
ActiveMonitor: Asynchronous Monitor Framework
for Scalability and Multi-Object Synchronization∗

Wei-Lun Hung1, Himanshu Chauhan2, and Vijay K. Garg3

1 University of Texas, Austin, USA
wlhung@utexas.edu

2 University of Texas, Austin, USA
himanshu@utexas.edu

3 University of Texas, Austin, USA
garg@ece.utexas.edu

Abstract
Monitor objects are used extensively for thread-safety and synchronization in shared memory
parallel programs. They provide ease of use, and enable straightforward correctness analysis.
However, they inhibit parallelism by enforcing serial executions of critical sections, and thus the
performance of parallel programs with monitors scales poorly with number of processes. Their
current design and implementation is also ill-suited for thread synchronization across multiple
thread-safe objects. We present ActiveMonitor – a framework that allows multi-object synchron-
ization without global locks, and improves parallelism by exploiting asynchronous execution of
critical sections. We evaluate the performance of Java based implementation of ActiveMonitor
on micro-benchmarks involving light and heavy critical sections, as well as on single-source-
shortest-path problem in directed graphs. Our results show that on most of these problems,
ActiveMonitor based programs outperform programs implemented using Java’s reentrant-lock
and condition constructs.

1998 ACM Subject Classification D.1.3 Concurrent Programming

Keywords and phrases concurrent/parallel programming, monitors, concurrency

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.29

1 Introduction

Most, if not all, programmers follow a standard recipe to implement shared memory parallel
programs: they identify the critical sections in the serial implementation of the program,
and make them thread-safe in the style of monitors [22]. Monitors provide dual abstractions:
mutual exclusion and synchronization between threads. Their simplicity and elegance of use,
and ready availability of mutexes/locks are two key factors behind such a wide adoption of
this style. By enforcing serialized executions of critical sections, mutexes trivially guarantee
the safety of data. Under high contention scenarios, however, such serialized executions
become obvious performance bottleneck. In addition, mutexes force memory fencing due
to which latency hiding techniques such as caching, pre-fetching, and operation re-ordering
cannot be exploited to their fullest. As a combined effect of all these factors, programs in
traditional monitor-style fare poorly in terms of throughput and scalability on multi-core
CPUs. Mutex-based monitor implementations have another limitation: method invocations

∗ Supported in part by NSF Grants CNS-1346245, CNS-1115808, and Cullen Trust. A short version of
this paper appeared as a brief announcement in DISC’2014.

© Wei-Lun Hung, Himanshu Chauhan, and Vijay K. Garg;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 29; pp. 29:1–29:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 ActiveMonitor: Asynchronous Monitor Framework

ActiveMonitor
Java Library

ActiveMonitor
Preprocessor

ActiveMonitor
Code

Java Code Standard Java
Compiler

Java
Bytecode

Figure 1 ActiveMonitor framework.

across multiple monitors cannot be combined easily. For example, given two thread-safe
blocking queues, consider the problem of dequeueing an item from either of them. There is
no easy solution to the problem of using mutex based synchronous monitors [19].

We present ActiveMonitor, a framework that provides significant programming ease in
writing thread-safe programs, allows multi-object synchronization, as well as improves the
runtime performance of these programs by exploiting asynchronous delegated executions
on modern multi-core hardware. Extending our previous work AutoSynch [24], which
provides waituntil keyword for automatic signaling and thread synchronization, ActiveMonitor
framework enables asynchronous executions of critical sections, as well as method composition
across monitor objects through simple constructs. Recall that monitors were envisioned in
1970’s when saving processor cycles of the single-core CPUs was a primary programming
concern. In contrast, not only multi-core processors are now ubiquitous, but they are also
significantly cheaper and faster. In order to exploit the multi-core resources, we allow a
monitor object to exist as a thread – hence it becomes an active artifact of the program.
With this change, method invocations on this monitor object can be delegated [35]. In
addition, we allow the monitor thread to execute critical sections asynchronously, so that
calling threads can return to their local work without waiting for their completion.

Using ActiveMonitor involves the following steps (Fig. 1 shows the framework over-
view):
(a) The programmer writes a monitor based parallel program using the ActiveMonitor

keywords. These keywords are: monitor, waituntil, synchronous, asynchronous, and notthread-
safe. He/she can use two additional operators OR and AND for compositionality across
multiple monitor objects. ActiveMonitor automatically manages the use use of locks,
and their acquisition/release so that the user is not required to explicitly program them.
The user is also free from the responsibility of checking the predicate condition(s) and
signaling appropriate threads. The framework observes the values of predicate conditions
at runtime, and signals the appropriate threads automatically.

(b) He/she then runs the ActiveMonitor pre-processor to generate the program’s equivalent
Java code. The pre-processor injects code snippets to provide the corresponding function-
ality of framework keywords. The pre-processor also links invocations of ActiveMonitor
runtime library API in the generated code.

(c) The program is then compiled as a standard Java program, and the binaries benefit
from asynchronous executions of critical sections, and automatic signaling. If needed,
the user can easily disable asynchronous executions at runtime by simply passing a flag.
ActiveMonitor enables operations that are not possible with traditional synchronous

monitors. Solving the problem of removing an element from either of n blocking queues,
where n ≥ 2, is a challenging task with traditional monitors [19]. In ActiveMonitor it is
just a matter of using the framework’s OR construct: x = Q1.deqeue() OR Q2.dequeue()
. . . . Similarly, the AND construct of the framework allows the programmer to aggregate
results from multiple operations across different monitors. Our design and implementation
integrates seamlessly with current constructs provided by most programming languages, and

W.L. Hung, H. Chauhan, and V.K. Garg 29:3

can thus benefit existing programs with only a handful of syntactic changes. The results
of our experimental evaluation (using Java1) on five multi-threading problems show that
ActiveMonitor outperforms, by a factor of two or more in some cases, traditional monitor
based programs implemented using Java’s ReentrantLock [30], and delegation technique [35]
on most of these problems. In our current implementation of ActiveMonitor, use of thread
dependent variables and functions is restricted. Note that this only disables the asynchronous
executions provided by ActiveMonitor and the framework can still be used for such problems.
We discuss these issues in § 9.

2 ActiveMonitor: Concepts & Design

In ActiveMonitor framework, each method of a monitor is a critical section – unless oth-
erwise specified (using notthreadsafe keyword described shortly ahead). We use the term
worker to denote an application thread/process. A monitor object can be instantiated as a
thread/process based on the availability of system resources. This thread is called a server,
and invocation of critical sections of monitor by workers are delegated to it. Delegation [35]
is a technique in which critical sections of a monitor are not executed directly by workers
invoking the method, but are processed by the server thread on behalf of workers. The
workers announce their execution requests – in the form of tasks – to the server by adding
the requests (task objects) to a shared storage that is owned by the monitor. Combining
[15, 10] is a version of delegation in which the role of server is assumed by the worker that
succeeds in acquiring the lock to the critical section. This thread becomes the combiner,
and in addition to its own request, serves requests announced by other threads for a period
of time before releasing the lock and allowing some other thread to become the combiner.
Throughout this paper, we use the term server in both delegation and combining contexts.
A critical section is asynchronous (or non-blocking) if the worker can return to executing
its own local program from the critical section before its completion. Otherwise the critical
section is synchronous (or blocking).

ActiveMonitor provides the following constructs for writing monitor based programs:
1. monitor: keyword that declares a class as a monitor, and frees the user from explicit lock

instantiations, and their acquisition/release to make the critical sections thread-safe.
2. waituntil: a statement for conditional waits and notifications. The statement requires a

boolean predicate as an argument.
3. synchronous: keyword used in declaration of monitor methods. Such methods are made

thread-safe but not delegated to the server (monitor thread) for execution.
4. asynchronous: keyword used in declaration of monitor methods. Such methods are

delegated to the server (monitor thread) , and the worker thread returns to its own
local execution before completing the method. If the worker requires the result of the
computation, it receives a future [12] instance which can be evaluated – a blocking call if
the result is not yet available – to fetch the result.

5. notthreadsafe: this keyword in a method signature tells the framework to not generate
thread-safe code for this method. incompatible with the previous two keywords: waituntil
and asynchronous.

6. OR/AND: operators for logical composition of monitor methods. If a result is required
from either of these operator calls, then the framework stipulates that all the operand

1 Our technique is not limited to Java, and applies to any other modern programming language.

OPODIS 2015

29:4 ActiveMonitor: Asynchronous Monitor Framework

1 monitor class BoundedQueue<T> {
2 T[] items;
3 int putPtr, takePtr, count, size;
4 BoundedQueue(int size) {
5 this.size = size;
6 items = new Object[size];
7 }
8 aysnchronous void put(T item) {
9 waituntil(count < size);

10 items [putPtr++] = item;
11 putPtr = putPtr % size;
12 ++count;
13 }
14 T take() {
15 waituntil(count > 0);
16 T x = (T)(items [takePtr++]);
17 takePtr = takePtr % size;
18 --count;
19 return x;
20 }
21 }

Figure 2 Bounded-Queue with ActiveMonitor.

method calls have the same return type. The order of operations is defined based on the
evaluation of the pre-conditions (of operand monitor methods) at runtime.

Defaults: ActiveMonitor makes all monitor methods thread-safe by default. Each method
that returns void and updates monitor state is asynchronous by default unless otherwise
declared. Each method that returns a type value (and not a void) is made synchronous unless
explicitly declared asynchronous by the user. Each read-only method – determined by static
analysis of the program in the pre-processing/compilation phase – is also made synchronous
irrespective of its return type. By doing so, the framework is able to use read-locks for
such methods to exploit the inherent read parallelism in the program. The bounded queue
implementation in Fig. 2 shows the actual usage of monitor, and asynchronous keywords, as
well as the waituntil statement. Note that take() method will be made synchronous by the
framework as it returns a value and is not explicitly declared asynchronous. As shown in the
design overview of Fig. 1, the framework has two main components: a pre-processor and a
runtime Java library. The pre-processor translates ActiveMonitor code into Java code. In
addition, it also identifies the critical sections that are eligible for asynchronous execution.
For each such method (critical section), the pre-processor generates its equivalent task.

It then replaces invocation of these methods (by application threads on monitor object) by
submission of tasks to the server of the monitor. The runtime library has two sub-components:
condition manager and task executer. The condition manager is responsible for observing the
state of the monitor object for conditional waits and signaling an appropriate thread whenever
its precondition becomes true. The task executer component manages the submission and
completion of monitor tasks and also handles their asynchronous executions.

Our pre-processor uses a set of parsing rules that identify the ActiveMonitor keywords,
and is an extension of the pre-processor in our previous work AutoSynch [24]. We briefly
discuss its steps, and refer the reader to [24] for details. For a source class that is declared

W.L. Hung, H. Chauhan, and V.K. Garg 29:5

monitor, the pre-processor ensures that each method of the class is protected using the
re-entrant lock by inserting lock acquisition and release statements at the beginning and
end of method code. It then parses the method code for waituntil statements, and for each
such statement it creates a new condition in the monitor class. For every condition, the
notification criteria is the boolean predicate provided as the argument to its corresponding
waituntil statement. Then it analyzes the method to decide whether or not it should be
delegated. If the method is declared asynchronous or does not returns a value and updates
the shared data, the pre-processor generates an equivalent task for delegation. We discuss
monitor tasks, their generation and compositionality in the next section.

3 Monitor Tasks

In ActiveMonitor, a monitor task is defined as follows.

I Definition 1 (Monitor Task). A monitor task t consists of a boolean predicate P and a set
of statements S. At runtime, if the precondition defined by P is true then t is ‘executable’
and statements in S can be executed to complete t. Otherwise, t is ‘unexecutable’.

For a task t, its set of statements S can be empty. The pre-condition P – passed as an
argument to waituntil statement – can either be absent altogether or may not appear as the
first statement in the monitor method. When a monitor method has no precondition, the
pre-processor creates a task with its precondition as tautology, indicating that the task can
be executed at any time. If a monitor method does not start with a waituntil statement but
has some such statement in between, then the precondition of the first derived task is a
tautology. Consider the put method (lines 8–13) of the bounded-buffer program of Fig. 2. For
this monitor method, the equivalent monitor task t is defined by the code of lines 9–12. For t,
the precondition P is (count < buffer_size); and it checks if the buffer has any space to insert
the item. If this condition is false, the waituntil construct ensures that any thread trying to
complete this task has to wait until the buffer has some space to insert the items. Lines 10
and 11 together form the set of statements S. The method is explicitly declared asynchronous,
so the generated task is submitted for an asynchronous execution to the monitor thread.

3.1 Asynchronous Execution of Tasks
After an equivalent task t for a method m has been generated, all the invocations of m by
workers are executed with combining technique [15, 10]. We use futures [12] for asynchronous
(non-blocking) executions of critical sections. For each asynchronous method call the pre-
processing phase injects submission of a task to the server (monitor thread) . A future
reference is returned to the worker as a pointer to the computation. Whenever the server
finishes the execution of a task, it updates its corresponding future reference with the result
of the computation. If the worker needs the result of the computation it evaluates the future.
Evaluation of a future is a blocking method: if the computation has not finished then the
caller must wait until its completion. Note that unlike the schemes of [35, 15, 10], neither the
server nor the worker threads perform busy-wait/spinning in ActiveMonitor. Thus, we do not
waste any processing cycles and yield the CPU when there are no tasks to execute. Hence,
ActiveMonitor provides a much more practical implementation for delegated executions.

To guarantee program order, ActiveMonitor framework stipulates that each worker can
only submit one asynchronous task at a time. The task executor sub-component of the
runtime library handles this by storing a map of ids of worker threads and their corresponding
task submissions. Whenever a worker tries to submit an asynchronous task, it first checks

OPODIS 2015

29:6 ActiveMonitor: Asynchronous Monitor Framework

the map to verify if there is some previous asynchronous task stored against its id that is not
yet finished. The worker is forced to wait – by evaluating the future – for the completion of
that task before being allowed to submit the new task. If the programmer understands the
implications of out-of-program-order asynchronous executions, and wishes to exploit them
then he/she can relax the program order execution by passing an argument to the runtime
library. This change usually results in higher program throughputs. A detailed discussion on
this topic can be found in our technical report [1].

4 Runtime Library

The runtime library of ActiveMonitor provides two key functionalities: (a) automatic signaling
of threads under conditional waiting, and (b) delegation and asynchronous executions of
critical sections. We extend our previous work AutoSynch [24] to enable functionality (a) for
task based asynchronous executions and for multi-object synchronization through OR/AND
operators. We summarize the key concepts here, and refer the interested reader to [24] for
details.

4.1 Automatic Signaling
In current programming languages/libraries conditional synchronization through mutexes
requires programmers to explicitly associate conditional predicates with condition variables
and call signal (signalAll) or await statements manually. In contrast, ActiveMonitor frame-
work manages conditional synchronization and thread signaling, and relieves the programmer
of their explicit handling. The programmer only needs to use the waituntil clause. The
idea of automatic signaling was initially explored by Hoare [22], but rejected in favor of
condition variables due to efficiency considerations. Buhr et al. [3] claim that automatic
monitors are 10 to 50 times slower than explicit signals. This is mainly due the sub-optimal
implementation techniques that result in excessive predicate evaluations for conditions and
subsequent context switches. In [24], we provide an efficient mechanism that improves the
automatic signaling performance tremendously.

We use three concepts that enable efficient automatic signaling: closure of predicates,
relay invariance, and predicate tagging. The technique of closure of a predicate P is used
to reduce the number of context switches for its evaluation. In the current systems, only
the thread that is waiting for the predicate P can evaluate it. When the thread is signaled,
it wakes up, acquires the lock to the monitor and then evaluates the predicate P . If the
predicate P is false, it goes back to waiting. This results in an additional context switch. In
our system, the thread that is in the monitor evaluates the condition for the waiting thread
and wakes it only if the condition is true. Since the predicate P may use variables local to
the thread waiting on it, ActiveMonitor derives a closure predicate P ′ of the predicate P ,
such that other threads can evaluate P ′.

The idea of relay invariance is used to avoid signalAll calls in ActiveMonitor. We ensure
that if there is any thread whose waiting condition is true, then there exists at least one
thread whose waiting condition is true and is signaled by the system. With this invariance,
the signalAll call is unnecessary in our automatic-signal mechanism. With relay invariance,
the privilege to enter the monitor is transmitted from one thread to another thread whose
condition has become true. This mechanism guarantees progress, and reduces the number of
context switches by avoiding signalAll calls.

The idea of predicate tagging is used to accelerate the process of deciding which thread
to signal. All the waiting conditions are analyzed and tags are assigned to every predicate

W.L. Hung, H. Chauhan, and V.K. Garg 29:7

according to its semantics. To decide which thread should be signaled, we identify tags that
are most likely to be true after examining the current state of the monitor. Then we only
evaluate the predicates with those tags.

We extend these concepts to task based executions by allowing conditions within asyn-
chronous tasks. As defined in Defn. 1, each task has a boolean predicate P . This predicate
captures the pre-condition for the task’s execution. Before executing any task, the server
thread must verify that this condition is true. If not, the task is not executable and the
server does not execute it. The runtime handling of conditional synchronization for OR/AND
operators is described in § 5.

4.2 Execution of Monitor Tasks
ActiveMonitor runtime library executes monitor tasks using the following rules.

I Rule 1 (Mutex Invariant). If some thread t is executing a task m of monitor M , then no
other thread can execute any task m′ of M concurrently.

This rule maintains the mutual exclusion of critical sections of a monitor. We require two
additional rules to guarantee execution of tasks in program order. Let proc(t) denote the
worker thread that submits the task t to a monitor. Let sub(t) and exe(t) respectively
indicate the timestamps when t is submitted to the monitor, and when the server thread
starts executing t.

I Rule 2. For a pair of tasks s and t submitted to a monitor M , if proc(s) = proc(t), then
sub(s) < sub(t)⇒ exe(s) < exe(t).

This rule ensures that a server (monitor thread) executes every worker’s tasks in the program
order of worker.

I Rule 3. Let m1, m2 be two successive method invocations by a worker thread on two
different monitors M1 and M2 in the user program, and let t1, t2 be their corresponding task
submissions at runtime. Then, t1 must be completed before t2’s submission.

This rule enforces the constraint on a thread’s successive invocations of methods on different
monitor objects. Blocking method invocations in between these two calls are acceptable.

The notions of method invocation and response used to define linearizability [21] need a
different interpretation under asynchronous executions. In short, invocation now corresponds
to submission of the equivalent task to monitor thread, and response corresponds to this
task’s completion. Observe that the legal sequential history we get may not preserve the
order of invocation of operations, but only the thread order. With this interpretation, we
can easily validate the following result.

I Lemma 2. Rules 1, 2 and 3 guarantee executions equivalent to lock-based executions.

5 Compositionality: Multi-object Synchronization

Monitor tasks are compositional in nature. Suppose a monitor method declares n in the
form of waituntil(Pi) Si, where 1 ≤ i ≤ n, to enforce that the set of statements Si must
be executed iff predicate Pi is true. To execute this method, ActiveMonitor generates n

tasks such that each task ti has a precondition Pi and a corresponding set of statements Si.
More importantly, with monitors allowed to be ‘active’ as threads, ActiveMonitor enables
compositionality of blocking operations across different monitor objects. Consider two

OPODIS 2015

29:8 ActiveMonitor: Asynchronous Monitor Framework

instances Q1 and Q2 of a blocking queue implementation, with dequeue method signature
being deq(). As the queue is blocking, a call to deq() will block the calling thread if the
queue is empty. Consider the problem of dequeueing from either of these instances, and
storing the returned item into a variable x. If both queues are empty, then we should block
until an item is available in either one. In ActiveMonitor, the code is simply one statement:
x = Q1.deq() OR x = Q2.deq(). Solving this problem using the traditional mutex based
blocking queue implementations is extremely difficult [19]. An ad hoc solution is to use a
global lock and a lock-free/wait-free implementation of deq. But this solution does not scale
because a global lock inhibits parallelism. Even with transactional memory [19] the problem
is not easy to solve. To the best of our knowledge, no transactional memory implementation
provides explicit wait/notify construct on individual thread-safe objects to release the CPU.
An implementation [38] to allow waiting in transactional memory requires continuous loop
based busy-waiting on conditions. Implementations such as [9] propose global lock based
solutions for waiting and thus curb parallelism. Not only ActiveMonitor’s asynchronous
execution approach provides an elegant solution, but it also allows parallelism. Similarly, the
AND operator allows conjunction of operations across multiple monitor objects, such that
these operations can be performed in parallel.

5.1 Implementing AND & OR Operators in ActiveMonitor
For both of these operators, ActiveMonitor stipulates that the operands – monitor method
calls – must be on different monitor objects. This is needed to guarantee program order
under conditional synchronization across monitors. The pre-processor raises a parsing error if
this constraint is not met. If the constraint is met, the pre-processor generates the equivalent
task for each operand conjunct/disjunct clause, and stores them as a collection within a
container object that is directly mapped to the operator. Note that if there are multiple
statements with same operator usage, all of them are treated as independent, and a container
object is generated for each of them. The operand calls are then replaced by the submission
of tasks to the corresponding monitors.

The runtime library delegates the tasks to their respective target servers (monitor threads)
for execution. It also observes all the preconditions of these tasks and ensures that they are
executed whenever these conditions are met. For AND operator, the worker that called the
operator is forced to wait for the completion of all the tasks. This is achieved by forcing
the worker to evaluate the future reference returned by each task submission. Once all the
futures have been evaluated, the result of the operator is stored in the designated storage if
needed. For example, consider the statement: Q1.enq(a) AND Q2.enq(b); where Q1 and Q2
are two bounded-queues. Then the framework generates two tasks t1 and t2, and submits
them to the server threads of Q1 and Q2. It then registers the returned future references with
the worker thread that called the statement, and forces it to evaluate both the futures such
that the worker remains blocked until both a and b are enqueued in Q1 and Q2 respectively.

For statements with OR operator, the container object that holds the tasks – that are
equivalent to the constituent disjunct clauses of OR– also maintains an atomic flag called
taken. This flag is initially set to false. To execute the composition statement, the runtime
first parks the calling worker thread, and submits the tasks stored in the container object to
their respective server (monitor). Recall that the relay invariance of our automatic signaling
ensures that whenever the pre-condition of some task of the OR is met, its server thread is
signaled. To guarantee that only one clause (equivalent task) of the OR statement is executed,
the server thread performs a compare-and-swap (CAS) operation on the taken flag of the
container object. If and only if the server’s CAS operation succeeds, ie. the value of the flag

W.L. Hung, H. Chauhan, and V.K. Garg 29:9

was false and this server set it to true, the server proceeds to execute the task submitted to
it. Since only one thread can succeed in atomically setting the flag, we are guaranteed that
only one of the tasks will be executed. Every other server thread that executes the CAS and
fails can discard its task for the OR statement.

6 Implementation

We now describe implementation details that make ActiveMonitor practical in terms of
use with real world applications, as well as scalable and faster. Recall that unlike other
delegation/combining implementations [35, 15, 10], threads do not perform busy-wait in
ActiveMonitor. To enable conditional wait and yielding the CPU, our implementation uses a
read/write lock for executing updates on each server thread. This ensures: (a) reads do not
return stale values, and (b) servers/workers can release the CPU and go into waiting state
whenever required as per runtime conditions. We employ a modified version of combining
[15, 10] for executing critical section updates. When submitting a task to a monitor, a worker
thread checks if the server of the monitor is in waiting state. If so, the worker acquires the
lock – becomes the combiner – and executes a predefined number (five in our implementation)
of tasks before releasing the lock. Observe that the actual acquisitions of the write-lock are
mostly uncontended under this approach. Uncontended lock acquisitions are known to be
relatively inexpensive, and thus threads does not incur significant performance penalty in
doing so. For asynchronous tasks, we use a lightweight version of future objects that are
shared between only one worker thread and the server. Only the server can update the state
of these objects. Instead of using the default ones provided by the Java concurrent library
[30], we create these objects using only a few volatile variables. Instead of using the default
wait/notify mechanism provided by Java, we use the lower level API of park and unpark [30]
for threads. Using the lower level API allows a more fine-grained control on execution of
these threads.

6.1 Storage of Tasks: Single Consumer Optimal Bounded Queue
Although asynchronous executions generally benefit the application performance, a large
number of asynchronous tasks in the system lead to degraded performance due to higher
number of cache misses. To prevent this, ActiveMonitor maintains a bounded FIFO queue for
each server in which the workers enqueue their tasks. Given that ActiveMonitor instantiates
only one server thread (if any) per monitor object, this bounded-queue is a special case of
the producer-consumer problem with only one consumer and multiple producers. Only the
server consumes the items (tasks) from this queue, and all the workers produce the items.
For this use-case, we developed an optimized algorithm for a thread-safe bounded FIFO
queue that minimizes the synchronization costs for the consumer. The pseudocode of this
algorithm can be found in the technical report at [1].

Our BoundedQueue is backed by a linked-list: the items are stored in the nodes of the
linked-list. Only insertions in the queue require guarded execution under a lock to ensure
correctness while multiple threads concurrently attempt to insert items. Only a single thread
performs removal of items, and thus we do not require a lock to protect concurrent removals.
However, maintaining the correct count of actual number of items in the queue is essential.
This is done using the atomic integer count. We adopt a ‘stealing’ strategy in which the
consumer locally caches the number of available items in a look-ahead manner and reads
and updates the atomic integer count only when needed. Hence, the number of upadates to
the atomic integer count is kept low, which in turn reduces the cache-coherence traffic, and

OPODIS 2015

29:10 ActiveMonitor: Asynchronous Monitor Framework

Table 1 Short description of problems evaluated.

Name Short Desc. CS Work [Type] Details

PSSSP Parallel single-source-shortest-path using
Dijkstra’s algorithm [7] using priority queue. O(log n) [Heavy] (a) USA road network graphs

(b) R-MAT Graphs [5]

BQ Bounded FIFO queue of plain Java
objects. O(1) [Light] Capacity varied from 4 to 64; number of

enqueuers is equal to the number of dequeuers.

SLL Linked-list of integers; entries are kept
sorted in non-decreasing order. O(n) [Heavy]

(a) Read-heavy: 90% reads, 9% insert, 1% delete
(b) Write-heavy: 0% reads, 50% insert, 50% delete
(c) Mixed: 70% reads, 20% insert, 10% delete

RR Round-robin monitor access from [24]. O(1) [Light] each thread accesses monitor in a predefined
round-robin manner based on thread-id.

improves the throughput and scalability. Whenever there is no task (in its bounded-queue)
for the server to execute, it is forced to go into wait. The server performs this wait outside
the queue using a condition variable that it owns. The automatic signaling mechanism of the
runtime library ensures that it is signaled and wakes up from the wait if a new executable
task is enqueued in the queue.

For the single consumer multiple producer use-case, the throughput of our implementation
is significantly higher than those of queue implementations from Java’s util.concurrent package.
The throughput comparison results on a saturation based micro-benchmark can be found
in [1].

6.2 Monitor Thread Management
If we spawn a new thread for every monitor object, the performance of programs with
relatively large number of monitors could suffer. ActiveMonitor allows the programmer
to manually control this number, as well as itself controls the number of monitor threads
based on the system hardware resources. The programmer can indicate an upper bound on
the number of monitor threads when starting the application. The ActiveMonitor runtime
library uses this limit in restricting the number of monitor threads spawned. If this limit is
reached, no other monitor threads are created, and invocations of asynchronous methods
on remaining monitors (that are not instantiated as threads) also follow the conventional
synchronous (blocking) execution.

Irrespective of the user provided upper bound on server threads, the runtime library
only instantiates a thread for a monitor if there is sufficient hardware available. The
runtime library monitors the system environment information: CPU usage (for example from
/proc/stat on Unix), and the size of wait-queues of monitor objects, to decide whether or not
monitors should be executing as threads. If the CPU usage is high, our framework switches
to traditional locking.

7 Evaluation

We implement monitor based solutions to multiple concurrency problems using ActiveMonitor,
ReentrantLocks from JDK7, and combining [10] – that does not perform continuous busy-
waits – by executing ActiveMonitor in only synchronous mode. We evaluate the performance
of these implementations on light and heavy critical sections. Light critical sections (relatively
small number of operations) do not involve much work within them, and favor traditional
lock-based monitors as the overhead of maintaining additional information for delegated
executions outweighs their benefits. On the other hand, heavy critical sections (large
number of operations within CS) provide increased opportunity for exploiting asynchrony
and parallelism. Table 1 presents a summary of problems used for our evaluation.

W.L. Hung, H. Chauhan, and V.K. Garg 29:11

All the experiments are conducted on a 40-core Intel Xeon machine that consists of four
sockets of Xeon E7-4850 10-core (20 hyper-threads), running at 2 GHz with 32 KB L1, 256
KB L2, and 24 MB LLC, respectively. Compilation and execution both are performed with
Oracle Java 1.7 (64-bit VM). Across all results, we denote the implementations with the
following notation: LK: implementation using Java’s ReentrantLock, AM: ActiveMonitor
with asynchronous executions, and AMS: ActiveMonitor running with only synchronous
delegations.

For PSSSP problem, a thread-safe priority queue is used as an underlying data structure.
ActiveMonitor solution of this problem uses the monitor-based implementation of an unboun-
ded blocking priority queue from Java’s concurrency package java.util.concurrent, and only
modifies it to make the put method asynchronous. We evaluate the time taken to compute
the shortest paths to all vertices from a randomly selected source vertex. We use five large
sized directed graphs. Two of these graphs, FLA and NY, are USA road-network graphs
of Florida, and New York obtained from [8], and the remaining three graphs: R16, R128,
and R512 are generated using the GTGraph [2] generator suite. The three synthetic graphs –
R16, R128, and R512 – have 5× 104 vertices each, and 1.6× 106, 1.28× 107, and 5.12× 107

edges respectively.
For all other problems we collect the throughput of operations over a 2 second period

with varying number of workers. For BQ problem, the items in queue are randomly generated
strings, with enqueue operation being asynchronous and dequeue being synchronous. For
SLL problem, we pre-populated the data structure with 1000 entries to simulate steady
state behavior. For all the operations, the operand values are chosen uniformly at random
between 0 and 2000. This guarantees that on average, half of the operations are successful
and the structure size does not grow too large. Insertions and deletions in the list are
asynchronous and searches are synchronous. For RR, all accesses to the critical section
are synchronous. BQ and RR problems require threads to perform conditional waiting.
For these two problems, we also compare the performance of ActiveMonitor with that of
Queue Delegation Locking [26], denoted by QD notation, by adding conditional waiting to
QD. The purpose of this comparison is to establish that our approach of using automatic
signaling with asynchronous executions can out-perform QD’s approach of asynchronous
delegation under lock-unavailability. In addition, we also compute throughput of performing
OR implementations. For logical-or operations, we also tried to evaluate the performance of
a transactional memory implementation [40] but this implementation resulted in runtime
errors and could not execute the statements.

We perform multiple warm-up runs to negate just-in-time compilation related performance
variations. In addition, all threads perform a fixed number of warm-up operations before
starting the time measurements. For all the experiments, we collect runtimes for 7 runs, and
report the mean value of 5 runs after discarding the highest and lowest values.

7.1 Results
Fig. 3 plots the throughput of the three PSSSP implementations in edges traversed per unit
time format. Given that the three synthetic R-MAT [5] generated graphs are relatively
dense in comparison to the road network graphs NY and FLA, the throughput values for
all the implementations are higher for these graphs. AM outperforms both of LK and AMS.
Specifically, on R512 graph – one with the highest density – AM is much faster than the other
two. Given that the same implementation of priority queue is used as the underlying data
structure for all three implementations, and the only difference is in terms of asynchronous
inserts, these results validate our claim that AM approach is much more beneficial for heavy
critical sections.

OPODIS 2015

29:12 ActiveMonitor: Asynchronous Monitor Framework

LK AM AMS QD

0

320

640

960

1280

1600

0 20 40 60 80T
hr
ou

gh
pu

t
(K

ed
ge
s/
s)

NY

0

340

680

1020

1360

1700

0 20 40 60 80

FLA

0

300

600

900

1200

1500

0 20 40 60 80

R16

0

1060

2120

3180

4240

5300

0 20 40 60 80

R128

0

3260

6520

9780

13040

16300

0 20 40 60 80

R512

Figure 3 Throughput for PSSSP using priority queue (x-axis shows the number of threads)

0

80

160

240

320

400

0 20 40 60 80

T
hr
ou

gh
pu

t
(K

op
s/
s)

Capacity = 4

0

100

200

300

400

500

0 20 40 60 80

Capacity = 8

0

160

320

480

640

800

0 20 40 60 80

Capacity = 16

0

280

560

840

1120

1400

0 20 40 60 80

Capacity = 32

0

500

1000

1500

2000

2500

0 20 40 60 80

Capacity = 64

Figure 4 Throughput for Bounded FIFO Queue (x-axis shows the number of threads)

0

20

40

60

0 20 40 60 80T
hr
ou

gh
pu

t
(K

ed
ge
s/
s)

SLL Write-heavy

0

20

40

60

80

0 20 40 60 80

SLL Mixed

0

40

80

120

160

200

0 20 40 60 80

SLL Read-heavy

0

60

120

180

240

300

0 20 40 60 80

Round-Robin

0

160

320

480

640

800

0 20 40 60 80

OR Composition

Figure 5 Throughput for SLL, RR, and OR problems (x-axis shows the number of threads).

Fig. 4 plots throughput of operations for different capacities of bounded queues for three
implementation techniques. For smaller buffer sizes, in the range of 4 to 16 AM significantly
outperforms LK implementation. This result highlights the benefits of asynchronous executions
because LK is much slower in comparison to AM, as well as AMS due to high contention
on locks. For larger capacities of 32 and 64, LK implementations perform better than AM
because the availability of sufficient storage space allows worker threads to repeatedly acquire
critical sections without being blocked out, and LK benefits from Java’s policy of non-fairness
in lock acquisitions. In contrast, AM and AMS provide almost ‘fair’ executions for workers.
However, in doing so, they end up performing more work in these cases where blocking due
to unavailability of space occurs rarely. In the technical report version [1] of this paper,
we analyze the performance benefit of asynchronous delegation by dropping the program
order constraint and conducting the same experiment. In the new setting, AM performance
further improves, and outperforms LK even on capacity of 32 (see Fig. 7 in [1]). These results
highlight that when asynchronous executions are allowed to be out of program order, the
overall throughput of the program can improve significantly.

Fig. 5 shows the operations throughput for the SLL and RR, and OR composition
problems. In all the runs on these problems, (AM) significantly outperforms the read-write
reentrant lock based monitor (LK), as well as delegation technique of AMS. Note that RR

W.L. Hung, H. Chauhan, and V.K. Garg 29:13

problem does not involve any asynchronous operation, and thus AM and AMS runs are exactly
the same. Given that the critical section involved in SLL problem is heavy, the performance
gap highlights the benefits of asynchronous monitors for such cases. Surprisingly, AM (as
well as AMS) is ∼3–4× faster than LK on RR problem too. This is because the RR problem
setup simulates a critical section that is similar to BQ problem with capacity one. Hence, LK
implementation spends a lot of its execution time in waiting for lock acquisitions, whereas
AM and AMS benefit from lower contention.

On all the problems with conditional waits, AM significantly outperforms QD in terms
of throughput. Hence, extending QD to incorporate conditional waiting is not sufficient to
match our approach. Our techniques for efficient conditional synchronization with automatic
signaling provide significant benefits in comparison to QD.

8 Related Work

Our idea of having monitor objects execute as independent threads is influenced by Hoare’s
proposed communicating sequential processes (CSP) [23] mechanism in which all objects are
active, of long ago. However, CSP does not have the notion of shared memory, and every
object is a process. In contrast, our focus is solely on shared memory parallel programs on
multi-core machines.

We use futures [12, 30] to realize the idea of non-blocking/asynchronous executions.
Kogan et al. [27] explore a similar approach in making use of futures for non-blocking
executions. However, we explore changes to the general paradigm of monitors, whereas [27]
only focuses on three data structures: stacks, queues, and linked-lists, none of them requiring
conditional waiting. In addition, [27] uses data structure specific local elimination/combining,
and allows read/fetch operations on these data structures to be asynchronous whereas we do
not – our assumption being that in almost all the cases, a programmer needs the result of
read/fetch immediately so that she can use it in the subsequent program logic. Hence, our
approach spans a more generic level of monitors, and does not rely on knowledge of internal
functionality of critical section it protects. Some theoretical results that establish the bounds
on improvements in cache locality by the use of futures have been established in [17]. These
results are not directly related to monitor based executions, but lead the direction in terms
of use of futures for improving the performance of multi-threaded programs.

Existing implementations of the combining technique [35, 10, 15] perform busy waits
for task completions and do not yield the CPU; additionally they also do not provide any
mechanisms for conditional waits – these issues together make them more or less impractical
for use in real world applications. Remote Core Locking (RCL) [31] addresses such issues by
allowing conditional waits, and uses a dedicated core for executing critical section, but does
not incorporate asynchronous executions. Recently, works such as [36, 4] have performed
extensive experimental analysis in identifying the performance gains/losses with asynchronous
message-passing like executions over synchronous shared memory ones. [36] provides various
insights for effective implementations that perform well using hardware message passing
support on shared memory machines. This work minimizes the remote-memory-references
(RMRs) during executions, and quantifies the performance gains for asynchronous executions,
but assumes that the method data fits in a single cache-line. In addition, it does not consider
the conditional wait based monitor implementations. Similarly, [4] studies the pros and cons
of message passing based executions on performance of shared memory parallel programs.
This work highlights that different approaches perform best under different circumstances,
and that the communication overhead of message passing can often outweigh its benefits,

OPODIS 2015

29:14 ActiveMonitor: Asynchronous Monitor Framework

and discusses ways in which this balance may shift in the future. Queue Delegation Locking
(QDL) [26], uses the approach of combining to provide a locking library implementation in
C++. However, QDL does not provide a mechanism for synchronization between threads,
and waiting, based on conditions.

Transactional memory [18, 37] is a well-known research effort that proposes modified
syntax for ease of writing multi-threaded programs. However, constructs for conditional
waiting under transactional memory are limited [38, 32, 9]. Hence, writing many conditional
synchronization based multi-threaded programs is rather difficult. Also, unlike transactional
memory, our approach merely transfers the responsibility of data manipulation to monitor
threads and does not require any complicated rollback mechanism for resolving conflicting
updates on the shared data. x10 [6] programming language focuses on providing features that
have an overlap with both transactional memory and our work. However, there are significant
differences in the support and usage of these constructs. The support for conditional waiting
is present syntactically, but as stated in [6] is deprecated for runtime execution.

Lock-free algorithmic techniques using atomic hardware instructions such as compare-
and-swap have gained momentum for implementing scalable thread-safe data structures
[13, 33, 16, 11, 20, 28, 29, 39, 34]. In addition, [14, 25] have explored alternate implementation
techniques that combine/eliminate complementary operations for increasing parallelism in
data structures. However, the difficulty involved in designing lock-free/wait-free algorithms,
and operation eliminating data structures is well known. At present, it is not clear how
lock-free techniques can be used to implement critical sections that involve many operations
spanning across multiple shared objects. The absence of any wait-notify mechanism in
lock-free techniques is another hurdle for their use in many real world programs.

9 Discussion & Conclusion

Despite providing programming ease and performance benefits, our framework’s current
implementation has some limitations. We discuss them below.

Thread Dependent Variables and Functions: In our current implementation, thread de-
pendent variables and functions within a monitor method cannot be used directly in the
Runnable or Callable object that is used in task generation by our approach. This is because
the tasks are executed by the monitor thread and not by the worker thread. For example,
suppose there is a monitor method that invokes Thread.currentThread(), if we directly add
this statement to the generated Runnable object (in the task), then this method’s invocation
at runtime will return the reference to the monitor thread when it is executed. However,
it is obvious that the intent of this call inside the monitor method was to refer to the
worker thread. To handle this situation, currently, we require the programmer to perform
reference copy and storage and storage in thread-local variables. For read operations of
thread dependent variables and functions, the worker thread would need to evaluate them
outside the monitor, and store the result with final variables. These final variables can be
accessed by the runnable and callable objects. An additional constraint/limitation applies
for the case of write operation on thread dependent variables. For write operations, if the
monitor method is non-blocking then the results can be stored as intermediate data. The
worker thread then writes these results back to its local variable after the task is executed.

Concluding Remarks: We have shown that our proposed scheme of asynchronous executions
in monitors provides significant improvement over traditional lock-based monitors. At present,

W.L. Hung, H. Chauhan, and V.K. Garg 29:15

writing parallel programs that provide high throughput and scalability is an arduous task for
most programmers. The main challenge is a lack of simple programming language constructs
that guarantee thread-safety while exploiting parallelism of executions and availability
of hardware in a seamless and portable manner. Our proposed design of asynchronous
monitors is a step in the direction of providing such constructs. The current version of our
implementation consumes some additional processing resources. We believe, however, that
with further research efforts in this direction our proposed technique can lead to significant
improvements in programmability as well as performance of shared memory parallel programs.

References
1 ActiveMonitor: Technical Report Version. http://pdsl.ece.utexas.edu/TechReports/

2016/opodis_tr.pdf.
2 David A Bader and Kamesh Madduri. Gtgraph: A synthetic graph generator suite. Atlanta,

GA, February, 2006.
3 Peter A. Buhr, Michel Fortier, and Michael H Coffin. Monitor classification. ACM Com-

puting Surveys, 27(1):63–107, March 1995.
4 Irina Calciu, Dave Dice, Tim Harris, Maurice Herlihy, Alex Kogan, Virendra J. Marathe,

and Mark Moir. Message passing or shared memory: Evaluating the delegation abstraction
for multicores. In OPODIS, pages 83–97, 2013.

5 Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive model
for graph mining. In SDM, volume 4, pages 442–446. SIAM, 2004.

6 Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. Acm Sigplan Notices, 40(10):519–538, 2005.

7 E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):269–
271, December 1959. doi:10.1007/BF01386390.

8 9th DIMACS Implementation Challenge – Shortest Paths. http://www.dis.uniroma1.
it/challenge9/download.shtml.

9 P. Dudnik and M. Swift. Condition variables and transactional memory: Problem or
opportunity? In The 4th ACM SIGPLAN Workshop on Transactional Computing, 2009.

10 Panagiota Fatourou and Nikolaos D Kallimanis. Revisiting the combining synchronization
technique. ACM SIGPLAN Notices, 47(8):257–266, 2012.

11 Faith Fich, Danny Hendler, and Nir Shavit. On the inherent weakness of conditional
synchronization primitives. In Proceedings of the Twenty-third Annual ACM Symposium
on Principles of Distributed Computing, PODC’04, pages 80–87, 2004.

12 Robert H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501–538, October 1985.

13 Timothy L Harris. A Pragmatic Implementation of Non-blocking Linked-Lists. In Pro-
ceedings of the 15th International Conference on Distributed Computing, pages 300–314,
2001.

14 Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, WilliamN III Scherer, and
Nir Shavit. A Lazy Concurrent List-Based Set Algorithm. In Principles of Distributed
Systems, pages 3–16. Springer Berlin Heidelberg, 2006.

15 Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat Combining and the
Synchronization-parallelism Tradeoff. In SPAA, pages 355–364, 2010.

16 Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm. In
Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA’04, pages 206–215, 2004.

OPODIS 2015

http://pdsl.ece.utexas.edu/TechReports/2016/opodis_tr.pdf
http://pdsl.ece.utexas.edu/TechReports/2016/opodis_tr.pdf
http://dx.doi.org/10.1007/BF01386390
http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml

29:16 ActiveMonitor: Asynchronous Monitor Framework

17 Maurice Herlihy and Zhiyu Liu. Well-structured futures and cache locality. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP’14,
Orlando, FL, USA, February 15-19, 2014, pages 155–166, 2014.

18 Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, ISCA’93, pages 289–300, 1993.

19 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., 2008.

20 Maurice P. Herlihy. Impossibility and universality results for wait-free synchronization. In
Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Comput-
ing, PODC’88, pages 276–290, 1988.

21 Maurice P Herlihy and Jeannette M Wing. Linearizability: A Correctness Condition
for Concurrent Objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492, 1990.

22 C A R Hoare. Monitors: An Operating System Structuring Concept. Communications of
the ACM, 17(10):549–557, 1974.

23 C A R Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, 1978.

24 Wei-Lun Hung and Vijay K. Garg. AutoSynch: An Automatic-signal Monitor Based on
Predicate Tagging. In PLDI, pages 253–262, 2013.

25 Joseph Izraelevitz and Michael L. Scott. Brief announcement: a generic construction for
nonblocking dual containers. In ACM Symposium on Principles of Distributed Computing,
PODC’14, pages 53–55, 2014.

26 David Klaftenegger, Konstantinos Sagonas, and Kjell Winblad. Delegation locking libraries
for improved performance of multithreaded programs. In Euro-Par, 2014.

27 Alex Kogan and Maurice Herlihy. The future (s) of shared data structures. In Proceedings
of the 2014 ACM symposium on Principles of distributed computing, pages 30–39. ACM,
2014.

28 Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and dequeuers.
In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP’11, pages 223–234, 2011.

29 Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data structures. In
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP’12, pages 141–150, 2012.

30 Doug Lea. The Java.Util.Concurrent Synchronizer Framework. Sci. Comput. Program.,
58(3):293–309, 2005.

31 Jean-Pierre Lozi et al. Remote core locking: Migrating critical-section execution to improve
the performance of multithreaded applications. In USENIX Annual Technical Conference,
pages 65–76, 2012.

32 V. Luchangco and V. J. Marathe. Revisiting condition variables and transactions. In The
6th ACM SIGPLAN Workshop on Transactional Computing, 2011.

33 Maged M Michael. High Performance Dynamic Lock-free Hash Tables and List-based
Sets. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 73–82, 2002.

34 Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees. In
Proceedings of the 19th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 317–328. ACM, 2014.

35 Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. Executing parallel programs
with synchronization bottlenecks efficiently. In Proceedings of International Workshop on

W.L. Hung, H. Chauhan, and V.K. Garg 29:17

Parallel and Distributed Computing for Symbolic and Irregular Applications (PDSIA’99).
World Scientific, 1999.

36 Darko Petrovic, Thomas Ropars, and André Schiper. Leveraging hardware message passing
for efficient thread synchronization. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP’14, Orlando, FL, USA, February 15-19, 2014,
pages 143–154, 2014.

37 Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the Four-
teenth Annual ACM Symposium on Principles of Distributed Computing, PODC’95, pages
204–213, 1995.

38 A. Skyrme and N. Rodriguez. From locks to transactional memory: Lessons learned from
porting a real-world application. In The 8th ACM SIGPLAN Workshop on Transactional
Computing, 2013.

39 Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free linked-
lists. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP’12, pages 309–310, 2012.

40 TMWare – TMJava. http://tmware.org/.

OPODIS 2015

http://tmware.org/

	Introduction
	ActiveMonitor: Concepts & Design
	Monitor Tasks
	Asynchronous Execution of Tasks

	Runtime Library
	Automatic Signaling
	Execution of Monitor Tasks

	Compositionality: Multi-object Synchronization
	Implementing AND & OR Operators in ActiveMonitor

	Implementation
	Storage of Tasks: Single Consumer Optimal Bounded Queue
	Monitor Thread Management

	Evaluation
	Results

	Related Work
	Discussion & Conclusion

