53 research outputs found

    Extending Transactional Memory with Atomic Deferral

    Get PDF
    This paper introduces atomic deferral, an extension to TM that allows programmers to move long-running or irrevocable operations out of a transaction while maintaining serializability: the transaction and its de- ferred operation appear to execute atomically from the perspective of other transactions. Thus, program- mers can adapt lock-based programs to exploit TM with relatively little effort and without sacrificing scalability by atomically deferring the problematic operations. We demonstrate this with several use cases for atomic deferral, as well as an in-depth analysis of its use on the PARSEC dedup benchmark, where we show that atomic deferral enables TM to be competitive with well-designed lock-based code

    ActiveMonitor: Asynchronous Monitor Framework for Scalability and Multi-Object Synchronization

    Get PDF
    Monitor objects are used extensively for thread-safety and synchronization in shared memory parallel programs. They provide ease of use, and enable straightforward correctness analysis. However, they inhibit parallelism by enforcing serial executions of critical sections, and thus the performance of parallel programs with monitors scales poorly with number of processes. Their current design and implementation is also ill-suited for thread synchronization across multiple thread-safe objects. We present ActiveMonitor - a framework that allows multi-object synchronization without global locks, and improves parallelism by exploiting asynchronous execution of critical sections. We evaluate the performance of Java based implementation of ActiveMonitor on micro-benchmarks involving light and heavy critical sections, as well as on single-source-shortest-path problem in directed graphs. Our results show that on most of these problems, ActiveMonitor based programs outperform programs implemented using Java\u27s reentrant-lock and condition constructs

    Efficient Race Detection with Futures

    Full text link
    This paper addresses the problem of provably efficient and practically good on-the-fly determinacy race detection in task parallel programs that use futures. Prior works determinacy race detection have mostly focused on either task parallel programs that follow a series-parallel dependence structure or ones with unrestricted use of futures that generate arbitrary dependences. In this work, we consider a restricted use of futures and show that it can be race detected more efficiently than general use of futures. Specifically, we present two algorithms: MultiBags and MultiBags+. MultiBags targets programs that use futures in a restricted fashion and runs in time O(T1α(m,n))O(T_1 \alpha(m,n)), where T1T_1 is the sequential running time of the program, α\alpha is the inverse Ackermann's function, mm is the total number of memory accesses, nn is the dynamic count of places at which parallelism is created. Since α\alpha is a very slowly growing function (upper bounded by 44 for all practical purposes), it can be treated as a close-to-constant overhead. MultiBags+ an extension of MultiBags that target programs with general use of futures. It runs in time O((T1+k2)α(m,n))O((T_1+k^2)\alpha(m,n)) where T1T_1, α\alpha, mm and nn are defined as before, and kk is the number of future operations in the computation. We implemented both algorithms and empirically demonstrate their efficiency

    pocl: A Performance-Portable OpenCL Implementation

    Get PDF
    OpenCL is a standard for parallel programming of heterogeneous systems. The benefits of a common programming standard are clear; multiple vendors can provide support for application descriptions written according to the standard, thus reducing the program porting effort. While the standard brings the obvious benefits of platform portability, the performance portability aspects are largely left to the programmer. The situation is made worse due to multiple proprietary vendor implementations with different characteristics, and, thus, required optimization strategies. In this paper, we propose an OpenCL implementation that is both portable and performance portable. At its core is a kernel compiler that can be used to exploit the data parallelism of OpenCL programs on multiple platforms with different parallel hardware styles. The kernel compiler is modularized to perform target-independent parallel region formation separately from the target-specific parallel mapping of the regions to enable support for various styles of fine-grained parallel resources such as subword SIMD extensions, SIMD datapaths and static multi-issue. Unlike previous similar techniques that work on the source level, the parallel region formation retains the information of the data parallelism using the LLVM IR and its metadata infrastructure. This data can be exploited by the later generic compiler passes for efficient parallelization. The proposed open source implementation of OpenCL is also platform portable, enabling OpenCL on a wide range of architectures, both already commercialized and on those that are still under research. The paper describes how the portability of the implementation is achieved. Our results show that most of the benchmarked applications when compiled using pocl were faster or close to as fast as the best proprietary OpenCL implementation for the platform at hand.Comment: This article was published in 2015; it is now openly accessible via arxi

    Fast Nonblocking Persistence for Concurrent Data Structures

    Get PDF
    We present a fully lock-free variant of our recent Montage system for persistent data structures. The variant, nbMontage, adds persistence to almost any nonblocking concurrent structure without introducing significant overhead or blocking of any kind. Like its predecessor, nbMontage is buffered durably linearizable: it guarantees that the state recovered in the wake of a crash will represent a consistent prefix of pre-crash execution. Unlike its predecessor, nbMontage ensures wait-free progress of the persistence frontier, thereby bounding the number of recent updates that may be lost on a crash, and allowing a thread to force an update of the frontier (i.e., to perform a sync operation) without the risk of blocking. As an extra benefit, the helping mechanism employed by our wait-free sync significantly reduces its latency. Performance results for nonblocking queues, skip lists, trees, and hash tables rival custom data structures in the literature - dramatically faster than achieved with prior general-purpose systems, and generally within 50% of equivalent non-persistent structures placed in DRAM

    A Comprehensive Survey on Distributed Training of Graph Neural Networks

    Full text link
    Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. At present, the volume of related research on distributed GNN training is exceptionally vast, accompanied by an extraordinarily rapid pace of publication. Moreover, the approaches reported in these studies exhibit significant divergence. This situation poses a considerable challenge for newcomers, hindering their ability to grasp a comprehensive understanding of the workflows, computational patterns, communication strategies, and optimization techniques employed in distributed GNN training. As a result, there is a pressing need for a survey to provide correct recognition, analysis, and comparisons in this field. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.Comment: To Appear in Proceedings of the IEE

    Tailoring Transactional Memory to Real-World Applications

    Get PDF
    Transactional Memory (TM) promises to provide a scalable mechanism for synchronizationin concurrent programs, and to offer ease-of-use benefits to programmers. Since multiprocessorarchitectures have dominated CPU design, exploiting parallelism in program

    Easier Parallel Programming with Provably-Efficient Runtime Schedulers

    Get PDF
    Over the past decade processor manufacturers have pivoted from increasing uniprocessor performance to multicore architectures. However, utilizing this computational power has proved challenging for software developers. Many concurrency platforms and languages have emerged to address parallel programming challenges, yet writing correct and performant parallel code retains a reputation of being one of the hardest tasks a programmer can undertake. This dissertation will study how runtime scheduling systems can be used to make parallel programming easier. We address the difficulty in writing parallel data structures, automatically finding shared memory bugs, and reproducing non-deterministic synchronization bugs. Each of the systems presented depends on a novel runtime system which provides strong theoretical performance guarantees and performs well in practice
    • …
    corecore