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Abstract. Conformance checking describes process mining techniques
used to compare an event log and a corresponding process model. In this
paper, we propose an entirely new approach to conformance checking
based on neural network-based embeddings. These embeddings are vec-
tor representations of every activity/task present in the model and log,
obtained via act2vec, a Word2vec based model. Our novel conformance
checking approach applies the Word Mover’s Distance to the activity em-
beddings of traces in order to measure fitness and precision. In addition,
we investigate a more efficiently calculated lower bound of the former
metric, i.e. the Iterative Constrained Transfers measure. An alternative
method using trace2vec, a Doc2vec based model, to train and compare
vector representations of the process instances themselves is also intro-
duced. These methods are tested in different settings and compared to
other conformance checking techniques, showing promising results.

Keywords: Process mining · Conformance checking · Representation
learning · Word embedding

1 Introduction

Conformance checking is a set of process mining techniques capable of compar-
ing event logs and corresponding process models. It can be used to compare
the actual execution of a process (log) to the should-be execution (a normative
model) or an automatically discovered model. Usually the degree of conformance
is described over four quality dimensions: fitness, precision, simplicity and gener-
alisation. Generally two different approaches for obtaining the fitness and preci-
sion are distinguished: log replay algorithms and trace alignment algorithms [1].
In this work, we propose an entirely new perspective on conformance checking,
moving away from classical approaches relying on replay or alignments, but in-
stead performing a fully data driven conformance analysis and subsequent global
conformance measure development. Currently, our novel conformance checking
technique relies on generating an event log of a model and comparing this with
the actual event log using different representation learning techniques inspired
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by work in Natural Language Processing (NLP). As such, the presented fitness
and precision metrics are computed as log-to-log metrics.

The remainder of this paper is structured as follows. First, we introduce
the notions of activity and trace embeddings in Section 2. In Section 3, the
embedding-based conformance checking technique is outlined, before we perform
several experimental assessments in Section 4. The paper is concluded with a
section discussing related work (Section 5) and our conclusions in Section 6.

2 Activity and Trace Embeddings

Representation or feature learning describes a set of techniques that are capable
of extracting (useful) representations of objects for different types of input. This
can help machine learning models perform better, using an input more suited or
by reducing the dimensions of the input. The techniques proposed in this paper
are based on Word2vec [20,21] and Doc2vec [17], two widely used and popular
representation learning techniques from NLP. The Word2vec algorithm uses a
two layer neural network and a large corpus of words in order to train a vector
space in which each different word gets a specific vector value called a represen-
tation or embedding. The network tries to predict a certain word in a text by
using the window of surrounding words (continuous bag-of-words or CBOW) or
tries to predict the surrounding window of a certain word (skip-gram). The input
and output are one-hot encoded vectors of the words (with the vocabulary size
as dimension). The weight used for the sum in the hidden layer (and the weight
used for the output layer) is a matrix with each word’s embedding stored in
its columns (rows). By updating the weights while training to predict the words
better, the embeddings get more optimal/meaningful vector values in such a way
that similar words (words used in a similar context) should get similar vector
values. In Doc2vec each specific document (or sentence) containing the word
also gets a vector representation that is used as input in the neural network. By
training the network, these document embeddings are updated as well. During
training the representation of the document (sentence) is determined by the in-
formation from its content. These representations can then be used to compare
different documents (sentences) for e.g. classification purposes.

In process mining the use of representation learning applied to activities,
process instances (traces), logs and models has been introduced by [9]. In this
work the authors propose among others the algorithms act2vec and trace2vec.
Act2vec works similarly to Word2vec using activity labels as words. During
training, activities are predicted based on the activities occurring before and
after it within a process instance. In this way (meaningful) vector representations
for each type of activity are learned. Trace2vec works similarly to Doc2vec using
activity labels as words and process instances as sentences. Therefore every trace
ID gets an embedding, next to the activity embeddings. These trace embeddings
can then be used for e.g. trace clustering.
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3 Conformance Checking Techniques

The basic structure of the new techniques we introduce is illustrated in Figure 1.
The required input is, as usual in conformance checking, a (real) log and a
model. The first step is playing out a so called “model log” from the model. The
model can therefore adopt any usual structure or notation for which execution
semantics can be defined (Petri net, Process trees, BPMN etc.). Using both of
these logs (real and model), embeddings for the activities (and possibly for each
unique trace) can be trained, as described above. Next a decision is to be made
on a (dis)similarity function that measures the difference between two traces.
Depending on whether one is using activity embeddings or trace embeddings
different functions exist, which allows one to obtain a dissimilarity matrix. This
matrix gives the function value of each trace from the real log (columns) with
each trace from the model log (rows). We can now take the minimum of each
column, meaning we find for each trace in the real log its best matching trace in
the model log (allowing equal matches). If we take the average of these minima
it gives us a measurement for the fitness of the model regarding the real log. The
same can be done with finding the minimum in each row, i.e. finding for each
trace in the model log its best matching trace in the real log. Again averaging
these minima presents us with a measurement for the precision.

Fig. 1. The general structure of the proposed techniques.

The exact implementation of the algorithm can be decided upon by chang-
ing how embeddings are derived, changing the dissimilarity function or even by
changing the way the model plays out the log. In this work it was opted to use the
act2vec and trace2vec settings described above, in a Continuous Bag of Words
(CBOW) and distributed bag of words (PV-DBOW) way respectively. For the
time being, the window around the activity being trained is taken to be 3 and
bi-directional, and the dimension of the embeddings is set to 16. Obviously, all
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of these settings could easily be changed if deemed appropriate. In this work,
we develop conformance metrics by implementing two distance functions at the
level of activity embeddings: the Words Mover’s Distance and the Iterative Con-
strained Transfers method. A third algorithm, relying on trace2vec, applies the
cosine distance between two trace embeddings as the dissimilarity function. In
the current research we have built implementations on top of the Gensim-library
for unsupervised semantic modelling from plain text [27].

3.1 Words Mover’s Distance

A first dissimilarity function put forward is the Words Mover’s Distance (or
WMD) [16], which is a commonly used function in NLP, for instance for sen-
tence similarity. It compares two sentences (of word embeddings) similarly to the
Earth Mover’s Distance (or EMD) [29]. The EMD is a distance measure between
two distributions in a certain region. In plain words it describes how much work
has to be done to go from one vector of distributions to another. Each can be
looked at as a certain configuration of “piles of earth”, with each element of the
vector representing a certain amount of earth in a certain location. The effort
to move earth from one location to another is determined by the amount of
earth transported and the distance between the locations. The optimization to
go from one configuration to another can be seen as a linear program minimiz-
ing the transportation cost while satisfying two constraints. The first (outflow)
constraint is that from each pile (distribution) in the first configuration there
cannot be more weight transported than present. The second (inflow) constraint
requires not more weight being transported than allowed to each pile (distri-
bution) in the second configuration. In the WMD the locations of the piles are
the different words and the distribution/weight of each word is its normalized
word count. The distance between the words is calculated by using the Euclidean
distance between its embeddings. Applied to the act2vec environment, this func-
tion allows us to calculate the effort to go from one trace to another using the
embeddings of the activities within. The method is described in Algorithm 1.

The main attraction of EMD-based approaches is their high accuracy in dif-
ferent applications like e.g. classification [4]. The downside is the inefficiency, as
according to the authors the average time complexity of solving the WMD opti-
mization problem scales O(p3 log p), with p the size of the vocabulary (amount
of unique words/activities). Therefore an alternative method, relaxing one of the
constraints is also presented here. It has to be noted that the WMD does not take
the order of the activities into account, but only the count of an activity within
a trace. Order can have an influence during the training of the embeddings, but
is not explicitly taken into account in the WMD (nor in its approximations).

3.2 Iterative Constrained Transfers

A faster alternative for WMD is Relaxed Word Mover’s Distance (RWMD),
which drops one of the two constraints of the WMD completely. This allows for
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Algorithm 1: Method using WMD [16].

Result: Calculates the distance between two traces t1 and t2.
n = vocabulary size
di = normalized count of activity i within its trace
c(i, j) = Euclidean distance between embeddings word i and word j.
Function FWMD(t1, t2, c)

distance = min
T≥0

n∑
i,j=1

Tijc(i, j)

subject to:
n∑

j=1

Tij = di ∀i = 1, . . . , n

n∑
i=1

Tij = dj ∀j = 1, . . . , n

return distance
end

more transportation from or to certain words than actually correct (but with
lower distance). The RWMD therefore gives a lower boundary to the WMD [16].
The Iterative Constrained Transfers (ICT) proposes the addition of an edge ca-
pacity constraint when relaxing one of the two constraints [4]. This additional
constraint entails that when moving weight between two words along an edge,
the total transportation always has to be smaller than the minimum of the dis-
tribution on both sides of the edge. In other words it cannot be bigger than
the total distribution of the outgoing word (from the first sentence) and of the
ingoing word (from the second sentence). The ICT replaces the second (inflow)
constraint of the WMD by this new edge capacity constraint. The new problem
can be solved optimally by considering the first sentence word by word. Each
time sorting the edges leaving from it to the different words in the second sen-
tence, in increasing order of transportation cost. Then iteratively transferring
weights from the word in the first sentence to the words in the second sentence,
under the edge constraints, until the outflow constraint is met. The ICT can
be approximated by limiting the number of iterations than can be performed,
called the Approximate Computation of ICT (or ACT). In this work it was
opted to use this constraint with the maximum number of iterations being 3.
Only if the outgoing trace has certain activities which occur significantly more
than others, this number should be taken higher. The inflow constraint of the
WMD is not necessarily met anymore, therefore the ICT (or ACT) provides a
lower bound to the WMD, but due to the extra edge constraint more tight than
the RWMD. The algorithm used to calculate the ICT between two traces (with
activity embeddings) can be found in Algorithm 2.

3.3 Trace embeddings

The third approach uses trace embeddings. In this work it was opted to train one
embedding for each unique trace. This means that traces with the same activity
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Algorithm 2: Method using ICT, referred to as ACT in [4].

Result: Calculates the distance between two traces p and q.
k = number of edges considered per activity (in this work 3)
c(i, j) = Euclidean distance between embeddings word i and word j
hp, hq = amount of different activities in trace p and q
pi = normalized weights of each activity in trace p with i = 1, . . . , hp

qi = normalized weights of each activity in trace q with i = 1, . . . , hq

Function FICT (p, q, c, k)
Initialize transportation cost t = 0
for i = 1 . . . hp do

Find k smallest: s = arg mink(c(i, [1, . . . , hq]))
Initialize l = 1
while l < k do

Edge constraint: r = min(pi, qs(l))
Transport weight: pi = pi − r
Update cost: t = t + r · c(i, j)
l = l + 1

end
Solve for possible excess weight
if pi 6= 0 then

Move rest to qs(k):
t = t + pi · c(i, s(k))

end

end
return t

end

sequence, have the same embedding. Once these embeddings are obtained one
could use any distance metric in vector spaces deemed appropriate. In this work it
was opted to use the cosine similarity. Using the cosine similarity means that the
output of this algorithm will always be a number between 0 and 1, where 0 means
a perfect value in both the fitness and the precision calculation. The algorithm
to calculate the cosine distance between two trace embeddings is displayed in
Algorithm 3.

Algorithm 3: Method using trace2vec.

Result: Calculates the distance between two traces embeddings p and q.
n = dimensions trace embeddings
Function Ft2v(p, q)

cos =

n∑
i=1

piqi√
n∑

i=1
p2i

√
n∑

i=1
q2i

return cos
end
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4 Experimental Evaluation

The goal of the empirical evaluation in this work is twofold. On the one hand, we
want to investigate the computational complexity of the proposed techniques.
On the other hand, we want to provide evidence that the measures are indeed
capable to reveal when models and logs become more discrepant.

4.1 Experimental setup

In order to test the methods proposed, different experiments are performed3. A
first experiment focuses solely on the scalability of our proposed methods, vary-
ing log size and dictionary size (number of activities). Next, in order to assess
the conceptual appropriateness, another set of experiments was conducted. For
these experiments different process trees, depicting different types of processes,
are generated randomly using the implementation of the Python library PM4Py
[6,15]. The different settings used for each tree can be found in Table 1. These
trees vary in size (depicted by the minimum, mode and maximum number of
visible activities) and the probabilities of adding sequence, parallel, choice and
loop operators to the tree. Other parameters are left default.

Table 1. The different settings used to generate the process trees used in the experi-
ments.

Size (min - mode - max) Sequence Parallel Choice Loop

Tree 1 5-10-15 0.75 0.25 0 0
Tree 2 5-10-15 0.75 0 0.25 0
Tree 3 5-10-15 0.5 0.25 0.25 0
Tree 4 5-10-15 0.25 0.25 0.25 0.25

Tree 5 10-20-30 0.75 0.25 0 0
Tree 6 10-20-30 0.75 0 0.25 0
Tree 7 10-20-30 0.5 0.25 0.25 0
Tree 8 10-20-30 0.25 0.25 0.25 0.25

Tree 9 15-30-45 0.75 0.25 0 0
Tree 10 15-30-45 0.75 0 0.25 0
Tree 11 15-30-45 0.5 0.25 0.25 0
Tree 12 15-30-45 0.25 0.25 0.25 0.25

First, the ability of the methods to measure differences between two logs is
assessed in a noise experiment depicted in Figure 2. For each process tree, a
ground truth log is played out. Then different levels of noise are introduced to
this ground truth log to obtain a noisy log. The different methods are tested

3 The implementations of the algorithm, the tests and most of the syn-
thetic data used can be found on https://github.com/jaripeeperkorn/

Conformance-checking-using-activity-and-trace-embeddings.

https://github.com/jaripeeperkorn/Conformance-checking-using-activity-and-trace-embeddings
https://github.com/jaripeeperkorn/Conformance-checking-using-activity-and-trace-embeddings
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on these two logs, checking whether more noise actually equals less optimal
values. We define three types of noise: replacing a random activity with another
random activity label (form the vocabulary), swapping two random activities
and removing a random activity. In a first noise experiment each of these noise
types are added to only one activity (or two in the case of swapping). But the
percentage of traces on which we apply each of these noise functions (one after
the other) is varied from 10 to 50%. A second small noise experiment sets the
percentage of traces on which we apply noise to 40%, but then varies the amount
of activities within these traces we apply noise on. For this we are only using the
noise function that randomly replaces activities, omitting the other two.

Fig. 2. The noise experiment.

Then, in a second experiment, the conceptual appropriateness is further in-
vestigated, again relying on synthetic logs. However, we now include different
process discovery algorithms to obtain models with different fitness/precision
and compare with well-established conformance metrics. The experiment is shown
in Figure 3. Instead of adding noise, we now discover a model from the ground
truth logs using different discovery techniques. Once discovered models are ob-
tained, the different proposed methods can be applied by first playing out the
discovered model. Regarding the process discovery algorithm selection, the goal
was to obtain a varied set of discovered models in terms of fitness and pre-
cision. Moreover, we wanted to restrict the number of discovery techniques in
order to prevent blowing up the analysis. Therefore, we opted for the following
algorithms: Alpha miner [31], Inductive Miner infrequent (IMi) with the noise
parameter once set to 0 and once to 1 [19] and the the ILP miner [33]. For
the ILP miner settings the alpha parameter was used with the zero value and
concurrency ratio left 0. We have used the implementation within the ProM
framework [11] for each of the discovery techniques. The conformance check-
ing techniques selected to compare are the behavioral negative event recall [14],
alignment based fitness and precision [2] and the ETC precision [22]. All of
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these conformance checking algorithms were used as they were implemented in
the CoBeFra framework [7].

Fig. 3. The discovery experiment.

4.2 Results and discussion

Scalability The experiment each time compares two randomly generated logs,
varying in size. The average trace length is left to 20, but the vocabulary size
(amount of different activities) is also altered. The results of this experiment,
as performed on an Intel(R) Core(TM) i7-9850h CPU @ 2.60ghz, can be found
in Table 2 (performed three times, taking the average time). What is important
to note is that the methods are, for now written in python. The WMD (EMD)
implementation uses however pyemd [24,25], a wrapper that allows the use of
numpy (C efficiency). The (own) ICT implementation used in this work is not C
optimized, and could therefore still be enhanced significantly. From the results
it can be seen that the run times depend on the log size significantly in all three
methods. The dictionary size has a big influence on the WMD, smaller influence
in the ICT and no influence on the run time of the trace2vec based method. If
optimized the ICT could definitely be a computationally less demanding alter-
native to the WMD. The trace2vec based method is the fastest, as it only has to
calculate the cosine distance of the trace embeddings. Training the embeddings
does not take a long time.

Noise experiment In a first noise experiment the percentage of traces on
which we apply each of the three noise functions is varied between 10 and 50%.
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Table 2. Table showing the run times of the different variations of the algorithm.

Log Size Dictionary size wmd ict t2v

100
10 1s 1s 1s
20 2s 2s 1s
30 3s 2s 1s

500
10 20s 26s 12s
20 46s 39s 12s
30 1m15s 45s 12s

1000
10 1m14s 1m43s 42s
20 2m57s 2m30s 43s
30 4m50s 2m51s 43s

5000
10 30m38s 37m2s 15m20s
20 1h10m4s 55m23s 15m24s
30 1h57m12s 1h3m44s 15m20s

Again: we apply it in each of these traces only once. For each setting in Table 1,
5 different process trees are generated and the results over these 5 trees are
averaged. The generated ground truth consists each time of 1000 traces. Because
this number is usually very high as compared to the amount of different variants
of traces, the noisy log often still contains at least once each (original) variant.
This means that the ground truth - noisy value as shown in Figure 2 is almost
always 0. The values of the noisy - ground truth values of this noise experiment
can be found in Table 3. We can see that for each setting and each method,
adding noise adds to the distance. Note that you should not directly compare
the activity embedding based methods and the trace2vec model, as they have
a different scale. Figure 4 shows the average over all the different process tree
generations of each noise level.

As mentioned earlier another small noise experiment was performed as well
in order to show how the methods handle different levels of noise within the
noisy traces. In this setting we are only using the noise of randomly replacing
and activity. The process trees are generated using the 10th setting described in
Table 1. The noise is each time applied on 40 percent of the traces in the log
but on different amount of activities (1-15). The results shown in Table 4 and
Figure 5 show that for each of the three methods an increase in noise corresponds
to a higher distance.

Discovery experiment For the time being the generated logs for both the
original tree and the discovered models are generated randomly and are each
time limited to 1000 traces. This also means that the discovery algorithms use
a log of (only) 1000 traces. The embeddings are being trained each time again
and thus are not used over the multiple discovered models (nor over the three
different techniques). In the real life situation of comparing multiple models to
select the optimal one, it might be beneficial to train embeddings only once for
all of the models together. The discovery experiment was performed for Trees
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Table 3. Results of the noise experiment using three different types of noise, each on
one (two for swapping) activity in different amounts of traces.

Tree 1 Tree 2 Tree 3 Tree 4

Noise wmd ict t2v wmd ict t2v wmd ict t2v wmd ict t2v

10% 0.135 0.126 0.044 0.101 0.095 0.023 0.150 0.142 0.030 0.155 0.148 0.038

20% 0.244 0.227 0.123 0.192 0.179 0.089 0.282 0.264 0.090 0.282 0.268 0.091

30% 0.349 0.327 0.194 0.276 0.260 0.143 0.387 0.365 0.142 0.397 0.378 0.147

40% 0.439 0.41210.249 0.349 0.328 0.190 0.492 0.465 0.194 0.499 0.472 0.199

50% 0.517 0.482 0.290 0.417 0.391 0.228 0.570 0.535 0.232 0.579 0.546 0.238

Tree 5 Tree 6 Tree 7 Tree 8

Noise wmd ict t2v wmd ict t2v wmd ict t2v wmd ict t2v

10% 0.151 0.128 0.027 0.083 0.074 0.010 0.119 0.110 0.014 0.121 0.106 0.016

20% 0.285 0.247 0.090 0.162 0.145 0.041 0.228 0.210 0.036 0.225 0.200 0.051

30% 0.407 0.344 0.149 0.237 0.212 0.067 0.321 0.295 0.067 0.314 0.282 0.088

40% 0.506 0.435 0.197 0.305 0.273 0.096 0.410 0.377 0.098 0.390 0.348 0.115

50% 0.594 0.513 0.224 0.371 0.335 0.117 0.484 0.445 0.118 0.476 0.421 0.144

Tree 9 Tree 10 Tree 11 Tree 12

Noise wmd ict t2v wmd ict t2v wmd ict t2v wmd ict t2v

10% 0.089 0.080 0.020 0.075 0.062 0.006 0.122 0.111 0.007 0.093 0.084 0.005

20% 0.173 0.157 0.074 0.147 0.121 0.021 0.231 0.213 0.018 0.182 0.164 0.013

30% 0.250 0.228 0.130 0.215 0.179 0.046 0.327 0.301 0.031 0.257 0.231 0.023

40% 0.322 0.293 0.174 0.281 0.232 0.067 0.420 0.386 0.048 0.331 0.300 0.038

50% 0.390 0.354 0.240 0.341 0.285 0.096 0.506 0.467 0.064 0.400 0.361 0.054

Table 4. Results of the noise experiment, varying only the amount of activities affected.

Amount of noise 1 3 5 7 9 11 13 15

wmd 0.134 0.326 0.451 0.542 0.611 0.659 0.692 0.702

ict 0.090 0.238 0.344 0.421 0.491 0.538 0.563 0.570

t2v 0.015 0.079 0.118 0.135 0.146 0.151 0.156 0.157
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Fig. 4. The average of the first noise exper-
iment.
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Fig. 5. The second noise experiment.
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5-12 from Table 1. The results for each of the fitness and precision measurements
can be found in Table 5. Beware that for the newly introduced WMD, ICT and
t2v method a more optimal value corresponds to a value closer to 0 but for the
other algorithms this corresponds to a value closer to 1. For the Tree setting
8 and 12 the alpha discovery algorithm produced a Petri Net not readable by
the log replay algorithm used here due to its unconventional structure. Because
the corresponding Petri Nets did not correspond to realistic (useful) models,
they were omitted as a whole. The alignment based fitness and precision did
also not produce any results (within reasonable time) when considering the net
discovered by the infrequent inductive miner with noise parameter set to 0 in
tree 12.

From the results in Table 5 it can be seen that when the alignment based
fitness and ETC precision agree on perfect fitness or precision the WMD, ICT
and t2v usually do as well. For the rest these results are harder to interpret as the
methods from the literature do not always agree as well. It can be seen however
that when alignment based fitness or ECT precision seem to pick one of the
discovered models as having a significantly better (or worse) fitness or precision,
the proposed measures seem to agree. Nevertheless, more rigorous testing should
be put in place to get more conclusive insights into the algorithms proposed in
this work.

5 Related Work

The first literature trying to quantify a relation between process models an
event logs can be found in [8]. In later years multiple conformance checking
techniques have been proposed in the field of Process Mining. Most of them con-
sider log-model conformance techniques. For fitness some of the first noteworthy
algorithms are proper completion and token based sequence replay [28]. Other
approaches are e.g. behavioral recall [14], which uses a percentage of correctly
classified positive events, or behavioral profile based metrics [32] which is based
on different constraints a process model can impose on a log. Most of the recent
research has been following the (average) alignment based trace fitness approach
introduced in [2]. One of the first proposed precision measurements is advanced
behavioral appropriateness [28]. Another approach, called behavioral specificity
[14], replays the sequences and takes the percentage of correctly classified nega-
tive events. A similar approach using the amount of “false positives” (behavior
allowed by model, but labeled a negative event based on the log) was defined
by [10]. A different approach using log prefix automatons and the number of
“escaping” edges, called the ETC precision, was introduced in [22]. Also align-
ment based precision methods have been proposed in [2], and later the one align
precision and best align precision [3]. Further, in recent years fitness and pre-
cision models comparing Markovian abstractions of the models and event logs
have been presented [5]. The Earth Mover’s Distance has previously been used
in conformance checking in the recent work of [18], although their approach re-
quires the Petri Nets to be stochastic (and does not use embeddings). For a more



Conformance checking using activity and trace embeddings 13

Table 5. Results of the discovery experiment. For WMD, ICT and t2v a value closer to
zero means a better fitness or precision. For the alignment based fitness and precision
[2], behavioral fitness [14] and the ETC precision [22] a value closer to 1 means a better
value.

Fitness Precision
wmd ict t2v [2] [14] wmd ict t2v [2] [22]

Tree 5

alpha 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000
ind. 0 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000
ind. 1 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000
ilp 0.000 0.000 0.000 0.898 0.898 0.000 0.000 0.000 1.000 1.000

Tree 6

alpha 3.233 2.751 0.766 0.300 0.786 3.327 2.864 0.504 0.000 1.000
ind. 0 0.000 0.000 0.015 0.933 0.071 0.000 0.000 0.011 0.410 0.274
ind. 1 0.000 0.000 0.018 0.849 0.727 0.000 0.000 0.011 1.000 0.998
ilp 0.000 0.000 0.290 0.766 0.804 0.000 0.000 0.000 0.969 1.000

Tree 7

alpha 0.459 0.459 0.178 0.882 0.866 1.718 1.670 0.316 0.923 0.989
ind. 0 0.000 0.000 0.000 0.879 0.733 0.000 0.000 0.000 0.995 0.994
ind. 1 0.000 0.000 0.000 0.879 0.733 0.000 0.000 0.000 0.995 0.994
ilp 0.000 0.000 0.001 0.859 0.711 0.000 0.000 0.000 0.998 0.999

Tree 8

ind. 0 0.000 0.000 0.006 0.832 0.466 0.002 0.002 0.006 0.691 0.526
ind. 1 0.183 0.172 0.048 0.809 0.542 0.000 0.000 0.007 0.954 0.909
ilp 0.001 0.001 0.006 0.784 0.710 0.000 0.000 0.004 0.937 0.957

Tree 9

alpha 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000
ind. 0 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000
ind. 1 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000
ilp 0.000 0.000 0.000 1.000 0.920 0.000 0.000 0.000 1.000 0.917

Tree 10

alpha 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000
ind. 0 0.000 0.000 0.000 0.976 0.950 0.000 0.000 0.000 0.998 1.000
ind. 1 0.000 0.000 0.000 0.976 0.950 0.000 0.000 0.000 0.998 1.000
ilp 0.000 0.000 0.002 0.948 0.946 0.000 0.000 0.000 1.000 1.000

Tree 11

alpha 0.114 0.093 0.034 0.315 0.979 0.000 0.000 0.001 0.000 0.936
ind. 0 0.000 0.000 0.002 0.802 0.721 0.273 0.237 0.041 0.586 0.352
ind. 1 0.971 0.866 0.265 0.296 0.342 1.542 1.136 0.221 0.987 0.901
ilp 0.210 0.177 0.061 0.811 0.713 0.000 0.000 0.001 0.901 0.952

Tree 12

ind. 0 0.243 0.149 0.136 / 0.238 0.400 0.232 0.192 / 0.001
ind. 1 2.440 2.158 0.537 0.640 0.241 0.459 0.459 0.237 0.664 0.646
ilp 1.441 1.281 0.564 0.640 0.428 0.000 0.000 0.001 0.944 1.000

comprehensive overview of conformance checking techniques, interested readers
are referred to [12].

6 Conclusion and Future Work

In this work a novel, fully data driven conformance analysis was introduced.
The techniques are inspired by the work in Natural Language Processing (NLP)
and rely on training meaningful embeddings for the different activities (and
instances) of the process. In a first simple empirical assessment based on exper-
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iments with artificial logs and models, we obtain promising results. More specif-
ically, we show that the newly introduced techniques are capable to correctly
assess when logs start to differ from each other. In our discovery experiment,
we do show that the metrics are intrinsically capable to detect fitness and/or
precision problems respectively. Nonetheless, a more elaborate design for the
discovery experiment is required in order to better understand and adjust the
values obtained. More concretely the WMD and ICT based method could be
standardized, in order to obtain a real metric with value between 0 and 1. In
the future we are also planning to move away from artificial data only and test
with real life logs. From a business point of view, it should be checked to what
extend similar traces but one crucial difference (error) are detected as being not
conforming. The information about conformance that could be extracted beyond
fitness and precision will also be investigated. So far, we have demonstrated that
embedding-based conformance checking can provide an interesting alternative
to classical conformance checking. Significant opportunities exist to leverage the
abstraction that neural networks can obtain, to gain insights into conformance
problems and report to end users. While for now, we have solely focused on mea-
surement development,it is important to realise that our methods have strong
potential to be extended towards real-life application. Nonetheless, there is still
plenty of future work that should be considered. First, an investigation on the
application of wrappers on the code seems worthwhile, especially when calculat-
ing the ICT, as this should ameliorate its efficiency significantly. More research
on the influence of different settings when training the embeddings could im-
prove understanding of how this novel technique could potentially be used in
real life. Optimizing the window size or possibly limiting the direction of the
window could potentially improve the methods. Other possible improvements
can be made in the inclusion of other n-grams in stead of only using 1-grams.
Due to the low vocabulary size of business processes as compared to NLP, usual
arguments to not use bag of n-grams based methods do not necessarily hold.
In this way the order of activities can also be taken into account. Other word
embeddings used in NLP like the deep contextualized Embeddings from Lan-
guage Models (ELMo) [13] or Global Vectors for Word Representation (GloVe)
[26] may be interesting to investigate. Also experimenting with the influence of
how the model plays out the model log, could potentially prove some valuable
insights. For the moment being, it was chosen to use random playing out but one
could also use e.g. a fully covering approach. Another key improvement to the
algorithm is related to a more explicit incorporation of the order of activities into
the calculations. This could either be done by changing the trace embeddings,
training them with e.g. a recurrent neural network [23], or, at the level of activity
embeddings, e.g. by adding extra dimensions to the activity embeddings (after
training) corresponding to the location in the trace. Evaluating the algorithm
with the recently proposed Conformance Propositions [30], would also help to
evaluate the quality of the technique. The evaluation of the technique regarding
these axioms should be performed in the near future.
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