20 research outputs found

    Process Mining Workshops

    Get PDF
    This open access book constitutes revised selected papers from the International Workshops held at the Third International Conference on Process Mining, ICPM 2021, which took place in Eindhoven, The Netherlands, during October 31–November 4, 2021. The conference focuses on the area of process mining research and practice, including theory, algorithmic challenges, and applications. The co-located workshops provided a forum for novel research ideas. The 28 papers included in this volume were carefully reviewed and selected from 65 submissions. They stem from the following workshops: 2nd International Workshop on Event Data and Behavioral Analytics (EDBA) 2nd International Workshop on Leveraging Machine Learning in Process Mining (ML4PM) 2nd International Workshop on Streaming Analytics for Process Mining (SA4PM) 6th International Workshop on Process Querying, Manipulation, and Intelligence (PQMI) 4th International Workshop on Process-Oriented Data Science for Healthcare (PODS4H) 2nd International Workshop on Trust, Privacy, and Security in Process Analytics (TPSA) One survey paper on the results of the XES 2.0 Workshop is included

    Process Mining Workshops

    Get PDF
    This open access book constitutes revised selected papers from the International Workshops held at the Third International Conference on Process Mining, ICPM 2021, which took place in Eindhoven, The Netherlands, during October 31–November 4, 2021. The conference focuses on the area of process mining research and practice, including theory, algorithmic challenges, and applications. The co-located workshops provided a forum for novel research ideas. The 28 papers included in this volume were carefully reviewed and selected from 65 submissions. They stem from the following workshops: 2nd International Workshop on Event Data and Behavioral Analytics (EDBA) 2nd International Workshop on Leveraging Machine Learning in Process Mining (ML4PM) 2nd International Workshop on Streaming Analytics for Process Mining (SA4PM) 6th International Workshop on Process Querying, Manipulation, and Intelligence (PQMI) 4th International Workshop on Process-Oriented Data Science for Healthcare (PODS4H) 2nd International Workshop on Trust, Privacy, and Security in Process Analytics (TPSA) One survey paper on the results of the XES 2.0 Workshop is included

    Conformance checking using activity and trace embeddings

    Get PDF
    Conformance checking describes process mining techniques used to compare an event log and a corresponding process model. In this paper, we propose an entirely new approach to conformance checking based on neural network-based embeddings. These embeddings are vector representations of every activity/task present in the model and log, obtained via act2vec, a Word2vec based model. Our novel conformance checking approach applies the Word Mover’s Distance to the activity embeddings of traces in order to measure fitness and precision. In addition, we investigate a more efficiently calculated lower bound of the former metric, i.e. the Iterative Constrained Transfers measure. An alternative method using trace2vec, a Doc2vec based model, to train and compare vector representations of the process instances themselves is also introduced. These methods are tested in different settings and compared to other conformance checking techniques, showing promising results

    Automated simulation and verification of process models discovered by process mining

    Get PDF
    This paper presents a novel approach for automated analysis of process models discovered using process mining techniques. Process mining explores underlying processes hidden in the event data generated by various devices. Our proposed Inductive machine learning method was used to build business process models based on actual event log data obtained from a hotel\u27s Property Management System (PMS). The PMS can be considered as a Multi Agent System (MAS) because it is integrated with a variety of external systems and IoT devices. Collected event log combines data on guests stay recorded by hotel staff, as well as data streams captured from telephone exchange and other external IoT devices. Next, we performed automated analysis of the discovered process models using formal methods. Spin model checker was used to simulate process model executions and automatically verify the process model. We proposed an algorithm for the automatic transformation of the discovered process model into a verification model. Additionally, we developed a generator of positive and negative examples. In the verification stage, we have also used Linear temporal logic (LTL) to define requested system specifications. We find that the analysis results will be well suited for process model repair

    Can recurrent neural networks learn process model structure?

    Full text link
    Various methods using machine and deep learning have been proposed to tackle different tasks in predictive process monitoring, forecasting for an ongoing case e.g. the most likely next event or suffix, its remaining time, or an outcome-related variable. Recurrent neural networks (RNNs), and more specifically long short-term memory nets (LSTMs), stand out in terms of popularity. In this work, we investigate the capabilities of such an LSTM to actually learn the underlying process model structure of an event log. We introduce an evaluation framework that combines variant-based resampling and custom metrics for fitness, precision and generalization. We evaluate 4 hypotheses concerning the learning capabilities of LSTMs, the effect of overfitting countermeasures, the level of incompleteness in the training set and the level of parallelism in the underlying process model. We confirm that LSTMs can struggle to learn process model structure, even with simplistic process data and in a very lenient setup. Taking the correct anti-overfitting measures can alleviate the problem. However, these measures did not present themselves to be optimal when selecting hyperparameters purely on predicting accuracy. We also found that decreasing the amount of information seen by the LSTM during training, causes a sharp drop in generalization and precision scores. In our experiments, we could not identify a relationship between the extent of parallelism in the model and the generalization capability, but they do indicate that the process' complexity might have impact

    Augmented Business Process Management Systems: A Research Manifesto

    Get PDF
    Augmented Business Process Management Systems (ABPMSs) are an emerging class of process-aware information systems that draws upon trustworthy AI technology. An ABPMS enhances the execution of business processes with the aim of making these processes more adaptable, proactive, explainable, and context-sensitive. This manifesto presents a vision for ABPMSs and discusses research challenges that need to be surmounted to realize this vision. To this end, we define the concept of ABPMS, we outline the lifecycle of processes within an ABPMS, we discuss core characteristics of an ABPMS, and we derive a set of challenges to realize systems with these characteristics.Comment: 19 pages, 1 figur

    Research Paper: Process Mining and Synthetic Health Data: Reflections and Lessons Learnt

    Get PDF
    Analysing the treatment pathways in real-world health data can provide valuable insight for clinicians and decision-makers. However, the procedures for acquiring real-world data for research can be restrictive, time-consuming and risks disclosing identifiable information. Synthetic data might enable representative analysis without direct access to sensitive data. In the first part of our paper, we propose an approach for grading synthetic data for process analysis based on its fidelity to relationships found in real-world data. In the second part, we apply our grading approach by assessing cancer patient pathways in a synthetic healthcare dataset (The Simulacrum provided by the English National Cancer Registration and Analysis Service) using process mining. Visualisations of the patient pathways within the synthetic data appear plausible, showing relationships between events confirmed in the underlying non-synthetic data. Data quality issues are also present within the synthetic data which reflect real-world problems and artefacts from the synthetic dataset’s creation. Process mining of synthetic data in healthcare is an emerging field with novel challenges. We conclude that researchers should be aware of the risks when extrapolating results produced from research on synthetic data to real-world scenarios and assess findings with analysts who are able to view the underlying data

    Measuring the impact of COVID-19 on hospital care pathways

    Get PDF
    Care pathways in hospitals around the world reported significant disruption during the recent COVID-19 pandemic but measuring the actual impact is more problematic. Process mining can be useful for hospital management to measure the conformance of real-life care to what might be considered normal operations. In this study, we aim to demonstrate that process mining can be used to investigate process changes associated with complex disruptive events. We studied perturbations to accident and emergency (A &E) and maternity pathways in a UK public hospital during the COVID-19 pandemic. Co-incidentally the hospital had implemented a Command Centre approach for patient-flow management affording an opportunity to study both the planned improvement and the disruption due to the pandemic. Our study proposes and demonstrates a method for measuring and investigating the impact of such planned and unplanned disruptions affecting hospital care pathways. We found that during the pandemic, both A &E and maternity pathways had measurable reductions in the mean length of stay and a measurable drop in the percentage of pathways conforming to normative models. There were no distinctive patterns of monthly mean values of length of stay nor conformance throughout the phases of the installation of the hospital’s new Command Centre approach. Due to a deficit in the available A &E data, the findings for A &E pathways could not be interpreted

    AI-augmented business process management systems: a research manifesto

    Get PDF
    AI-augmented Business Process Management Systems (ABPMSs) are an emerging class of process-aware information systems, empowered by trustworthy AI technology. An ABPMS enhances the execution of business processes with the aim of making these processes more adaptable, proactive, explainable, and context-sensitive. This manifesto presents a vision for ABPMSs and discusses research challenges that need to be surmounted to realize this vision. To this end, we define the concept of ABPMS, we outline the lifecycle of processes within an ABPMS, we discuss core characteristics of an ABPMS, and we derive a set of challenges to realize systems with these characteristics

    Manufacturing and logistics use cases on Ccombining discrete event simulation and process mining

    Get PDF
    This paper provides an overview on two approaches to combine processmining and discrete-event simulation in manufacturing and logistics for mutual benefit. One approach focuses on generating simulation models based on process models, while the other approach utilizes process models to validate existing simulation models. Both approaches are explained on a conceptual and technical level. In addition, two real-world use cases from the field of intralogistics and from battery cell assembly are presented. Initial experiences and lessons learned from applying the approaches to the use cases are discussed. The findings illustrate the potential and the limitations of the explored combinations
    corecore