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Abstract
This paper introduces atomic deferral, an extension to TM that allows programmers to move
long-running or irrevocable operations out of a transaction while maintaining serializability: the
transaction and its deferred operation appear to execute atomically from the perspective of other
transactions. Thus, programmers can adapt lock-based programs to exploit TM with relatively
little effort and without sacrificing scalability by atomically deferring the problematic operations.
We demonstrate this with several use cases for atomic deferral, as well as an in-depth analysis of
its use on the PARSEC dedup benchmark, where we show that atomic deferral enables TM to
be competitive with well-designed lock-based code.
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1 Introduction

Transactional memory (TM) [9], originally proposed as a hardware extension to facilitate the
creation of scalable nonblocking data structures, is beginning to be widely available. It is
supported by major hardware vendors [14], and a Technical Specification for C++ Extensions
for Transactional Memory (henceforth, TMTS) has been proposed [10], and is (partially)
implemented by the GCC compiler [5], with support for both hardware (HTM) and software
(STM) implementations. Thus, programmers are at last able to use TM in production.

The appeal of TM is its simplicity: a programmer need only wrap an operation inside
a language-level “transaction”; a run-time system executes the transaction using custom
hardware and/or compiler-generated software instrumentation. The run-time system monitors
the low-level memory accesses of transactions, and allows concurrent transactions to execute
simultaneously as long as their memory accesses do not conflict. TM is particularly appealing
for data structures and applications with irregular or hard-to-predict memory accesses (e.g.,
the rebalancing operations of a red-black tree mutation), making them difficult to implement
efficiently using locks. As long as conflicts are rare, so that transactions can run concurrently
with few rollbacks, and the implementation of TM itself does not introduce too much overhead,
a TM-based implementation should be comparable in performance to lock-based code when
running single-threaded, and scale much better with multiple threads.

Unfortunately, there are only a few examples of TM being used in “real” software [11,18,25].
Why is TM not more widely adopted? One reason is that TM implementations often do
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7:2 Extending Transactional Memory with Atomic Deferral

introduce significant overhead, especially when transactions are large and there is no hardware
support. Another is that adapting a program to use TM is not always a simple matter of
replacing lock-based critical sections with transactions because transactions cannot execute
some kinds of operations (e.g., I/O and certain system calls), and most TMs do not support
condition synchronization and other important synchronization patterns. Achieving good
performance with TM often requires significant changes to the code both to reduce the size
and number of large transactions and to move “unsafe” operations within critical sections
out of transactions while still ensuring correct synchronization.

In this paper, we introduce language and run-time support for the atomic deferral of oper-
ations in transactions: deferred operations do not execute until after the transaction commits.
Unlike prior work on deferred operations, atomic deferral does not violate serializability:
concurrent transactions cannot observe an intermediate state in which the transaction’s up-
dates are complete but its deferred operation’s updates are not. This property is particularly
important for operations that perform output: if the output fails, compensating or retrying
operations can be performed as part of the deferred operation so that it appears to be atomic
with the deferring transaction.

We implement atomic deferral by introducing transaction-friendly locks, that is, locks that
can be acquired and released within transactions, and to which transactions can “subscribe”.
With these locks, programmers can “mix and match” lock-based and transaction-based
synchronization, using whichever is appropriate to the need. We use these locks to protect
shared data accessed by deferred operations. The atomicity of the transaction and its deferred
operation is preserved by acquiring the appropriate locks before committing the transaction.

The contributions of this paper are as follows:
We introduce a transaction-friendly implementation of mutual exclusion locks.
We present a mechanism for atomically deferring complex operations in transactions.
We describe a compiler extension that allows the compiler to coordinate deferred operations
with concurrent transactions without additional programmer effort.
We describe use cases for atomic deferral in benchmarks and real-world programs.
We show how atomic deferral can eliminate scalability bottlenecks in microbenchmarks
and the PARSEC dedup workload.

The remainder of this paper is organized as follows: In Section 2, we review salient
features of modern TM implementations. We provide an example of atomic deferral behavior
in Section 3. Section 4 describe atomic deferral, and how it can be implemented using
transaction-friendly locks. We discuss use cases in Section 5, and evaluate our implementation
in Section 6. We describe related work and future research directions in Sections 7 and 8.

2 Background: Transactional Memory

In this section, we describe salient features of TM, particularly as it is specified in the C++
TMTS [10] and implemented by GCC. The TMTS specifies two lexical blocks for using TM:
atomic blocks and synchronized blocks. Code within atomic blocks is restricted to ensure that
the effects of an aborted transaction can be efficiently undone. To enforce this restriction
statically, functions called while executing an atomic block must be declared transaction-safe.
Synchronized blocks lift this restriction at the cost of possibly serializing all transactions
(from both atomic and synchronized blocks) when executing an irrevocable operation (i.e.,
an operation that cannot be undone).

Although TM does not support condition synchronization, the retry operation proposed
by Harris et al. [6] can produce a similar effect: A transaction that finds that some required
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Figure 1 Motivation for atomic defer. On the left, T1’s transaction includes a long running
operation using C. On the right, C is locked, and then the operation on C is deferred until after the
transaction commits. The use of locking and deferral of the operation on C enables the operations
by threads T2 and T3 to progress more quickly, without violating serializability.

condition does not hold can invoke retry, which aborts the transaction and does not reschedule
it until some location in its read set has changed. Thus, the transaction appears to execute
only from a state in which the desired condition holds. (This differs from traditional condition
synchronization in that the transaction aborts, and so its effects before discovering that the
condition does not hold are undone.) The TMTS does not support retry directly, but it does
provide the ability for atomic blocks to abort themselves, which we can use to approximate
retry (albeit inefficiently).

The TMTS does not separate transactional and nontransactional memory: any location
can be accessed both transactionally and nontransactionally. This presents a challenge
to STM implementations known as the privatization problem [19]: Although semantically
concurrent transactional and nontransactional access to the same location is a data race
(which has undefined semantics in C++), a thread that uses a transaction to remove an
object from a shared data structure and accesses it nontransactionally afterwards may conflict
with another transaction that accessed the same object concurrently but is still “cleaning up”.
To avoid this problem, a thread must not access a privatized object nontransactionally until
every transaction that may have accessed that object has completed entirely (i.e., committed
or aborted, including clean up). Since an STM cannot, in general, determine when an object
is privatized, implementations typically wait after committing any writing transaction until
every concurrent transaction has completed entirely; this waiting is called quiescing.

When transactions repeatedly fail to commit due to repeated conflicts with other threads,
a TM implementation may manage contention by delaying some transactions to increase
the likelihood that others complete. Although contention management policies vary, most
TM implementations employ serialization as a last resort: a transaction that fails too many
times will request that all other transactions abort, and no new transactions commence,
until it completes. Unless the workload exhibits pathological conflicts, serialization should
be rare. In GCC, the default is for software transactions to serialize after 100 attempts, and
hardware transactions to serialize after 2. Dynamically tuning this parameter has been shown
to have a significant impact on some workloads [4]. Any nontrivial amount of serialization,
however, has a terrible effect on performance, particularly because serialization delays all
active transactions, even those from completely unrelated parts of the program (unlike locked
critical sections, which are partitioned by the locks that they acquire).

3 A Motivating Example

To motivate atomic deferral, consider the execution depicted on the left side of Figure 1,
which captures behavior we observed when transactionalizing the PARSEC dedup kernel [1].
T1 executes a transaction that first accesses locations A, B and C, and then does a lengthy
operation that accesses only C. Concurrently, T2 executes a transaction that accesses B.
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7:4 Extending Transactional Memory with Atomic Deferral

Because these transactions conflict, either one of them must abort, or T2 must wait until
T1 commits before it can proceed with the part of its transaction that accesses B, which is
what happens in this case. Because T1 may privatize some memory, after it commits, it must
quiesce, waiting for T2 to finish (either commit or abort).

The situation is even worse for T3, which accesses a completely different location, and so
does not conflict with either T1’s or T2’s transaction. Nonetheless, T3 might privatize some
memory, and thus it must quiesce until all concurrent transactions complete, so it must wait
for T1’s lengthy operation to complete, and then for T2’s transaction to complete afterwards
, before it can proceed.

Note, however, that T1 is only accessing C in the lengthy operation at the end of its
transaction. If it could defer that operation until after it commits, then T2 could start the
section of its code that accesses B earlier, and likely commit before T1 completes its lengthy
operation on C. T3 can also stop quiescing earlier (i.e., when T2 commits). This case is
depicted one the right side of Figure 1.

One problem with doing this, however, is that a thread accessing C after T1 commits
the initial part of its transaction but before T1 finishes its final lengthy operation on C will
see an intermediate state of T1’s transaction, violating atomicity. To avoid that, we should
prevent other threads from accessing C in that interval. This is represented by the small
“LC” and “RC” operations (for “lock C” and “release C” respectively). Achieving this is the
core conceptual contribution of this paper, and we show how to do it in the next section.

Prior studies of concurrent applications [12,18,21,23,24] found that output operations
and long-running operations occur often while locks are held. The consequences of such
operations are less severe in lock-based code than in programs with TM, primarily because
the lock-based programs use many locks: a long-running operation protected by lock L1 does
not impede a thread executing a critical section protected by L2. However, long-running
operations tend to hold as few locks as necessary.

4 Extending TM with Atomic Deferral

We support atomic deferral using two new keywords: the deferrable annotation on classes,
and the atomic_defer function, which takes as arguments a function and a list of objects,
each of which must be an instance of a deferrable class. To defer an operation, a programmer
calls atomic_defer with a function implementing the deferred operation and a list of all
the shared objects that this function may access. Fields of deferrable objects must not be
accessed directly, but only through getters and setters (a recommended software engineering
practice in any case). Thus, if o is an object with a deferrable class type and an expensive
method, then we can defer the execution of that method within a transaction by writing:

λ← () { o.expensive() }
atomic_defer(λ, o)

The deferred operation will be executed immediately after the enclosing transaction
commits, and in such a way that no other transactions can see a state that reflects the effects
of the transaction but not those of its deferred operation. A deferred operation will see any
effects of the transaction that occur after the call to atomic_defer. If atomic_defer is
called multiple times within a single transaction, the deferred operations will be executed
in the order of their respective calls to atomic_defer, and the effects of earlier deferred
operations will be visible to later ones.
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Listing 1: Implementation of atomic deferral.
// Extensions to classes annotated as deferrable
deferrable class T
lock : TxLock // implicit per-instance lock
. . . // programmer-defined fields

function transaction_safe Method(. . .)
// subscribe to the implicit lock
TxLock.Subscribe(lock)
// programmer-defined logic
. . .

function atomic_defer(l : λ, objs: Deferrable . . . )
// Use transaction to acquire locks without deadlock

1 transaction
2 for o : objs do
3 TxLock.Acquire(o)

4 deferred_ops.append(〈l, objs〉)

Additional Per-Thread TM Metadata:
// all deferred operations for current transaction
deferred_ops : list〈λ, list〈Deferrable〉〉

function TxEnd()
// Standard STM Commit; HTM uses a special instruction

1 ValidateReadsFinalizeWrites()
// STM-only: ensure transaction finishes before λs run

2 Quiesce()
// Reset thread’s TM metadata

3 move(tm_free_list, local_frees)
4 move(deferred_ops, local_defers)
5 ResetLists()

// Execute deferred operations
6 for 〈l, objs〉 ∈ local_defers do
7 l.execute()
8 for o ∈ objs do TxLock.Release(o)

// Reclaim memory, reset lists
9 for ptr ∈ local_frees do free(ptr)

4.1 Implementing Atomic Deferral

We implement atomic deferral by using locks to protect accesses to deferrable objects.
To provide atomicity, we acquire the locks required by the deferred operation before the
transaction commits. We also need a way to notify transactions that access a deferrable
object (directly as part of the transaction, not deferred) when the lock protecting it has been
acquired (by a transaction that calls atomic_defer with the object): such transactions must
abort and retry after the deferred operation has completed (and the corresponding locks
released).

To this end, we designed transaction-friendly locks, which can be acquired and released
within a transaction, and which provide a subscribe method. The subscribe method must be
called from within a transaction, which blocks (or aborts) until the lock is either free or held
by the subscribing thread. Multiple threads can subscribe to a lock if it is free. We describe
how we implement transaction-friendly locks in Section 4.2.

Pseudocode for implementing atomic deferral appears in Listing 1. In addition to providing
implementations for atomic_defer and deferrable, we modify the commit operation TxEnd.
This code assumes that TxLock is a class of transaction-friendly locks, and that Deferrable
is a base class for all deferrable classes.
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7:6 Extending Transactional Memory with Atomic Deferral

For deferrable classes, we add a field that maintains a transaction-friendly lock that
protects the class, and we inject a call to TxLock.Subscribe for this lock as the first
instruction of the transaction-safe version of every member function.1

The atomic_defer function first acquires the locks of all the deferrable objects passed
to it, and then appends all of its arguments (the function representing the deferred operation
and the list of deferrable objects it may access) to deferred_ops, a thread-local list of
deferred operations. This list will be used when the transaction commits, as described below.

When committing the transaction, we first proceed as usual, validating the read set,
finalizing the writes, and then quiescing to avoid privatization problems. Remember that
any object that might be accessed by deferred operations has already been locked (i.e., when
atomic_defer was called with the object), so no other transaction can see any writes to it.
We then execute the deferred operations in order, releasing the locks on the deferrable
objects associated with each deferred operation after that operation is complete. (If an
object is accessed by multiple deferred operations, each of them would have acquired the
corresponding reentrant lock, and so it is not actually released until the last such operation
completes.)

The enclosing transaction may have freed memory, which is normally deferred by the TM
after the transaction has quiesced. Because deferred operations may refer to memory that
was subsequently freed by the transaction, we delay the freeing of that memory a bit more,
until all the deferred operations have completed.

Because deferred operations may use transactions internally, we need to make deferred_ops
and tm_free_list available for their use. Thus, we copy them into local variables before
executing any of the deferred operations.

To argue that this implementation is correct, that is, that a transaction and its deferred
operations appear atomic, we draw an analogy with two-phase locking, a well-understood
technique known to guarantee atomicity. Specifically, a transaction can be thought of as
acquiring and holding a single global lock until the transaction commits. Because the lock for
every object accessed by deferred operations is acquired before the transaction commits, there
is an initial phase in which locks are only acquired (i.e., up to the point that the transaction
commits), and a concluding phase in which locks are only released (including the implicit
global lock released by the transaction on commit). So all locks are held between the time that
the commit operation is invoked and the time that the commit actually occurs. We must also
ensure that every access is protected by the appropriate lock, which is why the programmer
must provide, when calling atomic_defer, all the objects that the deferred operation may
access. If a deferred operation accesses some object not passed to atomic_defer, then a
data race may occur.

4.2 Transaction-Friendly Mutex Locks
The heart of our atomic deferral mechanism is a transaction-friendly mutual exclusion lock,
whose pseudocode appears in Listing 2. The TxLock is reentrant, storing an owner and a
count of the locking depth. In this manner, a thread that holds the lock may re-acquire it by
incrementing the count. Before any other thread can acquire the lock, the current owner
must release the lock as often as needed to ensure depth = 0. Since the implementation uses
transactions, the owner and depth fields need not be packed into a single machine word:

1 STM implementations typically maintain two versions of each transaction-safe function, one that is
called within transactions and one that is called when not in a transaction.
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Listing 2: A transaction-friendly, reentrant mutex lock.
Fields of TxLock Object:

owner : transaction_id // Lock holder ID
depth : Integer // For reentrancy

function TxLock.Acquire(l)
1 atomic

// Common case: lock is unheld
2 if l.owner = nil then
3 l.owner← me
4 l.depth← 1
5 return

// Handle reentrancy/nesting
6 else if l.owner = me then
7 l.depth← l.depth + 1
8 return

// Else wait (spin and/or yield CPU) until lock is released
9 spin()

10 retry

function TxLock.Subscribe()
// Must be in transaction to call

1 if owner 6= nil ∧ owner 6= me then
2 retry

function TxLock.Release(l)
1 atomic

// [Optional] Forbid handoff of held lock
2 if l.owner 6= me then
3 fatal error

// Handle reentrancy/nesting
4 else if l.depth > 1 then
5 l.depth← l.depth− 1
6 return

// Else no reentrancy/nesting
7 l.depth← 0
8 l.owner← nil

they are only accessed within transactions. A thread that is currently in a transaction may
acquire and/or release TxLocks, because it is correct in C++ to nest transactions. Among
other things, this means that a thread can acquire multiple locks in a deadlock-free fashion,
even without a global locking order: it need only issue all acquisitions inside of a transaction.

TxLocks are elidable within transactions, via the Subscribe method: a transaction that
subscribes to a TxLock blocks until the lock is either unheld, or held by the calling thread.
Subscription only reads the owner field, which allows concurrent subscription by multiple
threads. When any thread acquires the TxLock, all subscribing transactions will conflict
with the new lock owner, and will abort. When the TxLock is acquired, the C++ TMTS
ensures correct fence semantics: since the transaction accesses shared memory, the TM
implementation is required to guarantee that memory accesses preceding the transaction
order before it, and memory accesses following the transaction order after it.

If the C++ TMTS adds efficient support for retry, transactions could yield the CPU if
they attempt to acquire or subscribe to a lock that is held by another thread, and would be
woken automatically when the lock is released. In the meantime, we implement retry by
placing an atomic transaction inside a while loop, replacing the retry instruction with an
exception throw, and adding a break as the last statement in the transaction.
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7:8 Extending Transactional Memory with Atomic Deferral

Listing 3: Diagnostic logging from a critical section.
// Version with irrevocable
transactions

1 synchronized
// x is a mutable string
// i is a mutable integer

2 . . .
3 fprintf(stderr, str, x, i)
4 free(x) // Optional
5 . . .

// Deferrable for the log file’s
descriptor

class defer_fprintf: public
Deferrable

fd : file // output file
descriptor
. . .

// global instance of log file
descriptor

df : defer_fprintf(fd← stderr)

// Version with atomic_defer
1 atomic
2 . . .
3 tmp← sprintf(str, x, i)
4 λ←()
5 fprintf(df.fd, tmp)
6 free(tmp)
7 free(x) // Optional
8 atomic_defer(λ, df)
9 . . .

4.3 Practical Concerns
Deferring operations creates a nonlinear control flow within a program. This nonlinearity
is not observable to concurrent threads: the transaction and its deferred operations appear
to be a single, serializable operation. However, within the transaction, the programmer
must be mindful of a few challenges. First, the state of the object and thread-private data
at the time when the atomic_defer keyword appears is not immutable, and may change
in the suffix of the transaction that executes before the deferred operation. In addition,
the deferred operation does not execute transactionally, and thus races can occur if the
deferred operation accesses shared data not protected by the associated TxLocks. Second,
the programmer must encapsulate shared objects carefully. Consider a deferred operation
that performs a write of byte stream B to file descriptor F . If F is shared, then it should be
a field of a Deferrable object. If B is shared, then it, too, should be a field of a Deferrable
object. Programmers must decide if B and F should be fields of the same deferrable
object, or of multiple objects. Third, since system calls made within a deferred operation
happen immediately, some possibility for performance bottlenecks remains. For example,
an fsync within a deferred operation is often necessary. With atomic_defer, the fsync
and any associated error recovery can be atomic with the transaction, and will not block all
transactions. However, lengthy deferred operations will still block concurrent transactions
that call a method of the associated deferrable objects.

5 Programming With Atomic Defer

We now present examples of atomic_defer in real applications. The examples depict common
use cases, and show the deferral of increasingly complex operations without sacrificing
atomicity or resorting to serialization.

5.1 Basic Logging
In programs such as memcached [18] and Atomic Quake [27], critical sections occasionally
perform logging operations, such as error messages and diagnostic writes to per-thread logs.
The program does not require any ordering among logging operations: they are timestamped,
and the order can be determined post-mortem. The return values of the output operations
are typically ignored. An example appears in Listing 3.

When the values to be logged (x and i) are mutable shared data, existing programs resort
to irrevocability or they skip the logging operation. When the values can be encapsulated in
a Deferrable object, atomic_defer is a straightforward transformation: the output string
is prepared within the transaction, and the output is deferred until the end of the transaction.



T. Zhou, V. Luchangco, and M. Spear 7:9

Listing 4: Durable output with guaranteed order.
// Deferrable wrapper for file descriptors
class defer_fd: public Deferrable

fd : file // output file descriptor
. . .

// Deferrable objects
fdD1 : defer_fd(fd← . . .)
buffD1 : defer_buffer(buf← . . . ,flag← false)
// Durable output to fdD1
atomic

1 . . .
2 λ←()
3 write(fdD1.fd, buffD1.buffer)
4 fsync(fdD1.fd)
5 buffD1.flag← true
6 atomic_defer(λ, fdD1, bufD1)

// Deferrable wrapper for output buffer

class defer_buffer: public Deferrable
buf : buffer // buffer data
flag: boolean // is buffer written?

// Deferrable objects
fdD2 : defer_fd(fd← . . .)
buffD2 : defer_buffer(buf← . . . ,flag← false)
// Conditional durable output to fdD2
atomic

7 Subscribe(buffD1)
8 if buffD1.flag then
9 λ←()

10 write(fdD2.fd, buffD2.buffer)
11 fsync(fdD2.fd)
12 buffD2.flag← true
13 atomic_defer(λ, fdD2, bufD2)

Note that this approach ensures ordering of all logging operations on the encapsulated file
descriptor. A simpler approach, when ordering is not needed, is to pass nil as the second
argument on line 8. This approach causes serialization only among transactions that use df .

Because transactional versions of existing programs tend to omit this instrumentation
in order to avoid serialization, we did not observe a performance impact when applying
atomic_defer to memcached. However, atomic deferral keeps the code robust and complete
without adding too much burden on programmer, and it makes it easier to debug programs
during development, by enabling non-serializing printf debugging.

5.2 Durable Output

Programs often rely on the fsync system call to persistent output. In some cases (e.g.,
durable database operations), it is necessary to order outputs based on the timing of fsync
calls, such that when there are two files: F1 and F2, F2is not updated until after F1’s updates
have reached the disk. Simply deferring an fsync operation in this case is insufficient. With
atomic_defer, we can encapsulate the completion status of the fsync in a Deferred object
that is associated with the deferred fsync operation.

In Listing 4, one thread executes the transaction (T1) on lines 1 to 6, and another executes
the transaction (T2) on lines 7 to 13. We wish to ensure that T2 does not write buffD2 to
file fdD2 unless T1’s write of buffD1 to file fdD1 has been persisted to disk. Since the flag
indicating the completion of T1’s fsync is encapsulated in a Deferrable object, and T1 sets
that flag in an operation that has been deferred, we know that buffD1’s implicit lock will be
held during the time that the flag is set, and will not be released until after the fsync returns.
Consequently, when T2 executes line 7, three cases are possible: (1) T1 has not yet executed
line 6, in which case line 7 returns, and then line 8 evaluates to false; (2) T1 has executed
line 6 but has not completed lines 3 to 5, in which case T2 will call retry and ultimately
land in the third case; or (3) T1 has completed its deferred execution of lines 3 to 5, in which
case T2 can subscribe to buffD1, and then observe a true value on line 8. Note that T2 can
only perform its write in the third case, which orders lines 3–5 before lines 10–12, and thus
the deferred outputs occur and reach the disk in the required order.
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Listing 5: MySQL critical sections in file pool management that are used in
asynchronous I/O.
// atomic_defer: types and variables
class file_system_t: public Deferrable
. . .
space_list : file_space_t

// wrap the file system as a deferrable object
file_system : file_system_t

mySQL_initialize (. . . )
// open tablespace data files

1 atomic
. . .

2 λ←()
3 for space ∈ space_list
4 for node ∈ space
5 node← open(. . . )

6 atomic_defer(λ,file_system)
. . .

mySQL_destroy (. . . )
// close tablespace data files

7 atomic
. . .

8 λ←()
9 for space ∈ space_list

10 for node ∈ space
11 close(node)

12 atomic_defer(λ,file_system)
. . .

mySQL_io_prepare (. . . )
13 close_more :
14 atomic

// check system states and select files
. . .

15 λ←()
16 if close(file) = −1
17 error
18 n_open← n_open− 1
19 if (n_open ≥ max_n_open)
20 need_close← true
21 goto end

// check the node to do I/O
22 if ¬node.open

// get file size, do an open and close
// save metadata for future I/O

23 if node.size = 0
24 node← open()
25 offset← lseek(file, 0,SEEK_END)
26 success← pread(two pages)
27 close(node)
28 node← open()
29 end :
30 atomic_defer(λ,file_system)

. . .

31 if (need_close)
32 goto close_more

5.3 Opening Files as Output

Our final example comes from the MySQL InnoDB storage engine. InnoDB maintains a
pool of file descriptors, which is protected by a lock. Metadata is associated with each file
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Figure 2 Atomic_defer performance on an I/O microbenchmark (a) - (d).

descriptor, and allows updates to files to be performed via asynchronous I/O. For example,
to append new records to the end of a file, a thread locks the pool, updates the size of the
file, and then unlocks the pool. It then issues an asynchronous write. Subsequent appends
will follow the same protocol, and hence will appear at a later point in the file, even if their
writes reach the disk earlier.

While reads and writes do not occur in critical sections, and hence would not serialize a
transactional version of InnoDB, the management of the pool depends on the ability to open
and close files dynamically, in order to stay below a pre-set maximum number of open files.
If a file must be opened when the pool is at capacity, then a thread will lock the pool, close
some other files that do not have outstanding accesses in-flight, and then open the new file.
In transactional InnoDB2, this operation requires irrevocability, and serializes all memory
transactions, to include those performing read-only queries of data within the database.

With atomic_defer, the pool becomes a Deferrable object. On any modification to
file descriptor metadata, a thread uses a transaction that subscribes to the pool. Thus, file
operations can proceed fully in parallel, since they use asynchronous I/O to perform their
file accesses, and transactions to operate on disjoint file metadata regions. In the uncommon
cases where files are opened and closed, the system calls are deferred from a transaction.
While the system calls are in-flight, concurrent accesses to the pool stall (via retry). Once
the pool is returned to a usable state, any suspended threads resume.

6 Performance Evaluation

We now present experiments that demonstrate the benefit of atomic_defer. We conduct
tests on two platforms. In charts depicting scalability up to 8 threads, the platform is a
4-core/8-thread Intel Core i7-4770 CPU running at 3.40GHz. This CPU supports Intel’s
TSX extensions for HTM, includes 8 GB of RAM, and runs a Linux 4.3 kernel. Experiments
with larger thread counts were conducted on a machine with two 18-core/36-thread Intel
E5-2699 V3 CPUs running at 2.30GHz. This CPU also supports TSX, includes 128 GB of
RAM, and runs a Linux 4.8 kernel. Our extensions were implemented in GCC 5.3.1. Results
are the average of 5 trials.

6.1 Performance of atomic_defer on a Transactional I/O
Microbenchmark

One motivation for atomic_defer is to avoid the serialization of synchronized transactions,
while allowing output that is atomic with respect to the transaction. We begin with a
microbenchmark study to observe the behavior of transactions that perform irrevocable
operations on files. Our microbenchmarks are patterned after work by Demsky and Tehrany [3].

2 Unfortunately, adding TM to InnoDB revealed a bug in GCC, which produces an internal compiler
error.
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Listing 6: An example of deferring I/O and system calls.
// Encapsulate streams in a Deferrable object
class defer_file: public Deferrable

input // input stream
output // output stream

// An array of files
dfs: defer_file[]
// Operation to be deferred

1 λ←(id, content)
// Read File

2 if ¬dfs[id].input.open() then error
// Get the length of the file

3 dfs[id].input.seekg(0, end)
4 len← dfs[id].input.tellg()
5 dfs[id].input.close()

// Write to the file and close
6 tmp← format(content, len)
7 dfs[id].output.write(tmp)
8 dfs[id].output.close()

// Irrevocable version of benchmark
1 synchronized
2 content← . . .
3 id← . . .
4 λ(id, content)

// atomic_defer version of benchmark
1 atomic
2 content← . . .
3 id← . . .
4 atomic_defer(λ(id, content), dfs[id])

Whereas they required custom instrumentation of system calls in order to make them
transaction safe, we run I/O operations without instrumentation, using either irrevocability
or atomic_defer. Listing 6 presents the general behavior of our microbenchmarks: a
transaction produces content and identifies a file to update. It then performs I/O, which
includes opening a file, reading the file length, and appending data to the file. The I/O
can be deferred or executed irrevocably. To use atomic_defer, we encapsulate the I/O
streams in deferrable objects, and then use atomic_defer to delay the operation on line 5.
Figure 2 presents experiments with four configurations of the microbenchmark. In each case,
threads cooperate to complete a total of 1M operations. The figure presents results for STM,
but trends for HTM are the same.

Figure 2a explores the overhead of atomic deferral when there is only one file, and hence no
concurrency, by comparing performance when transactions are replaced with a coarse-grained
lock (CGL), and when transactions use irrevocability (irrevoc), or atomic deferral (defer). We
see that the baseline GCC TM implementation (irrevoc) is well-tuned to handle irrevocability:
it serializes transactions early, avoids instrumentation, and achieves performance comparable
to CGL. In contrast, atomic_defer pays a constant overhead per transaction to support
rollback, even though no rollbacks occur. As the thread count increases, overheads due
to retry cause additional slowdown. This is partly a result of our retry implementation
aborting and immediately retrying, instead of de-scheduling the transaction until it can make
progress. Until the C++ TMTS includes efficient retry, this cost is unavoidable.

Figures 2b and 2c expand the number of files to 2 and then 4, and threads update files
with equal probability. We include another non-transactional baseline, with one fine-grained
lock (FGL) per file. We again see that single-threaded code has higher overhead when using
atomic_defer, due to instrumentation and the management of lambdas. While the behavior
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Listing 7: Deferring reliable output in PARSEC dedup.
function pipeline_out(buf, len, fd)

// fd may be unreliable, so monitor progress of
writes

1 (p, nsent, rv)← (buf, 0, 0)
2 while nsent < len
3 rv ← write(fd, p, len− nsent)
4 if transient_error(rv) then
5 continue
6 if fatal_error(rv) then error
7 nsent← nsent + rv
8 p← p + rv

9 fsync(fd)
10 free(buf)

// Version with irrevocable transactions
1 synchronized

. . .
2 pipeline_out(packet.buf, len)

. . .

// Version with atomic_defer: packet is now
deferrable

deferrable class packet
1 atomic

. . .
2 λ←()
3 pipeline_out(packet.buf, len)

. . .
4 atomic_defer(λ, packet)

of CGL and irrevoc is unchanged, deferral now shows scaling on par with fine-grained locks,
achieving indistinguishable performance at 2 and 4 threads. When the thread count greatly
exceeds the potential concurrency (e.g., 8 threads and 2 files, Figure 2b), we still see extra
overheads from retry. However, when there is enough concurrency in the workload (e.g., 4
files), atomic_defer scales well.

Finally, in Figure 2d transactions append to files that are kept open throughout the
experiment. There are still 4 files, but the smaller critical sections reveal an overhead in
the irrevocability mechanism: when one transaction becomes irrevocable, the others block,
possibly yielding the CPU. When the irrevocable transaction is brief, the overhead of yielding
becomes visible, and irrevoc degrades worse than CGL. Meanwhile, FGL has flat performance,
and defer overcomes latency at 1 thread to be competitive with FGL.

6.2 Performance of atomic_defer on PARSEC Dedup
Wang et al. reported [21] that PARSEC’s dedup kernel [1] ceased to scale when transactions
replaced locks. Dedup is a pipeline application, and the original file output stage performs
output while holding a lock; Wang’s version replaces that lock with an irrevocable transaction.
When the irrevocable transaction executes, it must serialize all concurrent transactions.

When we rewrote dedup’s output operation to use atomic_defer, irrevocability ceased to
cause performance degradation, but the benchmark still scaled poorly. A sketch of the code
transformation appears in Listing 7. Since the buffer to be output was already encapsulated
in a struct (“packet”), we made that struct deferrable and ensured that its fields were
accessed through getters and setters. Deferring the operation was then a one-line change,
which preserved the ordering of fsync operations and error handling with respect to output
and subsequent concurrent accesses. The performance of dedup with this change appears in
Figure 3 (a), as “+DeferIO”.

We discovered that the Compress function was marked as pure, because it does not access
any shared memory. Marking the function pure indicates to the compiler that the function
can be run without instrumentation, lacks side effects, and can be run from a non-irrevocable
context even when the compiler cannot prove that irrevocability is not needed. Compress
is a long-running function, and in HTM, it accesses more memory than can be tracked by
the HTM; the HTM execution serializes whenever a call to Compress exceeds the capacity
of the hardware. In STM, the call to Compress represents a period of time during which
other transactions can commit, but will delay in their quiesce operations. While the run-time
behaviors are different, the consequence is the same: when one transaction calls Compress,
other transactions cannot make progress.
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Figure 3 Performance of PARSEC dedup with atomic_defer.

Since Compress is pure, it can be deferred. We encapsulated the compressed buffer as a
deferrable object, so that the run-time system can suspend transactions when they attempt
to access a buffer that is locked for deferred compression. This has a profound impact on
both STM and HTM. In HTM, the transaction ceases to overflow hardware capacity, and
serialization is avoided. In STM, compression ceases to impede quiescence, and concurrent
threads can make forward progress. In Figure 3(a), we see that the “+DeferAll” curves for
both HTM and STM now compete with pthread locks, representing a 1.7x speedup for STM
and 2.7x speedup for HTM.

Lastly, we measure the impact of atomic_defer on the 36-core system, to see how
performance scales across chips and in the face of significantly more hardware parallelism.
In Figure 3 (b), the performance of the baseline HTM is not shown: the 32-thread STM
performance exceeds 270 seconds, and HTM never scales. When we employ atomic_defer
to move output and pure functions out of transactions, both STM and HTM improve by
roughly 10x compared to their respective TM baselines, reaching the same performance as
pthread locks. While these optimizations require more careful reasoning about the program,
we contend that these optimizations are still easier than reasoning about fine-grained locking.

7 Related work

Atomic deferral is a general mechanism for moving code out of transactions, but retaining
serializability, through the composition of TM with two-phase locking. As we have seen in
our examples and evaluation, atomic deferral offers an implementation-agnostic technique
for performing output operations and other system calls within transactions. It also enables
the movement of costly operations outside of the constrained environment presented by a
general-purpose TM. Our work bears resemblance to, and is inspired by, several prior works
in the areas of deferral, transactional system calls, irrevocability, and escape actions. Below,
we summarize the most significant relationships.

Support for Deferred Operations. Language-level support for deferred system calls was
first proposed by Carlstrom et al. [2], and expanded by Ni et al. [16]. These proposals
took a broad approach to deferral, and considered deferring operations for both committed
and aborted transactions. However, these deferred operations do not run atomically with
the parent transaction, nor can they access transactional data without either copying or
relying on ad-hoc synchronization in the deferred operation. Relative to these works, our
contributions are the addition of locks and the introduction of a two-phase locking pattern
that ensures serializability.
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Rossbach et al. [17] were first to use locks to coordinate transactions and non-transactional
code. Volos et al. [20] followed with a comprehensive approach to deferral focused on enabling
transactional system calls (including I/O). Volos extended the OS with “sentinel” locks,
which allowed software transactions to exclusively access file descriptors and other resources.
Using these sentinel locks, output operations could appear to execute in the context of a
transaction, but actually run after the transaction committed. On the one hand, Volos’s
work is more comprehensive than ours, as it deals with a wide array of system calls, and
requires less programmer effort to perform transactional I/O. On the other hand, our work
is more practical: it does not require a deadlock detection algorithm within the OS, or any
OS modifications; it is free of system calls, and hence compatible with HTM (today’s HTM
systems abort on any change of privilege); and it allows the programmer to control the
granularity at which operations are serialized (e.g., in the case of MySQL’s file descriptor
pool, where one lock abstractly covers an unbounded set of file descriptors). Our approach
also makes it easier to handle timing and errors in deferred operations; we are not aware of a
way to use Volos’s work to achieve the behaviors in Listings 4 and 5.

Irrevocable Operations. Prior work has encouraged the broad use of irrevocability [16] for
transactional I/O, contention management, and even as a performance optimization for to
reduce logging overheads in long-running STM transactions. Clearly atomic deferral does not
obviate irrevocability. In particular, our work assumed that the continuation of a transaction
does not depend on the result of the deferred operation. For output to unreliable media (e.g.,
Listing 7), atomic deferral is sufficient. However, if the error on line 6 ought to influence
operations after line 4 of the transaction on the right side of the listing, then irrevocability is
the only known solution.

Escape Actions. Another approach to reducing the costs targeted by atomic deferral is
the use of escape actions. These may be ad-hoc [26], or formalized as open nesting [15]
or transactional boosting [8]. Like atomic deferral, these mechanisms provide a way to
avoid logging overhead in complex operations, and also to perform I/O operations within
transactions. However, these techniques are rarely compatible with HTM [13] (an exception is
the IBM POWER TM [14]). Additionally, in STM, these techniques reduce the transactional
footprint, but still run in the context of an active transaction; consequently, they retain
the quiescence-associated delays shown in Figure 1. These techniques also require ad-hoc
compensating actions and error handlers. On the other hand, boosting techniques offer great
promise in areas where atomic defer is not useful, such as the creation of highly concurrent
data structures [7, 22].

8 Conclusions and Future Work

In this paper, we presented a technique for atomically deferring operations in memory
transactions. The key feature of our work is that concurrent transactions cannot detect
that an operation was deferred: the operation appears atomic with the corresponding
transaction, which retains serializability. The fundamental technique to enable atomic
deferral is composing transactions with locks and retry-based condition synchronization, to
facilitate a form of two-phase locking. With the deferred operation, transactions may perform
complex operations and access a subset of shared memory. Using atomic deferral allows
transactions to perform output without serializing, and was the foundation for a dramatic
improvement in the performance of the PARSEC dedup benchmark.
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Atomic deferral requires more complex reasoning by programmers than irrevocability,
and is less general. However, when applicable, it eliminates serialization overheads, and
shortens the time that transactions spend quiescing. In our view, the additional programmer
overhead to use atomic deferral is small, and more than justified by the benefits. For example,
we presented a scenario where atomic deferral can avoid serialization when managing file
descriptor pools in MySQL, and another where files can be updated in order, while obeying
strong persistence requirements.

As future work, we are interested in tools for automatically transforming output operations
into deferred operations, and studying the relationship between atomic deferral and nested
transactions. We are also interested in crafting a more formal correctness argument, which
may influence the use of transaction-friendly locks in a greater range of workloads.
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