9 research outputs found

    Group communications and database replication:techniques, issues and performance

    Get PDF
    Databases are an important part of today's IT infrastructure: both companies and state institutions rely on database systems to store most of their important data. As we are more and more dependent on database systems, securing this key facility is now a priority. Because of this, research on fault-tolerant database systems is of increasing importance. One way to ensure the fault-tolerance of a system is by replicating it. Replication is a natural way to deal with failures: if one copy is not available, we use another one. However implementing consistent replication is not easy. Database replication is hardly a new area of research: the first papers on the subject are more than twenty years old. Yet how to build an efficient, consistent replicated database is still an open research question. Recently, a new approach to solve this problem has been proposed. The idea is to rely on some communication infrastructure called group communications. This infrastructure offers some high-level primitives that can help in the design and the implementation of a replicated database. While promising, this approach to database replication is still in its infancy. This thesis focuses on group communication-based database replication and strives to give an overall understanding of this topic. This thesis has three major contributions. In the structural domain, it introduces a classification of replication techniques. In the qualitative domain, an analysis of fault-tolerance semantics is proposed. Finally, in the quantitative domain, a performance evaluation of group communication-based database replication is presented. The classification gives an overview of the different means to implement database replication. Techniques described in the literature are sorted using this classification. The classification highlights structural similarities of techniques originating from different communities (database community and distributed system community). For each category of the classification, we also analyse the requirements imposed on the database component and group communication primitives that are needed to enforce consistency. Group communication-based database replication implies building a system from two different components: a database system and a group communication system. Fault-tolerance is an end-to-end property: a system built from two components tends to be as fault-tolerant as the weakest component. The analysis of fault-tolerance semantics show what fault-tolerance guarantee is ensured by group communication based replication techniques. Additionally a new faulttolerance guarantee, group-safety, is proposed. Group-safety is better suited to group communication-based database replication. We also show that group-safe replication techniques can offer improved performance. Finally, the performance evaluation offers a quantitative view of group communication based replication techniques. The performance of group communication techniques and classical database replication techniques is compared. The way those different techniques react to different loads is explored. Some optimisation of group communication techniques are also described and their performance benefits evaluated

    Protocol composition frameworks and modular group communication:models, algorithms and architectures

    Get PDF
    It is noticeable that our society is increasingly relying on computer systems. Nowadays, computer networks can be found at places where it would have been unthinkable a few decades ago, supporting in some cases critical applications on which human lives may depend. Although this growing reliance on networked systems is generally perceived as technological progress, one should bear in mind that such systems are constantly growing in size and complexity, to such an extent that assuring their correct operation is sometimes a challenging task. Hence, dependability of distributed systems has become a crucial issue, and is responsible for an important body of research over the last years. No matter how much effort we put on ensuring our distributed system's correctness, we will be unable to prevent crashes. Therefore, designing distributed systems to tolerate rather than prevent such crashes is a reasonable approach. This is the purpose of fault-tolerance. Among all techniques that provide fault tolerance, replication is the only one that allows the system to mask process crashes. The intuition behind replication is simple: instead of having one instance of a service, we run several of them. If one of the replicas crashes, the rest can take over so that the crash does not prevent the system from delivering the expected service. A replicated service needs to keep all its replicas consistent, and group communication protocols provide abstractions to preserve such consistency. Group communication toolkits have been present since the late 80s. At the beginning, they were monolithic and later on they became modular. Modular group communication toolkits are composed of a set of off-the-shelf protocol modules that can be tailored to the application's needs. Composing protocols requires to set up basic rules that define how modules are composed and interact. Sometimes, these rules are devised exclusively for a particular protocol suite, but it is more sensible to agree on a carefully chosen set of rules and reuse them: this is the essence of protocol composition frameworks. There is a great diversity of protocol composition frameworks at present, and none is commonly considered the best. Furthermore, any attempt to defend a framework as being the best finds strong opposition with plenty of arguments pointing out its drawbacks. Given the complexity of current group communication toolkits and their configurability requirements, we believe that research on modular group communication and protocol composition frameworks must go hand-in-hand. The main goal of this thesis is to advance the state of the art in these two fields jointly and demonstrate how protocols can benefit from frameworks, as well as frameworks can benefit from protocols. The thesis is structured in three parts. Part I focuses on issues related to protocol composition frameworks. Part II is devoted to modular group communication. Finally, Part III presents our modular group communication prototype: Fortika. Part III combines the results of the two previous parts, thereby acting as the convergence point. At the beginning of Part I, we propose four perspectives to describe and compare frameworks on which we base our research on protocol frameworks. These perspectives are: composition model (how the composition looks like), interaction model (how the components interact), concurrency model (how concurrency is managed within the framework), and interaction with the environment (how the framework communicates with the outside world). We compare Appia and Cactus, two relevant protocol composition frameworks with a very different design. Overall, we cannot tell which framework is better. However, a thorough comparison using the four perspectives mentioned above showed that Appia is better in certain aspects, while Cactus is better in other aspects. Concurrency control to avoid race conditions and deadlocks should be ensured by the protocol framework. However this is not always the case. We survey the concurrency model of eight protocol composition frameworks and propose new features to improve concurrency management. Events are the basic mechanism that protocol modules use to communicate with each other. Most protocol composition frameworks include events at the core of their interaction model. However, events are seemingly not as good as one may expect. We point out the drawbacks of events and propose an alternative interaction scheme that uses message headers instead of events: the header-driven model. Part II starts by discussing common features of traditional group communication toolkits and the problems they entail. Then, a new modular group communication architecture is presented. It is less complex, more powerful, and more responsive to failures than traditional architectures. Crash-recovery is a model where crashed processes can be restarted and continue where they were executing just before they crashed. This requires to log the state to disk periodically. We argue that current specifications of atomic broadcast (an important group communication primitive) are not satisfactory. We propose a novel specification that intends to overcome the problems we spotted in existing specifications. Additionally, we come up with two implementations of our atomic broadcast specification and compare their performance. Fortika is the main prototype of the thesis, and the subject of Part III. Fortika is a group communication toolkit written in Java that can use third-party frameworks like Cactus or Appia for composition. Fortika was the testbed for architectures, models and algorithms proposed in the thesis. Finally, we performed software-based fault injection on Fortika to assess its fault-tolerance. The results were valuable to improve the design of Fortika

    Forschungsbericht Universität Mannheim 2006 / 2007

    Full text link
    Sie erhalten darin zum einen zusammenfassende Darstellungen zu den Forschungsschwerpunkten und Forschungsprofilen der Universität und deren Entwicklung in der Forschung. Zum anderen gibt der Forschungsbericht einen Überblick über die Publikationen und Forschungsprojekte der Lehrstühle, Professuren und zentralen Forschungseinrichtungen. Diese werden ergänzt um Angaben zur Organisation von Forschungsveranstaltungen, der Mitwirkung in Forschungsausschüssen, einer Übersicht zu den für Forschungszwecke eingeworbenen Drittmitteln, zu den Promotionen und Habilitationen, zu Preisen und Ehrungen und zu Förderern der Universität Mannheim. Darin zeigt sich die Bandbreite und Vielseitigkeit der Forschungsaktivitäten und deren Erfolg auf nationaler und internationaler Ebene

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Wireless sensor networks for flight applications

    Get PDF
    Die Prognosen der Marktentwicklung im Luftfahrtbereich sehen sehr positiv aus. In den kommenden 20 Jahren soll sich die Anzahl der Passagierflugzeuge verdoppeln, was sicherlich die Geschäfte im Luftfahrtbereich anregen wird. Jedoch bildet sich neue Konkurrenz in Asien, welche den Wettbewerb erhöhen wird. Um in dieser neuen Marktsituation weiterhin bestehen zu können, müssen Flugzeughersteller vermehrt innovative Flugzeugkonzepte entwickeln, mit welchen sie sich von ihren Konkurrenten absetzen können. Die meisten Innovationen zielen auf eine Reduzierung des Gewichts und auf höhere Energieeffizienz von Flugzeugen ab. Ebenso steht eine Reduzierung der Inbetriebnahme- und Betriebskosten im Fokus. Ein vielversprechender Ansatz diese Ziele zu erreichen, ist der Einsatz von drahtlosen Sensornetzen, um Luftfahrtanwendungen anzubinden. Der Einsatz so eines drahtlosen Sensornetzes kann in vielerlei Hinsicht Nutzen bringen. Verkabelung kann eingespart werden was große Gewichtsreduktionen mit sich bringt. Arbeitsabläufe können verbessert werden, wodurch Inbetriebnahme- und Betriebskosten reduziert werden können. Zusätzlich kann der Einsatz von drahtlosen Sendernetzen dazu beitragen, bisher nicht sinnvoll realisierbare Anwendungen einzuführen, beziehungsweise diese erst zu ermöglichen. In dieser Arbeit werden typische Flugzeuganwendungen identifiziert, welche von dem Einsatz eines drahtlosen Sendernetzes profitieren können. Die Herausforderungen, die der Einsatz so eines drahtlosen Sensornetzes hervorruft, werden beleuchtet, als auch entsprechende Technologien und Protokolle vorgestellt, welche darauf abzielen, diesen Herausforderungen zu begegnen.The market forecast for aircraft manufacturers is very promising; the fleet of passenger aircraft will double. This will clearly generate a strong business for aircraft manufactures. But new competitors arise and, hence, rivalry is increasing. To succeed in this market situation, aircraft manufacturers have to build innovative aircraft to set themselves apart from competitors. Most of the research effort is concentrated on developing lighter, more energy-efficient aircraft which reduce operational costs for airline operators. A very promising approach to accomplish this goal is to introduce wireless sensor networks for flight applications. Such wireless sensor networks can be very beneficial: they can help to reduce weight by saving cabling, they can improve workflows and, hence, reduce commissioning and operational costs, and they can enable new applications which were not feasible or even possible before.In this work, flight applications are investigated to identify the challenges which arise when introducing such a wireless sensor network. Technologies and protocols are presented which aim to tackle these challenges. In particular, the most demanding prerequisites are energy efficiency, transmission reliability, scalability, synchronization, and localization. Four of these demands will be addressed by three different protocols. First, a clock synchronization protocol is presented which uses a special hardware devicea wake-up receiverto achieve synchronization in a very energy-efficient, reliable, and scalable way. Second, using this same technology a clustering protocol is presented which can reduce redundant transmissions. In doing so, it becomes possible to lower the mean energy consumption for hundreds of sensor nodes. Last, a custom-tailored medium access protocol is presented which utilizes spatial diversity to increase transmission reliability while keeping a very low power demand.Tag der Verteidigung: 25.08.2015Paderborn, Univ., Diss., 201

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Finite horizon analysis of Markov automata

    Get PDF
    Markov automata constitute an expressive continuous-time compositional modelling formalism, featuring stochastic timing and nondeterministic as well as probabilistic branching, all supported in one model. They span as special cases, the models of discrete and continuous-time Markov chains, as well as interactive Markov chains and probabilistic automata. Moreover, they might be equipped with reward and resource structures in order to be used for analysing quantitative aspects of systems, like performance metrics, energy consumption, repair and maintenance costs. Due to their expressive nature, they serve as semantic backbones of engineering frameworks, control applications and safety critical systems. The Architecture Analysis and Design Language (AADL), Dynamic Fault Trees (DFT) and Generalised Stochastic Petri Nets (GSPN) are just some examples. Their expressiveness thus far prevents them from efficient analysis by stochastic solvers and probabilistic model checkers. A major problem context of this thesis lies in their analysis under some budget constraints, i.e. when only a finite budget of resources can be spent by the model. We study mathematical foundations of Markov automata since these are essential for the analysis addressed in this thesis. This includes, in particular, understanding their measurability and establishing their probability measure. Furthermore, we address the analysis of Markov automata in the presence of both reward acquisition and resource consumption within a finite budget of resources. More specifically, we put the problem of computing the optimal expected resource-bounded reward in our focus. In our general setting, we support transient, instantaneous and final reward collection as well as transient resource consumption. Our general formulation of the problem encompasses in particular the optimal time-bound reward and reachability as well as resource-bounded reachability. We develop a sound theory together with a stable approximation scheme with a strict error bound to solve the problem in an efficient way. We report on an implementation of our approach in a supporting tool and also demonstrate its effectiveness and usability over an extensive collection of industrial and academic case studies.Markov-Automaten bilden einen mächtigen Formalismus zur kompositionellen Modellierung mit kontinuierlicher stochastischer Zeit und nichtdeterministischer sowie probabilistischer Verzweigung, welche alle in einem Modell unterstützt werden. Sie enthalten als Spezialfälle die Modelle diskreter und kontinuierlicher Markov-Ketten sowie interaktive Markov-Ketten und probabilistischer Automaten. Darüber hinaus können sie mit Belohnungs- und Ressourcenstrukturen ausgestattet werden, um quantitative Aspekte von Systemen wie Leistungsfähigkeit, Energieverbrauch, Reparatur- und Wartungskosten zu analysieren. Sie dienen aufgrund ihrer Ausdruckskraft als semantisches Rückgrat von Engineering Frameworks, Steuerungsanwendungen und sicherheitskritischen Systemen. Die Architekturanalyse und Designsprache (AADL), Dynamic Fault Trees (DFT) und Generalized Stochastic Petri Nets (GSPN) sind nur einige Beispiele dafür. Ihre Aussagekraft verhindert jedoch bisher eine effiziente Analyse durch stochastische Löser und probabilistische Modellprüfer. Ein wichtiger Problemzusammenhang dieser Arbeit liegt in ihrer Analyse unter Budgetbeschränkungen, das heisst wenn nur ein begrenztes Budget an Ressourcen vom Modell aufgewendet werden kann. Wir studieren mathematische Grundlagen von Markov-Automaten, da diese für die in dieser Arbeit angesprochene Analyse von wesentlicher Bedeutung sind. Dazu gehört insbesondere das Verständnis ihrer Messbarkeit und die Festlegung ihrer Wahrscheinlichkeitsmaßes. Darüber hinaus befassen wir uns mit der Analyse von Markov-Automaten in Bezug auf Belohnungserwerb sowie Ressourcenverbrauch innerhalb eines begrenzten Ressourcenbudgets. Genauer gesagt stellen wir das Problem der Berechnung der optimalen erwarteten Ressourcen-begrenzte Belohnung in unserem Fokus. Dieser Fokus umfasst transiente, sofortige und endgültige Belohnungssammlung sowie transienten Ressourcenverbrauch. Unsere allgemeine Formulierung des Problems beinhalet insbesondere die optimale zeitgebundene Belohnung und Erreichbarkeit sowie ressourcenbeschränkte Erreichbarkeit. Wir entwickeln die grundlegende Theorie dazu. Zur effizienten Lösung des Problems entwerfen wir ein stabilen Approximationsschema mit einer strikten Fehlerschranke. Wir berichten über eine Umsetzung unseres Ansatzes in einem Software-Werkzeug und zeigen seine Wirksamkeit und Verwendbarkeit anhand einer umfangreichen Sammlung von industriellen und akademischen Fallstudien
    corecore