PDF
    In den vergangenen Jahrzehnten haben drahtlose Kommunikationssysteme eine rasante Entwicklung durchgemacht und es wurden viele Untersuchungen durchgeführt, seit Maxwell die Existenz von elektromagnetischer Wellen vorausgesagt hat. In den letzten Jahren hat die Forschung im Bereich der vehicle to X (V2X)-Kommunikation stetig zugenommen. V2X beschreibt die Fähigkeit, Daten zwischen einem Fahrzeug oder vehicle (V) und “allem” zu übertragen. In Zukunft könnten Fahrzeuge mit ihrer Umgebung kommunizieren, um Verkehrsunfälle zu vermeiden und Staus zu verringern. Dazu werden sie ihr Geschwindigkeits- und Positionsdaten über Ad-hoc-Fahrzeugnetze senden und empfangen können. Um die Verkehrssicherheit zu erhöhen, ist eine zuverlässige Kommunikationsverbindung notwendig. Die größte Herausforderung bei der Fahrzeugkommunikation besteht darin, dass sich die Eigenschaften des Physical Layers aufgrund der inhärenten Mobilität innerhalb des Kanals, der hohen Fahrzeuggeschwindigkeiten, der unterschiedlichen Antennenpositionen und der vielen Handover aufgrund kleinerer Zellen schnell ändern. Dies bringt eine Reihe von Herausforderungen in Bezug auf die Kanalcharakterisierung mit sich. Es handelt sich um einen Kanal mit starker Zeitvarianz und es treten viele Übergänge auf. Somit handelt es sich um einen nicht-stationärer (non-stationary) Kanal. Das Hauptziel dieser Untersuchung ist es, eine Methode zu finden, mit der der Kanal einer komplexen Umgebung in einer einfachen Form mit weniger strengen Beziehungen zur Geometrie dargestellt werden kann. Dabei werden die statistischen Eigenschaften ähnlich der Messdaten beibehalten. In dieser Arbeit werden nichtstationäre tapped delay line (TDL)-Modelle verwendet, um vehicle to infrastructure (V2I)-Kanäle zu beschreiben. Es wird eine neue Strategie zur Extraktion von TDL-Kanalmodellparametern aus Messdaten vorgeschlagen. Dieser Ansatz basiert auf einer bestehenden Methode zur Ableitung von Parametern für ein TDLModell. Es wird gezeigt, dass mit einer anderen Methode zur Auswahl der Taps die Anzahl der Abgriffe, die zur Rekonstruktion der root mean square delay spread (RMS-DS) eines Kanals erforderlich sind, erheblich reduziert werden kann. Ein neuer Ansatz zur überprüfen der Korrektheit der Ableitung der Kanalmodellparameter wird aufgezeigt. Die Durchführbarkeit der Methode wird anhand von Channel Sounding Messungen bestätigt. In dieser Dissertation wird ein Generator zur Erzeugung von Kanalimpulsantworten entwickelt und das nichtstationäre Verhalten der Kanäle durch die Verwendung eines ON/OFF-Prozesses beschrieben. Es werden Markov-Ketten unterschiedlicher Ordnung modelliert, um das nicht-stationäre Verhalten besser zu erfassen. Die Untersuchung zeigt, dass Markov-Ketten erster Ordnung mit zwei Zuständen vorzuziehen sind, um das häufige ON/OFF-Verhalten von Mehrwegpfaden darzustellen, und dass die Markov-Modelle zweiter und dritter Ordnung keine großen Auswirkungen haben. Eine Methode zur Erweiterung eines single input single output (SISO)-TDL-Modells auf multiple input multiple output (MIMO) unter der non-wide sense stationary uncorrelated scattering (non-WSSUS)-Annahme wird eingeführt, um TDL-Kanalmodelle für V2I MIMO-Systeme zu entwickeln. Die Analyse bewertet die SISO- mit der MIMO-Konfiguration in Bezug auf die Kanalkapazität. Es werden verschiedene MIMO-Konfigurationen untersucht, und es wird gezeigt, dass die Position der Antennen eine wichtige Rolle spielt. Die Verwendung von nur vier Antennen am transmitter (Tx) und receiver (Rx), die in unterschiedliche Richtungen abstrahlen, führt zu einem qualitativen Sprung in der Leistungsfähigkeit des Systems.In the past decades, wireless communication systems have undergone rapid development, and many investigations have been done since Maxwell predicted the existence of electromagnetic waves. In recent years, vehicle to X (V2X) communication research has been growing steadily. V2X describes the ability to transmit data between a vehicle (V) and “everything”. In the future, vehicles might be able to communicate with their environment to prevent traffic accidents and reduce congestion by allowing vehicles to transmit and receive data through a vehicular ad hoc network at their speed and position. In order to achieve the ultimate goal of enhancing transportation safety, it is crucial to establish reliable communication links. The main challenge of vehicular communications introduces new properties because the physical layer properties are rapidly changing due to inherent mobility within the channel, high vehicle speeds, varying antenna positions, and many handovers due to smaller cells. This brings up a number of challenges in terms of channel characterization because it is a strong time-variant channel and many transitions occur; therefore, it is a non-stationary channel. In this thesis, non-stationary tapped delay line (TDL) models are used to describe the vehicle to infrastructure (V2I) channels. This thesis proposes a new strategy to extract TDL channel model parameters from measurement data. The proposed approach is based on an existing method to derive parameters for a TDL model. It will be shown that with a different method of choosing taps, the number of taps necessary to regenerate the root mean square delay spread (RMS-DS) of a channel can be significantly reduced. An approach is proposed to verify the correctness of the channel model parameters derivation. The feasibility of the method will be confirmed using channel-sounding measurements. This dissertation devises a generator to produce channel impulse responses (CIRs) and describes the non-stationary behavior of the channels via employing an ON/OFF process. Different order Markov chains are modeled with the aim of better capturing the non-stationary behavior. The investigation shows that first-order two-state Markov chains are preferable to represent multipath’s frequent ON/OFF behavior, and the second- and third-order Markov models do not make enormous effects. A method for extending a single input single output (SISO)-TDL model to multiple input multiple output (MIMO) under non-wide sense stationary uncorrelated scattering (non-WSSUS) assumption is introduced to develop TDL channel models for the V2I MIMO systems. The analysis evaluates SISO- with MIMO configuration in terms of channel capacity. Different MIMO configurations are explored, and it will be illustrated that the position of antennas plays an important role. Using only four antennas at the transmitter (Tx) and receiver (Rx) that radiate towards different directions will make a qualitative leap in the performance of the system

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Distributed Adaptation Techniques for Connected Vehicles

    Get PDF
    In this PhD dissertation, we propose distributed adaptation mechanisms for connected vehicles to deal with the connectivity challenges. To understand the system behavior of the solutions for connected vehicles, we first need to characterize the operational environment. Therefore, we devised a large scale fading model for various link types, including point-to-point vehicular communications and multi-hop connected vehicles. We explored two small scale fading models to define the characteristics of multi-hop connected vehicles. Taking our research into multi-hop connected vehicles one step further, we propose selective information relaying to avoid message congestion due to redundant messages received by the relay vehicle. Results show that the proposed mechanism reduces messaging load by up to 75% without sacrificing environmental awareness. Once we define the channel characteristics, we propose a distributed congestion control algorithm to solve the messaging overhead on the channels as the next research interest of this dissertation. We propose a combined transmit power and message rate adaptation for connected vehicles. The proposed algorithm increases the environmental awareness and achieves the application requirements by considering highly dynamic network characteristics. Both power and rate adaptation mechanisms are performed jointly to avoid one result affecting the other negatively. Results prove that the proposed algorithm can increase awareness by 20% while keeping the channel load and interference at almost the same level as well as improve the average message rate by 18%. As the last step of this dissertation, distributed cooperative dynamic spectrum access technique is proposed to solve the channel overhead and the limited resources issues. The adaptive energy detection threshold, which is used to decide whether the channel is busy, is optimized in this work by using a computationally efficient numerical approach. Each vehicle evaluates the available channels by voting on the information received from one-hop neighbors. An interdisciplinary approach referred to as entropy-based weighting is used for defining the neighbor credibility. Once the vehicle accesses the channel, we propose a decision mechanism for channel switching that is inspired by the optimal flower selection process employed by bumblebees foraging. Experimental results show that by using the proposed distributed cooperative spectrum sensing mechanism, spectrum detection error converges to zero
    • …
    corecore