
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

ingénieur en informatique, Universidad Politécnica, Valencia, Espagne
de nationalité espagnole

acceptée sur proposition du jury:

Lausanne, EPFL
2006

Prof. M. Odersky, président du jury
Prof. A. Schiper, directeur de thèse
Prof. R. Jiménez-Peris, rapporteur

Prof. D. Kostic, rapporteur
Prof. R. Schlichting, rapporteur

protocol composition frameworks
and modular group communication:

models, algorithms and architectures

Sergio MENA DE LA CRUZ

THÈSE NO 3633 (2006)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 24 NOVEMBRE 2006

à LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Laboratoire de systèmes répartis

SECTION D'INFORMATIQUE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147919672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

It is noticeable that our society is increasingly relying on computer systems. Nowa-
days, computer networks can be found at places where it would have been unthink-
able a few decades ago, supporting in some cases critical applications on which
human lives may depend. Although this growing reliance on networked systems is
generally perceived as technological progress, one should bear in mind that such
systems are constantly growing in size and complexity, to such an extent that assur-
ing their correct operation is sometimes a challenging task. Hence, dependability
of distributed systems has become a crucial issue, and is responsible for an impor-
tant body of research over the last years.

No matter how much effort we put on ensuring our distributed system’s cor-
rectness, we will be unable to prevent crashes. Therefore, designing distributed
systems to tolerate rather than prevent such crashes is a reasonable approach. This
is the purpose of fault-tolerance. Among all techniques that provide fault tolerance,
replication is the only one that allows the system to mask process crashes. The in-
tuition behind replication is simple: instead of having one instance of a service, we
run several of them. If one of the replicas crashes, the rest can take over so that the
crash does not prevent the system from delivering the expected service. A repli-
cated service needs to keep all its replicas consistent, and group communication
protocols provide abstractions to preserve such consistency.

Group communication toolkits have been present since the late 80s. At the
beginning, they were monolithic and later on they became modular. Modular group
communication toolkits are composed of a set of off-the-shelf protocol modules
that can be tailored to the application’s needs. Composing protocols requires to
set up basic rules that define how modules are composed and interact. Sometimes,
these rules are devised exclusively for a particular protocol suite, but it is more
sensible to agree on a carefully chosen set of rules and reuse them: this is the
essence of protocol composition frameworks.

There is a great diversity of protocol composition frameworks at present, and
none is commonly considered the best. Furthermore, any attempt to defend a
framework as being the best finds strong opposition with plenty of arguments point-
ing out its drawbacks.

Given the complexity of current group communication toolkits and their con-
figurability requirements, we believe that research on modular group communi-
cation and protocol composition frameworks must go hand-in-hand. The main

i

II

goal of this thesis is to advance the state of the art in these two fields jointly and
demonstrate how protocols can benefit from frameworks, as well as frameworks
can benefit from protocols.

The thesis is structured in three parts. Part I focuses on issues related to proto-
col composition frameworks. Part II is devoted to modular group communication.
Finally, Part III presents our modular group communication prototype: Fortika.
Part III combines the results of the two previous parts, thereby acting as the con-
vergence point.

At the beginning of Part I, we propose four perspectives to describe and com-
pare frameworks on which we base our research on protocol frameworks. These
perspectives are: composition model (how the composition looks like), interac-
tion model (how the components interact), concurrency model (how concurrency
is managed within the framework), and interaction with the environment (how the
framework communicates with the outside world).

We compare Appia and Cactus, two relevant protocol composition frameworks
with a very different design. Overall, we cannot tell which framework is better.
However, a thorough comparison using the four perspectives mentioned above
showed that Appia is better in certain aspects, while Cactus is better in other as-
pects.

Concurrency control to avoid race conditions and deadlocks should be ensured
by the protocol framework. However this is not always the case. We survey the
concurrency model of eight protocol composition frameworks and propose new
features to improve concurrency management.

Events are the basic mechanism that protocol modules use to communicate
with each other. Most protocol composition frameworks include events at the core
of their interaction model. However, events are seemingly not as good as one may
expect. We point out the drawbacks of events and propose an alternative interaction
scheme that uses message headers instead of events: the header-driven model.

Part II starts by discussing common features of traditional group communica-
tion toolkits and the problems they entail. Then, a new modular group commu-
nication architecture is presented. It is less complex, more powerful, and more
responsive to failures than traditional architectures.

Crash-recovery is a model where crashed processes can be restarted and con-
tinue where they were executing just before they crashed. This requires to log the
state to disk periodically. We argue that current specifications of atomic broadcast
(an important group communication primitive) are not satisfactory. We propose a
novel specification that intends to overcome the problems we spotted in existing
specifications. Additionally, we come up with two implementations of our atomic
broadcast specification and compare their performance.

Fortika is the main prototype of the thesis, and the subject of Part III. Fortika is
a group communication toolkit written in Java that can use third-party frameworks
like Cactus or Appia for composition. Fortika was the testbed for architectures,
models and algorithms proposed in the thesis.

Finally, we performed software-based fault injection on Fortika to assess its

III

fault-tolerance. The results were valuable to improve the design of Fortika.

Keywords: distributed systems, group communication, consensus, group mem-
bership, atomic broadcast, failure detectors, fault tolerance, crash-recovery, generic
broadcast, protocol architecture, header-driven, concurrency, protocol composi-
tion, frameworks, microprotocols, modular, events, fault injection, Fortika, Java,
Appia, Cactus, Samoa

IV

Résumé

Chacun sait que notre société dépend de plus en plus des systèmes informa-
tiques. De nos jours, on peut trouver des réseaux informatiques dans des endroits
où cela aurait été impensable quelques décennies auparavant, ces réseaux offrant
dans certains cas une infrastructure critique puisque des vies humaines peuvent en
dépendre. Bien que ce recours grandissant aux systèmes en réseau soit générale-
ment perçu comme un progrès technique, il faudrait toutefois être conscient que
de tels systèmes voient leur taille et leur complexité augmenter constamment, à tel
point que le fait d’assurer leur fonctionnement correct est parfois une tâche exi-
geante. En conséquence, la sûreté de fonctionnement des systèmes distribués est
devenue une question capitale, qui a suscité un nombre important de recherches
ces dernières années.

Quel que soit l’effort que nous déployons à assurer la correction de notre sys-
tème distribué, nous serons incapables d’empêcher des défaillances. Par consé-
quent, concevoir notre système distribué de manière à ce qu’il tolère des pannes
plutôt qu’il les empêche est une approche raisonnable. C’est le but de la tolérance
aux pannes. Parmi toutes les techniques qui fournissent de la tolérance aux pannes,
la réplication est la seule qui permette au système de masquer les défaillances.
L’intuition derrière le concept de réplication est simple : au lieu d’avoir une seule
instance d’un service, on en exécute plusieurs. Si une des répliques tombe en panne,
celles qui restent peuvent reprendre le travail de manière à ce que la panne n’em-
pêche pas le système de fournir le service attendu. Un service répliqué a besoin de
maintenir toutes ses répliques dans un état cohérent, et les protocoles de commu-
nication de groupe fournissent des abstractions permettant de maintenir une telle
cohérence.

Les outils de communication de groupe existent depuis la fin des années quatre-
vingts. Au début, ils étaient monolithiques et plus tard ils sont devenus modulaires.
Les outils de communication modulaires sont composés d’un ensemble de pro-
tocoles déjà prêts qui peuvent être combinés selon les besoins de l’application.
La composition de protocoles requiert de mettre en place des règles définissant la
manière dont les modules sont composés et interagissent. Parfois, ces règles sont
conçues uniquement pour quelques protocoles particuliers, mais il est plus sensé
de se mettre d’accord sur un ensemble de règles soigneusement choisies et de les
réutiliser : ceci est l’essence des cadriciels (frameworks) de composition de proto-
coles.

v

VI

De nos jours, il y a une grande diversité de cadriciels de composition de proto-
coles, et aucun ne fait l’unanimité. De plus, n’importe quelle tentative de présenter
un cadriciel comme étant le meilleur rencontre immédiatement une forte opposi-
tion avec un grand nombre d’arguments démontrant ses points faibles.

Étant donné la complexité des outils de communication de groupe et leurs be-
soins de configurabilité, nous estimons que la recherche dans le domaine de la
communication de groupe modulaire et des cadriciels de composition de proto-
coles doit être menée en parallèle. L’objectif principal de cette thèse est de faire
avancer l’état de l’art conjointement dans ces deux domaines et de démontrer à
quel point les protocoles peuvent améliorer la conception des cadriciels, en même
temps que les cadriciels améliorent la conception des protocoles.

La thèse est structurée en trois parties. La partie I met l’accent sur des questions
relatives aux cadriciels de composition de protocoles. La partie II est consacrée à la
communication de groupe modulaire. Finalement, la partie III présente notre pro-
totype de communication de groupe modulaire : Fortika. La partie III combine les
résultats des deux parties précédentes, constituant ainsi leur point de convergence.

Au début de la partie I, nous proposons quatre perspectives pour décrire et
comparer les cadriciels sur lesquels nous basons notre recherche en cadriciels de
composition de protocoles. Ces perspectives sont : le modèle de composition (à
quoi ressemble la composition), le modèle d’interaction (comment les composants
interagissent entre eux), le modèle de concurrence (comment la concurrence est
gérée à l’intérieur du cadriciel), et l’interaction avec l’environnement (comment le
cadriciel communique avec le monde extérieur).

Nous comparons Appia et Cactus, deux cadriciels de composition de proto-
coles significatifs, mais très différents l’un de l’autre. De manière générale, nous
ne pouvons pas dire lequel est le meilleur : une comparaison minutieuse utilisant
les quatre perspectives mentionnées plus haut a montré qu’Appia est meilleur pour
certains aspects, tandis que Cactus est meilleur pour d’autres aspects.

Les cadriciels de composition de protocoles devraient assurer un contrôle de
la concurrence afin d’éviter des conflits d’accès et des situations d’interbloquage.
Malheureusement, ce n’est pas toujours le cas. Nous examinons le modèle de
concurrence des huit cadriciels de composition de protocoles et nous proposons
de nouvelles idées pour améliorer la gestion de la concurrence.

Les événements sont le mécanisme de base que les protocoles utilisent pour
communiquer entre eux. La plupart des cadriciels de composition de protocoles
utilisent des événements au coeur de leur modèle d’interaction. Cependant, les évé-
nements ne sont apparemment pas aussi bons que l’on pourrait s’y attendre. Nous
mentionnons les inconvénients des événements et nous proposons un nouveau mo-
dèle d’interaction qui utilise les en-têtes des messages à la place d’événements : le
modèle "dirigé par les en-têtes".

La partie II commence par un examen des caractéristiques communes aux
outils traditionnels de communication de groupe et des problèmes qu’ils occa-
sionnent. Une nouvelle architecture de communication de groupe modulaire est en-
suite présentée. Cette dernière est moins complexe, plus puissante et réagit mieux

VII

aux défaillances que les architectures traditionnelles.
Crash-recovery est un modèle où les processus tombés en panne peuvent être

redémarrés et continuer leur exécution à l’endroit où ils étaient juste avant qu’ils ne
tombent en panne. L’idée consiste à enregistrer périodiquement leur état sur disque.
Nous défendons le point de vue que les spécifications de diffusion atomique (une
primitive de communication de groupe importante) actuelles ne sont pas satisfai-
santes. Nous proposons une nouvelle spécification visant à corriger les problèmes
des spécifications existantes. De plus, nous avons réalisé deux implémentations de
notre spécification de diffusion atomique, et nous comparons leur performance.

Fortika est le principal prototype de cette thèse, ainsi que le sujet de la partie III.
Fortika est un outil de communication de groupe écrit en Java et pouvant utiliser
des plates-formes comme Cactus ou Appia. Fortika constitue le banc d’essai des
architectures, des modèles et des algorithmes proposés dans cette thèse.

Finalement, nous avons soumis Fortika à des injections de fautes afin d’évaluer
sa robustesse. Les résultats ont contribué à améliorer Fortika de manière significa-
tive.

Mots-clés : systèmes distribués, communication de groupe, consensus, diffu-
sion atomique, appartenance à groupes, détecteurs de pannes, tolérance aux fautes,
diffusion générique, architecture de protocoles, orienté à en-têtes, concurrence,
composition de protocoles, cadriciels, schémas, microprotocoles, modulaire, évé-
nements, injection de fautes, Fortika, Java, Appia, Cactus, Samoa

VIII

In Memoriam
Dionisio Mena Gil

X

Acknowledgments

When I first arrived in Lausanne, I did not know what a fondue or a raclette was,
I thought there were plenty of holes in a Gruyere cheese, I had never been higher
than 2000 meters of altitude and, as the last straw, I did not even look at the others’
eyes when drinking a toast! Today, almost six years later, when people speak of
Switzerland I feel something very special, I feel they are talking about a wonder-
ful period of my life, a period with plenty of enriching personal and professional
experiences that can not be included in the thesis, but are fundamental pieces of it,
indeed.

First of all, I would like to thank my thesis supervisor, Prof. André Schiper, for
all he did so that this thesis was a reality, for all the effort he put into every page of
every paper we have co-authored, for all the things I have learned from him, for all
the support he gave me during my worst moments.

I would also like to express my gratitude to the members of the Crystall project:
Prof. Uwe Nestmann, Dr. Paweł Wojciechowski, Olivier Rütti, and Rachele Fuz-
zati; for those long but fruitful discussions where I learned how typical problems
in distributed systems can be seen from a “programming languages” perspective.
I am particularly grateful to Daniel Bünzli, who volunteered to review Chapter 5,
and without whom that chapter would certainly not exist.

I am also very grateful to the members of the jury, Prof. Dejan Kostić, Prof. Ri-
cardo Jiménez-Peris, and Prof. Richard Schlichting, as well as the president of the
jury, Prof. Martin Odersky. They did an excellent job at reviewing the thesis and
provided me with many interesting ideas and remarks. My thanks also go to Luis
Rodrigues for the help provided with Appia.

I had the opportunity to share wonderful moments with LSR members and
former members: Prof. Xavier Défago, Prof. Fernando Pedone, Dr. Péter Urbán,
Dr. Matthias Wiesmann, Dr. Stefan Pleisch, Dr. Arnas Kupšys, David Cavin, Yoav
Sasson, Richard Ekwall, Fatemeh Borran, and Dr. Martin Hutle, just to mention
some of them. We were a real team at work, when doing teaching- and research-
related tasks; and a real friend gang when skiing, watching films, holding barbecues
at the shore of the lake or drinking a beer at Satellite. My gratitude also goes to
France Faille, our secretary, for being such a kind person and for all her logistic
support: if you are new to EPFL and do not know how to do an administrative
task, don’t panic, just ask France, she’ll know what to do. I will always miss those
moments around 10:40 am every day, when the whole Lab sat around that table
and chatted together.

My gratitude also goes to Annick Panchaud, my fiancee, for helping me with
the French version of the abstract, and for her love and understanding, especially
at the moments when the writing of the thesis got stuck, which happened to be

xi

XII

the saddest moments in my life. Also to my mother and my sister, for their love
and support, and for having them on the phone almost every evening for the last
six years; and to the rest of my family, as well as Elvira and Angelita, for their
affection, and for helping my mother out at those moments where I should have
been there to help her out. I would also like to thank Annick’s family, for their
sympathy and hospitality.

During my Ph.D., I could also enjoy the company of good friends who deserve
mention. Whether in Spain: César Moriano, Vicente Hernández, Enrique Ruiz,
Ricardo Galdón, Jose Expósito, Honorato de Andrés, Laura Ferrando, Joe & Rose
Cooper, etc.; or in Switzerland: David Portabella, Marcos Pérez, Dr. Guillermo
Barrenetxea, Dr. Anil Alexander, Josep Garriga, Núria Sánchez, Dr. Raquel Urta-
sun, Rodrigo García, etc.; they have provided me with the freshness of thinking I
needed to confront any difficulties in everyday work.

And last but, definitely, not least, I would like to thank my father. Simply for
being a perfect father, from the very moment I was born till April 29th 2006, much
better father than I will ever dream of being with my children, yet I will do my
best. Papá, everything I achieved in this life I owe it to you. And I do know I will
be able to thank you for it, in person, at the very end. . .

Contents

1 Introduction 1
1.1 Research Context and Motivation 1
1.2 Overview of Contributions . 5

1.2.1 Protocol Composition Frameworks 5
1.2.2 Modular Group Communication 6
1.2.3 Fortika . 6

1.3 Structure of the Thesis . 7

I Advances in Protocol Composition Frameworks 9

2 Protocol Composition Frameworks 11
2.1 Terminology . 11

2.1.1 Composition and Protocol Modules 12
2.1.2 Asynchronous Communication 12
2.1.3 Synchronous Communication 13
2.1.4 Communication over the Network 13
2.1.5 Symmetric Compositions 13

2.2 Perspectives for Framework Description and Comparison 14
2.3 Relevant Protocol Composition Frameworks 15

2.3.1 Appia . 15
2.3.2 Cactus and the x-kernel 17
2.3.3 Samoa . 20
2.3.4 Other Protocol Composition Frameworks 22

2.4 Roadmap to the Remainder of Part I 24

3 Comparison of Protocol Composition Frameworks 25
3.1 Introduction . 25
3.2 Composition Implemented . 26

3.2.1 Description . 26
3.2.2 Conforming to Fortika Conventions 27

3.3 Comparison . 29
3.3.1 Similarities . 29

xiii

XIV CONTENTS

3.3.2 Differences . 30
3.3.3 Performance Comparison 33

3.4 Proposals for Better Frameworks 36
3.4.1 Composition Model . 36
3.4.2 Interaction Model . 36
3.4.3 Concurrency Model . 37
3.4.4 Interface with the Environment 37

3.5 Conclusion . 38

4 Concurrency in Protocol Frameworks 39
4.1 Introduction . 39
4.2 Protocol Composition Frameworks Considered 40
4.3 Concurrency Models . 41
4.4 Improvements for Existing Concurrency Models 43

4.4.1 Drawbacks of Existing Concurrency Models 43
4.4.2 Islands of Reactive Protocol Modules 44
4.4.3 Comparing with Transparent Concurrency 46

4.5 Avoiding Overlapping Execution of Handlers 47
4.5.1 Anticipating Consistency Problems 48
4.5.2 Non-Overlapping Handler Executions 48

4.6 Ordering Events . 49
4.6.1 Feasibility of Ordering 50
4.6.2 Definitions of Ordering 51
4.6.3 Implementations of Ordering 54

4.7 Conclusion . 55

5 The Header-Driven Model 57
5.1 Introduction . 57
5.2 Assumptions on the Framework 58

5.2.1 Programming Language 58
5.2.2 Composition and Interaction Models 59
5.2.3 Interface with the Environment 59

5.3 Shortcomings of the Event-Driven Model 59
5.3.1 An Abstract Event-Driven Model 60
5.3.2 The Event Routing Problem 61
5.3.3 Ad-hoc Solutions to the Event Routing Problem 61
5.3.4 Peer Interactions in the Event-Driven Model 62

5.4 The Header-Driven Model . 64
5.4.1 From Events to Headers: Overview of the New Model . . 65
5.4.2 Header-Driven Primitives 67
5.4.3 The Composition Model 69

5.5 Header-Driven vs. Event-Driven 71
5.6 Conclusion . 74

CONTENTS XV

II Advances in Modular Group Communication 77

6 System Models, Specifications & Toolkits 79
6.1 Introduction . 79
6.2 System and Failure Models . 80

6.2.1 Synchrony . 80
6.2.2 Failures . 81
6.2.3 Groups . 82
6.2.4 Recovery Capabilities 83

6.3 From Lossy Channels to Group Communication 84
6.3.1 Communication Channels 84
6.3.2 Unreliable Failure Detectors 85
6.3.3 Uniform and Non-Uniform Protocols 86
6.3.4 Consensus . 87
6.3.5 Broadcast Protocols in the Static Model 87
6.3.6 Broadcast Protocols in the Dynamic Model 89

6.4 Group Communication Toolkits in the 90s 92
6.4.1 Monolithic Toolkits . 93
6.4.2 Modular Protocol Stacks 95

6.5 Roadmap to the Rest of Part II 96

7 A New Architecture for Group Communication 99
7.1 Introduction . 99
7.2 Discussion on Existing Architectures 101

7.2.1 Membership & Failure Detection Are Strongly Coupled . 101
7.2.2 Atomic Broadcast Algorithms Rely on Group Membership 101
7.2.3 The Consensus Abstraction Is Barely Used 102

7.3 The New Architecture . 102
7.3.1 Overview of the New Architecture 103
7.3.2 Augmented Version of the New Architecture 104
7.3.3 Full Version of the New Architecture 107

7.4 Assessment of the New Architecture 109
7.4.1 Less Complex . 109
7.4.2 More Powerful (Provides More Functionalities) 109
7.4.3 Higher Responsiveness 110
7.4.4 Minor Efficiency Issue 110

7.5 Conclusion . 111

8 Atomic Broadcast in the Crash-Recovery Model 113
8.1 Introduction . 113
8.2 Specification of Abcast in the Crash-Recovery Model 115

8.2.1 Definitions . 115
8.2.2 Specification of Atomic Broadcast 116
8.2.3 Related Work . 118

XVI CONTENTS

8.3 Keeping the Process State Consistent 119
8.3.1 Usage of commit . 119
8.3.2 Addressing the Atomicity Problem 120

8.4 Solving Uniform and Non-Uniform Atomic Broadcast 123
8.4.1 Building Blocks . 123
8.4.2 Uniform Atomic Broadcast 124
8.4.3 Non-Uniform Atomic Broadcast 125
8.4.4 Which Consensus Algorithm Should Be Used? 126

8.5 Performance Evaluation . 127
8.6 Conclusion . 130

III Putting It All Together: Fortika 133

9 The Fortika Group Communication Toolkit 135
9.1 Introduction . 135
9.2 Conventions for Obtaining Framework-Independent Code 136
9.3 Compositions Implemented . 138

9.3.1 Static Crash-Stop Model 138
9.3.2 Dynamic Crash-Stop Model 138
9.3.3 Static Crash-Recovery Model 139

9.4 Relevant Implementation Issues 141
9.4.1 Interface with the Application 141
9.4.2 Interface with the Network 142
9.4.3 Flow Control . 143

9.5 Conclusion . 143

10 Fault Injection 145
10.1 Introduction . 145
10.2 Experimental Setup . 146
10.3 Error Injection into Memory . 147

10.3.1 Error Models and Outcome Categories 148
10.3.2 Software-Based Error Injectors 149
10.3.3 Profiling . 149
10.3.4 Memory Injection Results 151
10.3.5 Discovered Reliability Bottlenecks 152
10.3.6 Assessment of Enhanced Fortika Design 153

10.4 Network Injections . 154
10.4.1 Message Types . 155
10.4.2 Error Models and Outcome Categories 156
10.4.3 Network Injection Results 156
10.4.4 Discovered Reliability Bottlenecks 158
10.4.5 Assessment of Enhanced Fortika Design 159

10.5 Java vs. OCAML . 159

CONTENTS XVII

10.6 Conclusion . 161

11 Conclusion 163
11.1 Research Assessment . 163

11.1.1 Protocol Composition Frameworks 163
11.1.2 Modular Group Communication 164
11.1.3 Fortika . 165

11.2 Open Questions and Future Research Directions 166

XVIII CONTENTS

List of Figures

2.1 Example of peer interaction from A to its peer A′ 14
2.2 Composition example in Appia: Stack with two channels. Both

channels share sessions p and s. 17
2.3 Example of Cactus composite protocol. 19

3.1 Protocol modules for Atomic Broadcast. 27
3.2 Protocol code shared by Cactus and Appia. 28
3.3 Two different patterns of event flow. Appia channels only support

the event path depicted in (a). Figure (b) is only possible in Appia
with the help of EchoEvent. 31

3.4 Benchmark configuration . 33
3.5 Performance comparison . 34
3.6 Profiling of the Request-Reply benchmark with messages of 16384

bytes (client side). 35
3.7 Multiplexor-demultiplexor connector. 37

4.1 Example of possibly overlapping executions of handlers. What are
the contents of msg when handler h1 prints it? 47

4.2 Example to illustrate FIFO, causal and extended causal order. . . . 53

5.1 Example of the event routing problem: A2 receives an unexpected
event. 61

5.2 Typical bindings for peer interactions in the event-driven and head-
er-driven models. 64

5.3 Example protocol composition represented in both the event-driven
and header-driven models. 72

6.1 Isis architecture . 93
6.2 Phoenix architecture . 93
6.3 RMP architecture . 95
6.4 Totem architecture . 95
6.5 Ensemble sample protocol stack 96

7.1 New architecture: overview . 104
7.2 New architecture with the Generic Broadcast component 104

xix

XX LIST OF FIGURES

7.3 Generic broadcast for passive replication 106
7.4 New architecture: full version 108

8.1 Example execution. After pappl
i checkpoints its state, it calls commit. 120

8.2 Function calls and callbacks can be modeled as messages. 121
8.3 Expressing Figure 8.1 using message passing communication. . . 121
8.4 Keeping local consistency between the atomic broadcast protocol

and the application. 122
8.5 Solving uniform atomic broadcast. Small arrows mark the differ-

ences with [RR03]. Non-uniform atomic broadcast is obtained by
removing the code inside the boxes. 124

8.6 Early latency of various atomic broadcast algorithms 128
8.7 1 / throughput of various atomic broadcast algorithms 129
8.8 Latency in a single experiment with the non-uniform atomic broad-

cast algorithm. 130

9.1 Atomic Broadcast. Composition in Fortika for the dynamic crash-
stop Model. 138

9.2 Atomic Broadcast. Composition in Fortika for the Static/crash-
recovery Model. 140

10.1 Profiling at the JVM level. 150
10.2 Profiling at the bytecode level. 150
10.3 Fortika message profiling. 155
10.4 Atomic Broadcast execution example. 156

List of Tables

4.1 Comparing the single- and multi-threaded models of concurrency
and their combination. 44

4.2 Comparing the single-threaded, multi-threaded and transparent con-
currency models. 46

4.3 Conceptual mapping between communication in message passing
systems and protocol composition frameworks. 50

10.1 Error models. 148
10.2 Outcome categories. 149
10.3 Memory injection results. 151
10.4 Breakdown of fail silence violations. 152
10.5 Memory injection results for enhanced Fortika design. 154
10.6 Fortika message types. 155
10.7 Network injection results. 157
10.8 Breakdown of experiments with incorrectly unmarshaled messages

in Table 10.7. 158
10.9 Network injection results with the new design. 158
10.10Comparison of Fortika and Ensemble memory injection results. . . 160
10.11Comparison of Fortika and Ensemble network injection results. . . 160

xxi

XXII LIST OF TABLES

Chapter 1

Introduction

1.1 Research Context and Motivation

Dependability and Fault Tolerance. A disappointing reality in Computer Sci-
ence is the fact that processes often crash. Computer systems deployed nowadays
tend to be more and more complex, usually comprising a number of collaborating
subsystems that operate at different physical locations. As complexity in those sys-
tems grows, it becomes more difficult to ensure their correct operation. At the same
time, our society tends to rely more and more on those computer systems, utilizing
them even for critical tasks, whose malfunction may have a high cost in terms of
money or human lives. Hence the need for these systems to be dependable.

Traditionally, research on dependability has been performed using different
methods that can be classified as fault prevention, fault tolerance, fault removal,
and fault forecasting [Lap92]. Fault prevention strives to avoid the occurrence of
faults in the system even before it is deployed. Fault tolerance tries to carry on
with normal system operation despite the presence of partial malfunctions. The
goal of fault removal is to reduce the amount of faults existing in the system. Fault
forecasting are methods for detecting the presence of faults before they cause any
harm to the system. The focus of this thesis is on fault tolerance.

Replication and Group Communication. Among the existing techniques to
achieve fault-tolerance, namely checkpointing, transactions and replication, the
latter is the only one that does not need to roll back the execution when a failure
occurs. Replication consists in deploying identical instances of a subsystem in such
a way that the state of different replicas is kept updated during system operation.
Thus, when a replica fails, the surviving ones can take over so that the external user
can not tell whether there has been a failure or not.

Over the last decades, various replication techniques have been proposed in
the literature, which can be classified in two main categories: hardware-based and
software based replication. Hardware-based replication systems put the emphasis
on carefully designed platforms with replicated hardware [Bar81, BGH87] as well

1

2 CHAPTER 1. INTRODUCTION

as operating systems customized to operate in the so-called lock-step mode: the
operating systems at all replicas are exactly at the same point in their execution.
The drawback of this approach, apart from its high price, is that usually failures
do not occur independently: faults caused by programming bugs will occur at the
same time at all replicas if they are at the same state (e.g., Heisenbugs). Software-
based replication does not require special hardware or operating systems in lock-
step mode. It operates at a higher level: replicas are normal OS processes located
at different machines and they fail independently: 99.3% of software bugs can
be masked by software-based replication [Gra86]. There are two well-established
techniques to implement software-based replication: active replication and pas-
sive replication. Group communication is a middleware layer, placed below the
replication technique and above the network subsystem, that provides the proper-
ties needed by software replication techniques. Among these properties, the most
important (and the most difficult to achieve) are agreement properties [GP96]. At
the core of agreement problems is the consensus problem, which turned out to be
unsolvable deterministically in asynchronous systems if at least one process can
crash [FLP85]. So, with this impossibility result, a completely asynchronous sys-
tem model is not very useful in the context of group communication. Chandra and
Toueg [CT96] have proposed to augment the asynchronous system with the con-
cept of failure detectors, allowing consensus to be solved deterministically. They
also provide an algorithm solving consensus and prove that their algorithm uses the
weakest failure detector that can be used to solve consensus [CHT96]. The good
feature of algorithms based on failure detectors is that only liveness properties are
compromised if the failure detector does not behave as expected, but not safety
properties (the ones that keep the algorithm correct).

Group Communication Toolkits. For many years, group communication proto-
types were monolithic implementations of a set of inter-related group communica-
tion protocols [CZ85, BJ87, KT91, BvR94, DM96, MFSW95, Mal96, BDGB95,
EMS95, JKN96, MMSA+96]. They were monolithic because, even if the the
toolkit was implemented using standard modular features of modern programming
languages (libraries, packages, etc.), the protocols implemented (i.e., the core of
the system) were intermingled in such a way that the protocol interfaces were
sometimes not clear, and there were many hidden dependencies between proto-
cols.

Monolithic toolkits had a number of drawbacks with respect to the modular
toolkits that followed them. One of these drawbacks was maintenance: any change
to a protocol implied certainly some changes in other parts of the system, due to the
high degree of dependencies among protocols. Another important drawback was
the great difficulty to reuse protocol implementations in another prototype. It was
difficult because the protocol code was not encapsulated in one single module; be-
sides, its interface was not standard or explicit. Monolithic prototypes did not use
a framework to integrate the different protocols, but rather standard facilities pro-

1.1. RESEARCH CONTEXT AND MOTIVATION 3

vided by programming languages: function calls and callbacks, global variables,
etc.

In the 90s, a new generation of group communication toolkits appeared: they
were layered [vRBC+93, vRBG+96, VRBM96, Hay98, Ban02]. Layering was
the first step in achieving modularity in protocol design. A layered protocol toolkit
consists of a set of off-the-shelf protocols structured as layers where each layer only
communicates with its upper and lower neighbor layer. This approach was inspired
by the ISO/OSI architectural model for computer networks [ISO96]. As layering
is a form of modularity, these systems benefit from advantages that modularity
entails:

• Configurability. As interactions and dependencies between layers are ex-
plicit, the set of properties offered by the stack can be easily customized by
changing the set of layers in a configuration.

• Adaptability. In order to adapt to changing operation conditions, or changing
needs of the application, we can include new layers (that implement new
properties), or replace some layer by another that operates better in the new
conditions.

• Efficiency. If the application does not need some properties anymore, the
layers providing them can be removed in order to avoid the unnecessary
overhead.

• Reusability. Layers developed for some toolkit can be reused in other toolk-
its developed in the future.

• Ease of debugging and maintenance. Thanks to the full separation of lay-
ers, each one can be debugged and maintained independently. Moreover,
maintenance is simplified since interactions between layers are explicit.

While layering represents an advantage with respect to monolithic systems, ar-
ranging all protocols in a strict stack is sometimes too rigid an approach. As we
go up in the stack, the properties provided by protocols are more and more com-
plex, and these protocols may need to interact with other protocols that are not
necessarily neighbors (an example can be found in [PMR01]). Therefore, the trend
has been to allow more and more flexibility in the way protocols are composed,
thereby allowing several layers to coexist at the same level [Pin01], or allowing
protocols to directly interact with any other protocol in a non-hierarchical fash-
ion [HS98, WHS01, MPS93].

Protocol Composition Frameworks. A protocol composition framework is the
infrastructure that allows a programmer to build a complex protocol (or service)
out of a set of off-the-shelf building blocks. For the external user, the composi-
tion is perceived as a whole (large) middleware providing the expected (complex)
service. In the same way as the goal of a middleware is to make the development

4 CHAPTER 1. INTRODUCTION

of distributed applications easier, the goal of a protocol composition framework
is to make the development of a complex middleware easier. When monolithic
group communication toolkits evolved to modular designs, the need for protocol
composition frameworks became evident.

Many protocol composition frameworks in the 90s were ad-hoc: when a modu-
lar protocol suite was developed, this also included defining the rules of interaction
between protocols. In other words, the same team that developed a new protocol
suite also created a new protocol composition framework with the sole purpose of
composing protocols of the new protocol suite. In some cases, they were so tightly
coupled that it was difficult to determine the border between framework and proto-
col suite [Hay98, Ban02]. The clear distinction between a protocol framework and
a protocol suite is crucial if we are to avoid the waste of effort that implies coming
up with a new framework design every time we need to build a protocol suite.

Most relevant protocol composition frameworks in use are not ad-hoc, but
general-purpose [MPR01, HS00, WHS01, MDB01, BGT+01, WRS04]. Hence,
they are not biased to a specific set of protocols. They are general-purpose: their
design and architecture does not make assumptions on the kind of protocols that
are to be composed. They only set up the rules for protocol composition and inter-
action: who can interact with whom, how the interactions take place, what infor-
mation is exchanged, whether interactions are synchronous or asynchronous, how
concurrency is handled, etc. Moreover, because these frameworks are general-
purpose, virtually any set of distributed algorithms with a modular design can use
them.

Motivation. There is a broad diversity in the protocol composition frameworks
in use nowadays. Sometimes, the design and behavior change radically from one
framework to the other. Even terminology-wise, although there are some terms
(e.g. event) that are widely accepted, the mechanism implied by a term can vary
widely from one framework to the other. As a corollary, no framework is com-
monly accepted as the best one. Any attempt to defend a framework as being the
best finds immediately strong arguments pointing out its weaknesses compared to
some other framework. There is somehow a tendency to trust blindly one’s fa-
vorite framework without wondering whether it is the best suited for the particular
protocols under development.

This lack of agreement about which protocol framework should be used greatly
reduces an important advantage of modularity: reusability. One can rarely reuse
the protocol code developed for a framework F in another framework F ′ (an ex-
ception is Fortika, see Chapter 9). Due to the diversity of frameworks, protocol
reusability is usually confined to the set of protocols developed by the same team.
The ultimate consequence is having to develop from scratch protocols at all levels
(even basic ones like “reliable point-to-point message transmission”) every time a
new group communication protocol suite is implemented.

On the other hand, group communication papers usually present and explain

1.2. OVERVIEW OF CONTRIBUTIONS 5

new algorithms and prove them, but they seldom give a detailed description of the
way the presented algorithm interacts with the application or with the lower-lever
algorithms. It often remains a mystery how to execute lower-level primitives like
send or receive found in the code: should the same thread execute the protocol
code and the code of primitives? Or should it rather be a rendezvous à la Ada? No
direct answer is usually found in papers on group communication.

In essence, this thesis demonstrates how modular group communication proto-
cols can benefit from protocol composition frameworks, as well as how frameworks
can be improved by looking at the protocol modules that use them. Therefore, the
basic claim is that research in modular group communication and protocol compo-
sition frameworks must be addressed together.

1.2 Overview of Contributions

As we have seen, group communication toolkits used nowadays are modular. Thus,
a good symbiosis between the protocol composition framework and the group com-
munication toolkit is a crucial issue. In this thesis, we have done our research
following these two complementary paths: protocol composition frameworks and
group communication protocols. We believe this is the best way to proceed given
that the strong need for modularity of current group communication protocols
makes it difficult to ignore the underlying mechanisms to compose protocols.

We next give a bird’s-eye view of the main contributions of this thesis.

1.2.1 Protocol Composition Frameworks

Perspectives for Framework Description and Comparison. There are differ-
ent ways to look at protocol composition frameworks, as well as different features
that can be present or missing. We propose four basic perspectives to describe and
compare frameworks that constitute the basis of our methodology for research on
frameworks. These perspectives are: composition model (how the components are
arranged), interaction model (how the components interact), concurrency model
(how the concurrency is managed within the framework), and interaction with the
environment (how the application or the network interacts with the framework and
vice-versa).

Comparing Appia and Cactus. When confronted to the dilemma of choosing
the protocol composition framework that is best suited for our needs, usually there
is no best choice. We demonstrate this by comparing Appia and Cactus, two proto-
col composition frameworks with a very different design. Overall, we can not tell
which of these two frameworks is best. However, a thorough comparison using the
four perspectives mentioned above shows that Cactus’s interaction model is better
while Appia’s concurrency model is better.

6 CHAPTER 1. INTRODUCTION

Analyzing and Improving the Concurrency of Frameworks. Concurrency in
protocol composition frameworks is an important issue; in particular, the ques-
tion of managing concurrent threads that execute protocol code so that they do not
run into race conditions or deadlocks. We survey the concurrency model of eight
protocol composition frameworks and propose new features to improve the way
concurrency is controlled.

The Header-Driven Interaction Model. In almost all protocol frameworks, the
building blocks use events (see Sect. 2.1) as the basic mechanism to interact with
other building blocks. However, it appears to us that events are not as good as
one may expect. We describe the drawbacks of events and propose an alternative
interaction scheme that uses message headers instead of events: the header-driven
model. We show how the new interaction scheme overcomes the drawbacks of
well-known event-based schemes.

1.2.2 Modular Group Communication

A New Architecture for Modular Group Communication. The architectures
of group communication toolkits that appeared during the years are quite different
among them. Nevertheless, they all share some common features. We discuss such
features and the typical problems they entail. Then, we present a novel modular
architecture for building a group communication toolkit. The new architecture is
less complex, more powerful, and more responsive to failures.

Atomic Broadcast in the Crash-Recovery Model. Crash-recovery is a model
where crashed processes can be restarted and resume operation at some point be-
fore the crash. To do so, crash-recovery protocols log process states to disk period-
ically. We argue that recent specifications of atomic broadcast (an important group
communication primitive) that can be found in the literature are not satisfactory.
We propose a novel specification that clarifies the properties that an application
can assume from a crash-recovery atomic broadcast protocol. We propose two
implementations of atomic broadcast and compare their performance with other
well-known protocols.

1.2.3 Fortika

The Fortika Group Communication Toolkit. Fortika is the main prototype of
the thesis. It is a group communication toolkit, written in Java, that can be com-
posed using third-party frameworks like Cactus or Appia. Fortika contains a proof-
of-concept implementation of the architectures, models and algorithms proposed in
the chapters that follow: Fortika is the point of convergence of the contributions of
the thesis.

1.3. STRUCTURE OF THE THESIS 7

Assessing the Crash-Failure Assumption using Fault Injection. The software-
based fault injection technique consists in sporadically flipping bits in a message or
an address in memory. These techniques intend to model spurious data corruption
in real systems. We applied fault-injection techniques to our Fortika prototype to
assess its tolerance to this sort of faults. The results were valuable to improve some
aspects of Fortika’s design.

1.3 Structure of the Thesis

The thesis is divided into three main parts. Part I is devoted to protocol composition
frameworks. The results of this part are orthogonal to modular group communica-
tion, which is the subject of Part II. Part III acts as the convergence point of the two
previous parts and is devoted to the Fortika toolkit. Finally, Chapter 11 summarizes
the results of this works and suggests future research directions.

8 CHAPTER 1. INTRODUCTION

Part I

Advances in Protocol
Composition Frameworks

9

Chapter 2

Protocol Composition
Frameworks

Part I of this thesis is devoted to our research on protocol composition frameworks.
In principle, the research we conducted on protocol composition frameworks is
mainly in the context of group communication protocols, which is the research sub-
ject of Part II. Nevertheless, most contributions to protocol frameworks contained
in this part are also valid in the more general context of distributed applications.

This is an introductory chapter to protocol composition frameworks: we present
the basic terminology for protocol composition frameworks, as well as a concise
description of the most relevant protocol composition frameworks out there. In
short, this chapter contains the basic information that is necessary to fully under-
stand the remaining chapters of Part I. Indeed, there are frequent references from
those chapters to the present one.

2.1 Terminology

The lack of standard terminology to name the concepts of protocol composition
frameworks motivates this section. Here, we unify the terminology of all protocol
composition frameworks, with respect to the most important concepts. This is
necessary in order not to wear out the reader with many terms that, while meaning
the same, are different across frameworks. Moreover, sometimes the same term
means different things depending on the framework considered. In the rest of this
thesis, we will use the terminology defined here unless we are describing details
of a particular framework, or a particular term or concept has no equivalent in any
other framework. In any case, the text will be unambiguous regarding the definition
used.

11

12 CHAPTER 2. PROTOCOL COMPOSITION FRAMEWORKS

2.1.1 Composition and Protocol Modules

The code that implements protocols in a framework is organized into units called
protocol modules. Protocol modules are software components, i.e., it is clear what
services they offer to other protocol modules, and they usually use a few standard
communication mechanisms (defined by the framework). The basic promise that
protocol composition frameworks (and general component frameworks) make is
that people other than the programmers of protocol modules are able to plug them
together, without having to know or change the code inside the modules. We call
such people protocol composers (or simply composers). The set of all protocol
modules and their interconnections is called a composition. Every process in the
system contains a composition. A composition can be either (1) a stack, if there
can only be one protocol module (called layer) at a given level, or (2) a graph if
protocol modules are arranged in a more flexible manner. Composition time is the
moment when protocol composers statically put protocol modules together to form
a composition. This is done before the composition is compiled and executed,
therefore composition time occurs earlier than compile and run time. Protocol
modules contain their protocol state. Certain frameworks allow a locally shared
state among several protocol modules. Some allow even free access to the state
of other protocol modules. This constitutes indeed a means of communication
between protocol modules.

2.1.2 Asynchronous Communication

The main form of communication between protocol modules is asynchronous (even
for local communication). The data transferred during an instance of communica-
tion is called an event. Initiating the communication is called triggering an event;
the initiator module is called the triggering protocol module. Triggering an event
results in handling the event: some piece of code, called event handler (or simply
handler), is executed; the handler is part of the handling protocol module.

The fact that communication is asynchronous means that (1) handling the event
may take place long after triggering is finished, (2) triggering is non-blocking, and
(3) triggering never returns data from the handler executed (such as a return value
or an exception that the triggering protocol module is expected to handle); but, of
course, the handler module might trigger another event back to the initiator if such
communication is necessary.

In our terminology, an event only exists for the duration of the communica-
tion. If executing an event handler results in communication with another protocol
module, we consider the associated event a new event that is different from the
original one. Of course, the new event might carry the same information as the
original event. Some frameworks recycle events for more than one interaction, but
this does not bring any conceptual difference. Sometimes, events are classified
into event types. All events of a given type have the same signature, and convey
the same kind of information. Event types are used for deciding which handler(s)

2.1. TERMINOLOGY 13

will be executed when an event of a given type is triggered.
Let us put asynchronous communication into context. Asynchronous commu-

nication between protocol modules is widespread because it maps to the message
passing model of communication over networks. It often allows for a greater de-
coupling of protocol modules than synchronous communication, just like message
passing allows for greater decoupling than remote procedure calls. The focus on
asynchronous communication is an important feature that distinguishes protocol
composition frameworks from general component frameworks.

2.1.3 Synchronous Communication

Some protocol composition frameworks offer synchronous communication. An
instance of communication is called a call. A synchronous call is blocking and
returns a value (or exception) that the calling module is supposed to handle. Some-
times these synchronous entry points are not implemented in protocol modules, but
in the framework itself. In this case they are called framework libraries.

Most programming languages offer synchronous communication as their basic
communication mechanism. Hence synchronous communication is easy to use for
programmers.

2.1.4 Communication over the Network

Protocols and distributed applications have code in distinct address spaces. We
call these address spaces processes. The communication mechanisms we have
presented above are used within a process, and do not work between processes:
a networking library must be used. Communication between processes can also
appear as special protocol modules that do communication over the network.

Frameworks usually define a special data structure holding the information to
be transmitted over the network. These structures are called messages. Messages
have an optimized interface that allows to push and pop data units to and from the
message. These data units pushed/popped by the framework are called headers,
whereas the data pushed/popped by the application is called payload. Most frame-
works push data in last-in-first-out fashion, others allow more flexible patterns.
Because they are supposed to be transmitted on the wire, messages can also offer
marshaling facilities.

The link between messages and events is that the latter convey the former from
one protocol module to another in the same process.

2.1.5 Symmetric Compositions

Most real-life implementations of distributed algorithms have a curious property:
the set of protocol module instances, as well as the way they are composed are
exactly the same at all processes. This is called symmetric compositions. In this
context, peer protocol modules are those protocol modules, one per process, that

14 CHAPTER 2. PROTOCOL COMPOSITION FRAMEWORKS

are at the same place in the composition. Usually, peer protocol modules talk
among themselves to provide the expected service.

A particular recurrent interaction pattern in symmetric compositions is called
peer interactions: a protocol module communicates with its remote peers using
the service offered by a lower-level protocol module. Peer interactions have al-
ways been the core idea behind protocol stacks (a universally known example is
the ISO/OSI architecture [ISO96]). The purpose is to build protocols as incremen-
tal layers of abstraction: a protocol module, together with all its peer modules,
implements a distributed service that is in turn used by the upper neighbor module
(and its peers) to provide a higher-level service, and so forth. Figure 2.1 depicts an
example of a peer interaction: the left part represents the conceptual information
flow from A to its peer protocol A′. However, A needs that the message reaches its
peer with certain guarantees, which the network subsystem is not able to provide in
this example. Instead, A uses a lower-lever protocol module B (and B’s peer, B′)
whose mission is to provide the guarantees A needs for its messages. Hence, the
actual path that the message follows is the one depicted in the right part of Fig. 2.1.

A

B

A'

B'

C C'

Network

A

B

A'

B'

C C'

Network

Process pi Process piProcess pj Process pj

conceptual path actual path

Figure 2.1: Example of peer interaction from A to its peer A′

2.2 Perspectives for Framework Description and Compar-
ison

Describing and comparing protocol composition frameworks can be done from a
number of viewpoints. An exhaustive analysis of such frameworks should cover
the most relevant viewpoints. Here, we define four perspectives that allow us to de-
scribe the most important features of a framework. The four perspectives, together
with performance, can also be used for framework comparison.

2.3. RELEVANT PROTOCOL COMPOSITION FRAMEWORKS 15

Composition Model. Specifies how protocol modules are arranged when they
are composed. It can be hierarchical (protocol modules form stacks) or cooperative
(no hierarchy). More complex models (e.g., a hybrid approach) are also possible.
Some frameworks allow protocol grouping, where coarse-grain protocol modules
can be made out of finer-grain ones.

Interaction Model. Defines the way protocol modules can interact and exchange
information. It can be event-driven or it can additionally allow data sharing. If it is
event-driven, a set of event types must be defined.

Concurrency Model. Describes whether and how concurrency is allowed in the
framework. If some concurrency is allowed, the model should also specify how
to synchronize concurrent threads. An interesting property that the concurrency
model may provide is the so-called FIFO event order: events are handled in the
same order they are triggered (i.e., events do not overtake each other).

Interface with the Environment. Describes how the composition interacts with
the outside world, i.e., application, network and system resources (such as timers,
etc.).

These four perspectives constitute the backbone of the remaining chapters of
Part I. In the present chapter, we use these perspectives to describe most relevant
protocol composition frameworks. Chapter 3 uses all four perspectives as a means
to compare two different frameworks. Chapter 4 focuses the comparison on the
concurrency models. Finally Chapter 5 focuses on the composition and interaction
models.

2.3 Relevant Protocol Composition Frameworks

There is a big diversity of protocol composition frameworks nowadays. This sec-
tion is an attempt to report on those frameworks that have achieved a certain pop-
ularity. We give a rather detailed description of the most representative ones, and
a brief overview of the rest. We make an effort to present every framework using
its own terminology and, at the same time, mapping such terms to our unifying
terminology presented in Section 2.1.

2.3.1 Appia

In [MPR01], its designers define Appia as a protocol kernel that supports applica-
tions requiring multiple coordinated channels and offers facilities for the applica-
tion to express inter-channel constraints. Appia is fully written in Java.

16 CHAPTER 2. PROTOCOL COMPOSITION FRAMEWORKS

Composition Model. In Appia, a protocol module is defined as a pair layer-
session. The layer defines three sets of events, namely, events accepted by the
protocol module, events provided, and events required for proper operation. The
session contains a private state and the protocol code. The latter is structured as a
set of event handlers.

At composition time, a Quality of Service (QoS) is defined as a sequence of
layer instances (see dashed squares in Fig. 2.2), and the framework carries out
a correction check: a QoS is rejected if some layer instance declares an event as
required, but no layer declares it as provided. Once a QoS has passed the correction
check, it is used for session instantiation: for each layer instance in the QoS, the
corresponding session is instantiated. This yields a sequence of session instances
called channel. Finally, an Appia stack contains one or several of these channels.
Two different channels may share a session at some level (see for instance sessions
p and s in Fig. 2.2).

Interaction Model. The interaction model among protocol sessions is event-
driven. It is important to point out that Appia events are designed for recycling
events from session to session. Events are triggered by instantiating the event Java
class representing the appropriate event type, and providing three parameters: the
channel, the source session (i.e., the session that is triggering the event), and a di-
rection (either upwards on downwards). These three parameters define the route of
the event (i.e., the sequence of sessions). If a protocol layer did not declare a given
event class as “accepted”, its companion session will not be put into the event’s
route. Thus, all events of that type will bypass this session. A session forwards
an event to the next session in the event’s route by calling the event’s method go().
Events convey data inside. Data sharing among sessions is not possible.

The framework has adopted a so-called open event model [MPR01], which
means that new event classes may be defined, in contrast to the closed event model
of its precursor Ensemble [Hay98]. New event types are defined by inheritance:
the root event is class Event, and any other event type inherits from it or from one
of its descendants. The advantage of the open event model is that legacy proto-
col modules can deal with new event types, regarding them as an ancestor class
(inheritance-controlled polymorphism).

Events are unable to get out of the channel they are in: when they end their
channel route, they are destroyed. There is one exception: SendableEvent (and
its descendants). Sendable events contain a message: at the bottom-most protocol
module, the message is marshaled and transmitted to its destination; at the top-
most protocol module, the extraction of the message is treated in an ad-hoc manner.
Messages have a simple interface consisting of pushing and popping headers.

Concurrency Model. All events in all channels in the stack are processed by
one single thread: the event scheduler thread. The main advantage of this single-
threaded model is the absence of racing conditions inside sessions’ code, i.e., pro-

2.3. RELEVANT PROTOCOL COMPOSITION FRAMEWORKS 17

Layer P

Layer R

Layer S

Layer P

Layer Q

Layer S

Session p

Session s

Session q

QoS_1 QoS_2

Session r

channel_2channel_1

Figure 2.2: Composition example in Appia: Stack with two channels. Both chan-
nels share sessions p and s.

tocol developers never have to worry about thread synchronization. All events are
put into the event scheduler’s queue. In each step, the event scheduler pops the first
event e from the event queue, looks up the next session that handles e, and executes
the corresponding event handler. If the session creates a new event e′ in the same
direction as e, e′ is inserted in the event queue immediately after e. Otherwise, e′

is inserted at the end of the event queue. This way of queuing up events is further
discussed in Chapter 4.

Interface with the Environment. The outside world can insert events into a
channel to notify about external happenings (e.g., a packet has arrived from the
network, the application has sent a message). For this purpose, Appia provides a
special mechanism that external threads must use in order not to bring on race con-
ditions. This mechanism is called asynchronous events in Appia1 and is the only
way for the application and the network to interact with an Appia stack.

As a minor interfacing detail, Appia defines a special event class called TimerE-
vent that sessions can use to set up timers.

2.3.2 Cactus and the x-kernel

In [HP91], the x-kernel was defined as a kernel designed to facilitate the imple-
mentation of efficient communication protocols. The x-kernel design had visionary
ideas as, for instance, allowing graph-based rather than stack-based composition
(which is the current trend). Ten years later, Cactus was in turn defined in [WHS01]
as a framework for constructing configurable protocols and services, where each
service property or functional component is implemented as a separate module.

1Unlike the rest of events (which can only be triggered when handling another event) they are
called asynchronous because they can be triggered at any moment.

18 CHAPTER 2. PROTOCOL COMPOSITION FRAMEWORKS

Due to the fact that Cactus is an extension of the x-kernel, it is not possible to
describe Cactus without describing the x-kernel on the way. Thus, we describe the
two systems together. The x-kernel was initially written in C, but other versions
have appeared later. Cactus has versions in Java, C and C++.

Composition Model. Cactus defines a two-level composition model: coarse grain
and fine grain. The coarse grain level is inherited from its ancestor, the x-kernel.
The coarse grain protocols, called composite protocols, are composed by defining
a hierarchical graph. In this graph, several composite protocols may be placed at
the same level.

This is the only way to compose protocols in the x-kernel: the coarse-grain
protocols are themselves monolithic entities. In Cactus, the composite protocols
enclose a set of finer grain micro-protocols arranged in a cooperative way (no hier-
archy) and interacting via event triggering and data sharing. Micro-protocols can-
not exist on their own in the hierarchy graph: they need to be within a composite
protocol.

Interaction Model: Composite Protocols. Composite protocols are linked by
edges that define an directed acyclic graph. Only composite protocols that are
linked by an edge in this graph can directly interact. Composite protocols are in-
stantiated at run-time yielding sessions. Each composite protocol session maintains
its own state and its own micro-protocols. A session can open a new session of a
composite protocol to which it is linked. The communication between two ses-
sions is by message passing. In the x-kernel, messages are structured as a stack of
headers, with the usual push and pop operations. Cactus extends the mechanisms
for dealing with messages. In Cactus, a message is a data structure consisting of a
set of attributes. Attributes are tuples of the form (tag, scope, value). Tags are used
to retrieve the attributes’ values, which are the actual data. The scope restricts the
attribute’s visibility. A session may send a message up or down to the next session
in the graph. When sending a message up, if there are several sessions that may
receive the message, a demux function must be provided in order to decide which
is the receiving session (this decision is usually based on some attribute conveyed
by the message).

Interaction Model: Micro-Protocols. As previously said, micro-protocols only
exist in Cactus. In the x-kernel, the coarse-grain protocols are themselves mono-
lithic. Micro-protocol execution is event-driven: micro-protocols are structured as
a set of event handlers and contain private state. The protocol code is contained
in the event handlers, which can modify this state and trigger other events. Micro-
protocols can also share state (see Figure 2.3).

At start-up time, a micro-protocol binds its handlers to event types. Every time
an event is triggered, a structure called event occurrence is created to carry the

2.3. RELEVANT PROTOCOL COMPOSITION FRAMEWORKS 19

data associated with that event. Upon triggering an event e in some composite pro-
tocol C, the framework will execute all handlers in all micro-protocols of C that
are bound to e’s event type, giving each of them the event occurrence created. A
priority is chosen at binding time to set the execution order of all handlers bound
to e’s event type within a composite protocol. Events do not cross session bound-
aries: they are only seen by micro-protocols within the session in which the event
was triggered. An important feature of Cactus is the ability to bind/unbind event
handlers to events on-the-fly, which can change the behavior of a micro-protocol at
run-time. Moreover, a micro-protocol may be activated or disabled on-the-fly (by
binding/unbinding all its handlers).

protocol pMicro−

protocol rMicro−Pr
ot

oc
ol

Co
m

po
sit

e protocol qMicro−

Shared
state

Access to
shared state
Event−based
interaction
Exchange of
messages

Figure 2.3: Example of Cactus composite protocol.

Concurrency Model. In the x-kernel, the approach to concurrency is the so-
called thread per message. In such an approach, the same thread will shepherd
the message’s way through all protocols that handle it, i.e., the different messages
that reach the composition are handled by different threads, which permits that
all of them are processed in parallel. There is no built-in mechanism provided by
the framework to limit this concurrency in case of racing conditions. Therefore,
protocol programmers have to synchronize threads accessing critical resources on
their own.

In Cactus, a composite protocol, i.e., all the micro-protocols it contains, is idle
as long as no message arrives from above/below. Message arrivals start out the
activity in a composite protocol. At that point, the framework triggers an event of
the predefined type “message has arrived”: all handlers of micro-protocols bound
to this event will be executed one after the other.

The handler code can modify the private state in the micro-protocol as well
as the shared state in the composite protocol, and can trigger other events. There
are two ways to trigger an event: raising and invoking. Raising is asynchronous
(a thread is spawn or reused from a thread pool), while invoking is synchronous
(what we know as calls in our terminology). In the raising scheme, the private
state of a micro-protocol may be exposed to racing conditions. So, it is necessary
to synchronize the access to this private state (as well as to the shared state in

20 CHAPTER 2. PROTOCOL COMPOSITION FRAMEWORKS

the composite protocol). Such a synchronization is not enforced by Cactus (like
in the x-kernel); it is the responsibility of the protocol programmer to enforce
synchronization using standard mechanisms. Yet, some versions of Cactus (e.g., C
versions) enforce, by default, some basic synchronization properties such as atomic
handler execution.

Cactus defines a special way to trigger events: coordinated raising. This is
done using the register and signal methods. When a set S of micro-protocols
mpi execute register(mpi, e), where e is an event type, then the event will only be
triggered once all micro-protocols mpi in S have executed signal(mpi, e).

Interface with the Environment. There are no restrictions for Cactus micro-
protocols or x-kernel protocols to use OS resources as timers, sockets, etc. For
timers, Cactus offers the possibility of raising an event after some delay. As for
the network, the micro-protocols at the lowest level may open sockets themselves
or can be placed on top of an x-kernel transport stack. The application, which is
usually placed on top of the hierarchy graph, has no special interface: it has to use
an interface as though it were just another composite protocol.

2.3.3 Samoa

In [WRS04], Samoa is defined as a protocol framework that ensures the isolation
property, as defined in the context of databases. Samoa has been designed to allow
concurrent protocols to be expressed without explicit low-level synchronization,
thus making programming easier and less error-prone. Samoa is an alive, evolv-
ing project. Here, we describe the features of Samoa that were already present
in [WRS04]. The current prototype is written in Java.

Composition Model. Protocol modules are composed in Samoa in a cooperative
way, i.e., non hierarchical. This compositional scheme is quite similar to Cactus at
its fine-grain level.

Interaction Model. In Samoa, protocol modules are composed of a set of event
handlers and a local state. Unlike Cactus, this local state is confined to its protocol
module, and not visible from other modules. This avoids hidden dependencies that
reduce the advantages of modularity. Event handlers are bound to event types and
they are executed whenever an event of that type is triggered. Every event belongs
to a predefined event type. The handler code typically modifies the local state
and triggers new events, which will cause the execution of all handlers bound to
their event types. Protocol execution is purely event-driven: the code in a protocol
module is only executed in response to triggering an event (i.e., protocol modules
do not contain threads).

There are two kinds of event types: internal and external. Internal events can
only be triggered by handlers, whereas external events typically represent external

2.3. RELEVANT PROTOCOL COMPOSITION FRAMEWORKS 21

requests (message arrived from the network, message sent by the application, etc)
or asynchronous requests (timeouts). The reason for this distinction will become
clear when we explain the concurrency model.

Finally, the binding from handlers to events can be modified at runtime. This
allows for instance a protocol module to be deactivated at a given point in the ex-
ecution and a new protocol (or a new version of the same protocol) to take over
from that time on. This is known as protocol switching and can be exploited when
adapting to changing conditions (e.g., network congestion) is needed. When the
replacing protocol is indeed a newer version of the protocol replaced we call it
dynamic protocol update. Samoa has allowed research on coordinated protocol
update: a protocol module is updated on the fly at all processes, and this is done
without breaking down the protocol semantics (i.e., protocols are updated transpar-
ently to the application, which is never stopped).

Concurrency Model. The Samoa framework presents an advanced concurrency
model that makes it unique. On the one hand, it gives the illusion to the protocol
programmer that the framework provides no concurrency. This frees the proto-
col programmer from the burden of low-level synchronization and the risk of race
conditions. On the other hand, the actual execution is indeed concurrent, but the
framework scheduler makes sure that the state resulting from that concurrent exe-
cution is equivalent to some sequential execution. We now explain concisely how
this is achieved.

We say that all events triggered by a handler executed in response to event e
causally depend on e. This causal dependency relation is transitive and reflexive.
When an external event is triggered, the handlers bound to its type are scheduled
for execution. This marks the start of a new computation, which includes the ini-
tial external event and all internal events that causally depend on it. Informally, a
computation can be regarded as a kind of transaction. The Samoa runtime system
provides the isolation property to computations: when two or more computations
are executed concurrently, the resulting state of all protocol modules must be equiv-
alent to some sequential execution of those computations. This isolation concept is
analogous to that of transactions in databases, but without atomicity, consistency,
and durability properties, which are not needed in this context.

Summing up, Samoa is able to execute protocol code with a certain degree
of concurrency, while giving the impression to the protocol programmer that no
concurrency takes place. This makes protocol programming easier and less error-
prone.

Interface with the Environment. The environment interacts with Samoa by
means of external events. We have seen above that the special role of external
events is important for managing concurrency. Timers are also represented as ex-
ternal events, with the advantage that protocol modules do not own internal threads
to implement timeouts, which would break a purely event-driven model.

22 CHAPTER 2. PROTOCOL COMPOSITION FRAMEWORKS

As for interactions from the composition towards the environment, there are no
special provisions made by Samoa. Nevertheless, the mechanism chosen should
not block the computation (e.g., in an I/O operation) for a long time.

2.3.4 Other Protocol Composition Frameworks

Apart from the protocol composition frameworks presented above, which are the
most relevant for this thesis, there is a big diversity of other frameworks that should
be concisely presented.

Neko. Neko [UDS02] is an environment to test prototypes of distributed algo-
rithms and assess their performance. It is written in Java and its key feature is that
the same implementation of an algorithm is used for simulation and for real test-
ing (with no need to adapt the code or recompile it), which saves precious time in
building and assessing prototypes.

Protocol modules are composed in Neko in stack fashion, following a typical
hierarchical model. Thus, protocol modules are called layers. The way layers
interact with their neighbor layers is by synchronously calling a special method that
all protocol modules must implement (we can consider this method as the singleton
handler). Events are not used, since the handling method is directly called from
the initiating layer. It is possible to define active layers: layers that own threads.
This allows concurrent execution, which is managed in an ad-hoc manner by the
protocol code.

Neko comes along with an extensive set of distributed algorithms, as well as
tools and scripts for performance evaluation. Chapter 4 of this thesis contributed
to extend Neko’s protocol composition capabilities.

Eva. The Eva event-based framework for developing specialized communication
protocols [BGT+01] is written in Java and was used to build the Eden group com-
munication toolkit.

Eva defines a hybrid composition model where a set of cooperative protocol
modules can be grouped and seen as a single component. The lowest level compo-
nents (i.e., those that are not composite) are called entities. The same entity can be
put inside two different components. Eva is an event-driven framework, and uses
the concept of event channels. Entities within a component subscribe to an event
channel, which acts like a bus conveying events from the triggering protocols to the
handling ones. A given event channel is only visible within the component where
it has been defined. Therefore, the grouping feature in Eva is mainly used to route
and filter events: an entity can see (and handle) an event e from outside only if its
enclosing component also handles e.

Eva allows for multithreading, although nothing is provided to control the con-
current execution of the whole composition. So the programmer has to manage
concurrent threads using standard Java synchronization.

2.3. RELEVANT PROTOCOL COMPOSITION FRAMEWORKS 23

Ensemble and JavaGroups. Ensemble [Hay98] and its Java re-implementation
JavaGroups [Ban02] (also called JGroups recently) are not protocol composition
frameworks, but group communication toolkits. However, as their protocols are
modular and composable, they need to use an ad-hoc set of rules for protocol com-
position. Here, we only describe these rules, which have no special name since
they are not presented as a protocol composition framework. This makes it some-
times hard to define the boundary between framework and protocols. The way
protocols are composed in Ensemble is very similar to Appia. Indeed, Appia was
born as a proof-of-concept implementation in order to fix certain limitations in
Ensemble [PMR01].

Ensemble uses a fully hierarchical composition model, where compositions are
a stack of layers. This stack is strict in the sense that only one protocol module can
operate at each level of the stack. The interaction model is event-driven, where
events flow up or down the stack looking for layers that handle them. The set of
event types is fixed, and it is not possible to define new types or extend the existing
ones. This can be explained by the fact that it is an ad-hoc framework for group
communication, but it also hinders the development of new modules for group
communication, since they have to get along with the already existing event types.
Finally, Ensemble is single-threaded, containing one scheduler that treats one event
at a time and shepherds that event all the way up (or down) the stack.

A distinctive feature of JavaGroups is its nice design for the application-stack
interaction. It defines a set of off-the-shelf interaction patterns, called building
blocks, which the composer can choose from. Consequently, the chosen building
block is placed between the stack and the application. Thus, the application can de-
cide the way it interacts with the stack. Examples of building blocks are “message
queues” or “callbacks”.

SDL. The Specification and Description Language (SDL) [EHS97] is not, in
principle, intended as a runtime framework for protocol composition. It is rather
a ITU-standardized language, widespread in the telecommunications industry. Its
main use is modular specification of communication protocols and hardware com-
ponents. Nevertheless, it is suited for any application based on finite state ma-
chines, and any composition of them. Recently, some platforms implement a run-
time module able to execute SDL code, which has sparked some interest in the use
of SDL as a framework for modular software development.

An SDL system is organized hierarchically in blocks, which can contain other
blocks. The blocks that do not contain other blocks but only protocol code are
called processes.2 Blocks/processes are interconnected through channels. Each
channel can convey any number of signals. Signals can be seen as events, whereas
channels are a sort of event binding between two or more blocks. It thus follows
an event-driven model.

2Note that this definition of process is quite different from ours.

24 CHAPTER 2. PROTOCOL COMPOSITION FRAMEWORKS

Protocol programming is based on extended finite state machines communicat-
ing through signal exchange, without any shared memory. The protocol program-
mer can define local variables as well as set conditions on the signals that are to
be received and on the values of their parameters. Every process (i.e., protocol
module) is programmed using one of such finite state machines (i.e., a thread of
execution). All instances inside a block run concurrently. Several processes can be
active at a time, which also means that several finite state machines can run con-
currently. SDL also allows the definition of timers. When a timer expires, a signal
is sent to the initiator of the timer. This timer signal is processed as an ordinary
signal.

In short, SDL implements a special multithreaded concurrency model called
thread-per-layer model. Its concurrency is limited: every SDL process contains a
finite state machine (i.e., a thread) whose execution is confined to this process. The
only way to interact with other SDL processes is by means of signal exchange. As
a result, even if the degree of concurrency can be high (e.g., a system with many
processes), no action needs to be taken in order to prevent deadlocks or racing
conditions, since a given piece of code will never be executed by more than one
thread.

SDL was used as the supporting framework for a modular group communica-
tion protocol in [EMPS04a, EMPS04b].

2.4 Roadmap to the Remainder of Part I

So far, we have set up a unifying terminology for the elements and concepts that can
be found in a protocol composition framework. We have also introduced our four
perspectives for framework comparison as a common way to analyze and compare
them.

Once we have set up this introductory background, we can proceed with our
contributions. This is done in the remaining chapters of Part I. In Chapter 3, we
compare two of the most relevant protocol composition frameworks: Appia and
Cactus. We compare these frameworks from the perspective of all the models
for framework comparison defined in Section 2.2. The aim of this comparison
is to shed some light on the frameworks’ features: which are useful, which are
unnecessary, and which are missing. A performance comparison is also presented.

One of the conclusions of Chapter 3 is that the concurrency model of Appia and
Cactus can be improved. This is the motivation for Chapter 4, which surveys the
concurrency model of a number of protocol composition frameworks (including
Appia and Cactus). This chapter proposes several features to achieve a simpler and
more efficient way to manage concurrency in protocol composition frameworks.

Finally, Chapter 5 copes with the composition and interaction models. In par-
ticular, a new interaction scheme for protocol modules is presented, which does not
use events, but messages headers.

Chapter 3

Comparison of Protocol
Composition Frameworks

In this chapter, we compare Appia and Cactus, two frameworks for protocol com-
position. The comparison, based on the experience gained in implementing a fault-
tolerant Atomic Broadcast composition, covers the four perspectives for framework
comparison defined in Chapter 2. This chapter also provides performance results,
and concludes with a discussion of the most interesting features of the two frame-
works, and suggestions for an improved framework.

3.1 Introduction

As discussed is Chapter 1, a protocol composition framework is the infrastructure
that allows a programmer to build a complex protocol out of a set of off-the-shelf
building blocks: the composition. The composition can be arranged in a stack or
in a graph, which is more flexible. For the external user, it is perceived as a whole
(large) middleware providing the expected (complex) service. In the same way
as the goal of a middleware is to make the development of distributed applications
easier, the goal of a protocol composition framework is to make the development of
a complex middleware easier. As distributed applications become more and more
complex, they require stronger guarantees from the underlying middleware.

Group communication middlewares are not an exception. At the beginning,
group communication middlewares like ISIS [BJ87, Bir93], Transis [DM96], Phoe-
nix [Mal96, MFSW95], etc. were monolithic: their protocols were tightly coupled
and had plenty of hidden dependencies, even though they were based on well de-
fined building blocks. The fact that they were monolithic prevented these building
blocks from being reused elsewhere. Later on, group communication middlewares
started to be modular: Consul [MPS93], and Horus [vRBG+96, vRBC+93] pio-
neered modular group communication. Finally, state-of-the-art group communi-
cation toolkits like Ensemble [Hay98], JavaGroups [Ban02] (also called JGroups),
Appia’s group communication toolkit [Pin01], or the group membership composite

25

26 CHAPTER 3. COMPARISON OF PROTOCOL COMPOSITION FRAMEWORKS

protocol described in [HS98] are all modular: they are built from smaller off-the-
shelf building blocks called protocol modules. Protocol composition frameworks
yield a number of advantages over monolithic approaches, namely configurability,
reusability, extensibility and ease of maintenance (see Sect. 1.1). However, they
may yield plenty of drawbacks if they are not properly used (e.g., bad protocol
module design, hidden dependencies left over, etc.), and might render a complex
middleware protocol even harder to maintain than in the case of monolithic ap-
proaches.

The protocol composition frameworks for the development of modular group
communication middlewares that we are aware of can be classified into two fam-
ilies. The first family consists of the x-kernel [HP91], and its successors Coyote
and Cactus [Bha96, BHSC98, HS98]. The second family, is composed of Horus
and its successors Ensemble, Appia [MR99a, MR99b, MPR01] and JavaGroups.
The most representative frameworks in each of these two families are Cactus and
Appia. Chapter 2 provides a detailed description of these two frameworks.

The Appia project has started after Cactus, but is already mature enough to be
tested and compared with Cactus. In this chapter we analyze and compare these
two frameworks, in particular their Java versions.1 Apart from previous research
using Appia and Cactus [Men01, WMS02a, WMS02b], we base our comparison
on the experience gained while implementing a prototype group communication
middleware (see Sect. 3.2), written in Java, using both frameworks.

The outcome of our comparison is that each framework has some unique inter-
esting features, but none of them is clearly better than the other.

The rest of the chapter is structured as follows. Section 3.2 describes the proto-
type group communication composition that has been implemented both in Appia
and Cactus. In Section 3.3, we compare these two frameworks. Section 3.4 con-
tains suggestions for better frameworks. Finally, Section 3.5 concludes the chapter.

3.2 Composition Implemented

3.2.1 Description

In order to compare Appia and Cactus, we have implemented the same composi-
tion in both frameworks. This composition is part of the Fortika prototype (see
Chapter 9) and provides fault-tolerant atomic broadcast in a static process group
(see Sect 6.3.5). There are two reasons why we chose atomic broadcast for this im-
plementation: (1) it is a fairly complex protocol with a set of well-known building
blocks, and (2) it is instrumental for group communication: the context of Part II.
Atomic broadcast has been implemented by the composition of several protocol
modules (see Fig. 3.1, where arrows correspond to event types). A full descrip-
tion of these protocol modules will be given in Chapter 6, here we give a short
description of them:

1In the case of Appia, the Java version is the only one we are aware of.

3.2. COMPOSITION IMPLEMENTED 27

���
���
���
���

���
���
���
���

Atomic Broadcast

de
ci

de

Reliable Channel

Unreliable Transport

Failure Detection

Consensus

su
sp

ec
t

ad
el

iv
er

re
ce

iv
e

se
nd

u−
se

nd

u−
re

cv tc
p−

se
nd

tc
p−

re
ce

iv
e

sta
rt_

sto
p_

m
on

ito
r

pr
op

os
e

ab
ca

st

jo
in

_r
em

ov
e_

lis
t

Application

Network

Process 1

Atomic Broadcast

de
ci

de

Reliable Channel

Unreliable Transport

Failure Detection

Consensus

su
sp

ec
t

ad
el

iv
er

re
ce

iv
e

se
nd

u−
se

nd

u−
re

cv tc
p−

se
nd

tc
p−

re
ce

iv
e

sta
rt_

sto
p_

m
on

ito
r

ru
n

ab
ca

st

jo
in

_r
em

ov
e_

lis
t

Application
Process n

. . .

Figure 3.1: Protocol modules for Atomic Broadcast.

• Reliable Channel. This protocol module provides reliable message commu-
nication between two processes located on different machines. The inter-
face consists of the event types send and receive, depicted in Figure 3.1.
The protocol module also receives information about the group membership
change (event type join_remove_list in Fig. 3.1). The current implementa-
tion is based on TCP.2

• Failure Detector. This protocol module implements a failure detector based
on ping messages.

• Consensus. This protocol module implements an algorithm for solving con-
sensus [CT96]. It interacts with the Failure Detector module by means of
event types start_stop_monitor and suspect (see Fig. 3.1). It also interacts
with the Reliable Channel module.

• Atomic Broadcast. This module implements Atomic Broadcast [CT96]. It
interacts with the Consensus module (via the run and decide event types)
and the Reliable Channel module.

3.2.2 Conforming to Fortika Conventions

We carried out this implementation in the context of Fortika (see Chapter 9), the
reason being to implement the protocols for both frameworks as similarly as pos-
sible. Therefore, we have followed a set of conventions required by Fortika. We
next give a brief description of such conventions and refer the reader to Sect. 9.2
for further details.

2We use Robust TCP connections [EUS02], which properly mask link failures.

28 CHAPTER 3. COMPARISON OF PROTOCOL COMPOSITION FRAMEWORKS

3.2.2.1 Common Protocol Code for Both Frameworks

All the protocol modules of Figure 3.1 have an internal private state and consist
of a set of event handlers that may read and/or modify the private state and trigger
events. Each of these protocol modules has been implemented as a Java class in
which the event handlers are public methods and the state is stored in private at-
tributes. These protocol classes are instantiated in both composition frameworks
without changing a single line of code (see circles in Fig. 3.2). As a result, the
actual implementation of each protocol module is exactly the same in both frame-
works.

Java Class
Protocol P

Java Class
Protocol Q

Java Class

Java Class
Protocol R

Protocol S
Common
Protocol

Code

Session p

Session q

Session r

Session s

Layer P

Layer Q

Layer R

Layer S

Appia Channel Cactus Composite Protocol

Micro−protocol R

Micro−prot Q

Micro−protocol S

Micro−prot P

Figure 3.2: Protocol code shared by Cactus and Appia.

3.2.2.2 Event Routing Using Framework Facilities

We composed these protocol objects (i.e., these instances of protocol classes) using
Cactus’ and Appia’s infrastructure:

• Cactus: As we can see in Figure 3.1, almost every protocol interacts with
every other protocol. In Cactus events are unable to cross composite protocol
boundaries. For this reason, we have used in Cactus one single composite
protocol for the whole composition (see Fig. 3.2). Every protocol object has
been wrapped into a micro-protocol, which binds handlers in order to capture
events from the environment and routes them to the appropriate handler. The
wrapping micro-protocol also intercepts events triggered within the protocol
object, and translates them into a Cactus event invocation.

• Appia: In Appia, every protocol object has been wrapped within a protocol
session. The companion layer declares all events that the protocol object
provides, requires and accepts. The session code has the same role as micro-
protocols in the Cactus version: event handling only consists of (1) calling
the appropriate handler inside the protocol object, and (2) intercepting all
events triggered inside the common protocol code and translating them into
Appia events, which are routed along the channel by calling method go().

3.3. COMPARISON 29

3.2.2.3 Concurrency Model

We have implemented a similar concurrency model in both frameworks. In Appia
there was only one choice, since the event scheduler is single-threaded. In Cactus,
we have protected the composite protocol with a mutex to avoid concurrent execu-
tion. Moreover, we use (synchronous) event invocation to prevent spawning of new
threads inside the composite protocol. This choice avoids to some extent the cost
of context switches, and allows a fair performance comparison between Cactus and
Appia.

3.3 Comparison

This section is devoted to a comparison between the two frameworks used to im-
plement the composition described in Section 3.2. Even though the models adopted
by Appia and Cactus are very different, they share some common features. These
features are pointed out in Section 3.3.1. Then, we discuss all the issues that make
these two frameworks so different (Sect. 3.3.2). Finally, a performance comparison
concludes this section.

3.3.1 Similarities

3.3.1.1 Common Features

The Event-Driven Interaction Model. The internal structure of Cactus’ micro-
protocols and Appia’s sessions is the same: a set of event handlers (with an internal
state). These event handlers play three main roles: (1) managing messages, (2)
modifying the internal state, and (3) triggering events that may cause handler
execution in other protocol modules.

A protocol module does not have the initiative for execution. It is rather in an
idle state, waiting for some happening to occur: an event. It then reacts to the event
by executing one of its event handlers and triggering other events, which make
surrounding protocol modules react to them

The fact that Appia and Cactus both implement the event-driven interaction
model is the most important common feature for us, since without this resemblance
it would have been impossible to share the protocol code in the implementation of
our Atomic Broadcast composition.

Message Abstraction. Both frameworks have the concept of message. Messages
are the only information able to reach the network. Although message structure
differs, the concept of headers is present in both frameworks.3 If a given protocol
module pushes a header into a message, only its corresponding modules at other
processes are able to access and strip off this header. As a message flows down
to the network, protocol modules see upper modules’ headers as application data.

3Cactus does not define headers, but attributes with peer scope behave exactly as headers.

30 CHAPTER 3. COMPARISON OF PROTOCOL COMPOSITION FRAMEWORKS

Likewise, as a message flows upwards, each protocol module strips its header off
the message. Our common protocol code benefits from this similarity between both
frameworks, treating messages in an homogeneous way.

3.3.1.2 Common Lacks

Flow Control. Neither Appia nor Cactus have any form of flow control that
would bound the workload (events in Appia, messages in Cactus) produced by
the environment (network, application). In Appia, the absence of flow control may
lead the event queue to overflow if flooded with incoming events (see Sect. 3.3.3).
However, at the time we carried out this work, there was an ongoing effort to in-
corporate flow control to Appia, limiting the aggregate size (in bytes) of events in
a channel.

In our Cactus implementation, the problem is prevented thanks to the mutex
that protects execution in the composite protocol.

Efficient Message-Passing Network Interface. Another lack of both frame-
works is the absence of a message-passing network interface built in the frame-
work itself. There are some protocols included in both framework distributions
that implement a message-passing interface for upper-level protocols (e.g., Appia
has protocols like UDPSimple, TCPSimple, and Cactus has protocols like UTP),
but when the user needs do not match what these protocols offer, she is forced to
cope with sockets directly.

3.3.2 Differences

3.3.2.1 Composition Model

Appia’s Channels vs. Cactus Cooperative Composition. Protocol composition
is quite different in each of the frameworks. In Appia, the concept of channel yields
a strictly hierarchical composition, even though channels are allowed to share ses-
sions: events flow up and down following a dedicated channel. This restricts in
Appia the possible ways in which protocol modules can interact. Consider for in-
stance Figure 3.3(a), where event e1 goes from protocol module p to protocol mod-
ule q, and then to r. Appia’s channels are optimized for this case. Figure 3.3(b)
shows a different itinerary for event e2: first from p to r and then from r to q. This
is much trickier to express in Appia, since this order clashes with the order defined
by the channel.4 Appia has a workaround consisting of using a special event called
EchoEvent, which conveys an event and travels up to the top (or down to the bot-
tom) of the channel. At the end of the channel the conveyed event is extracted and
reinjected into the same channel, but in the opposite direction. In Figure 3.3(b),
protocol p would put an event e2 inside an EchoEvent, and send the latter up.

4Using two channels does not solve the problem, since a given event instance is bound to only
one channel.

3.3. COMPARISON 31

r
q
p

e1
e1

(a)

r
q
p

e2 e2

(b)

Figure 3.3: Two different patterns of event flow. Appia channels only support the
event path depicted in (a). Figure (b) is only possible in Appia with the help of
EchoEvent.

This problem does not exist in the non-hierarchical composition of Cactus,
where any micro-protocol can send an event directly to any other micro-protocol.
Handler priority in Cactus allows to express either the event flow in Figure 3.3(a)
or in Figure 3.3(b).

Correctness Check. Cactus does not offer any correctness check. Appia does a
composition correctness check at QoS creation time (see Sect. 2.3.1). This correct-
ness check rejects some incorrect compositions, but does not aim at being com-
plete: an incorrect composition may pass this check.

3.3.2.2 Interaction Model

Multiplexing Events. Some compositions have complex event handling con-
straints. Two different protocol modules may accept the same event type, but each
event is for only one of the two modules. Consider for example Figure 3.1, where
Reliable Channel triggers receive events. Every receive event is handled either by
Consensus or by Atomic Broadcast, but never by both. The receive event must be
handled by Consensus if the event is the result of a send event triggered by Con-
sensus in the corresponding remote process; the receive event must be handled by
Atomic Broadcast if the event is the result of a send event triggered by Atomic
Broadcast in the corresponding remote process. In Appia, these two events travel
through the same channel,5 i.e., there is no way to reach Atomic Broadcast directly.
In other words, all up-going receive events will first be handled by Consensus, even
if they are not aimed at it.

In Cactus, micro-protocols can directly interact, but the problem is similar.
Both Atomic Broadcast and Consensus bind a handler to event receive. There-
fore, upon triggering of this event (by Reliable Channel) both micro-protocols will

5A two-channel solution may work, but with such a solution, Consensus and Atomic Broadcast
are aware of each other, which is not desirable.

32 CHAPTER 3. COMPARISON OF PROTOCOL COMPOSITION FRAMEWORKS

handle the event, which is incorrect. We describe a solution to this problem in
Section 3.4.2.

As a conclusion, any interaction based on Appia’s notion of channel can be
implemented in Cactus in a straightforward way: the micro-protocol composition
in Cactus is a generalization of Appia’s channel-based composition.

Shared Data. In Appia, protocol interaction is only possible by means of events.
Cactus offers data sharing among micro-protocols, in addition to event triggering.
However, in order to reuse the same Java protocol classes in Appia and in Cactus,
data sharing was not used in our Cactus implementation of the Atomic Broadcast
composition. In this specific example, we do not think that data sharing would
have been very useful.

In the general case, data sharing constitutes a dependency among protocol
modules, whose access is usually hard to coordinate, especially if the protocol
modules are designed by different people.

FIFO Guarantee. The adeliver events triggered by the Atomic Broadcast pro-
tocol module in Figure 3.1 have to be handled by the application (or by any other
protocol module composed on top of Atomic Broadcast) in FIFO order, so as to
preserve the total order provided by Atomic Broadcast. This is ensured by Appia,
which enforces FIFO order among events (see Sect. 2.3.1). Cactus does not provide
such a property. Nevertheless, in our implementation, the absence of concurrency
within the composite protocol indirectly ensures the FIFO guarantee.

3.3.2.3 Concurrency Model

As already said in Section 2.3.1, Appia follows a single-threaded model, which
prevents race conditions. In Cactus, the programmer needs to properly synchro-
nize concurrent access to shared data within a micro-protocol, and within a com-
posite protocol (if data is shared). A simpler solution is to consider a setting in
which only one thread is allowed to execute in a composite protocol at a time (see
Sect. 3.2.2.3). Such a design yields a concurrency model much closer to Appia
in the sense that there is no need to include thread synchronization in the micro-
protocol code. We will come back to this issue in Chapter 4.

3.3.2.4 Interface with the Environment

In Cactus, both the application and the network have to adopt the interface of a
composite protocol, i.e., an x-kernel interface. This is appropriate for the network,
since send and receive is what one usually uses in this context (u-send and u-recv
in Figure 3.1). This message-based interface is however too restrictive for the
interface with the application. Consider for example an application sending (1)
messages that need to be totally ordered, and (2) point-to-point reliable messages.

3.3. COMPARISON 33

In Cactus, this would require to add some type information in the message in order
for the protocol to be able to distinguish between the two types of messages.

In Appia, the interaction with the application and network is done by so-called
asynchronous events (see Sect. 2.3.1). This is a much more flexible interface, al-
lowing interactions more complex than just pushing/popping messages. Consid-
ering the above example, the application could trigger (1) abcast events and (2)
send events. The only problem is that this works only from the application to the
channel, but not the opposite. In the other direction, i.e., from the channel to the
application, Appia does not provide any solution: the interface has to be imple-
mented in an ad-hoc way. In our composition, adeliver has been implemented
using a producer-consumer queue.

To summarize, Appia’s application interface is more flexible, but it would be
beneficial to have the same interface from the channels to the environment as from
the environment to the channels.

3.3.3 Performance Comparison

We measured the performance of Cactus and Appia on the Reliable Channel proto-
col module between two processes, using the IBM SockPerf benchmark suite, ver-
sion 1.2 [IBM00]. These benchmarks are designed to measure socket performance.
In order to run these benchmarks, we implemented a special protocol module that
interacts with the benchmarks: the SockPerf Proxy (see Fig. 3.4). Sockperf Proxy
interacts with Reliable Channel to send/receive messages. The Reliable Channel
protocol module is the same as in Section 3.2.

The hardware used for the measurements was (1) a 100 Base-TX Ethernet,
with no third-party traffic, (2) two PCs running Red Hat Linux 7.2 (kernel version
2.4.18-19). The PCs have a Pentium III 766Mhz processor and 128 MB of RAM.
The Java Virtual Machine was Sun’s JDK 1.4.0.

���
���
���

���
���
���

Network

Reliable Channel

SockPerf Proxy

re
ce

iv
e_

by
te

s

se
nd

_b
yt

es

di
sc

on
ne

ct

co
nn

ec
t

Benchmark’s server (Application)

se
nd

re
ce

iv
e

tc
p−

se
nd

tc
p−

re
ce

iv
e

jo
in

_r
em

ov
e_

lis
t

TCP

Reliable Channel

SockPerf Proxy

re
ce

iv
e_

by
te

s

se
nd

_b
yt

es

di
sc

on
ne

ct

co
nn

ec
t

Benchmark’s client (Application)

se
nd

re
ce

iv
e

tc
p−

se
nd

tc
p−

re
ce

iv
e

jo
in

_r
em

ov
e_

lis
t

TCP

Server processClient process

Figure 3.4: Benchmark configuration

34 CHAPTER 3. COMPARISON OF PROTOCOL COMPOSITION FRAMEWORKS

3.3.3.1 Throughput

The first benchmark measures throughput with respect to message size. The bench-
mark does the following. First, the client connects to the server using event con-
nect (Fig. 3.4), which causes a join_remove_list event to be triggered. This opens
a socket at the TCP level. Once the socket is open, the client sends messages of a
given size using event send_bytes. The handling of send_bytes results in triggering
of send, which in turn triggers tcp-send. The client sends messages at maximum
speed, and the throughput is measured.

In our Cactus implementation, as discussed in Section 3.2.2.3, the client bench-
mark’s thread executes all the code in the composite protocol, including the tcp-
send call on the socket. The TCP flow control blocks the calling thread if the
sending buffer is full. In Appia, the client thread just inserts events send_bytes in
the scheduler queue: execution of the event is carried by another thread. Because
of the absence of flow control in Appia, our preliminary tests caused a memory
overflow (overflow of the scheduler event queue). To prevent this, the designers of
Appia added a preliminary flow control mechanism in the system, by bounding the
size of the scheduler event queue: a caller wanting to add an event to the queue is
blocked if the queue is full.

We have also measured the throughput directly using TCP sockets. The results
are shown in Figure 3.5(a). The first observation is that the throughput grows
linearly approximately up to messages of 2000 bytes. The growth slows down as
we get closer to the network bandwidth limit (12.5 MB/s). This is not surprising:
for large messages (e.g., 16384 bytes) the overhead of the framework becomes
small compared to the network transmission time. Figure 3.5(a) shows also that for
large messages the throughput obtained with Cactus is four times the throughput
obtained with Appia. We come back to this issue later. The measurements also
show that the overhead of both Cactus and Appia with respect to TCP is particularly
significant for small messages.

0 2000 4000 6000 8000 10000 12000 14000 160000

2000

4000

6000

8000

10000

12000

th
ro

ug
hp

ut
 (K

B/
s)

message size (bytes)

Throughput test

Appia
Cactus
TCP

(a) Throughput

0 2000 4000 6000 8000 10000 12000 14000 160000

5

10

15

20

25

message size (bytes)

tim
e

(m
s)

Request−Reply test

Appia
Cactus
TCP

(b) Request-reply

Figure 3.5: Performance comparison

3.3. COMPARISON 35

3.3.3.2 Request-Reply

The Request-Reply benchmark measures the round-trip time of a message. The
client first connects to the server in the same way as it does for the throughput
benchmark. Once the socket is open, the client sends a message to the server and
waits. The server receives the message and immediately resends it to the client. The
time elapsed at the client between the message sending (send_bytes) and reception
(receive_bytes) is measured (averaged over several request-reply interactions).

We have also performed the same measurements directly using TCP. The re-
sults are shown in Figure 3.5(b), where we can see that Cactus performs again
better than Appia: the factor varies approximately from 2 for short messages to 5
for large messages. Compared to TCP, the overhead of both Cactus and Appia is
again quite significant, especially for small messages.

3.3.3.3 Execution Profiling

In order to understand the results of our experiments, we have used a profiler on the
client side for the Request-Reply benchmark with 16384 byte long messages. We
have classified the methods executed into five groups: (1) waiting on the socket, (2)
benchmark-related methods, (3) framework-related methods (including protocol
execution), (4) thread synchronization methods, and (5) message transmission and
marshaling methods.

Thread sync 7%

Message send/recv 84%

Benchmark 5%
Framework 4%

(a) Appia

Thread sync 24%

Framework 8%
BenchMark 2%

Message send/recv 66%

(b) Cactus

Figure 3.6: Profiling of the Request-Reply benchmark with messages of 16384
bytes (client side).

The results are depicted in Figure 3.6. The time spent waiting on the socket
does not appear, since it is not relevant to locate bottlenecks. For both frameworks,
we see that most of the time is spent treating messages (84% in Appia, 66% in Cac-
tus).6 The percentage is particularly high for the case of Appia. We believe that the
reason is because Appia implements a library (class ObjectsMessage) to serialize
objects, which itself uses standard Java marshaling. In Cactus, Java marshaling is
used without any intermediate library.

6A similar result was obtained when profiling the execution on the server side.

36 CHAPTER 3. COMPARISON OF PROTOCOL COMPOSITION FRAMEWORKS

In any case, the results show that message marshaling represents the bottleneck
of both Cactus and Appia, and thus probably explains the results that appear in Fig-
ure 3.5. Serialization needs certainly to be done in a more efficient way. Standard
Java class serialization is too heavy-weight for simple data types such as byte[]
(used by Java sockets).

3.4 Proposals for Better Frameworks

After having analyzed the strengths and weaknesses of Appia and Cactus, we dis-
cuss in this section the most interesting features of the two frameworks, and pro-
pose improvements that could lead to better frameworks.

3.4.1 Composition Model

As we have seen in Sect. 3.3.2, the best and most general composition model is
non-hierarchical, allowing protocol modules to directly communicate with each
other. More restrictive compositions, e.g., the Appia channel, enforce an order that
is sometimes not the right one.

3.4.2 Interaction Model

Point-To-Point Events. Our experience in building the Atomic Broadcast com-
position shows that the interaction models proposed by Appia and Cactus do not fit
well the situation encountered most often. Indeed, the most frequent situation was
a protocol module triggering an event, and one single protocol module handling
it. We call such events point-to-point events. As discussed in Sect. 3.3.2, Appia’s
channels are not very well adapted for point-to-point events.

We propose an additional way to compose protocol modules, in which there
is a point-to-point binding between the event triggered in one protocol and the
incoming event in the other protocol module. It is a simplified version of the Cactus
event binding scheme, where only one handler is bound to an event type. The Appia
correction check could easily be extended to include this new binding rule.

Connectors. In Section 3.3.2.2, we have described the event multiplexing prob-
lem. With point-to-point events, the multiplexing problem can be solved with a
special module called connector, which could be provided by the framework. A
connector would allow a finer event routing. This is shown in Figure 3.7, which
illustrates one particular type of connector called multiplexor-demultiplexor. If
module m (respt. m′) in Figure 3.7 triggers event in1 (respt. in2) at some process
p, the multiplexor at the remote process q will trigger out1 (respt. out2). Note that
this connector is different from the Cactus demux function (see Sect. 2.3.2), which
deals with sessions, while the connector deals with micro-protocols. Cactus’ coor-
dinated event raising (Sect. 2.3.2) could easily be implemented as a connector.

3.4. PROPOSALS FOR BETTER FRAMEWORKS 37

out1in2

in1

ou
t2

m m’

m
ux

Mux/Demux

out1in2

in1

ou
t2

m m’

m
ux

Mux/Demux

de
m

ux

de
m

ux

Process p Process q

Figure 3.7: Multiplexor-demultiplexor connector.

3.4.3 Concurrency Model

To be general, the framework should allow multiple concurrency models in order
to easily adapt to a changing environment (e.g., from mono-processor systems to
multiprocessor systems). One of these models could be the Appia single-threaded
model, which does not waste time in context switches. Another — more con-
current model — could be the “thread per protocol module” model (as in SDL,
see Sect. 2.3.4), in which each protocol module has (1) its own thread, and (2) a
(FIFO) queue of events, waiting for the protocol module thread to handle them. All
the concurrency models should at least provide the following guarantees:

• Default Synchronization: Protocol programmers should be freed from the
burden of expressing synchronization. This implies, for instance, that atomic
handler execution should be guaranteed by default.

• FIFO Event Handling: FIFO order event handling is desirable in concur-
rency models in which the property makes sense. This includes the single-
threaded model, and the “thread per protocol module” model.

• Transparency: Changing the concurrency model should be transparent to
protocol modules.

In addition to these preliminary proposals, we will present more elaborate con-
currency models in Chapter 4, which is devoted to the concurrency model.

3.4.4 Interface with the Environment

The interface with the environment can be divided into two issues: application/net-
work interface, and interface to system resources.

In our opinion, a good interface from the application/network to the frame-
work should be close to Appia (where the application/network can insert events
into the framework). The interface from the framework to the application is trick-
ier, since it depends on the application model. One solution for the framework is

38 CHAPTER 3. COMPARISON OF PROTOCOL COMPOSITION FRAMEWORKS

to provide various interfaces, which fit most common application models. A good
solution for interaction with the network is the one defined in JavaGroups [Ban02],
where the application can choose a so-called building block from a repository (see
Sect. 2.3.4). A building block is a predefined interaction scheme between applica-
tion and composition (message queues, callbacks, etc.).

The access to system resources (typically timers) should be well integrated in
the framework event model (which is the case with Appia and Cactus).

A crucial aspect for performance is serialization. We have noticed that the stan-
dard serialization provided by Java is not adapted to short messages. The frame-
work should provide efficient serialization for primitive data types, and not just
standard Java object marshaling (actually, a non-documented feature of Appia pro-
vides something similar).

3.5 Conclusion

In this chapter, we have analyzed Appia and Cactus, two frameworks for proto-
col composition. We have compared the two frameworks based on the experience
gained in implementing an Atomic Broadcast composition. Our conclusion is that
the optimal framework would inherit features from both frameworks: a composi-
tion and interaction model close to Cactus, several concurrency models that would
include Appia’s model, and an extended version of Appia’s interface with the en-
vironment. It would also include new features like point-to-point events and a
repository of connectors.

Chapter 4

Concurrency in Protocol
Composition Frameworks

Recent protocol composition frameworks provide flexible interfaces, arrangements
and communication patterns, and thus allow for finer-grained components, called
protocol modules. Multi-threaded programming is the key to high performance
in these frameworks. In this chapter, we investigate the concurrency models that
such frameworks provide or should provide for programmers. Along with detailed
discussions of the concurrency features of existing frameworks, we propose a set of
features that can be offered to enhance the way frameworks manage concurrency.

4.1 Introduction

For several decades, distributed protocols have been structured as a set of collab-
orating components with more or less well-defined interfaces. Recent protocol
composition frameworks have highly flexible interfaces, arrangements and com-
munication patterns, that permit the use of finer-grain components, called protocol
modules. The basic promise that modular protocol composition frameworks make
is a full separation of concerns between the programming of protocol modules and
their composition, to the extent that these two tasks can be carried out by different
people with minimal interaction (see Chapter 1).

Multiprocessor machines are commonly used as servers, and are increasingly
present on desktops, as well. Multi-threaded programming, which is extensively
used in protocol composition frameworks, can take advantage of systems with mul-
tiple processors.

Contribution. Multi-threaded programming is significantly harder than single-
threaded programming. Hence it is worthwhile investigating what support is avail-
able for programmers of distributed applications. This chapter concentrates on
what support protocol composition frameworks provide to programmers. We sur-
vey the features of existing frameworks for multi-threaded programming, and ex-

39

40 CHAPTER 4. CONCURRENCY IN PROTOCOL FRAMEWORKS

tensively discuss the usefulness of each of the features. We focus on features al-
lowing communication within a given process: in particular, concurrency issues
that arise within a process. Communication between processes is much slower
and often unreliable, and concurrency issues require different solutions, therefore
it falls out of the scope of this chapter. We then propose a set of features to im-
prove the way frameworks use concurrency. These novel features can be offered
without significant changes in programs, and with a negligible performance hit.
Among other things, we propose the following features: (1) sets of single-threaded
protocol modules that can coexist with multi-threaded protocol modules, thus tak-
ing the best of two worlds; (2) non-overlapping execution of protocol modules
involved in a chain of asynchronous communication, to avoid inconsistencies; and
(3) providing ordering guarantees for asynchronous communication among proto-
col modules, including first-in-first-out (FIFO) and causal order, and an extension
to causal order. To our knowledge, our definition for this particular extension of
causal order is the simplest so far.

Perspectives for Framework Comparison. In Chapter 2, we defined four per-
spectives for framework comparison. One of them is the concurrency model: it
defines whether and how concurrency is allowed in the framework. The present
chapter focuses on the concurrency model of protocol composition frameworks
with more details and more frameworks than Chapter 3.

Structure. Section 4.2 lists the protocol composition frameworks we investi-
gated. Section 4.3 presents concurrency models of protocol composition frame-
works. Section 4.4 compares the models and proposes a combination. Section 4.5
is concerned with overlapping executions in a protocol module. Section 4.6 de-
fines and discusses ordering guarantees for the communication between protocol
modules and their implementation. Finally, Section 4.7 concludes the chapter.

4.2 Protocol Composition Frameworks Considered

The following list contains the protocol composition frameworks considered in
this chapter. We concentrated on frameworks that are still in use. Most of these
frameworks are described in Sect. 2.3.

• Appia.
• Samoa.
• Eva.
• Neko.
• JavaGroups.
• Cactus (both C and Java versions).
• Fortika.

4.3. CONCURRENCY MODELS 41

• JGroup [MDB01].

As Cactus has a two-level hierarchy of components (see Sect. 2.3.2), we often
present Cactus in this chapter as two frameworks: Cactus/µp and Cactus/cp re-
fer to how things work at the fine-grain and the coarse-grain levels, respectively.1

Additionally, the concurrency features of the C and Java version of Cactus/µp are
rather different. We will refer to them as Cactus/µp/C and Cactus/µp/J whenever
the distinction is necessary.

Fortika is the group communication toolkit, developed within this thesis, that
serves as a prototyping testbed for Part II (see Chapter 9). Fortika is relevant in
this chapter because it follows a set of conventions and interfaces allowing us to
write framework independent code (see Sect. 9.2). These conventions are indeed a
synthesis of the features of three frameworks. In the rest of the chapter, when we
cite Fortika, we refer to these conventions.

The JGroup framework is included because it is most similar to generic Java
component frameworks: components usually hold references to other components
and use method calls to communicate.

4.3 Concurrency Models

As the consequences of multiple threads running concurrently are difficult to fore-
see, one needs to coordinate how threads access shared resources, such as the in-
ternal state of protocol modules, or the shared state of multiple protocol modules.
Frameworks differ in how they solve this problem (see Sect. 2.3). Some allow only
a single thread for running protocol modules, and others are more permissive. In
this section, we describe the characteristics of each group of frameworks.

Multi-threaded Model. A lot of frameworks (Neko, JavaGroups, Cactus/µp,
Cactus/cp, Eva, and JGroup) permit the use of multiple threads. These frame-
works provide special operations, protocol module skeletons, or protocol modules
that launch new threads, or allow the protocol module programmer to use standard
features of the programming language to launch new threads (Thread class in Java,
POSIX threads in C, etc.).

These frameworks do not offer extensive support for restricting multi-threaded
behavior; protocol module programmers and composers have to manage concur-
rency on their own.

Cactus/µp is unique among the frameworks surveyed in that the protocol pro-
grammer must specify how an event should be handled at the moment of triggering
it: the event can be handled (a) by the triggering thread, (b) by a new thread, or (c)
by a thread from a thread pool.

1µp stands for microprotocol and cp stands for composite protocol, the Cactus terms for compo-
nents at the two levels.

42 CHAPTER 4. CONCURRENCY IN PROTOCOL FRAMEWORKS

Cactus/µp/C provides mechanisms to guarantee that the execution of a handler
is not interrupted by the execution of another handler in the same higher-level
protocol module, even in the presence of concurrency. In contrast, Cactus/µp/J
does not restrict concurrency at all. We will return to Cactus/µp/C in Section 4.4.2.

Single-threaded Model. Two frameworks, Appia and Fortika (when used with
Appia), have a dedicated thread that executes protocol modules. No other thread is
allowed to execute protocol modules. Hence no concurrency is possible inside the
composition.2 The underlying philosophy is that multi-threading introduces a lot
of complexity, and the possible gains in performance and readability are not worth
this additional complexity.

The single-threaded model requires that protocol modules follow a set of strict
rules:

• No New Thread Launched: Protocol Modules cannot start new threads or
own private threads.

• Non-Blocking Handlers: Handling an event should not take a long time, and
should never block the dedicated thread waiting for some condition. Other-
wise, the handling of subsequent events may be blocked indefinitely, and the
whole composition may have problems of liveness.

• No External Interaction: Protocol Modules should not interact with the out-
side world. This includes using the network, or peripherals. The reason is
that such interactions may block, or may call the code of the protocol module
asynchronously, thus introducing concurrency.

The rules can be summarized the following way: (1) protocol modules only
trigger events while handling an event; (2) handling an event always finishes within
a short time. Protocol Modules that follow these rules are called reactive protocol
modules (they only react to their environment), and other protocol modules are
called active protocol modules (e.g., they can launch new threads). The single-
threaded model thus requires that all protocol modules be reactive. In contrast,
both active and reactive protocol modules are allowed in the multi-threaded model.

Of course, frameworks that follow the single-threaded model also need func-
tionality that involves external interactions. As reactive protocol modules cannot
implement such functionality, external interactions are implemented by code that
is not part of protocol modules, and are therefore outside the composition. The
thread that executes protocol modules may communicate with a thread outside the
composition using queues, for instance.

Finally, note that using a dedicated thread for executing the composition is not
the only possibility to implement the single-threaded model. Another possibility is

2In Sect. 2.1, the term composition is defined as the set of all protocol modules and their inter-
connections within a process.

4.4. IMPROVEMENTS FOR EXISTING CONCURRENCY MODELS 43

embedding the composition in a monitor that guarantees that only one thread can
access protocol modules at any given time (this thread is not necessarily the same
thread all the time). Fortika (when used with Cactus) uses this solution.

Model with Transparent Concurrency. The Samoa framework is unique in its
approach to concurrency issues. It features a scheduler capable of allowing mul-
tiple threads to execute handlers concurrently, but, unlike in the multi-threaded
model, this concurrency is transparent to the protocol modules: all protocol mod-
ules are reactive, just like protocol modules in the single-threaded model.

We have just seen that frameworks implementing the single-threaded model
do not allow concurrency inside the composition. Therefore, if the environment
triggers several events into the composition at the same time (e.g., several messages
from the network), such frameworks handle these events one after the other. In
contrast, Samoa’s scheduler allows such events to progress into the composition
unless they conflict (see [WRS04] for the exact definition of conflicts). In the best
case, the events produced by external interactions can be handled concurrently, and
otherwise, some events are blocked while other events are handled. The scheduler
enforces an isolation property similar to the isolation property of transactions in
databases. The kind of scheduler used is called a pessimistic (i.e., rollback-free)
scheduler in that context.

To support the detection of conflicts, the composer has to provide additional
information about the protocol modules that may or may not be executed for each
type of external interaction. Such information is not necessary in either the single-
or multi-threaded model.

Overall, this new approach is promising, but there remain open questions. One
is how much concurrency can be introduced into the composition. For example,
given compositions where most of external interactions execute most of protocol
modules, the scheduler will hardly allow more than one event to progress con-
currently. Other compositions probably fare better. Further research, involving
measurements, is needed to answer this question.

4.4 Improvements for Existing Concurrency Models

In this section, we present the tradeoffs between single- and multi-threaded frame-
works, and propose a combination. We then contrast this combination with the
model with transparent concurrency, which can also be seen as a combination of
the single- and multi-threaded models.

4.4.1 Drawbacks of Existing Concurrency Models

The Single-threaded Model Is Too Restrictive. Multi-threading is useful in a
variety of scenarios. In particular, multi-threading may simplify the protocol code;

44 CHAPTER 4. CONCURRENCY IN PROTOCOL FRAMEWORKS

Table 4.1: Comparing the single- and multi-threaded models of concurrency and
their combination.

Concurrency model single-threaded multi-threaded
with reactive islands

multi-threaded

Protocol Modules reactive, simple code reactive or active,
complex code

Active code outside the composition inside the composition
Composition simple complicated

it is necessary for certain tasks, e.g., interfacing to system libraries that are multi-
threaded; and it is useful to improve the performance of a service with slow oper-
ations. However, as all protocol modules are required to be reactive in the single-
threaded model, multi-threading is forbidden within protocols. As a result, pro-
grammers are forced to solve important problems (that are inherently concurrent)
or implement solutions efficiently outside the composition (e.g., within libraries).

The Multi-threaded Model Is Too Permissive. The multi-threaded model, in
contrast to the single-threaded model, does not restrict the concurrency of proto-
col modules. This means that frameworks following this model provide few or no
facilities for protocol programmers and composers to solve problems of concur-
rency, beyond the generic facilities offered by the programming language (locks,
semaphores, monitors, etc.).

From the point of view of the protocol programmers, while many tasks are easy
to implement in the absence of concurrency, they require complicated solutions if
multiple threads are involved. For instance, the order of events can be reversed, and
thus the protocol modules need to keep event order by themselves (e.g., by using
sequence numbers).

From the point of view of the composers, concurrency issues (such as protect-
ing the states of protocol modules against concurrent changes or avoiding dead-
locks) cannot always be solved by the protocol programmers on their own: the
composer must be involved. In order to do this, the composer needs to have deep
knowledge of the composed protocol modules that includes details such as the cu-
mulative state of the protocol modules to protect, or the handlers in which new
threads are launched. Having to account for all these details greatly complicates
the task of the composer. In contrast, the composer can ignore concurrency issues
in the single-threaded model.

As stated in Sect. 3.4.3, frameworks should provide facilities to to restrict con-
currency, which makes protocol programming and protocol composition easier.
Frameworks following the multi-threaded model provide few such facilities.

4.4.2 Islands of Reactive Protocol Modules: the Best of Two Worlds

One can combine the advantages of the single- and multi-threaded models in the
following way: let the programmer and the composer define sets of protocol mod-

4.4. IMPROVEMENTS FOR EXISTING CONCURRENCY MODELS 45

ules that will be executed by a single thread at a time. We call such sets islands.
Within islands, protocol programmers can write simpler code by taking advantage
of the kind of guarantees offered in the single-threaded model: if all its proto-
col modules are reactive, the island itself is reactive as well. However, outside
the islands, programmers are free to use multi-threading without restrictions, just
as in the multi-threaded model, and thus implement any required functionality as
protocol modules, within the composition. Table 4.1 summarizes the main char-
acteristics of the single- and multi-threaded concurrency models (left and right
columns, respectively) and points out how the multi-threaded model with reactive
islands (center column) combines the advantages of both: protocol code and the
task of composition is usually simpler, yet multi-threaded code can reside inside
the composition.

Out of all the frameworks, only Cactus/µp/C follows a model similar to the
multi-threaded model with reactive islands. This means that the framework allows
active protocol modules, but its event scheduler provides guarantees for certain sets
of protocol modules if they consist of reactive protocol modules only. The sets are
the higher-level protocol modules of Cactus. The difference is that the boundaries
of these sets cannot be chosen arbitrarily, as protocol modules and higher-level pro-
tocol modules work very differently in Cactus. Moreover, protocol programmers
should not use certain features, e.g., triggering events in a new thread, in reactive
islands.

Reactive Islands and Their Execution. We next elaborate on what we mean by
reactive islands, and how they interface to other protocol modules.

The key property of islands is the following: if each of the protocol modules of
an island is reactive, then the whole island behaves like a reactive protocol module,
as well, and we speak of a reactive island. This means that reactive islands never
trigger events if they are not handling any event; and if handling an event starts,
it always finishes, and does so within a short time. Note that the single-threaded
model uses exactly one reactive island that includes all protocol modules, whereas
the multi-threaded model uses no reactive islands, or at least, the framework is not
aware of reactive islands.

There are at least two solutions for executing an island that consists of reactive
protocol modules only, such that the island itself will be reactive:

• One solution uses a dedicated thread. It is similar to how single-threaded
frameworks handle events. There are two queues. Incoming events are put
in the first queue, called inbound queue. A dedicated thread then repeats the
following: it reads an event from the inbound queue, handles the event and
any events triggered towards a protocol module in the island while handling
the event, in a recursive manner. Outgoing events are put in the second
queue, called outbound queue, from which other threads will read the events
and handle them.

46 CHAPTER 4. CONCURRENCY IN PROTOCOL FRAMEWORKS

Table 4.2: Comparing the single-threaded, multi-threaded and transparent concur-
rency models.

Concurrency model single-threaded transparent multi-threaded
Protocol Modules reactive, simpler code reactive or active,

complex code
Active code outside the

composition
outside the composition

but concurrency in the composition
inside the composition

Composition simple complicated

• The other solution is that the island forms a monitor. Any thread can enter
to handle an event, but in mutual exclusion with other threads. Inside the
monitor, the thread should handle the event and any events triggered towards
a protocol module within the island, in a recursive manner, but not any out-
going event. It may handle outgoing events only after exiting the monitor.

Using Islands of Protocol Modules. What parts of the protocol stack or dis-
tributed application can and should be implemented as an island of reactive proto-
col modules? Which ones should be active (i.e., multi-threaded)?

Our performance results in Chapter 3 show that, in usual compositions, most
of processor time is spent on the serialization and deserialization of events for
transmission over the network. Moreover, if the framework implements a single-
threaded model, (de)serialisation becomes a prominent performance bottleneck.

In multiprocessor platforms, serialization workload produced in a typical pro-
tocol composition is big enough to fully utilize all processors available at each
node. Besides, parallelizing serialization is extremely easy since the (de)serializa-
tion of two different events is completely independent.

This leads us to the conclusion that most of the code of the distributed applica-
tion can be implemented as a single reactive island of protocol modules, whereas
serialization-related protocol modules should be executed by multiple threads so
that the high workload they generate is distributed over all processors of the execu-
tion platform. Note that if the application has different performance characteristics
(e.g., serialization is no more the bottleneck), it is often straightforward to shrink
the reactive island’s boundary to introduce concurrency, by adding active protocol
modules or replacing some of the reactive protocol modules by active versions.

4.4.3 Comparing with Transparent Concurrency

Just like the multi-threaded model with reactive islands, the model with transparent
concurrency can be considered as a combination of the single- and multi-threaded
concurrency models. Table 4.2 points out how the model with transparent concur-
rency (center column) combines aspects of the single- and multi-threaded concur-
rency models (left and right columns, respectively): concurrency is possible within
the composition, just like in the multi-threaded model, and the price is that the
composer’s task becomes difficult, as the composer has to provide rather detailed

4.5. AVOIDING OVERLAPPING EXECUTION OF HANDLERS 47

information about possible executions. Other aspects are similar to the single-
threaded model.

Let us now contrast the multi-threaded model with reactive islands and the
model with transparent concurrency. With both models, (most) protocol modules
are reactive. However, concurrency is introduced in a different way. The model
with reactive islands allows active protocol modules, and the composer can com-
pose these with reactive protocol modules. In contrast, the model with transparent
concurrency puts all the burden of introducing concurrency on the composer, and
the composer’s task is much more difficult.

Note that the model with transparent concurrency still requires that external
interactions are performed outside the composition. In other words, this model only
aims at solving one problem: that of increasing performance on multiprocessor
platforms. For this reason, we view the two approaches as complementary, and
in fact, they could be combined. The combination is a multi-threaded model with
reactive and active protocol modules, in which some reactive protocol modules
form reactive islands and some others form islands that are executed by a scheduler
offering transparent concurrency. The latter islands are like the entire composition
in the model with transparent concurrency.

4.5 Avoiding Overlapping Execution of Handlers

handler h3: handles ev3
 msg ← "bye!"
 print(msg)
end handler

state: string msghandler h1: handles ev1
 msg ← "hi!"
 trigger(ev2)
 print(msg)
end handler

handler h2: handles ev2
 do_something()
 trigger(ev3)
end handler

ev
2

ev3

µprotocol1

µprotocol2

Figure 4.1: Example of possibly overlapping executions of handlers. What are the
contents of msg when handler h1 prints it?

This section discusses techniques to prevent the execution of a handler from
starting before the handler that triggered the event is done with its execution. Let
us illustrate this with an example. Consider an execution that involves handlers

48 CHAPTER 4. CONCURRENCY IN PROTOCOL FRAMEWORKS

h1, h2, and h3. Handler h1 triggers an event that is handled by handler h2, and
h2 triggers another event handled by h3. Finally, let h1 and h3 be handlers of the
same protocol module µprotocol1. Figure 4.1 depicts this execution. Such chains
of events, which that start and end at the same protocol module, may give rise to
consistency problems. In the example, h1 and h3 are part of the same protocol
module (µprotocol1), and thus they both modify the state of this protocol module
(the string msg). The consistency problem is that the output depends on how the
statements of h1 and h3 are executed: if the first line of h3 executes before the last
line of h1, h1 will print the wrong message (“bye!”).

Note that the root of the problem is that the executions of handlers h1 and h3

may overlap in time. Note also that the protocol programmer cannot use standard
mechanisms (synchronized reserved word in Java, mutex variables in C) to guard
against the consistency problems. The reason is that such mechanisms only protect
against modifications by different threads, and h1 and h3 might indeed be executed
by the same thread (e.g., if triggering is implemented with a function call).

This section describes and discusses possible solutions to the problems caused
by overlapping executions of handlers.

4.5.1 Anticipating Consistency Problems

The first possible solution is requiring the protocol programmer to anticipate con-
sistency problems (or, at least, to anticipate consistency problems that may occur
when a single thread executes several handlers of the protocol module such that
they overlap). This would require the programmer to know the details of the com-
position (e.g., µprotocol1 and µprotocol2 in Fig. 4.1). This goes against the main
property of protocol composition frameworks: protocol modules should be written
in (relative) isolation and composed in a (relatively) unrestricted manner. Hence
we do not discuss this solution any further.

4.5.2 Non-Overlapping Handler Executions

A better solution is that the framework implements a mechanism that explicitly
prevents overlapping handler execution, requiring that a handler h finishes before
the handling of any event triggered by h. If such a mechanism is present, the
consistency problem described above cannot occur: the execution of handlers h1

and h3 in Figure 4.1 will never overlap.
We next present two possible mechanisms to avoid that the execution of han-

dlers overlaps:

• Scheduler with an Event Queue. Non-overlapping execution of handlers can
be implemented by putting triggered events into a queue, and handling the
events in this queue only after the triggering handler finishes. Appia and
Cactus/µp/C use this implementation. The advantage of this solution is that it
is implemented in the runtime system; protocol programmers do not have to
worry about ensuring non-overlapping executions when writing their code.

4.6. ORDERING EVENTS 49

• Conventions for Writing Handlers. Non-overlapping execution of handlers
can also be ensured by convention. Triggering an event causes handling the
event immediately: the method implementing the handler is called directly
from the triggering handler. Normally, this would result in overlapping han-
dler executions. This can be avoided if protocol programmers follow rules
that ensure that the resulting execution is equivalent to a non-overlapping
execution. Fortika protocol modules and most of the Neko protocol modules
follow such rules.

We now present two examples of such rules. The first rule requires that
triggering events be the last actions of a handler: if events are generated
before the end of the handler, they must be stored in local variables and
triggered at the end of the handler. The second rule states that handlers
copy all the data necessary for their execution into local variables before any
events are triggered. If this rule is followed, the execution of a handler is not
affected if any of the triggered events causes the execution of a handler of
the same protocol module.

The example in Fig. 4.1 clearly does not follow either of these rules. To
make the protocol modules follow the rules, one needs to move trigger(ev2)
in h1 to the end of the handler.

Discussion. Conventions for writing protocol modules restrict protocol program-
mers. However, the advantage is that a single Java method call (or C function call)
implements triggering and handling an event. This yields good performance, as
synchronous calls are the primary means of interaction between different parts of
the code in all popular programming languages and are thus significantly faster
than any other communication mechanism. Moreover, method/function calls allow
the compiler to check the types of the data transmitted in an event, whereas other
communication mechanisms are not as type-safe.

To summarize, conventions for writing protocol modules offer better perfor-
mance and type-safety, but they are slightly inconvenient for protocol program-
mers. Our conclusion is that none of the two solutions is conclusively better than
the other, and thus we consider that either solution yields good protocol composi-
tion frameworks.

4.6 Ordering Events

A protocol module’s effect on other protocol modules and the environment is not
just determined by the set of outgoing events that the protocol module triggers.
Often, the order in which the outgoing events are triggered is important as well.
An everyday example is requiring first-in-first-out (FIFO) guarantees from a com-
munication channel, such as a TCP connection. Implementing protocols such as
HTTP on top of TCP is much easier than it would be to implement it on top of

50 CHAPTER 4. CONCURRENCY IN PROTOCOL FRAMEWORKS

a reliable datagram service without FIFO guarantees. Note that providing FIFO
guarantees between the two communicating processes is not enough. FIFO order-
ing is needed within each process, between the code that implements HTTP and
the code that implements TCP, as well.

Table 4.3: Conceptual mapping between communication in message passing sys-
tems and protocol composition frameworks.

Systems message passing
distributed systems

composition
frameworks

Comm. entities processes protocol mod-
ules

Unit of comm. messages events
Start of comm. sending triggering
End of comm. receiving start of handling
Comm. steps events actions

A variety of ordering guarantees have been introduced in the field of mes-
sage passing distributed systems, starting with early papers [Lam78]. Events are
an asynchronous form of communication, just like messages in distributed sys-
tems. Protocol modules communicate by events and may be executed in parallel,
by different threads; they are like processes in distributed systems that communi-
cate by messages and execute in parallel. The two kinds of systems are compared
in Table 4.3. This section investigates whether ordering guarantees proposed in
message-passing distributed systems are relevant for protocol composition frame-
works.

4.6.1 Feasibility of Ordering

FIFO order ensures the following: if two events are triggered from the same pro-
tocol module to the same handling protocol module, then the order of handling is
the order of triggering. We also consider extensions of FIFO order, such as causal
order, well-known in distributed systems [BJ87], as well as an extension to causal
order.

These orderings are motivated, defined and discussed later, in Section 4.6.2.
We first investigate how protocol composition frameworks should support event
ordering .

Ordering Events in the Presence of Active Protocol Modules. Protocol com-
position frameworks should not guarantee order between events if active protocol
modules are involved. The reason is that the framework must supervise the actual
order in which protocol modules trigger and handle events. This supervision task
requires that the threads involved are synchronized frequently, otherwise it is hard
to tell which of two concurrent actions happened first. However, a major motiva-
tion for using active protocol modules is to fully exploit multiprocessor systems,

4.6. ORDERING EVENTS 51

and this is only achieved if threads are synchronized infrequently. In other words,
ordering events if active protocol modules are involved defeats the reason for using
active protocol modules.

Ordering Events within a Reactive Island of Protocol Modules. The frame-
work should offer support for keeping order to a certain extent: events within a
reactive island of protocol modules should be subject to ordering.

The reason is that keeping even the most complicated kind of ordering (dis-
cussed and motivated in Section 4.6.2) is cheap in this context: no thread syn-
chronization is involved, as all events triggered or handled in a reactive island are
processed by a single thread at any time. We present algorithms for ordering within
reactive islands in Section 4.6.3.

4.6.2 Definitions of Ordering

This section reviews the orderings we consider, provide formal definitions, and
present related research results, also from other contexts.

We introduce the following notation: trigger(e) denotes the action of trigger-
ing some event e, handler(e) the protocol module that handles e, and handle(e)
the action of starting the handling of event e, i.e., the point in time when execution
of handler(e) starts.

We also introduce precedence relations on actions. Actions are either the trig-
gering or the handling of an event. Definition 1 is a precedence relation that orders
actions that take place on the same protocol module.

Definition 1 (Local Precedence) Consider two actions A and B that take place
on the same protocol module. A locally precedes B (A →l B) if (1) A and B are
executed by the same thread and A is executed first, or (2) A and B are ordered by
a synchronization primitive of the programming language and A is executed first.
Local precedence is the transitive closure of these relations.

For example, A and B are ordered by a synchronization primitive of the pro-
gramming language if A and B are part of synchronized blocks of a Java program
that synchronizes on the same object, even if they are executed by different threads.
Note that not all actions of a protocol module are ordered by local precedence. For
example, actions executed by different threads on a protocol module that does not
use synchronization facilities are not ordered. FIFO order is defined in terms of
local precedence:

Definition 2 (FIFO Order) Let e and e′ be two events such that handler(e) =
handler(e′). If trigger(e)→l trigger(e′) then handle(e)→l handle(e′).

Informally, FIFO order means the following: if two events are triggered by the
same protocol module to the same protocol module, then the order of handling must

52 CHAPTER 4. CONCURRENCY IN PROTOCOL FRAMEWORKS

be the order of triggering. Other orderings involve a different kind of precedence:3

Definition 3 (Causal Precedence) Consider two actions A and B. A causally
precedes B (A→ B) if

(a) A→l B,
(b) A = trigger(e) and B = handle(e) for the same event e, or
(c) there exists an action C such that A→ C and C → B (transitive closure).
Additionally, we say that actions A and B are concurrent (A ‖ B) if A 6→ B

and B 6→ A.

Causal precedence allows us to define causal order:

Definition 4 (Causal Order) Let e and e′ be two events such that handler(e) =
handler(e′). If trigger(e)→ trigger(e′) then handle(e)→l handle(e′).

Causal order is a generalization of FIFO order. FIFO order concerns events
triggered within the same protocol module; in contrast, causal order concerns
events triggered at different protocol modules (as long as they are related by causal
precedence).

Extended Causal Order. We now present an example that illustrates the utility
of FIFO and causal order in the context of protocol composition frameworks. The
example also motivates the introduction of a new notion of order: extended causal
order.

Consider the two protocol modules illustrated in Figure 4.2(a). The application
protocol module has to send a message with both text and image data, which are
conveyed by two different events. The order is important: the text is sent before the
image, hence a FIFO communication channel, implemented by module Channel, is
used. Thus, the communication between the two protocol modules must be FIFO.

Now consider a variant of this scenario, shown in Figure 4.2(b). Again, the
application protocol module triggers the text event before the image event. The
difference is that the image data is now compressed by a third protocol module.
In this variant, one needs causal order. With FIFO order, it is possible that mod-
ule Channel handles the compressed image before the text. If this happens, the
message would be garbled.

Finally, consider another variant of the scenario, shown in Figure 4.2(c). The
difference is that the text is compressed by a fourth protocol module (the third pro-
tocol module cannot be reused, as image data and text are usually compressed with
different algorithms). In this variant, neither FIFO nor causal order can guarantee
that module Channel handles the compressed text first and the compressed image
second. The reason is that the triggering of the events conveying the compressed

3The distinction between→l and→ can be removed. We have decided to keep it, though, because
it clarifies the presentation.

4.6. ORDERING EVENTS 53

Application

Channel

te
xt

im
age

(a) no compression

Application

Channel

im
age

text (jpeg) image
compress

co
m

pr
.

im
ag

e

(b) image compressed

Application

Channel

te
xt

im
age

(jpeg) image
compress

co
m

pr
.

im
ag

e

(zlib) text
compresscom

pr.

text

(c) both image and text compressed

Figure 4.2: Example to illustrate FIFO, causal and extended causal order.

image and the compressed text are not related by causal precedence (they are con-
current!). Hence the need to extend the notion of causal order.

Causal order, as defined above, only considers events whose triggerings are re-
lated by causal precedence. Although this is usually enough in distributed systems,
protocol composition frameworks need a stronger notion of ordering that rather
considers the very beginning of a chain of events. We propose a novel notion of
order, which implies causal order (and therefore FIFO order):

Definition 5 (Extended Causal Order) Let et, e′t, eh and e′h be events such that
(1) trigger(et)→ handle(eh),
(2) trigger(e′t)→ handle(e′h), and
(3) handler(eh) = handler(e′h) (possibly trigger(e′t) 6→ handle(eh)).
If trigger(et)→l trigger(e′t) then handle(eh)→l handle(e′h).

While causal order involves triggering events e1 and e2, and handling the same
events e1 and e2, extended causal order involves the triggering of events e1 and e2,
and handling of e′1 and e′2 that causally precede e1 and e2, respectively (which are
not necessarily the same events).

Enforcing extended causal order in the example of Figure 4.2(c) solves the
problem.

Related Work. Causal precedence corresponds to Lamport’s precedence relation
in message passing distributed systems [Lam78]. The difference is that in [Lam78],
all events on a process are ordered, whereas our local precedence is a partial order.

Local and causal precedence are similar to relations introduced in the context
of distributed object environments [DFS00]. The main difference is that our model
is simpler: besides asynchronous communication, [DFS00] considers synchronous
communication and read/write operations on shared variables, as well.

54 CHAPTER 4. CONCURRENCY IN PROTOCOL FRAMEWORKS

Our definition for causal order is analogous to causal order in message passing
distributed systems [BJ87] and distributed object environments [DFS00].

[Yos01] defines extended causal order. Our definition greatly simplifies that
definition.

Real-Time Order. Besides the order of events, the time of triggering and han-
dling events may also be important, e.g., for real-time applications. We do not ex-
pect that the majority of applications of a protocol framework would be real-time,
hence we do not think that the cost of automatic timestamping can be justified.
Moreover, timestamping is a relatively expensive operation, as it often involves a
system call.

Nevertheless, if protocol modules need timestamps they can be provided easily.
Either protocol modules can explicitly put a timestamp into the events they trigger,
or the composer can add timestamping protocol modules to the composition.4

4.6.3 Implementations of Ordering

In Section 4.5.2, we presented two scheduler implementations: one with direct
method calls and another with event queues. The implementation with direct
method calls ensures extended causal order. The implementation with event queues
also ensures extended causal order if all newly triggered events are inserted at the
front of the event queue in the order in which they were triggered.

All frameworks but Appia and Cactus/µp/C use a scheduler with method calls,
and thus keep extended causal order in executions that involve a single thread.

Cactus/µp/C uses event queues. Recall that Cactus has one trigger operation
that has the event handled in the triggering thread, and another that has the event
handled in a different thread. If all trigger operations are of the first kind (i.e., the
execution involves a single thread), Cactus/µp/C provides extended causal order.
Otherwise, it provides only casual order. The reason is that newly triggered events
are inserted at the end (rather than the front) of the event queue. No guarantees are
provided beyond the boundary of the higher-level protocol module, though.

Appia does not keep causal order or extended causal order. To explain why,
we describe how its scheduler works. Appia organizes protocol modules in stacks,
and events are associated with a direction: up or down, depending on the position
of the handling protocol module in the stack with respect to the position of the
triggering protocol module. When an event going up is handled, events triggered
by the handler are placed at the front of the event queue if they go up, and at the end
of the event queue if they go down. This breaks causal order for the scenario shown
in Figure 4.2(b) if we assume that (1) the scenario is triggered by an event going
down (not shown in the figure), (2) the channel protocol module is at the top,5

4Real-time scheduling of handler executions, if needed, is a more complex problem.
5In order to keep a realistic example, assume channel is actually a timestamping protocol that has

to be high in the stack for compositional reasons.

4.7. CONCLUSION 55

(3) the application protocol module is in the middle, and (4) the image compress
protocol module is at the bottom.

It is unclear why Appia has been designed this way. Note that changing Appia
to ensure causal and extended causal order would be rather easy. The same holds
for Cactus/µp/C and extended causal order.

4.7 Conclusion

In this chapter, we focused on how protocol composition frameworks deal with
concurrency. Multi-threading is often useful in this context. We investigated what
support for multi-threaded programming such frameworks provide and should pro-
vide for programmers.

Along with a survey and detailed discussions of the features of existing frame-
works, we proposed a set of features that can be easily offered, and that have a
negligible performance impact. This includes (1) islands of protocol modules with
reactive behavior that can coexist with active protocol modules, thus taking the
best of two worlds; (2) non-overlapping execution of protocol modules involved in
a chain of events, to avoid inconsistencies; and (3) ordering guarantees for handler
invocation, including causal order and extended causal order. To the best of our
knowledge, our definition of extended causal order is simpler than existing defini-
tions.

56 CHAPTER 4. CONCURRENCY IN PROTOCOL FRAMEWORKS

Chapter 5

The Header-Driven Model

Most state-of-the-art protocol composition frameworks use events at the core of
their interaction model because they capture well the reactive nature of distributed
algorithms. Besides, they allow a clean decoupling between different protocol
modules, making their interface clearer. As a result, events may seem to be the
only unquestionable concept that nearly all protocol composition frameworks use.
However, we question their appropriateness in this chapter, enumerating several
important drawbacks. Instead, we propose a new interaction scheme that shifts the
spotlight from events to messages headers. We show how the new model over-
comes the drawbacks of events.

5.1 Introduction

In Chapter 2, we defined four perspectives for framework description and com-
parison. The focus of the present chapter is on two of these perspectives: the
composition and interaction models. Issues related to the concurrency model and
the interaction with the environment (which were studied in Chapters 3 and 4) are
orthogonal to the problems discussed and the solutions presented in this chapter.

The common denominator of state-of-the-art protocol composition frameworks
is (1) the event-driven interaction model (see Section 3.3.1.1), by which protocol
modules notify their surrounding modules about things that occur, and (2) the trend
to graph-based composition models (see Section 1.1), where a protocol module can
directly interact with several neighboring modules.

Most real-life compositions are deployed in a symmetrical manner: all pro-
cesses contain the same protocol modules, and they are interconnected in the same
way. As discussed in Sect. 2.1.5, the peer interaction is a frequent pattern that
takes place in virtually all symmetrical compositions. Roughly speaking, a peer
interaction takes place when a protocol module wishes to interact with its peer pro-
tocol module at other processes. To do so, it uses a local protocol module (which
can itself launch another peer interaction) that provides a lower-level service. Our
claim is that current protocol composition frameworks do not properly handle peer

57

58 CHAPTER 5. THE HEADER-DRIVEN MODEL

interactions. As a result, the fact that the composition is the same at every process
is not exploited.

Although the event-driven interaction model is widely used by protocol com-
position frameworks, it is far from perfect. The way it handles the omnipresent peer
interactions is (1) complex (the composer needs to do many unnecessary bindings),
(2) obscure (the indirections introduced by events blur the presence of peer interac-
tions in the protocol code), and (3) unsafe (misbindings may lead to runtime errors
or erratic behavior). Instead, we propose a different way to look at inter-module
interaction, dropping events and their bindings. The result, is a new interaction
model: the header-driven model. This model (1) solves the compositional prob-
lems found in the event model, (2) simplifies inter-module dependencies, (3) con-
cisely handles peer interactions and explicitly reveals their logical structure, and
(4) provides better support for type-checking at compilation time, which avoids
the runtime errors and erratic behavior that can occur in the event-driven model.

In short, the contribution of this chapter is a discussion about the inadequacy
of the event-driven model, as well as the new header-driven model. Section 5.2
reviews the basic features we expect from any protocol composition framework
in this chapter. Section 5.3 presents a typical event-driven interaction model and
discusses its main drawbacks. Section 5.4 presents the novel header-driven model
and explains how it overcomes the problems presented in Section 5.3. Section 5.5
makes a direct comparison using a tiny but representative example implemented in
both models. Finally, section 5.6 concludes the chapter.

5.2 Assumptions on the Framework

Before getting to the main discussions of this chapter, we describe several basic
features we assume from the protocol composition framework. These are general
features present in state-of-the-art protocol composition frameworks. Both interac-
tion models presented in Section 5.3 (event-driven) and Section 5.4 (header-driven)
can be plugged into this general abstract framework.

5.2.1 Programming Language

One of the popular general-purpose programming languages (such as Java, C, etc.)
can be used to implement the models discussed here. The proposed interaction
model can be encoded as a tiny library. Nevertheless, there is a particular feature
that would be beneficial if present (but is not required): the possibility to treat
function/method calls as first-class values: it must be possible to decide whether to
execute a function call immediately, or to store it in some data structure for future
execution.

5.3. SHORTCOMINGS OF THE EVENT-DRIVEN MODEL 59

5.2.2 Composition and Interaction Models

Symmetric Graph-Based Compositions. We assume that the framework per-
mits graph-based compositions. In particular, a setup with a lower-level protocol
module l offering its services to several higher-level modules h1, . . . , hn should
be possible. Ideally, each module hi should not be aware that other modules are
using l. This is not the case quite often in current frameworks. We come back to
this issue later on.

On the other hand, we only consider symmetric compositions: those with the
same composition at every process (see Sect. 2.1.5). Most implementations of dis-
tributed algorithms can easily be expressed with symmetric compositions. Peer in-
teractions are a particularly frequent interaction pattern of symmetric compositions
(see Sect. 2.1.5). In a peer interaction, a protocol module h intends to communi-
cate with its a peer module h′, but it does it indirectly: it uses some lower-level
protocol module l that, together with its peer l′, offers the service needed so that
the communication between h and h′ can take place.

Protocol Module Instances. We extend the terminology presented in Sect. 2.1
to make the important distinction between protocol module and protocol module
instance (also called protocol session in the literature). The former is the set of
handlers and the structure (type) of the private state, whereas the latter is a partic-
ular copy of the protocol module with a value for its state. Several instances of
the same protocol module can coexist within the same process. These instances
behave independently from each other, having their own state, although all share
the same code.

5.2.3 Interface with the Environment

The details of the interaction between the application and the framework is not rel-
evant for this chapter. On the other hand, we need access to the network subsystem
through a standard networking library. The minimal quality of service expected
from the network is unreliable point-to-point message transmission.

5.3 Shortcomings of the Event-Driven Model

A protocol module is usually designed to be idle until it receives some notification
from surrounding modules, to which it reacts by executing some code that may
notify other modules, and goes back to its idle state, waiting for other notifications.
These notifications are indeed the events that drive the interaction model of most
protocol composition frameworks.

As we have seen in the previous chapters, frameworks vary widely on how they
define event-driven primitives, as well as the rules that govern their itinerary from
the triggering to the handling module(s). This section is an attempt to simplify all
those models by factoring out a set of key elements that fully characterize their

60 CHAPTER 5. THE HEADER-DRIVEN MODEL

common essence. Our intention is to keep the discussion focused, rather than get-
ting lost among this or that framework’s unique features. Once the basic model is
presented, we proceed to discuss the main drawbacks of the event-driven model.

5.3.1 An Abstract Event-Driven Model

Protocol modules are declared with reserved word protocol and consist of four
parts:

• State declaration, using reserved word state, which consists of a list of vari-
able names, along with their corresponding types.

• Event type declarations, using reserved word event. The declaration includes
the name of the event type, and the arity and type of arguments conveyed
within the event.

• Handler declarations, using reserved word handler. This includes the han-
dler name, the formal parameters and the body of the handler. The body im-
plements the protocol and typically changes the state and/or triggers events
using reserved word trigger.

• Bindings from local handlers to events, using reserved word bind. A binding
has two parameters, the first is a handler name, the second is the event type
to which the handler is bound.

An simple example of a protocol module follows:

protocol counter is
state

int count

event maxReached(int max)

handler handleTick() is
count← count + 1
if count > MAX then trigger maxReached(count)

bind(handleTick, prot1.tick)

In this example, protocol module counter counts the number of times that pro-
tocol prot1 (omitted) triggers event tick. If the number of ticks has reached con-
stant MAX, the handler triggers event maxReached containing the current count.
Of course, a protocol module interested in being notified by event maxReached
should bind a handler to it, in the same way as the depicted protocol binds its
handler to event tick (declared within prot1).

There is no restriction as to how many handlers can be bound to the same
event, or vice versa. When an event is triggered, all handlers bound to it should be
executed. The way they are executed (sequentially, concurrently, etc.) differs form
framework to framework and depends on its concurrency model. Therefore, this
question is out of the scope of the chapter.

5.3. SHORTCOMINGS OF THE EVENT-DRIVEN MODEL 61

5.3.2 The Event Routing Problem

The event routing problem occurs within a process. Consider Fig. 5.1, where the
high-level protocol module A1 relies on the service provided by a local lower level
protocol B. The intended behavior is that A1 issues a request and waits for the
reply from B. This is typically implemented by two event bindings, one going
down (the request) an another going up (the response). Now, assume another high-
level protocol A2 uses the same low-level protocol B. If we use the same solution,
there are two down-going bindings for the same handler at B. More importantly,
there are two handlers, one at A1 and the other at A2 that will be executed when
the up-going event is triggered. This setup is depicted in Fig. 5.1, left.

conceptual pathB

A2

Process pi

A1

B

A2

Process pi

A1

request

re
ply

1

2

event bindings triggering sequence

Figure 5.1: Example of the event routing problem: A2 receives an unexpected
event.

The problem arises (Fig. 5.1, right) when A1 issues a request (triggers the
down-going event). In this case, protocol B triggers the event carrying the response
and both A1 and A2 will receive the response. While this may be desirable in some
setting, it is not the expected behavior most of the time: only the module issuing
the request should receive the response. From the modularity point of view, it is
annoying that the designer of A2 has to know, a priori that A2 may be composed
together with A1, and therefore receive events not aimed at it. Indeed, both A1 and
A2 should perceive the composition as though they were alone using B. Hence, we
need to route B’s response so that it only reaches the protocol module that expects
it.

5.3.3 Ad-hoc Solutions to the Event Routing Problem

There are some ways to solve the event routing problem in the event-driven model,
but they are inefficient with respect to modularity and performance. We now
present the best solutions to reach a balance between modularity and performance:

• Destination Check on Handler Invocation. Additional data in the event’s
arguments can be included. Upon event reception, a check is included to

62 CHAPTER 5. THE HEADER-DRIVEN MODEL

ensure that the event is targeted to this module, otherwise the event is dis-
carded. This solution burdens the programmer of the protocol module and
induces a performance overhead if the check is to be done for every triggered
event.

• Multiple Low-Level Modules. Another way to cope with the problem is that
every high-level protocol module uses a distinct instance of the lower-level
protocol module. This way, no protocol module is shared, and up-going
events are trivially routed to the right destination protocol module. The
downside is that it does not scale, rapidly ending up with numerous instances
of the same protocol module at lower levels of the composition. Besides,
sometimes it is simply not possible to have more than one instance of a
protocol module because it would violate the module’s semantics. As an ex-
ample, consider a protocol module that is to provide message transmission
with FIFO order. If there are two instances of this protocol module, each
one will provide FIFO order to the messages it receives, but there will be no
order between messages received from different module instances.

• Connectors (demultiplexors). This is the most acceptable solution and was
introduced to solve a similar problem in Sect. 3.4.2 (also, a similar version is
used by Cactus at the composite level). They are special modules that locally
route events to the right destination module, without any intervention of nor-
mal protocol modules. There are several types of off-the-shelf connectors
and the composer chooses from a repository. The multiplexor-demultiplexor
connector presented in Sect. 3.4.2 solves the event routing problem. This
approach, while neatly more elegant for modularity than the two previous
solutions, still has major inconveniences.

– The composer needs to get familiar with connectors, and has to plug
them at the right place so that the composition works.

– Connectors are extra modules added to the composition. They thus in-
troduce a performance overhead, since messages have to traverse them.

Another solution is using events as call-backs: the request (down-going) event
contains within its parameters the response event type to trigger. This would work
fine, although there is a drawback: the composer can no more make explicit bind-
ings for certain event types. This call-back technique is a preliminary version of
the core idea behind our header-driven model.

5.3.4 Peer Interactions in the Event-Driven Model

As described in Sect. 5.2.2, a peer interaction takes place when a protocol module
uses an indirect strategy to communicate with its peer modules at other processes.
The module that starts the communication creates a message where it pushes the
information intended for its peer module, then it triggers an event that conveys the

5.3. SHORTCOMINGS OF THE EVENT-DRIVEN MODEL 63

message to a local lower-level module. The message eventually arrives to the peer
protocol module at another process, and the peer module pops the information
from the message. Such units of pushed/popped information are called headers
(see Section 2.1).

Figure 5.2, shows a simple composition with protocol modules R and U at
one process and their corresponding peers R’ and U’ at another process. Assume
U and U’ provide an unreliable message transmission passing service (some mes-
sages may get lost), whilst R and R’ are a reliable message transmission service
implementation that relies on U and U’. The left half of the figure depicts with
solid arrows the event bindings necessary to allow for peer interactions. Protocol
module R starts a peer interaction by pushing a header (containing the information
for R’) into a message and triggering an event bound to the sending handler at U,
say U.handleSend. U handles that event: among other things, it pushes its own
header to the message and transmits it through the network. If the message is not
lost, U’ receives it and pops the header U pushed, necessary for proper operation
of the protocol. Then, U’ triggers an event bound to the receiving handler of R’,
say R’.handleReceive, so that the message finally reaches R’. Finally R’ handles
the event: it pops the header R pushed at the beginning. This example contains two
peer interactions, one between U and U’ and the other between R and R’.

The way peer interactions are implemented in the even-driven model has the
following drawbacks:

• Compositionally Suboptimal. When R starts a peer interaction, it does know
that R’.handleReceive should be executed at R’. R has this knowledge be-
cause R’ is its peer, moreover, R and R’ are usually two instances of the same
protocol module. However, this a-priori knowledge cannot be reflected in
R’s code. Instead, R triggers an event and hopes that the composer will do
the right bindings so that R’.handleReceive will be executed. The level of
indirection introduced by these bindings prevents the programmer of R from
encoding an information she already knows. This is compositionally sub-
optimal, since a fact known by the protocol programmer should be encoded
by her, and not later. In the event-driven model, this has to be enforced at
composition time.

Furthermore, R’.handleReceive can be defined internally to R’ (and its peer
R) so that it does not appear in their interface. When R starts a peer in-
teraction by triggering an event bound to some handler of U, its real inten-
tion is to have its peer, R’, execute R’.handleReceive. Despite this, handler
R’.handleReceive needs to be exposed in R and R’’s interface, so that an
event triggered by U (or U’) can be bound to that handler at composition
time. This is clearly not modular, since something semantically internal to a
protocol module should not be present in its interface.

The call-back mechanism mentioned at the end of Section 5.3.3 can alle-
viate this problem, since the event bound to handler R.handleReceive (or

64 CHAPTER 5. THE HEADER-DRIVEN MODEL

R’.handleReceive) can be passed to U as a parameter when the down-going
event is triggered. However, there are still two dependencies between R and
U (conversely R’ and U’), which need two bindings: one for events going
down and the other for events going up.

• Event Routing Problems. As we have seen for the general case, if U is used
by more than one module, we run into the event routing problem.

• Poor Type Information for Messages. Messages are structured as (LIFO)
header stacks. The nature of the data contained in message headers can
be very heterogeneous. So frameworks following the event-driven model
usually give the imprecise type message to an event parameter containing a
message. This type information is insufficient and unsafe. As an example,
imagine that an inattentive composer binds handler R’.handleReceive to an
event triggered by a protocol module other than U’. In this case, handler
R’.handleReceive may get a message with unknown or incorrect headers.
This would result in a runtime error when R’ tries to pop a header of the
wrong type. Or even worse, if the type of the popped header happened to
match the expected type (by chance), the execution would result in an erratic
behavior.

R

Network

Process pi Process pj

event-driven model

U

R'

U'

R

Network

Process pi Process pj

header-driven model

U

R'

U'

Figure 5.2: Typical bindings for peer interactions in the event-driven and header-
driven models.

5.4 The Header-Driven Model

After presenting the event-driven model and discussing its inconvenience for pro-
tocol composition frameworks, we present our solution, which overcomes most of
the problems discussed.

5.4. THE HEADER-DRIVEN MODEL 65

5.4.1 From Events to Headers: Overview of the New Model

Usually, protocol modules use one single entry point for incoming peer interac-
tions, which is typically a handler called receive. For fairly complex protocols,
different types of messages are expected to reach the receive handler. For this rea-
son, the peer module inserts a tag into the header to distinguish the nature of the
data in it. In those cases, the handler is structured as a big switch clause where
the block of code executed depends on the tag value. In our model, we impose
the declaration of one header per tag used. This way, we get rid of tags and, most
importantly, a header name fully describes the structure of the data it contains.
Additionally, big switch-based handlers are decoupled into several handlers.

As the message headers that a protocol module declares only make sense within
its own code (and its peers’ code), it looks natural to restrict the scope of that header
to the only protocol module that uses it. An additional restriction in our model is
that header names must be unique among all protocol modules in the composition.
This is easy to achieve if, whenever a protocol module instance (say a) creates a
header (say h), we have the framework automatically add the name of the module
instance as a prefix of the header’s name (i.e., a.h).

A composition satisfying these constraints has the following interesting prop-
erty: if we inspect the sequence of header names in a message arriving from the
network, we can approximately see the sequence of protocol modules (i.e. the
route) that will handle the message on its way up. This means that there is no need
for the composer to explicitly bind the upward flow of events. In other words, the
message’s header sequence drives its route up the protocol graph.

The event-driven model prevents us from exploiting this property. Therefore,
instead of having events at the core of our interaction scheme, we should use head-
ers. This is the essence of our proposal.

The essential ingredients of a header-driven model are headers and messages.
A message is a list of headers. A header is a data structure and its name represents
the data type. Protocol code is structured as a set of header handlers. A header
handler declares a header name and the code that handles headers with that name.
The declared header name is internal to the protocol module, unique throughout
the whole (local) composition, and equal to the name of the symmetric header at
other processes. Protocol execution is based on message dispatch. A message is
dispatched in the following way: (1) its first header is popped from the message,
(2) the unique header handler whose name matches the popped header is executed.
The data contained in the popped header and the tail of the message are passed as
arguments.

Compared to the event-driven model, we can say that (1) header handlers re-
place event handlers, (2) message dispatch replaces event triggering, and (3) the
binding mechanism is dropped.

The composition of R and U in the header-driven model is depicted in the
right part of Fig. 5.2. Solid arrows denote the dependencies needed between both
protocols. Peer interactions are executed as follows.

66 CHAPTER 5. THE HEADER-DRIVEN MODEL

Protocol module R starts a peer interaction by pushing a header into a message,
whose name matches the header handler that R’ is to execute when receiving the
message, say R’.receive. This way, R is able to reflect in its code its a-priori knowl-
edge of the handler used by R’ to process the message. At this point, the message
has to be (locally) sent to U. To do so, R simply pushes another header matching
the sending handler at U, say U.send (this header contains the data U needs, such
as destination process, etc.), and calls primitive dispatch(m), where m is the con-
structed message, resulting in m being routed to handler U.send. Then, first header
of m (i.e., U.send) is popped and U.send receives the tail of m as a parameter.
Header handler U.send pushes the header that U’ will use to receive the message,
say U’.receive, and transmits the resulting message m’ through the network (e.g.,
using the framework’s networking facilities). At this point, m’ contains the se-
quence “U’.receive(. . .), R’.receive(. . .), . . . ”. If m’ is not lost, when it reaches the
destination process it is simply dispatched by the framework. As the first header of
m’ is U’.receive, it will be automatically routed to its matching header handler. At
the end of U’.receive, the message is again dispatched with primitive dispatch(m’).
The first header is now R’.receive, so the message dispatch routes the tail of m’ to
the right handler of R’: the one R pushed when creating the message.

The header-driven model is a better fit than the event-driven model for the ubiq-
uitous peer interactions. The shortcomings of the event-driven model presented in
the previous section are elegantly solved by the header-driven model:

• Improved Up-going Mechanism. Messages “know” where they are to be
routed, especially when going upwards (see black arrows in Fig. 5.2). The
event-driven model needs to bind the up-going receive handlers to the ap-
propriate events, thereby becoming part of the protocol module’s interface.
In the header-driven composition, each up-going header handler is declared
internally to its protocol module.

• Event Routing Problem Disappears. We have seen how the header-driven
model routes up-going messages automatically to the right protocol instanc-
es. Therefore, if many protocols are using the same lower-level protocol, the
routing problem presented above does not appear.

• Correct Data Type in Headers Is Ensured. When a header is created, it is
given a name, which defines the type of the contained data. The header name
chosen must have been declared as a unique header handler somewhere in
the composition, otherwise the code is rejected at composition time (remem-
ber that uniqueness of header names is easy to achieve if they are prefixed by
the name of the module instance that declares it). Hence, a message is a list
of headers where each header has exactly one matching header handler in
the local composition. Moreover, most distributed systems use identical pro-
tocol compositions at every process. If we make this assumption, a message
transmitted over the network will reach a distant process that has the same
header handler declarations. As a result, whether the message is dispatched

5.4. THE HEADER-DRIVEN MODEL 67

locally or transmitted to another process, each header will be handled by the
one and only header handler whose name matches that of the header. It is
impossible that a header has no matching handler (which would cause a run-
time error), or is routed to a wrong handler (which would cause an erratic
behavior).

As a conclusion, we can say that the header-driven model manages peer inter-
actions better than the event-driven model. However, in the case of a composition
where peer interactions are not frequent (which has never been our case), the event-
driven model’s simplicity remains a better fit.

5.4.2 Header-Driven Primitives

After an overview of the header-driven model, a detailed description of the model’s
primitives follows.

Message Construction. A header h(x1, ..., xn) is a data structure represented by
its parameters (xi), which are statically typed, and its name (h). Header names
are unique within a composition. A message is a list of headers, the head of the
list is the message destination and the rest the continuation. Messages are built by
pushing headers into the empty message [] using the right-associative :: operator.
Two messages can be concatenated by operator @. These are some examples of
messages:

m← second(4+2, 5.0) :: first() :: []
m’← third(”hello”) :: []
m”← m @ m’

Message m is created by pushing header first, which has no parameters, to the
empty message, then pushing header second, which contains two parameters, an
integer and a floating-point number. Message m’ is created by pushing header third
with a string parameter to the empty message. Finally m”, a concatenation of m
and m’, contains the sequence:

second(6, 5.0) :: first() :: third(”hello”) :: []

Messages, headers and header names are first-class values: they can be stored
within a data structure. However, messages cannot be taken apart inside the handler
code. The only way a message is disassembled is by message dispatching: the
destination (i.e., the header at the top) is popped off the message and the matching
header handler is invoked. We will get back to message dispatching later.

Header Handlers. For each of the three header names seen above, a matching
header handler must be declared somewhere in the composition. A header handler
is preceded by reserved word handler and has two parts: the header name it de-
clares along with the formal parameters, and the protocol code to execute when the
handler is invoked. Here is, for example, the declaration of handler second:

68 CHAPTER 5. THE HEADER-DRIVEN MODEL

handler second(int someData1, float someData2) :: m is
data3← someData1 + someData2

This handler declaration specifies that any header named second must contain
two arguments of types integer and floating-point. Besides, it contains a line of
code that adds the two arguments and stores the result within variable data3 (prob-
ably part of the protocol state).

Assume that the runtime decides to dispatch message m defined above to the
handler matching its destination (second). Then, formal parameters someData1
and someData2 are assigned actual parameters 6 (i.e., 4 + 2) and 5.0 respectively.
Besides, formal parameter m is assigned the message continuation, i.e., first() :: [].
Finally the body of the handler is executed. A header handler has the following
properties:

• It is implicitly recursive: the header name it declares can be used in the body
of the handler.

• As event handlers in the event-driven model, the invocation of a header han-
dler is asynchronous in the sense that it does not return any value, it is only
used for its side effect.

Message Dispatch. Message dispatch is the execution pattern at the core of our
model. A message is dispatched using reserved word dispatch. Message dispatch
is done as follows: (1) the message destination (the header at the top) is popped off
the message, (2) the system looks up the unique header handler that corresponds
to that header, and (3) it executes the header handler with the header’s enclosed
data and the message continuation (i.e., the remaining headers) as actual parame-
ters. Protocols usually dispatch the message continuation at the end of the handler
body. Dispatching the empty message [] has no effect (in some setups it could be
configured to raise an exception).

This is an example of message dispatch:

state
int i← 0

handler repeat(int n) :: m is
if n > 0 then

dispatch (m @ (repeat(n-1) :: m))

handler count() :: m is
i← i + 1; dispatch(m)

handler start1() :: m is
dispatch(repeat(100) :: count() :: [])

Assume we initially dispatch the message start1() :: []. Then, handler count
executes 100 times, and the side effect is that state variable i equals 100 at the end.
We can notice that handler count dispatches the continuation at the end: this is
very common in the header-driven model, and makes routing of up-going messages
easier. Now let us slightly change the example:

5.4. THE HEADER-DRIVEN MODEL 69

handler eat() :: m is
/* Void handler body */

handler start2() :: m is
dispatch(repeat(100) :: eat() :: count() :: [])

If we initially dispatch message start2() :: [], the inclusion of header eat() in the
message breaks the loop, since this header handler does not dispatch the message
continuation.

Remote Message Dispatch. We have just seen how message dispatch works lo-
cally. For inter-process communication (i.e., through the network) the framework
offers a library that transmits messages from one process to another. We use re-
served word rdispatch(p, m) for this purpose, where p is the identifier of the desti-
nation process and m is the message to be transmitted. If the message is not lost in
the network, the effect of this primitive is to execute dispatch(m) within process p.
The delivery guarantees provided by remote dispatch vary: it can be reliable, or
it can drop messages. It depends on the properties we expect from the underlying
network. In the remaining of this chapter, we assume that remote dispatch can lose
messages.

An important feature of remote dispatching is the following: the fail-safe op-
eration mode of (local) dispatching is kept if the compositions at all processes
are symmetric. The reasoning is as follows. Assume an arriving message has a
header h that was declared at protocol module instance a at the sending process.
As the composition is symmetric, there is exactly one matching header handler
defined within a’s peer.

5.4.3 The Composition Model

So far, we have presented dispatching mechanisms, but nothing has been said about
a suitable composition model. The composition model presented in this section is
the second half of our header-driven proposal. This model is well adapted to the
message dispatching interaction scheme presented above. It allows the use of para-
metric and hierarchical protocol modules. The three basic elements that constitute
this model are modules (implementations), module abstractions (parametric imple-
mentations) and module interfaces.

Modules. Protocol module definitions are complete protocol modules ready to
be composed with other modules. They are preceded by reserved word protocol.
A protocol module A can contain (1) a state declaration, which is private to A,
(2) a set of header handler declarations, and (3) nested protocol modules or mod-
ule interfaces (see below) necessary to implement A. Here is an example protocol
module:

protocol A is
state

70 CHAPTER 5. THE HEADER-DRIVEN MODEL

int i← 0

handler h1() :: m is
i← i + 1
dispatch(nestedProt.h2(”tick”) :: m)

protocol nestedProt is
handler h2(string message) :: m is

print(message)
dispatch(m)

This example defines protocol A. Its state is an integer variable, which is in-
cremented every time a header with name h1 is dispatched by the matching han-
dler. The protocol also contains nested protocol nestedProt, which declares header
handler h2 (h2 prints the message contained in the header’s argument). We can
instantiate A using the new reserved word:

a← new A

In this code a is an instance of protocol module A. To name a’s headers h1 and
h2 from anywhere in the composition, we have to write a.h1, resp. a.nestedProt.h2.

Module Interfaces. Module interfaces are similar to protocol module declara-
tions, but they include no implementation. They are preceded by reserved word
interface. They can be use to refer to services, but without forcing any particular
implementation. They contain a set of header handler declarations (without body).
Here is an example of interface:

interface MyInter is
handler h1()

A protocol module that implements all the handlers declared by an interface, is
said to implement that interface. This means that the protocol can be plugged any-
where the interface is used. For instance, protocol A above implements interface
MyInter.

Module Abstractions. In the definition of protocol A above, a protocol is nested
inside a more general protocol. Nested protocols usually implement lower level
services that the enclosing protocol requires. In some cases, rather than commit-
ting to a particular implementation of the nested protocol, a nested interface can
be used. This is the role of protocol module abstractions: they contain the imple-
mentation of a protocol, but some parts of this protocol refer to an interface, which
is not implemented. Module abstraction definitions are preceded by the reserved
words abstract protocol:

abstract protocol B(MyInter i) is
state

float f← 1.0

handler divide(float param1) :: m is
f← f / param1

5.5. HEADER-DRIVEN vs. EVENT-DRIVEN 71

dispatch(i.h1() :: m)

Abstract protocol B needs a protocol implementing interface MyInter in order
to work: there are references to elements of the interface somewhere in B’s code.
Therefore, B cannot simply be instantiated as though it were a normal protocol,
since part of its implementation is missing. At instantiation time, we need to pro-
vide B with a protocol implementing the needed interfaces, in our example: new
B(A), since A implements MyInter. Furthermore, abstract protocols can also im-
plement interfaces (although partially). Thus, we could need a chain of abstract
protocols to instantiate an original one. As an illustration, imagine that protocol
module nestedProt (within A) was actually an interface. In that case, A would be
an abstract protocol. In order to instantiate B, we would need to plug A into B, and
a protocol implementing nestedProt, say X, into A: new B(A(X)).

5.5 Header-Driven vs. Event-Driven

In this section, we present a toy example (a reliable message protocol using an
unreliable message protocol) to demonstrate the power of the header-driven model
with respect to the event-driven model. Figure 5.3 depicts the example.

In order to be fair, we assume that the event-driven model also features the
composition model proposed in Section 5.4.3. In order not to clutter up the ex-
ample, we have removed the logic of both protocols, i.e., the code responsible for
keeping track of sent and urgent messages, retransmitting them if they are lost,
eliminating duplicates, etc. All this code is not crucial to understand the compo-
sitional differences between the two models. The gaps (where parts of the code
have been removed) is represented by dots (. . .). The basic data types used, are
msg (message), bool (boolean) and pid (process ID). Reserved word this denotes
the ID of the local process. We introduce primitive rtrigger in the event-driven ex-
ample. Its behavior is analogous to rdispatch: rtrigger(p, e(args)) has event e(args)
triggered at process p. Although this primitive is normally not present as such in
event-driven frameworks, its use in this example makes the comparison easier.

Composition. In this example, both versions use the composition model pre-
sented in this chapter, so the way to compose them is very similar. Abstract pro-
tocol module R is parametric on interface Urel interface. Before instantiating R,
the composer has to find another protocol that implements the Urel service, for
instance U. So, to instantiate R, the composer plugs an instance of U into R:

u← new U
r← new R(u)

Figure 5.2 (page 64) illustrates this composition. It is a stack-based compo-
sition: only one instance of R is using u. The behavior of such a stack-based
composition is the same in both models. However, the behavior will significantly
differ if the composer decides to include another instance of R that uses u:

72 CHAPTER 5. THE HEADER-DRIVEN MODEL

1: interface Unrel is
2: event udeliver(msg m)
3: handler hUSnd(pid dst, msg m)

4: protocol U is
5: event udeliver(msg m)
6: event fromNet(pid source, msg m)
7: handler hURcv(pid source, msg m) is
8: . . .
9: trigger(udeliver(m))
10: handler hUSnd(pid dst, msg m) is
11: . . .
12: rtrigger(dst, fromNet(this, m))
13: bind(hURcv, fromNet)

14: interface Rel is
15: event rdeliver(msg m)
16: handler hRSnd(pid dst, bool urg, msg m)

17: abstract protocol R(Unrel u) is
18: event rdeliver(msg m)
19: event usend(pid dst, msg m)
20: handler hRRcv(pid source, msg m) is
21: (urg, m’)← pop(m)
22: . . .
23: trigger(rdeliver(m’))
24: handler hRSnd(pid dst, bool urg, msg m) is
25: . . .
26: m’← push(urg, m)
27: trigger(usend(dst, m’))
28: bind(u.hUSnd, usend)
29: bind(hRRcv, u.udeliver)

event-driven model

1: interface Unrel is

2: handler hUSnd(pid dst) :: m

3: protocol U is

4: handler hURcv(pid source) :: m is
5: . . .
6: dispatch(m)
7: handler hUSnd(pid dst) :: m is
8: . . .
9: rdispatch(dst, hURcv(this) :: m)

10: interface Rel is

11: handler hRSnd(pid dst, bool urg) :: m

12: abstract protocol R(Unrel u) is

13: handler hRRcv(pid source, bool urg) :: m is

14: . . .
15: dispatch(m)
16: handler hRSnd(pid dst, bool urg) :: m is
17: . . .

18: dispatch(u.hUSnd(dst) :: hRRcv(this, urg) :: m)

header-driven model

Figure 5.3: Example protocol composition represented in both the event-driven and
header-driven models.

r2← new R(u)

In the event-driven model, we run into an instance of the event-routing problem
presented in Section 5.3.2. Even though r and r2 use different handlers (r.hRRcv
and r2.hRRcv), they both bind their handler hRRcv to the same event u.udeliver. If
a peer module of r starts a peer interaction with r, r2 will also receive the message,
which is not the intended behavior. In the header-driven model, everything still
works fine. Protocol instances r and r2 use different up-going headers: r.hRRcv
and r2.hRRcv. Besides, every up-going message contains the good header, since it
was pushed at the peer protocol instance. As a result, u will dispatch all messages
correctly at the end of handler hURcv.

5.5. HEADER-DRIVEN vs. EVENT-DRIVEN 73

Implementation of Unreliable Protocol U. At the unreliable level, an interface
(Unrel) and a protocol module (U) are defined. At first sight, the interface appears
simpler in the header-driven version. The reason is the up-going event udeliver,
which is not needed in the header-driven version. In the event-driven version, the
upwards path starts with the triggering of a fromNet event. This occurs when a
remote process has executed rtrigger on the fromNet event. The complete path is:
fromNet triggering, bound to handler hURcv, which triggers event udeliver, the
latter being part of the interface. The higher level protocols using an instance of U
need to bind a handler to this event. In the header-driven model, the interaction path
is simpler. First, event declarations and bindings are not necessary. The upward
path starts with a dispatch of a message as a result of a remote rdispatch of that
message. The message already contains in the top header the handler to call first at
the receiving process: hURcv(source). So the message is simply dispatched. When
the handler is done with the message, it does not need to find out where to forward
it up the graph: the message itself knows where it has to go (again, the handler
matching its top header). So, again, the message is simply dispatched.

Implementation of Reliable Protocol R. At the reliable level, again an inter-
face (Rel) as well as a protocol module (R) are defined. As before, the interface is
simpler in the header-driven style, where up-going event rdeliver is dropped. The
handler declared in the interface for sending messages, hRSnd, contains three pa-
rameters. The first and the third ones do not need explanation. The second, urg, is
a boolean that indicates the urgency of the message, i.e., whether it should take pri-
ority over other in-transit messages. Its value is used in the protocol logic (which
is omitted). Besides, urg has to be transmitted to the peer reliable protocol, which
is why it is interesting in our example. In order to transmit the urg value to the
peer protocol module, the event-driven version needs to push it (hence function
push in the code) into the message as a header, losing the type information. Thus,
when the message arrives at the peer protocol module, its headers contain no type
description. Handler hRRcv guesses that the first header is the urgency value and
pops it from the message. If the message happens to have a header of a different
type (e.g., because of a wrong binding), it can result in a runtime type-mismatch
error. In the header-driven model, we can modify the signature of handler hRRcv
at our will, since it is not exposed in the interface (this is not possible in the event-
driven version because the signature of the handler must match that of the event
it is bound to). We modify hRRcv adding the urgency variable as a parameter of
the handler. Now, the compiler can help us checking the type of this argument. To
send the message to the peer protocol module, handler hRSnd pushes two headers
into the message. The first header will be dispatched by the handler that locally
processes the message (u.hUSnd). The second is the handler that will process the
message at the peer module (r.hRRcv). Finally, as in U, up-going messages are
simply dispatched: the routing information is within the messages themselves.

74 CHAPTER 5. THE HEADER-DRIVEN MODEL

Code Readability. Even for such a simple composition, a glance at the code is
enough to notice the improved readability of the header-driven model in compari-
son to the event-driven model. The reasons are several:

• No Bindings. Binding events to handlers introduces a level of indirection,
which complicates the code. In the header-driven model, the bindings are
implicit: a header is bound to the unique handler whose name matches.

• Starting Peer Interactions Is Clearer. To start a peer interaction, the event-
driven model simply triggers an event (see left part of Fig. 5.3, line 27),
where there is no trace of which handler will be used at the peer protocol
module to process the message. Besides, we have to look up in the event
bindings (line 28) to find out which local lower-lower protocol will process
the message. In the header-driven model, only by looking at the message
dispatch that starts the peer interaction (see right part of Fig. 5.3, line 18),
we can find (1) the local lower-level handler that will process the message,
and (2) the handler at the peer module that will receive the data. So, line 18
can be interpreted as r using local u.hUSnd handler to call hRRcv at r’s peer.

• No Explicit Path for Up-Going Messages, which simplifies interfaces. Be-
sides, the code responsible for sending upwards an up-going message is also
simplified. As an example, compare lines 21 and 23 of the event-driven
model with line 15 of the header-driven model.

• No Need for Message Tags. If there is a single entry point (handler) for
different types of up-going messages, we need to define tags in the event-
driven model. This is a typical solution:

handler receive(pid source, msg m) is
(tag, m’)← pop(m)
if (tag = FOO) then (float f, m”)← pop(m’); . . .
else if (tag = BAR) then (int h, m”)← pop(m’); . . .
. . .

While this works, there is a big handler structured as a set of code blocks.
Each code block processes messages with a given tag. In the header-driven
model, as the up-going route is not included in the interface, we can split the
big generic handler into several specialized ones, one for each different tag:

handler foo(pid source, float f) :: m is . . .
handler bar(pid source, int h) :: m is . . .

5.6 Conclusion

In this chapter, we have seen the main features of an event-driven framework, and
discussed its drawbacks. We have presented a new way to look at protocol module
interactions: the header-driven model. It has several advantages: better routing

5.6. CONCLUSION 75

scheme, more rigorous type information for messages, better protocol readability,
and less compositional problems.

In the header-driven model, the interaction core is shifted from event trigger-
ing to message dispatching. Therefore, protocols programmed in the event-driven
model are incompatible with those programmed in the header-driven model.

Our model was implemented as a syntactic extension to the OCAML program-
ming language [Ler00] under the name NUNTIUS [Gen04]. Experiments with this
prototype showed that our programming model associated to OCAML’s module
system fulfills its compositional promises.

76 CHAPTER 5. THE HEADER-DRIVEN MODEL

Part II

Advances in Modular Group
Communication

77

Chapter 6

System Models, Protocol
Specifications and Toolkits

This chapter and the rest of Part II are devoted to group communication protocols
and the contributions that this thesis makes to this field. There has been a large
body of research on group communication in the last two decades. Various system
models have been proposed in an attempt to represent real systems in a simplified
manner. For instance, some models consider the possibility of adding fresh pro-
cesses to the system at any moment, while others allow malfunctioning processes
to recover. We have conducted our research in several of these system models,
whose results are presented in the different chapters that follow.

The present introductory chapter offers a description of the research back-
ground: we first describe the system models defined in the group communication
literature, we then present specifications of well-established group communication
protocols, and finally we survey the group communication toolkits appeared in the
last years that are most relevant to our research.

6.1 Introduction

Chapters 7 and 8 put forward our contributions to group communication research.
In Chapter 1, we described the evolution of group communication toolkits: from
monolithic to modular, and how general-purpose protocol composition frameworks
were progressively developed to structure modular design of group communication
protocols. This part of the thesis is devoted to the algorithmic implications of mod-
ularity in group communication design. As group most communication protocols
offer rather elaborate properties to the application, their modular design normally
includes a number of building blocks. This chapter presents the specification of
those building blocks that are necessary to understand our contributions.

Before undertaking the design of a group communication architecture, one
needs to make several basic assumptions that reflect the way the underlying system
works: its guarantees and weaknesses. This is known as the system model. The

79

80 CHAPTER 6. SYSTEM MODELS, SPECIFICATIONS & TOOLKITS

choices made at this point will impact the design enormously, to the extreme that
some group communication problems may become unsolvable under certain sys-
tem models. On the other hand, assuming unrealistically strong guarantees from
the system model may lead to trivial algorithms that are barely useful in reality.

Some guarantees usually defined in a system model are for instance: the asyn-
chrony of the system (how long it takes to transmit a message on the wire), the
nature of failures (crashes, malicious behavior), etc. Section 6.2 goes over the
most significant aspects of a distributed system model.

As previously said, a modular group communication protocol is composed of a
number of building blocks. Some of them are basic protocols for low-level message
exchange, others are more complex. In Section 6.3 we present the specifications of
these protocols, from most basic (bottom-most blocks, near the network) to most
complex group communication-related building blocks (at the top of the composi-
tion).

Finally, Section 6.4 is a survey of traditional group communication toolkits
from the point of view of their (modular or monolithic) architecture.

6.2 System and Failure Models

The system (and failure) models are a key issue when specifying or implementing
a group communication algorithm. The impact of the system model chosen is
crucial: an algorithm may work properly in a system model, yet it can be useless in
another. Moreover, the system model chosen can determine the maximum degree
of fault tolerance that can be achieved. There are several aspects that define a
system model. Usually, defining a system model entails making choices for all the
aspects described in this section.

In all system models considered in the thesis, we consider the system to be
composed of a finite set of processes Π = {p1, p2, . . . , pn}. There is no shared
memory between any pair of processes: each process has its own memory address
space. Every pair of processes is connected by a bidirectional network channel.
Communication among processes is performed exclusively via message exchange
through a low-level network service. The properties of this network service depend
on the particular assumptions made for the different system models.

6.2.1 Synchrony

The synchrony of a system describes how good a system is to deliver messages in
a timely manner. It also tells whether there is a limit on the relative speed of the
processes that constitute the system.

Synchronous Model. In a synchronous system model, there is an upper bound
on the transmission time of all messages. This upper bound is known a priori and
its knowledge can be exploited. In [Lyn96], the synchronous system is described

6.2. SYSTEM AND FAILURE MODELS 81

as a set of synchronous rounds where (1) each process sends a message (which
can be null) at the beginning of a round, (2) messages are received and the end
of the same round, and (3) upon reception of these messages, each process takes
a computation step that leads to the next round. For such synchronous rounds to
be feasible, among other things, their duration should be longer than the bound on
message transmission time.

Asynchronous Model. In an asynchronous system model, message transmission
time has no upper bound, that is, messages can take arbitrarily long to reach the
destination process. Additionally, the relative speed of processes is not bound ei-
ther: a process can be arbitrarily slow to process a message with respect to another
process. As a result, if a process p sends a message to another process q, it can
take arbitrarily long to q to receive the message, even if the message is not lost and
neither p or q crash.

Other Synchrony Models. In many cases, the synchronous model is too strong
an assumption because it does not allow any message to be late. On the other hand,
a fully asynchronous model is too weak for some algorithms to be solvable, because
it allows situations in theory where all messages are very late. Real systems are
typically between these two extremes: messages are usually timely, and processes
have similar speeds but there are some unstable periods when messages are late an
processes are overloaded (and thus slow).

This has led some researchers to define new synchrony models that try to grasp
the eventual asynchrony of a system that is supposed to behave synchronously
in the general case. The partial synchronous model [DLS88] considers that the
message transmission time and relative speed of processes are both bound, but this
bounds are either not known or they only hold after some unknown time. The timed
asynchronous model [CF99], makes assumptions on maximum message transmis-
sion time and considers late messages as omission failures, which are explained in
Section 6.2.2.

Focus of this Thesis. In this thesis we always assume the system to be asyn-
chronous. The main reason is that protocols that work under this assumption are
more general and time-free. They make progress when the real network offers
some degree of synchrony, and block (without doing bad things) during periods
when the network is fully asynchronous. The main drawback is that this asyn-
chronous model is so weak that many problems are unsolvable [FLP85, CHTCB96,
CT94, Ric96]. For this reason, we augment the asynchronous system model with
unreliable failure detectors [CT96], which are described in Section 6.3.2.

6.2.2 Failures

Processes behave in a distributed system accordingly to their algorithms most of
the time. However, dependable distributed systems have to deal with failures. A

82 CHAPTER 6. SYSTEM MODELS, SPECIFICATIONS & TOOLKITS

failure occurs when a process deviates from its normal behavior in some way. The
possible manners in which a process can misbehave are the following:

• Crash Failure. A process suddenly stops its operation. This is the most
benign failure type.

• Send Omission Failure. A process is supposed to send a message, according
to its algorithm, but it does not send it.

• Arbitrary or Byzantine Failure. Byzantine failures [LSP82], the most gen-
eral type, assumes that processes may fail by behaving arbitrarily, even ma-
liciously.

Fault-tolerant systems make an assumption on the number of processes that can
fail. This assumption is represented by constant f , which denotes the maximum
number of processes that can misbehave in a given run. The value of f is important
when specifying algorithms because a slight variation of this constant can imply
the impossibility to solve a given problem.

Focus of this Thesis. This thesis only considers crash failures, which are the ones
most frequently found in the literature, although we believe some of our results
could be (indirectly) extended to more general failures. Nevertheless, Chapter 10
considers message corruption and send omission failures in practice, but only in
order to assess the system’s ability to transform them into clean crash failures.

6.2.3 Groups

Group communication algorithms are based on the notion of group of processes. A
group of processes is a finite set of processes that may or may not change during
system lifetime, and should coincide with set Π defined above.

Static Groups. In a model with static groups, or static model, the initial group of
processes Π is fixed at system start-up time and remains unchanged throughout the
whole run. This is the simplest case, which does not require a group membership
protocol. The main drawback is the impossibility of adding new processes to the
group, for instance, to replace the ones that have crashed.

Dynamic Groups. The model with dynamic groups, or dynamic model, allows
processes to be added to or removed from the group after system start-up time.
Adding or removing processes must be done in an orderly manner. For that pur-
pose, a group membership service is defined (its specification is presented in Sec-
tion 6.3). Group communication toolkits can be further classified depending on the
way they deal with network partitions. A network partition is a disconnection of a
subset of processes form the rest: the network channels between processes within

6.2. SYSTEM AND FAILURE MODELS 83

the same partition work properly, whereas channels that link processes in different
partitions are (temporarily) broken. There are mainly two trends in state-of-the-art
group communication toolkits:

• Primary Partition. In the presence of a network partition, only processes lo-
cated in one partition, called primary partition, are allowed to continue oper-
ation. The primary partition contains the majority of processes.1 Processes
located in other partitions should block as long as they can not communicate
with the primary partition (i.e., as long as the network partition is not fixed).

• Partitionable. If a network partition occurs, all processes are allowed to con-
tinue operation along with other processes in the same partition. The price to
pay is that the state of processes at different partitions can diverge, possibly
causing inconsistencies at the application level. Thus, the application needs
to perform an ad-hoc merge operation when the partition is healed.

Focus of this Thesis. This thesis makes contributions in both the static and dy-
namic systems. The new architecture presented in Chapter 7 uses primary-partition
dynamic groups. The system model assumed in Chapter 8 uses static groups.

6.2.4 Recovery Capabilities

The point in time at which a process fails is unpredictable by nature. At the begin-
ning, all processes are supposed to behave correctly, even the faulty ones.2 Con-
sider a system where processes can only fail by crashing. When a process crashes
one may consider the possibility that it recovers (i.e., it is restarted) after some
time and rolls back to a state checkpointed to disk before the crash. Depending
on whether processes have this recovery capability, we can classify a system with
crash faults into crash-stop (also called crash-no recovery) and crash-recovery. As
some basic definitions are different depending on whether the system is crash-stop
or crash-recovery, we present them separately.

6.2.4.1 The Crash-Stop System Model

Process Crash. A process that crashes stops its operation permanently and never
recovers. A process is faulty in a run if it crashes in that run. The state of a process
is kept in main memory only. If a process crashes, its state is lost and can not be
recovered.

Correct and Faulty. For a given run (i.e., execution of the system), if a process
does not fail, we say it is correct. On the other hand, if a process does fail, we say
it is faulty.

1The definition of this majority depends on the particular system, but guarantees that two majori-
ties always intersect.

2A faulty process is considered faulty even when its behavior is still normal

84 CHAPTER 6. SYSTEM MODELS, SPECIFICATIONS & TOOLKITS

6.2.4.2 The Crash-Recovery System Model

Crash and Recovery. Processes can crash and may subsequently recover. We
consider system start-up time as an implicit recover event. In any process’ history,
a recover event happens always immediately after a crash event, except at system
start-up time. Moreover, the only event that can happen immediately after a crash
event (if any) is a recover event.

Up and Down. A process q is up within the segments of its history between a
recover event and the following crash event. If no crash event occurs after the
last recover event in q’s history, then q is up forever from its last recover event
on. In this case, we say q is eventually always up. A process q is down within the
segments of its history after a crash event until the next recover event (if such an
event exists).

Good and Bad Processes. A process is good if it is eventually always up. A
process is bad if it is not good. In other words, a process is bad if it (a) eventually
crashes and never recovers or (b) crashes and recovers infinitely often.

6.2.4.3 Focus of this Thesis

Most of group communication literature does not consider the possibility of process
recoveries. We pursue this path in Chapter 7, where processes do not recover.
However, a crashed process can be re-admitted to the group under a fresh new
identity.3 Therefore, the re-admitted process loses all its state and a state transfer
is needed. On the other hand, Chapter 8 contributes with a sound specification of
atomic broadcast (see Sect. 6.3.5) in the crash-recovery model.

6.3 Protocol Specifications. From Fair-Lossy Channels to
Group Communication

The remaining chapters of Part II deal with a number of group communication
problems. In this section we present their specification. Most modular group com-
munication protocols need some lower-level protocols in order to fulfill their spec-
ification. We present the specifications for all of them here: we proceed from the
most basic problems to group communication.

6.3.1 Communication Channels

In our system model, every pair of processes is connected by a bidirectional net-
work channel. Every message broadcast by the application in a run is unique (it is
usually attached the pair 〈 process ID, sequence number 〉) and taken from setM of

3This is usually know as a new incarnation of a process.

6.3. FROM LOSSY CHANNELS TO GROUP COMMUNICATION 85

all possible messages (universe of messages). A communication channel provides
two communication primitives: send(m, p) and receive(m, p), where m ∈ M and
p ∈ Π. We say that process p sends message m to destination process q if p exe-
cutes send(m, q). Likewise, we say that p receives message m from process q if p
executes receive(m, q).

We define the following properties regarding communication channels.

Property 6.3.1 NO-CREATION. If process q receives message m from p, then p
has sent m to q.

Property 6.3.2 NO-DUPLICATION. If process q receives message m from p, q
receives m from p at most once.

Property 6.3.3 NO-LOSS. If process p sends message m to q, and both processes
are correct, then q eventually receives m from p.

Property 6.3.4 FAIR-LOSS. If process p sends an infinite number of messages
to q and q is correct, then q receives an infinite number of messages from p.

There are different levels of channel reliability in the distributed systems litera-
ture. Here, we define quasi-reliable channels and fair-lossy channels. A communi-
cation channel is quasi-reliable if it fulfills Properties 6.3.1, 6.3.2, and 6.3.3. Some
authors define reliable channels, which are stronger than quasi-reliable channels,
by not requiring process p to be correct in Property 6.3.3, but it is not realistic
from a practical point of view. A communication channel is fair-lossy if it fulfills
Properties 6.3.1, and 6.3.4.

Stubborn channels were introduced in [GOS98] as a helpful abstraction for the
crash-recovery model, where Property 6.3.3 does not make sense. A communica-
tion channel is stubborn if it fulfills Property 6.3.1 and the following one:

Property 6.3.5 STUBBORNNESS. Let p and q be two good processes. If p sends
a message m to q and indefinitely delays sending any further message to q, then q
eventually receives m.

The indefinite delay requirement expresses that, as soon as p sends another
message m′ to q (after sending m), there is no more obligation for q to receive
m. However q is required to receive m as long as no p does not send any further
message to q after m.

6.3.2 Unreliable Failure Detectors

The notion of unreliable failure detectors was first formalized by Chandra and
Toueg [CT96] in the context of process crashes. A failure detector can be seen
as a set of modules, with one module FD i attached to every process pi. A process
pi can query its failure detector module FD i about the state of other processes; the

86 CHAPTER 6. SYSTEM MODELS, SPECIFICATIONS & TOOLKITS

output can be correct or faulty. The information returned by a failure detector can
be incorrect: a failure detector module may yield the output correct for a process
that has crashed and vice versa. These inaccuracies in the output lead us to say that
a failure detector suspects a process to have crashed. Failure detectors may also
give inconsistent information: for instance FD i can suspect a process p at a given
time t, while FDj does not suspect p at time t.

Failure detectors are defined in terms of a completeness and an accuracy prop-
erty. The completeness property describes the ability of the failure detector to
detect crashed processes. The accuracy property restricts the way a failure detector
can incorrectly suspect processes that have not crashed. We consider the following
properties [CT96]:

Property 6.3.6 STRONG COMPLETENESS. Every incorrect process is eventually
suspected by every correct process.

Property 6.3.7 STRONG ACCURACY. No correct process is ever suspected by any
correct process.

Property 6.3.8 EVENTUAL WEAK ACCURACY. There is a time after which some
correct process is never suspected by any correct process.

We now define two failure detectors: the P failure detector (perfect) satisfies
Strong Completeness and Strong Accuracy, and the 3S failure detector (eventu-
ally strong) satisfies Strong Completeness and Eventual Weak Accuracy. The asyn-
chronous model augmented with one of these failure detectors is strong enough to
solve all the group communication problems considered in this thesis. However, P
is too strong an assumption for many real systems.

6.3.3 Uniform and Non-Uniform Protocols

Group communication problems are specified by a set of properties they have to
fulfill. Each of these properties restrict the behavior of one or several processes.
A non-uniform property only mentions correct processes, in other words, such a
property does not restrict the way faulty processes behave. In contrast, a uniform
property states that both correct and faulty processes (before they crash) must re-
spect the required behavior. Therefore, uniform properties are strictly stronger
than their respective non-uniform versions. Non-uniform protocol specifications
contain exclusively non-uniform properties. Uniform protocol specifications con-
tain mostly uniform properties, but may also contain some non-uniform properties
if the uniform version does not make sense (e.g., because it is impossible to guar-
antee).

This distinction is interesting from a practical point of view [SS93]: it is usually
more efficient to implement non-uniform properties, allowing faulty processes to
behave erratically. Hence, from a performance viewpoint, it is usually a better

6.3. FROM LOSSY CHANNELS TO GROUP COMMUNICATION 87

choice to implement a non-uniform specification, as long as the application on top
tolerates it. Otherwise, a slower uniform version of the protocol is required.

In the remaining of this chapter, we only give uniform specification of prob-
lems. Obtaining the non-uniform version is easy: replace every reference to pro-
cess by correct process. For example, the non-uniform version of Property 6.3.11
(see below) becomes the following:

Property 6.3.9 AGREEMENT. Two correct processes never decide differently.

This non-uniform version allows two processes to decide differently as long as
one of then is faulty (i.e., will crash in the future).

The distinction between uniform and non-uniform protocols is well understood
in the crash-stop model. In contrast, this is not the case in the crash-recovery
model. Chapter 8 is in part an attempt to clarify the concept of uniformity in the
crash-recovery model.

6.3.4 Consensus

Consensus [Fis83] is an important abstraction in distributed computing. More-
over it can be used as a building block to solve atomic broadcast [CT96] (see
Sect. 6.3.5) as well as other problems. We define primitives propose(value) and
decide(decision). We say that a process p proposes initial value v if p executes
propose(v). Likewise, we say that a process p decides value v if p executes de-
cide(v). Informally, consensus ensures that processes reach an agreement on a
value proposed by one of them. More formally, uniform consensus is defined in
the crash-stop model by the following properties:

Property 6.3.10 UNIFORM INTEGRITY. A process decides at most once.

Property 6.3.11 UNIFORM AGREEMENT. Two processes never decide differently.

Property 6.3.12 UNIFORM VALIDITY. If a process decides, the decision value is
the initial value of some process.

Property 6.3.13 TERMINATION. All correct processes eventually decide.

Uniform consensus is also defined in the crash-recovery model [ACT00]. The
properties are analogous to the ones above.

6.3.5 Broadcast Protocols in the Static Model

Specifications of broadcast services in the static crash-stop model [HT94] are wide-
ly accepted. The specifications in this section are defined for this model. In the dy-
namic and crash-recovery models, specifications of broadcast protocols have not
reached (yet) an acceptable level of maturity. Chapter 7 presents an architecture

88 CHAPTER 6. SYSTEM MODELS, SPECIFICATIONS & TOOLKITS

based on a novel specification of broadcast services for dynamic groups. This
novel specification is an attempt to clarify protocol specifications in the dynamic
model and was introduced by Schiper in [Sch06]. On the other hand, no satis-
factory specification for atomic broadcast (the most relevant form of broadcast)
has been proposed to this day in the crash-recovery model. Chapter 8 proposes a
specification (and an implementation) for atomic broadcast in that model.

Reliable Broadcast. We define primitives rbcast(msg) and rdeliver(msg), where
msg ∈ M. We say that a process p reliably broadcasts (or simply rbcasts) mes-
sage m if p executes rbcast(m). Likewise, we say that a process p reliably delivers
(or simply rdelivers) message m if p executes rdeliver(m). Informally, reliable
broadcast is often used to implement other broadcast protocols with stronger prop-
erties. It ensures that messages are rdelivered either by all correct processes or by
none, even if the sender crashes while rbcasting the message. However, it does
not enforce any order in rdelivered messages. More formally, reliable broadcast is
defined by the following properties [HT94]:

Property 6.3.14 VALIDITY. If a correct process p rbcasts message m, then some
correct process eventually rdelivers m.

Property 6.3.15 UNIFORM INTEGRITY. Every process rdelivers a message m at
most once and only if m was previously rbcast by some process.

Property 6.3.16 UNIFORM AGREEMENT. If a process rdelivers a message m
then every correct process also rdelivers m.

Atomic Broadcast. We define primitives abcast(msg) and adeliver(msg), where
msg ∈ M. We say that a process p atomically broadcasts (or simply abcasts)
message m if p executes abcast(m). Likewise, we say that a process p atomically
delivers (or simply adelivers) message m if p executes adeliver(m). Informally,
atomic broadcast (also called total order broadcast) is a stronger form of reliable
broadcast where all messages are adelivered in the same order at every process.
More formally, atomic broadcast is defined by the three properties that define reli-
able broadcast4 and the following additional property [HT94]:

Property 6.3.17 UNIFORM TOTAL ORDER. For any two processes p and q and
any two messages m and m′, if p adelivers m before m′, then q adelivers m′ only
after having adelivered m.

Generic Broadcast. We define primitives gbcast(msg) and gdeliver(msg), where
msg ∈M. We say that a process p generic broadcasts (or simply gbcasts) message
m if p executes gbcast(m). Likewise, we say that a process p generic delivers (or

4Obviously, rbcast is renamed to abcast and rdeliver to adeliver in these properties.

6.3. FROM LOSSY CHANNELS TO GROUP COMMUNICATION 89

simply gdelivers) message m if p executes gdeliver(m). We define conflict relation
C : M×M → boolean. C is non-reflexive and symmetric. This conflict rela-
tion is based on semantics of messages and provided by the application at system
start-up time. Its meaning is the following: if two messages conflict, they have to
be delivered in the same order at all processes (just as atomic broadcast would); if
they do not conflict, they can be delivered in any order. Informally, generic broad-
cast [PS99, PS02, ADGFT00] is a more flexible form of broadcasting messages.
For example, if conflict relation C is void, then generic broadcast coincides with re-
liable broadcast. On the other extreme, if C is such that any two messages conflict,
then generic broadcast is equivalent to atomic broadcast. More formally, generic
broadcast is defined by the three properties that define reliable broadcast (with the
obvious primitive renaming) and the following additional property:

Property 6.3.18 UNIFORM GENERALIZED ORDER. For any two processes p
and q and any two messages m and m′, if m conflicts with m′ and p gdelivers m
before m′, then q gdelivers m′ only after having gdelivered m.

6.3.6 Broadcast Protocols in the Dynamic Model

In a dynamic group model, a protocol maintaining a set of currently active pro-
cesses is needed. This is the task of group membership. This set can change with
new members joining and old members leaving. Each process has a view of this
set, and when this set changes, the membership protocol is required to report the
change at each process by installing a new view.

There are mainly two flavors of group membership in the literature: primary
partition membership and partitionable membership (see Sect. 6.2.3). As the work
carried out in this thesis focuses on the primary partition version, we present it here,
and refer the reader, e.g., to [CKV01] for a formal definition of the partitionable
membership.

Traditionally, specifications of primary-partition group membership have been
defined so that the sequence of views installed reflects the processes that are up
at each moment. This has led to fairly complicated specifications of group mem-
bership. In [ST06], the authors consider the group membership problem as the
combination of two orthogonal subproblems: (1) determining the set of processes
that are currently up, and (2) ensuring that processes agree on the successive values
of this set. For solving problem (1), one does not really need group membership,
but rather a failure detector that monitors processes and informs group member-
ship when a process has been suspected for a sufficiently long time. For solving
problem (2), we can proceed in two steps: first specify set membership and then a
particular case of it: group membership.

Set Membership. The goal of set membership is that all processes agree on
a global sequence of views, which contain a set of items that are not necessar-

90 CHAPTER 6. SYSTEM MODELS, SPECIFICATIONS & TOOLKITS

ily processes.5 A view V consists of a unique identifier V.id and a set of items
V.members drawn from set S of arbitrary elements. For simplicity, we take view
identifiers from the set of natural numbers. We define primitives add(x), remove(x),
and new_view(V), where x ∈ S and V is a view. We say that a process p requests
item x to be added to the set if p executes add(x). Likewise, we say that a process
p requests item x to be removed to the set if p executes remove(x). Additionally,
we say that p installs view V if p executes new_view(V). All actions at p after in-
stalling view V , up to and including the installation of another view V ′, are said to
occur in V . The specification of set membership is satisfied if there exists a global
sequence of views H , such that the following properties hold:

Property 6.3.19 VIEW SEQUENCE AGREEMENT. For every process p, the se-
quence of views it installs during its whole execution is a subsequence of H .

Property 6.3.20 INTEGRITY. Assume a process p installs view V ′ in V . If an
item x is in V ′.members but not in V.members, then some process requested x to
be added to the set.

Conversely, if an item x is in V.members but not in V ′.members, then some
process requested x to be removed from the set.

Property 6.3.21 VIEW INSTALLATION. Every view V ∈ H is installed by every
correct process.

Property 6.3.22 OPERATION EXECUTION. If a correct process requests item x
to be added to the set in view V and x 6∈ V.members, then there exists a view V ′,
occurring after V in H , such that x ∈ V ′.members.

If a correct process requests item x to be removed from the set in view V and
x ∈ V.members, then there exists a view V ′, occurring after V in H , such that
x 6∈ V ′.members.

Group Membership. Once set membership is specified, we can define group
membership as a special case of set membership where elements of S are pro-
cesses. Besides, the specification of group membership can be specialized in the
following manner:

• Usually, applications do not require processes to install views they do not
belong to. Thus, we relax Property 6.3.21 by stating it as follows:

Property 6.3.23 VIEW INSTALLATION. A correct process must install ev-
ery view it belongs to.

• We can add the following property to prevent processes outside the group
from issuing requests to add/remove6 processes:

5They can be, e.g., the set of employees, or the addresses of a mailing list.
6In group membership, primitive add can also be called join.

6.3. FROM LOSSY CHANNELS TO GROUP COMMUNICATION 91

Property 6.3.24 PERMISSION TO REQUEST A VIEW CHANGE. A pro-
cess p can request can issue a request to add/remove a process in a view V
only if p ∈ V.members.

• Sometimes, some correct process p is excluded from the view. In this case,
group membership should no more have the obligation to execute p’s pend-
ing requests to add/remove processes. For this purpose, we can restate Prop-
erty 6.3.22 in this way:

Property 6.3.25 OPERATION EXECUTION. If a correct process p requests
process q to be added to the group in view V and q 6∈ V.members, then
there exists a view V ′, occurring after V in H , such that either (a) q ∈
V ′.members, or (b) p 6∈ V ′.members.

If a correct process p requests process q to be removed from the group in
view V and q ∈ V.members, then there exists a view V ′, occurring after V
in H , such that either (a) q 6∈ V ′.members, or (b) p 6∈ V ′.members.

View-Synchronous Broadcast. Group membership is only useful if one defines
how the sending and delivery of broadcast messages interact with view changes.
A variety of multicast protocols can be defined, with different ordering guarantees,
just like in systems in the static group model. Here, we define view-synchronous
broadcast [BJ87, CKV01].

We define primitives VS-cast(msg) and VS-deliver(msg), where msg ∈ M.
We say that a process p VS-casts message m if p executes VS-cast(m). Likewise,
we say that a process p VS-delivers message m if p executes VS-deliver(m). In-
formally, view synchronous broadcast ensures that (1) the messages sent in a view
V are delivered in the same view V , and that (2) all correct processes in V deliver
the same set of messages in V . More formally, view synchronous broadcast is de-
fined by the following properties (note the similarities to the properties that define
reliable broadcast in Sect. 6.3.5):

Property 6.3.26 INITIAL VIEW. Every VS-broadcast and VS-deliver occurs in
some view.

Property 6.3.27 UNIFORM INTEGRITY. For any message m, every process VS-
delivers m at most once, and only if m was VS-broadcast by some process.

Property 6.3.28 VALIDITY. If a correct process VS-broadcasts m then it eventu-
ally VS-delivers m.

Property 6.3.29 SENDING VIEW DELIVERY. If a process p VS-delivers message
m in view V , then the sender of m VS-broadcasts m in view V .

92 CHAPTER 6. SYSTEM MODELS, SPECIFICATIONS & TOOLKITS

Property 6.3.30 VIEW SYNCHRONY. If processes p and q install the same view
V in the same previous view V ′, then any message VS-delivered by p in V ′ is also
VS-delivered by q in V ′.

Property 6.3.31 AGREEMENT. If correct processes p and q install view V as their
last view, then any message VS-delivered by p in V is also VS-delivered by q in V

In order to implement Property 6.3.29 without discarding messages from cor-
rect processes, processes must stop sending messages for some time before a new
view is installed (the group membership protocol must tell the application when it
should stop sending messages). One can avoid this blocking period by replacing
Property 6.3.29 with a weaker property [FvR96, KM00]:

Property 6.3.32 SAME VIEW DELIVERY. If processes p and q both VS-deliver
message m, they VS-deliver m in the same view V .

6.4 Group Communication Toolkits in the 90s

In [CKV01], Chockler et al describe a comprehensive set of specifications of group
communication protocols, which correspond to the most popular implementations.
These specifications can serve as a unifying framework for the classification, anal-
ysis and comparison of the group communication toolkits that have been imple-
mented over the last 20 years.

In this section we present the architecture of existing group communication
toolkits. Since it is not possible, and also not really worth, to present the archi-
tecture of all group communication systems that have been implemented, we have
selected here the most representative architectures, and refer the reader to [CKV01]
for a synthesis of the rest.

We have divided this section into two parts: monolithic and modular toolkits.
As explained in Chapter 1, monolithic systems do not allow the system to be easily
customized to the user needs; modular systems allow the user, using off-the-shelf
components, to build the protocol stack that fits particular needs. Monolithic sys-
tems do not require any protocol composition framework, whereas modular toolkits
use either an ad-hoc protocol composition framework or a general-purpose one as
the ones presented in Section 2.3.

Among all existing monolithic toolkits, we have chosen to present Isis [BJ87,
Bir93], Phoenix [Mal96], RMP [WMK94, Mon94], and Totem [AMMS+95]. On
the other hand, among modular toolkits the most representative one is Ensem-
ble [Hay98]. There are many other group communication toolkits but their archi-
tecture overlaps with the ones presented here. Transis [DM96], Relacs [BDGB95],
and Newtop [EMS95] architectures overlap with Totem and Ensemble. The Java-
Groups toolkit [Ban02] is strongly inspired by Ensemble (it can even be configured
to use an Ensemble stack). The group communication protocol suite implemented

6.4. GROUP COMMUNICATION TOOLKITS IN THE 90S 93

Application

Atomic Broadcast

View Synchrony

Membership

Network

Figure 6.1: Isis architecture

View Synchrony
+

Membership

Network

Application

Atomic Broadcast

Consensus

Figure 6.2: Phoenix architecture

in the Appia framework [MPR00] is also strongly inspired by Ensemble. The mem-
bership service presented in [HS98] uses a token based approach as in Totem or
RMP.

6.4.1 Monolithic Toolkits

Isis. Isis was the first system to propose group communication [BJ87, BSS91]. It
is a monolithic primary partition system, i.e., when a network partition occurs, the
computation can only proceed in one partition of the network, called the primary
partition. The Isis architecture is depicted in Figure 6.1. The main layers are the
following:7

• The group membership layer, which is responsible for maintaining the mem-
bership of groups. This layer handles joins (request to join the group) and
leaves (request to leave the group). The layer also excludes processes that
are suspected to have crashed. As seen in Sect. 6.3.6, the group membership
layer ensures that processes deliver the successive views in the same total
order.

• Group membership does not provide any semantics for communication. For
that reason, the group membership layer needs to be extended with a layer
providing a semantics for the messages broadcast to the current group mem-
bers. This semantics is called view synchrony or view-synchronous broadcast
(see Section 6.3.6).

• The upper layer provides atomic broadcast: it ensures that messages are
delivered in the same order by all processes. This dynamic version of atomic
broadcast is implemented using the view synchrony layer [BSS91].

7The architecture corresponds to the protocol described in [BSS91]. Since we do not discuss
causal order in the paper, the Isis causal order protocol does not appear here.

94 CHAPTER 6. SYSTEM MODELS, SPECIFICATIONS & TOOLKITS

Phoenix. The Phoenix architecture [Mal96] is a variation of the Isis architec-
ture (Fig 6.2). The basic layer solves consensus. Membership (primary partition)
and view synchrony are provided by the same layer: both the membership prob-
lem and view synchrony are solved using the underlying consensus layer. Simi-
larly to the Isis architecture, atomic broadcast is provided on top of the view syn-
chrony/membership layer.

The main limitation of Isis is to provide the membership service at the level of
processors. In case of partition, this leads the service to kill all processes on proces-
sors that are not in the primary partition. This drawback is prevented in Phoenix,
which provides the membership service at the level of processes. This allows the
computation to proceed in all partitions. Consider for example link failures leading
to the following situation: the primary partition of some replicated service S is in
some network component Π1, and the primary partition of some other replicated
service S′ is in some other network component Π2. A client process in Π1 can
read/update the service S and read S′, while a client in Π2 can read/update S′ and
read S.

RMP. RMP [WMK94, Mon94] is another monolithic group communication tool-
kit, whose architecture differs from the Isis and Phoenix architectures (see Fig-
ure 6.3). The RMP protocol has been influenced by Chang-Maxemchuk’s atomic
broadcast algorithm [CM84]. In RMP, the membership layer is split into two parts:
fault-free membership and fault-tolerant membership.

The fault-free membership handles joins and leaves in the absence of failures,
using the underlying atomic broadcast layer: joins/leaves are implemented using
atomic broadcast. This totally orders joins/leaves with respect to any other ap-
plication message that is issued using atomic broadcast, i.e., it ensures the view
synchrony property in the absence of failures. However, the atomic broadcast pro-
tocol blocks in case of a process crash. The role of the fault-tolerant member-
ship layer is to avoid blocking by excluding processes that are suspected to have
crashed. The fault-tolerant membership protocol, based on a two-phase commit
protocol [BHG87] among the surviving processes, is completely different from the
fault-free protocol. This fault-tolerant protocol has also the responsibility to ensure
the view synchrony property, i.e., it orders view changes with respect to application
messages that are atomically broadcast.

Totem. Unlike the architectures presented so far, Totem [AMMS+95] – while
being a monolithic architecture – is a representative of the systems based on the
partitionable membership model.

Similarly to RMP, Totem uses an atomic broadcast algorithm based on a rotat-
ing token. Total order is provided by the middle layer of the architecture depicted
in Figure 6.4 (the layer handles also flow control). The lower layer membership
protocol, apart from detecting failures and defining views, recovers token and mes-
sages that had not been received by some members when failures occur. The top

6.4. GROUP COMMUNICATION TOOLKITS IN THE 90S 95

Fault−tolerant Membership
+

View Synchrony

Fault−free Membership

Atomic Broadcast

Application

Network

Figure 6.3: RMP architecture

Application

Recovery

Atomic Broadcast

Membership

Network

Figure 6.4: Totem architecture

recovery layer completes the membership layer, by ensuring the (extended) view
synchrony property.8 When the membership layer is invoked, e.g., to exclude a
process, it does not enforce the (extended) view synchrony property. This is en-
sured by the recovery layer.

6.4.2 Modular Protocol Stacks

Unlike monolithic systems, modular systems allow users to customize the protocol
stack to their specific needs. Horus [vRBG+96] (the successor of Isis) and the re-
implementation of Horus in the OCaml language called Ensemble [Hay98] are the
best representatives of modular group communication stacks. The idea is to use a
set of off-the-shelf components and to compose them using the Horus/Ensemble
framework to obtain a protocol stack with the functionalities customized to the
user requirements. Similarly to Horus, Ensemble is based on the partitionable
membership model. A sample Ensemble protocol stack is depicted in Figure 6.5.
A few explanations are needed:

• A component, e.g., stable, can be placed at many places in the stack. The
choice of the place has an impact on efficiency. For example, the role of the
stable component is to detect message stability.9 When stability is detected
by the stable component, an event is delivered to the layer below, and travels
down from layer to layer until it reaches the bottom of the stack. At this
point the event is bounced back, and travels up through the stack from com-
ponent to component, until it reaches the top of the stack. The notification
of stability occurs during the upwards travel of the event.

• The application is not the uppermost layer in the stack. The reason is that it
would take more time to convey events from the network level to the applica-
tion. The most efficient layering leads placing components active in normal

8Extended view synchrony [CKV01] extends the view synchrony property, defined in the context
of the primary partition model, to the partitionable membership model.

9 A message is stable at a process when the process knows that the message has been delivered at
all destinations.

96 CHAPTER 6. SYSTEM MODELS, SPECIFICATIONS & TOOLKITS

Membership
View Synchrony

+

Sync

Failure Detection

Applic_Interface

Atomic Broadcast

Stable

Reliable FIFO

Network

Application

Figure 6.5: Ensemble sample protocol stack

scenarios below the application, and components that handle abnormal sce-
narios above.

Apart from these generalities, here are comments about the Ensemble stack exam-
ple depicted in Figure 6.5:

• The atomic broadcast component only orders messages in the absence of
failures, or more precisely, when the system is stable (since Ensemble pro-
vides a partitionable membership service). Without additional membership
layers, the different atomic broadcast protocols used would block in case of
failures (e.g., upon crash, or disconnection).

• Sync: The layer implements a protocol for blocking a group during view
changes, i.e., for preventing the broadcast of new messages during view
changes.

• Membership: Actually, this is not a single layer, but a protocol suite, which
includes various components, e.g., merge, inter, intra, etc. It is important to
note that even though the membership component appears above the atomic
broadcast component, it does not rely on it at all; a correct stack can have the
membership components without the atomic broadcast component.

6.5 Roadmap to the Rest of Part II

The remaining two chapters of Part II present our contributions. Chapter 7 presents
a new architecture for group communication that overcomes the problems found in

6.5. ROADMAP TO THE REST OF PART II 97

the traditional way to structure group communication protocols in the dynamic
crash-stop model. Chapter 8 considers the static crash-recovery model and ad-
dresses the specification of atomic broadcast in that model. Additionally, the chap-
ter makes clear the distinction between uniform and non-uniform protocols in the
crash-recovery model.

98 CHAPTER 6. SYSTEM MODELS, SPECIFICATIONS & TOOLKITS

Chapter 7

A New Architecture for Group
Communication in the Dynamic
Crash-Stop Model

In this chapter, we propose a new architecture for group communication middle-
ware. Traditional group communication toolkits share some common features, de-
spite the big differences that exist among them. We first point out these common
features. Then we show the features of our new architecture, which provides sev-
eral advantages over the existing ones: (1) it is less complex, (2) it defines a set
of group communication abstractions that is more consistent than the abstractions
usually provided, and (3) it can be made more responsive in case of failures.

7.1 Introduction

In the dynamic group system model, processes are organized into groups. As pre-
sented in Section 6.3, the membership of a group can change over time, as pro-
cesses join or leave the group, or as crashed processes are removed from the group.
The current set of processes that are members of a group is called the group view.
Processes are added to and deleted from the group view via view changes, handled
by a membership protocol. Communication to the members of a group is done by
various broadcast primitives. The basic “reliable” broadcast primitive in the con-
text of a view is called view synchronous broadcast, or simply view synchrony. The
semantics of view synchronous broadcast can be enhanced by requiring messages
to be delivered in the same order by all processes in the view. This primitive is
called atomic broadcast. Moreover, different research groups distinguish between
the primary partition membership and partitionable membership. The discussion
of these two models is outside the scope of this thesis, where we focus on the
primary partition model, in which processes observe the same sequence of views.
Primary partition membership is adequate for managing replicated servers, even in
the case of link failures and/or network partitions (see Sect. 6.2.3).

99

100 CHAPTER 7. A NEW ARCHITECTURE FOR GROUP COMMUNICATION

The first observation we made is that all the implemented group communi-
cation toolkits we are aware of, adopt the same basic architecture, in which the
group membership and view synchrony protocols are the basic components in the
system. The guarantees provided by these two basic components are then used to
implement other group communication protocols, e.g., atomic broadcast. We call
this architecture the “traditional architecture”.

Contribution: a New Architecture. We propose a new architecture with two
key features that distinguish it from traditional architectures.

The first key feature is atomic broadcast (instead of group membership and
view synchrony) as the basic component. The atomic broadcast component is then
used to build other group communication protocols on top, e.g., group membership.
Such an architecture has better separation of concerns. For example, the group
membership protocol usually has to deliver new group views with guarantees that
resemble those provided by the atomic broadcast. Therefore it seems logical for
the atomic broadcast protocol to be more primitive than the group membership
protocol. This architecture is formally supported by the new specification of group
communication for dynamic groups given in [Sch06].

The second key feature of our new architecture is the absence of view-synchro-
nous broadcast. This traditional protocol, which has a rather complex specifica-
tion (see Section 6.3.6), is replaced by the generic broadcast protocol presented in
Sect. 6.3.5. Generic broadcast has a simpler specification than view-synchronous
broadcast, but at the same time provides more general guarantees.

In our opinion, the reason for adopting the traditional architecture in the im-
plementation of group communication systems is more historical than justified by
some strong arguments. At the time when the first group communication systems
(such as Isis) were built, it was not clear how to implement fault-tolerant atomic
broadcast protocols without reconfiguration to exclude crashed processes (i.e., us-
ing dynamic groups). In later years, when the first papers appeared that suggested
a different implementation of atomic broadcast (for example [CT91]), the tradi-
tional architecture had been already well established and the new implementations
of group communication toolkits usually followed this initial approach.

In this chapter, we argue that our new architecture is not only more elegant
than the traditional architecture, but also has several advantages, which make it an
interesting choice for designing and implementing new generations of group com-
munication systems. The rest of the chapter is organized as follows. Section 7.2
discusses the common features of traditional architectures. Section 7.3 describes
our new architecture. Section 7.4 discusses the advantages of the new architecture
compared to the traditional architecture. Finally, Section 7.5 concludes the chapter.

7.2. DISCUSSION ON EXISTING ARCHITECTURES 101

7.2 Discussion on Existing Group Communication Archi-
tectures

We identify the following three common features in traditional group communica-
tion architectures.

7.2.1 Group Membership and Failure Detection Are Strongly Cou-
pled

Failure detection is a lower level mechanism than group membership. Failure de-
tection gives notification of (possible) process failures (or disconnection) without
worrying about inconsistencies (e.g., process p might suspect process r, whereas
q might never suspect r). On the other hand, group membership gives consistent
failure notification.1

However, none of the existing architectures exploits this difference: group
membership and failure detection are strongly coupled. In most of the architec-
tures, the failure detection component does not even appear explicitly: it is com-
pletely hidden within the group membership component. Even in the architectures
where the failure detection component is not hidden in the group membership, it
directly interacts with the group membership, and only with it. In other words,
other components learn about suspicions from the group membership component,
not from the failure detection component. The group membership component acts
as a failure detection component for the rest of the system.

7.2.2 Atomic Broadcast Algorithms Rely on Group Membership

A corollary of the previous observation is that, in all architectures implementing
dynamic groups, atomic broadcast algorithms rely on the group membership com-
ponent; all these algorithms require the help of group membership to avoid block-
ing in the case of the failure of some critical process.

Basically these atomic broadcast algorithms operate in two modes: (1) a failure-
free mode, and (2) a failure mode. A failure notification received from the group
membership leads the protocol to switch from the failure-free mode to the failure
mode. Here are two examples:

• In Isis and Phoenix, atomic broadcast is implemented using a fixed sequencer
process. In the normal mode, the sequencer process attaches sequence num-
bers to messages that are atomically broadcast. However, the protocol blocks
if the sequencer crashes. The notification of the failure of the sequencer is
needed to prevent blocking, and to switch to the failure mode. In the fail-
ure mode the algorithm ensures that if one process has received a sequence

1The notion of consistency differs in the primary and in the partitionable membership specifica-
tions.

102 CHAPTER 7. A NEW ARCHITECTURE FOR GROUP COMMUNICATION

number for some message m, then all correct processes receive the same se-
quence number for m. Once this is ensured, a new sequencer is chosen, and
the algorithm returns to the normal mode.

• In RMP and Totem, processes form a logical ring and atomic broadcast is
implemented using a rotating token. In the normal mode, the token is passed
over the ring of processes. A process holding the token can attach a sequence
number to the messages it wants to broadcast. If one process crashes, the ring
is broken, and the token may be lost. The failure mode is needed to recover
from this situation.

This dependency of atomic broadcast on group membership is visible in the
protocol stacks, where the membership component is below the atomic broadcast
component. This is only partially true for RMP (see Figure 6.3), in which the de-
pendency of atomic broadcast on group membership holds only in case of failures
(failure-free membership is implemented using atomic broadcast). This depen-
dency of atomic broadcast on group membership also holds in Ensemble, even
though the atomic broadcast component is below the membership component in
the stack in Figure 6.5: in Ensemble the layering of components does not reflect
functional dependencies.

7.2.3 The Consensus Abstraction Is Barely Used

When the consensus problem was defined in the early eighties [Fis83], it was
largely considered as a theoretical problem, with little practical relevance. Since
then, the practical importance of consensus for solving problems such as atomic
broadcast, (primary partition) group membership or view synchrony has been rec-
ognized. Nevertheless, except for Phoenix, no consensus component appears in the
implementations.

Notice that this comment about consensus applies only to the primary partition
systems, since the role of consensus in the context of partitionable group member-
ship and extended view synchrony [CKV01] (the counterpart of view synchrony in
the context of partitionable membership) is not clear.

7.3 The New Architecture

We present now our new architecture. We proceed in three steps: we start with an
overview; then in Section 7.3.2, we present the augmented version of the architec-
ture with a new key component: generic broadcast. Finally in Section 7.3.3, we
describe the full version of the architecture with additional details.

7.3. THE NEW ARCHITECTURE 103

7.3.1 Overview of the New Architecture

Figure 7.1 shows an overview of our new architecture. At this level of details, we
can already see three important features:2

• Atomic broadcast does not rely on group membership, but group member-
ship relies on atomic broadcast.

• There is no view synchrony component.

• Group membership and failure detection are decoupled.

Group Membership Relies on Atomic Broadcast and Not the Opposite. Tra-
ditional group communication toolkits rely on atomic broadcast algorithms that
require a perfect failure detector, i.e., a failure detector that makes no mistakes.
This failure detector is denoted by P (see Sect. 6.3.2). The group membership pro-
tocol, when placed below atomic broadcast, emulates the perfect failure detector P
by forcing incorrectly suspected processes to crash.

Instead, we can use an atomic broadcast algorithm requiring a 3S failure de-
tector (much weaker than P), which allows to make mistakes by suspecting correct
processes: 3S allows even an unbounded number of wrong suspicions. Such an
atomic broadcast algorithm is given in [CT96]: it is based on a sequence of in-
stances of consensus (see the consensus component in Figure 7.1 below the total
order broadcast component). This algorithm is able to work without blocking even
if up to f < n/2 crashes occur. As a result, this algorithm does not have to rely on
a group membership protocol.

Since the group membership component does not need to appear below the
atomic broadcast component, it can be placed above: this means that group mem-
bership can be implemented using atomic broadcast, which is quite natural, since
views need to be totally ordered. This generalizes RMP’s solution (see Sect. 6.4.1).
However, because of the limitations of the atomic broadcast algorithm used by
RMP (it assumes a perfect failure detector, emulated by the membership proto-
col), RMP could use the solution only in the absence of failures: RMP’s atomic
broadcast relies on membership in case of failures.

It might appear to the reader that inverting the group membership component
and the atomic broadcast component in the stack is just moving the complexity
from one component to the other (the more complex component being the lowest
in the stack). This is not true. It should be noted that any solution that imple-
ments (primary partition) group membership below atomic broadcast, actually has
two algorithms to solve the same ordering problem: one specific solution to order
membership changes, and one general (in the context of atomic broadcast) to order
application messages. This only observation suggests that such architectures are
not optimal.

2 Note that Figure 7.1 does not mean that the application can only interact with the Group Mem-
bership component (the component just below the application).

104 CHAPTER 7. A NEW ARCHITECTURE FOR GROUP COMMUNICATION

Network

Application

Atomic Broadcast

Consensus

Failure Detection

Group Membership

Figure 7.1: New architecture:
overview

Network

Application

Group Membership

Generic Broadcast

Atomic Broadcast

Consensus

Failure Detection

Figure 7.2: New architecture with the
Generic Broadcast component

There Is No View Synchrony Component. There is no view synchrony com-
ponent in Figure 7.1. This component is replaced by a more powerful component,
called generic broadcast, discussed below.

Group Membership and Failure Detection Are Decoupled. The strong cou-
pling between failure detection and group membership in traditional architectures
was motivated by the atomic broadcast algorithms (requirement of a perfect fail-
ure detector emulated by the membership protocol). These architectures could not
exploit the distinction between failure suspicion and membership exclusion (only
process exclusions could be exploited by the atomic broadcast algorithm).

Decoupling group membership from failure detection has the following advan-
tage: failure detections do not necessarily lead to process exclusion. This also
means that decisions to exclude processes are no more taken by the group mem-
bership component. We come back to this issue below.

7.3.2 Augmented Version of the New Architecture

We introduce now the key component of our new architecture, namely generic
broadcast (see Figure 7.2).

Generic Broadcast Component. Generic broadcast is a powerful group com-
munication primitive presented in Sect. 6.3.5. It is generic in the sense that the
ordering of messages is defined by a conflict relation on the messages. If two con-
flicting messages m and m′ are broadcast, then generic broadcast delivers them in
the same order on all destination processes. However, if m and m′ do not conflict,
then generic broadcast does not order them (which is less expensive).

In terms of the implementation of our architecture, we assume here a thrifty im-
plementation of generic broadcast that uses atomic broadcast [ADGFT00]. In such

7.3. THE NEW ARCHITECTURE 105

a solution, atomic broadcast is not necessarily called in every run. Atomic broad-
cast is used only when conflicting messages are broadcast (see [ADGFT00] for an
extended discussion of the notion of thrifty implementation of generic broadcast).

Active and Passive Replication. Since a group communication middleware is
supposed to provide abstractions for the replication of critical components, it is nat-
ural to confront the abstractions provided so far with the needs of replication tech-
niques. Our preliminary architecture (Fig. 7.1) provides atomic broadcast, which
allows us to implement active replication [Sch93], also called state machine ap-
proach (in active replication, the client requests are sent to all servers using atomic
broadcast, every server processes the request, and sends the response to the client).

Atomic broadcast is not needed in passive replication. Instead, view syn-
chrony provides the right abstraction, see for example [GS97]. However, our new
stack does not provide such an abstraction. We illustrate in the next section how
generic broadcast can be used in place of view synchrony. More generally, as
shown in [Sch06], view synchrony does not need to be considered as a basic ab-
straction. View synchrony follows rather from adequate specifications of dynamic
group communication [Sch06].

Generic Broadcast instead of View Synchrony for Passive Replication. In
passive replication, the client sends its request to only one server, the primary.
Only the primary processes the client request; before sending the response back to
the client, the primary updates the state of the backups. This is done by an update
message, sent from the primary to the backups. The standard solution consists in
relying here on view synchrony.

With generic broadcast,3 the solution consists in considering two types of mes-
sages (Fig. 7.3): (1) update messages, and (2) primary change messages. The
update messages are used by the primary to update the state of the backups. The
primary change messages are used by the backups to change the new primary,
when the current primary is suspected to have crashed. A primary change message
does not lead to the exclusion of the old primary, which remains in the view. If the
primary has actually crashed, a new view will be installed to exclude it after a very
long timeout (see Monitoring Component, Section 7.3.3).

The conflict relation between update and primary change messages is as fol-
lows:

update primary change
update no conflict conflict

primary change conflict conflict

3 In this example we have to assume FIFO generic broadcast, i.e., the FIFO point-to-point prop-
erty in addition to the ordering properties of generic broadcast. The same FIFO property is required
in the context of the solution based on view synchrony.

106 CHAPTER 7. A NEW ARCHITECTURE FOR GROUP COMMUNICATION

change (s1)
primarys2

client

s1

s3

request processing
update(primary)

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

Figure 7.3: Generic broadcast for passive replication

This conflict relation ensures that (1) primary change messages are totally ordered,
(2) update messages are totally ordered with respect to primary change, and (3)
update messages are not ordered with respect to other update messages.4 For illus-
tration, consider a replicated server with three replicas s1, s2, s3 (which define the
group s) and the following scenario (Figure 7.3):

• The server s1 is initially the primary.

• At time t, s1 receives a client request, processes it, and generic-broadcasts
the update message to the group s.

• Approximately at the the same time t, server s2 suspects s1 to have crashed,
and generic-broadcasts the “primary-change(s1)” message to the group s.
Upon delivery of this message, all servers (including s2) modify their view
from [s1; s2; s3] to [s2; s3; s1], which leads the servers to consider s2 to be
the new primary.5

Since these two messages conflict, we have only two possible outcomes:

1. All members of s deliver the update message before the primary-change
message.

2. All members of s deliver the primary-change message before the update
message.

In case 1, the primary change occurs logically after the handling of request req
by s1. In case 2, the primary change occurs logically before the handling of the
request. This means that the processing of the request by s1 must be ignored. The
client will timeout, learn that s2 is the new primary, and reissue its request to s2.

4A symmetric conflict relation could also be considered: all messages conflict except primary
change messages among them.

5Views are here lists of processes, rather than sets of processes. The primary is the process at
the head of the list. Note that the delivery of the primary-change(s1) message does not lead to the
exclusion of s1.

7.3. THE NEW ARCHITECTURE 107

7.3.3 Full Version of the New Architecture

The full version of our architecture, which includes all components and all inter-
faces between components, is given in Figure 7.4. The additional components are:

• the reliable channel component,

• the monitoring component.

Note that in Figure 7.4, the operations on the generic broadcast component are
called abcast (invocation of atomic broadcast) and rbcast (invocation of reliable
broadcast).6 The conflict relation is the following:

rbcast abcast
rbcast no conflict conflict
abcast conflict conflict

In other words, in the context of the passive replication example, rbcast should
be used for the “udpate” message, and abcast for the “new primary” message. Of
course, generic broadcast can be initialized with a different conflict relation table.

We explain now briefly the role of the reliable channel and monitoring compo-
nents.

Reliable Channel Component. This component ensures the set of properties
defined in Sect. 6.3.1 for quasi-reliable channels. This abstraction can be efficiently
implemented on top of TCP [EUS02].

Monitoring Component. In our architecture, the decision to exclude a suspected
process from the membership is not made by the group membership component.7

The decision is made by the monitoring component, which then calls the remove
operation of the membership component.

The separation of concerns between the failure detection component and the
monitoring component allows for very flexible policies. On the one hand, the con-
sensus component of process p could ask the failure detection component to use a
small timeout value (e.g., in the order of seconds) to suspect some other process q
in order to avoid blocking for a long time. Typically, this suspicion would not lead
to the exclusion of q. On the other hand, the monitoring component of p might
ask the failure detection component to use a large timeout value (e.g., in the order
of minutes) to suspect q. Here a suspicion would lead the monitoring component

6 See [Sch06] for a precise specification.
7 The operations on the membership component are join – to add a process to the group, and

remove – to remove a process from the group (including itself).

108 CHAPTER 7. A NEW ARCHITECTURE FOR GROUP COMMUNICATION

Atomic Broadcast

Consensus

Reliable Channel

Failure Detection

u−
re

ce
iv

e

Unreliable Transport

de
ci

de
Generic Broadcast

Monitoring

Group Membership

Application

ne
w_

vi
ew

ad
el

iv
er

rd
el

iv
er

rb
ca

st

ab
ca

st

in
it_

vi
ew

re
ce

iv
e

se
nd

u−
se

nd

sta
rt_

sto
p_

m
on

ito
r

su
sp

ec
t

ab
ca

st
ad

el
iv

er
ru

n

re
m

ov
e

jo
in

jo
in

_r
em

ov
e_

lis
t

Figure 7.4: New architecture: full version

to call the membership component to remove q. However, to make such a deci-
sion, the monitoring component may also interact with the monitoring component
of other processes, and for example decide on the removal of q only after having
learned that a threshold of other processes also suspect q.

Still another exclusion policy can be expressed, which is relevant when process
p sends message m to process q. The reliable channel component at p buffers m,
until ack(m) is received from q (which acknowledges reception of m by q). If q
crashes, m might stay in p’s buffer forever. In this case, the only way to discard m
is to exclude q from the membership (if q is excluded from the membership, there
is no more obligation for q to deliver m, i.e., m can be safely discarded). This is
called output-triggered suspicion in [CBDS02]. The monitoring component can

7.4. ASSESSMENT OF THE NEW ARCHITECTURE 109

exclude processes based on output-triggered suspicions (which are only necessary
when the output buffers are almost full).

7.4 Assessment of the New Architecture

We stress now on the advantages of the new architecture compared to the traditional
architectures.

7.4.1 Less Complex

In traditional architectures, the ordering problem is solved in two places: (1) within
the group membership component for views, and (2) within the atomic broadcast
component for messages.8 From a conceptual point of view this is not optimal,
and introduces an unnecessary complexity. This redundancy has disappeared in the
new architecture, where the ordering problem is solved only once (in the atomic
broadcast component).

Actually, in the traditional architectures the ordering problem is even solved in
a third place, namely in the view synchrony component, which orders messages
with respect to view changes. In our new architecture, this additional ordering
problem is also solved in the same place, namely in the atomic broadcast compo-
nent. Indeed, when the generic broadcast component detects a message conflict
(e.g., between a reliable broadcast and atomic broadcast view change message),
then it calls the atomic broadcast component. The details can be found in the
thrifty generic broadcast algorithm [ADGFT00].

Altogether, from the point of view of the ordering problem, the new archi-
tecture is less complex than traditional architectures. Smaller complexity usually
leads to easier maintenance.

7.4.2 More Powerful (Provides More Functionalities)

The new suite of components provides functionalities which are not present in
traditional stacks. The prominent example is generic broadcast, which extends
the ordering provided by view synchrony. Consider for example a replicated ser-
vice managing client bank accounts, with deposit and withdrawal operations (with-
drawal does not allow to withdraw more than available). Both classes of operations
update the state of the server, but deposit operations are commutative, i.e., they do
not need to be ordered with respect to themselves. This ordering typically can be
solved using generic broadcast. Traditional stacks do not provide any specific so-
lution: atomic broadcast would have to be used both for deposit and withdrawal
operations. This would induce a non-necessary overhead.

On a more minor issue, the fact that failure suspicions can be generated in two
distinct places is not without benefit. Depending on the context, the monitoring

8In RMP, ordering is performed in two different places only in case of failures.

110 CHAPTER 7. A NEW ARCHITECTURE FOR GROUP COMMUNICATION

component can take the decision to exclude a process from the membership either
(1) based on notification from the failure detector component, or (2) based on noti-
fications from the reliable channel components, or (3) it could wait for notifications
from both components.

7.4.3 Higher Responsiveness

Group communication allows the implementation of fault-tolerant replicated ser-
vices. Performance of group communication is usually measured in failure-free
executions. However, performance of group communication in case of failures
often is equally important.

Consider for example the latency of atomic broadcast, i.e., the time elapsed
between the atomic broadcast of m and the first delivery of m. In case of failures,
the timeout used to detect failures represents an important part of this latency. So,
reducing the latency in case of failures requires failure detection timeouts to be as
small as possible. However, reducing failure detection timeouts increases the prob-
ability of false suspicions. Decoupling failure suspicions from process exclusions
plays here an important role.

In traditional architectures, wrong failure suspicions have a high cost: the cost
of excluding the wrongly suspected processes, followed by the cost of the join
operation (with the costly state transfer operation) in order to include again the
process in the membership. This has forced traditional systems to adopt large fail-
ure detection timeout values. In our stack, where failure suspicions are decoupled
from exclusions (i.e., false suspicions lead to a small overhead), timeouts can be
chosen to be smaller. This leads to a gain in efficiency in case of failures, e.g., to
higher responsiveness.

7.4.4 Minor Efficiency Issue

Traditional systems have another responsiveness problem, namely in the context of
view changes. This problem is not related to failures, since view changes may be
triggered by join requests, and remove requests that are not exclusions. The tradi-
tional solution in the context of membership changes ensures that messages broad-
cast before the membership change are delivered before the membership change
takes place. This property is defined as sending view delivery (see Sect. 6.3.6).
However, in order to ensure this property without discarding messages, processes
must stop sending messages while the membership change protocol is running (see
for example the Sync layer of Ensemble, Section 6.4.2). To prevent this undesir-
able blocking problem, which reduces responsiveness, alternate and more complex
solutions to handle membership changes have been proposed. These solutions im-
plement a weaker property called same view delivery (see Sect. 6.3.6). The im-
plementation based on generic broadcast does not lead to blocking: the solution
“naturally” implements the same view delivery property without additional com-
plexity [Sch06].

7.5. CONCLUSION 111

7.5 Conclusion

Existing group communication systems (GCS) can be classified according to two
dimensions: (1) the membership model dimension, and (2) the structuring dimen-
sion. The membership model dimension allows the classification of GCS as either
(i) primary partition GCS, or (ii) partitionable membership GCS. The structuring
dimension allows the classification of GCS as either (i) monolithic or (ii) modular.
Isis, falls into the category primary partition/monolithic, while Ensemble falls into
the category partitionable/modular.

This chapter has introduced a third dimension: the protocol dimension. With
respect to this third dimension, existing GCS can be characterized as GM-VS:9 (1)
membership is the basic component in the stack, and (2) view synchrony is the ba-
sic communication abstraction. The chapter has presented an alternate solution that
could be called AB-GB10 based: (1) atomic broadcast is the basic component, (2)
no view synchrony as such is provided, and (3) the GCS provides generic broadcast
(instead of view synchrony) as a more powerful abstraction.

The Fortika group communication toolkit (see Chapter 9) has been imple-
mented following this new architecture. Fortika is described in Chapter 9.

9 Group Membership - V iew Synchrony.
10Atomic Broadcast - Generic Broadcast.

112 CHAPTER 7. A NEW ARCHITECTURE FOR GROUP COMMUNICATION

Chapter 8

Improving Atomic Broadcast in
the Crash-Recovery Model

Most of the research work devoted to group communication protocols and to atomic
broadcast in particular has been done in the context of the crash-stop model. The
drawback of this model is its inability to express algorithms that tolerate the crash
of a majority of processes. The problem is worse in the static model: crashed pro-
cesses stay crashed and can not be replaced by new ones. This has led to extend the
crash-stop model to the crash-recovery model, in which processes have access to
stable storage, to log their state periodically. This allows them to recover a previous
state after a crash.

However, the existing specifications of atomic broadcast in the crash-recovery
model are not satisfactory. In this chapter, we propose a new specification of atomic
broadcast in the crash-recovery model that addresses the issues found in previous
specifications. Specifically, our new specification allows us to distinguish between
a uniform and a non-uniform version of atomic broadcast. The non-uniform ver-
sion logs less information, and is thus more efficient. Performance results are
presented.

8.1 Introduction

Atomic broadcast ensures that messages broadcast by different processes are deliv-
ered by all destination processes in the same order (see Sect. 6.3.5). Many atomic
broadcast algorithms have been published in the last twenty years [DSU04]. Al-
most all of these algorithms have been developed in a model where processes
do not have access to stable storage: the crash-stop model (see Sect. 6.3.5). In
such a model, a process that crashes loses all its state; upon recovery it cannot
be distinguished from a newly starting process. The crash-stop model is attrac-
tive from an efficiency point of view: since logging to stable storage is a costly
operation, atomic broadcast algorithms that do not log any information are signif-
icantly more efficient than atomic broadcast algorithms that access stable storage.

113

114 CHAPTER 8. ATOMIC BROADCAST IN THE CRASH-RECOVERY MODEL

However, atomic broadcast algorithms in the crash-stop model also have draw-
backs: they tolerate only the crash of a minority of processes. Moreover, there
are contexts where access to stable storage is natural, e.g., database systems. It
has been shown that replicated database systems can benefit from atomic broad-
cast [AAEAS97, PGS98, WS05, KA00, PMJPKA00, Kem00, Wie02, AT02] but
atomic broadcast in the crash-stop model does not suit this context [WS04].

For this reason, there is a strong motivation to consider atomic broadcast in the
crash-recovery model, where processes have access to stable storage to save part
of their state: a process that recovers after a crash can retrieve its latest saved state,
and restart computation from there on. Because of the strong link between consen-
sus and atomic broadcast (if one problem is solvable, the other is also solvable),
the more basic of these two problems, namely consensus, needs to be addressed
first. Among the papers that address crash-recovery consensus [OGS97, HMR98,
ACT00], we highlight the work by Aguilera et al [ACT00]. They define a new fail-
ure detector for the crash-recovery model and propose two algorithms for solving
consensus in that model. Based on this result, Rodrigues and Raynal address the
problem of atomic broadcast in the crash-recovery model [RR03]. While this pa-
per advances the state-of-the-art, it has some weaknesses. From our point of view,
the main problem in [RR03] is the specification of atomic broadcast. As we have
seen in Sect. 6.3.5, the classical specification of atomic broadcast is in terms of
the two primitives abcast and adeliver. No adeliver primitive appears in [RR03],
where adeliver is a predicate. The value true / false of the predicate depends on a
sequence of messages called adeliver-sequence. The application has to poll this
sequence for newly adelivered messages. This shows a problem in the specifica-
tion. A more important implication is that the specification in [RR03] does not
reduce to the classical specification of atomic broadcast in the crash-stop model
when crashed processes do not recover.

We point out another limitation of the work in [RR03]. The work only ad-
dresses uniform atomic broadcast. Non-uniform atomic broadcast in the crash-
recovery model is an alternative that can be very interesting from a practical point
of view. Non-uniform atomic broadcast can be seen as an intermediate solution,
between (1) an atomic broadcast algorithm in the crash-stop model that does not
access stable storage at all, and (2) a uniform atomic broadcast algorithm in the
crash-recovery model that is expensive due to frequent accesses to stable storage.
In contrast to [RR03], we propose both a uniform and a non-uniform version of
atomic broadcast. The non-uniform atomic broadcast algorithm does not require
frequent access to the stable storage. Interestingly, our two specifications reduce
to the classical specification of atomic broadcast in the crash-stop model when
crashed processes do not recover.

We also explain why atomic broadcast in the crash-recovery model is trickier
than in the crash-stop model. Atomic broadcast is most of the time used within
an application that has a state. The atomic broadcast algorithm (and the whole
composition that contains it) also has a state. Upon recovery both states must
be consistent. However, with no recovery this is not a problem! This becomes

8.2. SPECIFICATION OF ABCAST IN THE CRASH-RECOVERY MODEL 115

a problem in the crash-recovery model. We show how the consistency issue is
addressed both in our specification and in our implementation. Finally, we have
run experiments that show the gain in performance of the non-uniform version of
our atomic broadcast algorithm with respect to the uniform version.

The rest of the chapter is organized as follows. Section 8.2 is devoted to the
specification of uniform and non-uniform atomic broadcast in the crash-recovery
model. Section 8.3 discusses the problem of keeping the application state con-
sistent with the state of the atomic broadcast algorithm. Section 8.4 presents the
two algorithms that satisfy our uniform and non-uniform specification of atomic
broadcast. Section 8.5 is devoted to performance evaluation. Finally, Section 8.6
concludes the chapter.

8.2 Specification of Atomic Broadcast in the Crash-Re-
covery Model

8.2.1 Definitions

In Chapter 6, we defined atomic broadcast with primitives abcast and adeliver.
To these two primitives, we add a third commit primitive. Roughly speaking, the
commit primitive executed by q marks the point at which q’s execution will resume
after a crash. When commit is executed by q, all messages previously adelivered at
q will never be adelivered again at q, even if q crashes and recovers. The commit
primitive addresses the fundamental process state problem in the crash-recovery
model. The state of each process q is split into two parts: (1) the application state,
and (2) the atomic broadcast protocol state. The distinction between these two
states can be ignored when processes do not recover after a crash, but not here.
With the commit primitive, we introduce the following terminology:

1. Process q ab-commits message m if (1) q abcasts m, (2) q executes the prim-
itive commit() later on, and (3) q does not crash in-between.

2. Process q del-commits message m if (1) q adelivers m, (2) q executes the
primitive commit() later on, and (3) q does not crash in-between.

We also introduce the notion of permanent and volatile event. In our model, events
are crash, recover, and the execution of the primitives presented above. If process
q crashes, its volatile events are those whose effect may be lost; q’s permanent
events are those whose effect is not lost even if q crashes. So if q never crashes,
the effect of its whole history is permanent. More formally, the set Vq of volatile
events and the set Pq of permanent events partition q’s history, denoted by hq. An
event e ∈ hq belongs to Vq if (1) a crash event ec occurs after e in hq, and (2) no
commit event occurs in hq between e and ec. An event e′ ∈ hq belongs to Pq if it
does not belong to Vq.
We introduce some additional definitions that will be used in the specification of
atomic broadcast:

116 CHAPTER 8. ATOMIC BROADCAST IN THE CRASH-RECOVERY MODEL

• Non-Recovery Runs: Let RΠ be the set of all possible runs allowed in the
crash-recovery model for process set Π. We define non-recovery runs to be
the set NΠ ⊂ RΠ of runs that do not contain any commit event or any recover
event other than at system start-up time. NΠ is the set of all possible runs in
the well-known crash-stop model for process set Π.

• Permanent Broadcast: We say that process q permanently abcasts (or simply
q p-abcasts) message m if (a) q ab-commits m, or (b) q abcasts m and does
not crash later. In other words, q permanently abcasts message m if event
abcast(m) belongs to set Pq of q’s permanent events.
• Permanent Delivery: Likewise, we say that process q permanently adelivers

(or simply q p-adelivers) message m if (a) q del-commits m, or (b) q ade-
livers m and does not crash later. In other words, q permanently adelivers
message m if event adeliver(m) belongs to set Pq of q’s permanent events.

• Delivery Order: We say that process q adelivers message m before m′ if (a)
q adelivers m and later m′ and does not crash in-between, or (b) q adelivers
m′ after having del-commited m. Notation: m .q m′.

Note that, if q crashes between the adelivery of m and m′, these two mes-
sages may not be ordered.

• Permanent Delivery Order: We say that process q p-adelivers message m
before m′ if (1) m .q m′ holds, and (2) q p-adelivers m and m′. Notation:
m . .qm

′.
• Multiple Delivery: We say that process q adelivers message m more than

once if we have m .q m.

Note that, if q adelivers m twice but crashes in-between, then m is not nec-
essarily considered as adelivered more than once.

8.2.2 Specification of Atomic Broadcast

We can now formally define atomic broadcast. As in the crash-stop model, we
distinguish between uniform and non-uniform atomic broadcast. A first attempt to
introduce this distinction was made in [BG00] in the context of Reliable Broadcast
(which is weaker than Atomic Broadcast since it does not enforce any order on
message delivery), but the lack of a primitive like commit does not lead to a con-
vincing specification. In our specification, uniform atomic broadcast constrains the
behavior of good and bad processes, while non-uniform atomic broadcast does not
impose any constraints on (1) bad processes, and (2) volatile events of good pro-
cesses. In other words, non-uniform atomic broadcast ignores volatile events, and
considers only permanent events, i.e., the events that good processes “remember”
once they stop crashing.

An important feature of our specification of uniform and non-uniform atomic
broadcast is that, in non-recovery runs (see Sect. 8.2.1), our new specification re-
duces exactly to the classical definition of uniform and non-uniform atomic broad-
cast [HT94]. We define (non-uniform) atomic broadcast by the properties Validity

8.2. SPECIFICATION OF ABCAST IN THE CRASH-RECOVERY MODEL 117

(1), Uniform Integrity1 (2), Agreement (4), and Total Order (6) defined below. We
define uniform atomic broadcast by the properties Validity (1), Uniform Integrity
(2), Uniform Agreement (3), and Uniform Total Order (5).

1. Validity: If a good process q p-abcasts m then q p-adelivers m.

There is no uniform Validity property, since it does not make sense to require
from a bad process, which can crash and never recover, to deliver m. So the
Validity property is the same for uniform and non-uniform atomic broadcast.

2. Uniform Integrity: For every message m, every process q adelivers m only
if some process has abroadcast m. Moreover, m .q m never holds for any
process q.

This property allows a process to adeliver the same message twice (under
certain conditions), unlike Uniform Integrity in the crash-stop model (see
the definition of multiple delivery, Sect. 8.2.1). For instance, if process q
adelivers message m and then crashes before del-committing m, Uniform
Integrity allows q to adeliver m again after recovery.

3. Uniform Agreement: If a process (good or bad) adelivers message m, then
every good process p-adelivers m.

This property requires that all good processes permanently adeliver any mes-
sage that is adelivered by some process. The required permanent delivery of
m ensures that a good process q “remembers” having adelivered m at the
time q stops crashing.

4. Agreement: If a good process p-adelivers message m, then every good pro-
cess p-adelivers m.

Non-uniform Agreement only puts a constraint on messages p-adelivered by
good processes. There is no constraint on a message adelivered (but not
p-adelivered) by a process that later crashes. Also, there is no constraint
on a message p-adelivered by a bad process. In the two cases, no process
“remembers” m.

5. Uniform Total Order: Let p and q be two processes (good or bad). If m.p m′

holds and q adelivers m′, then m .q m′ also holds.

6. Total Order: Let p and q be two good processes. If m . .pm
′ holds and q

p-adelivers m′, then m . .qm
′ also holds.

The introduction of the commit primitive is fundamental in our specification. It
allows us to distinguish between volatile and permanent events. With this distinc-
tion it is fairly easy to define uniformity and non-uniformity in the crash-recovery

1We do not define a Non-uniform Integrity property, which does not make much sense from a
practical point of view.

118 CHAPTER 8. ATOMIC BROADCAST IN THE CRASH-RECOVERY MODEL

model (and it would be hard to introduce the distinction without the commit prim-
itive). In addition, with the commit primitive, it is not the implementor of atomic
broadcast who decides when to make events permanent. This is left to the ap-
plication, which knows better when volatile events are no more interesting (e.g.,
because an application checkpoint was taken) and should thus become permanent.
Moreover, it is easy to see that, if crashed processes never recover, then our spec-
ification of uniform and non-uniform atomic broadcast corresponds exactly to the
standard specification of uniform and non-uniform atomic broadcast in the crash-
stop model.

The non-uniform specification can be criticized with the argument that a bad
process p (e.g., a process that crashes and recovers infinitely often) can behave
arbitrarily, even if it executes commit a number of times. However, p cannot know
whether it is good or bad because it may recover in the future and stay up forever.
This is similar to the crash-stop model, where a process that crashes in the future
is faulty and can thus behave arbitrarily. The practical relevance of non-uniformity
is discussed in Section 8.4.3.

8.2.3 Related Work

Atomic broadcast has been specified in the crash-recovery model by Rodrigues and
Raynal [RR03]. They define the primitive abroadcast(m) (abroadcast of m) and
the sequence µp = adeliver-sequence(). Moreover, adeliver(m) is a predicate that
is true iff m ∈ adeliver-sequence() at p. Atomic broadcast is then specified by the
following properties:

• Validity: If a process adelivers a message m, then some process has abroad-
cast m.
• Integrity: Let µp be the delivery sequence at process p. Any message appears

at most once in µp.
• Termination: For any message m, (1) if the process that issues abroad-

cast(m) returns from abroadcast(m) and is a good process, or (2) if a process
adelivers message m, then all good processes adeliver m

• Total Order: Let µp = adeliver-sequence() at process p. For any pair of
processes (p, q), either µp is a prefix of µq or vice-versa.

This specification has several problems. The main one is the absence of an
adeliver primitive: how is the adeliver-sequence defined? This is the tricky issue
that is not addressed. In the group communication literature, specifications usually
define the adeliver primitive first, and then the adeliver-sequence as the sequence of
messages adelivered. It is the opposite that is done: adeliver is defined based on the
adeliver-sequence, and the adeliver-sequence is only defined with the properties of
atomic broadcast, thus creating a circularity in the definitions. Moreover, because
of the absence of an adeliver primitive, the specification does not reduce to the
standard specification of atomic broadcast in the crash-stop model. As a result, all
properties derived from the crash-stop model have to be reinvented.

8.3. KEEPING THE PROCESS STATE CONSISTENT 119

The authors of [RR03] also mention the following problem with their Termina-
tion property. If the call to abroadcast(m) returns at a good process p, this forces
all good processes to eventually adeliver m. They argue that this is problematic
to ensure if the process crashes shortly after having called abroadcast(m). In con-
trast, our specification uses the commit primitive, which avoids the problem. Our
Validity property only forces good processes to eventually adeliver message m if p
permanently abcasts m (e.g., p abcasts m and then executes commit).

Finally, Rodrigues and Raynal also propose an optimized implementation of
atomic broadcast. In this implementation, atomic broadcast checkpoints the state
of the application from time to time. We claim that, usually, these checkpoints
should be initiated by the application (which knows best when to checkpoint its
own state), but this can not be done in the implementation given in [RR03]. The
reason is that the specification lacks a primitive (like commit) that the application
could use to initiate such a checkpoint.

8.3 Keeping the Process State Consistent

Atomic broadcast is commonly used to update the state of replicated servers. Con-
sider a replica pi. The state of pi needs to be distinguished from the state of the
atomic broadcast composition local to pi. We introduce the following notation:
sappl
i denotes the application state of pi and sabcast

i denotes the state of the atomic
broadcast composition local to pi. We assume here that sappl

i and sabcast
i are part of

the same OS process denoted by pi. The distinction between the sabcast
i state and

the sappl
i state of pi can be completely ignored in the crash-stop model. This is no

more the case in the crash-recovery model, where pi must recover in a state such
that sabcast

i and sappl
i are consistent. We now address this problem.

8.3.1 Usage of commit

We extend the notation just introduced to denote by pappl
i the application code of pi,

and by pabcast
i the atomic broadcast code of pi. In order to recover the state sappl

i af-
ter a crash, pappl

i checkpoints sappl
i from time to time. After a crash, pappl

i recovers
in the most recently saved sappl

i state. From the point of view of pappl
i , the message

delivery sequence should resume exactly where it was at the moment of the check-
point: the delivery (1) must not include any message logically included in sappl

i

(a message is logically included in the checkpointed state if it led to the update of
sappl
i), but (2) must not miss any message adelivered later in the logical adelivery

sequence. For example, consider the logical adelivery sequence m1,m2,m3. If
pappl

i has checkpointed its state after the adelivery of m1 and crashed after the han-
dling of m2, then the delivery after recovery should restart with m2. The commit
primitive fits this requirement naturally: process pappl

i checkpoints sappl
i and then

immediately executes commit. Condition (1) above is guaranteed by the (Uniform)

120 CHAPTER 8. ATOMIC BROADCAST IN THE CRASH-RECOVERY MODEL

Integrity property (which ensures that no del-commited message will be adelivered
again); condition (2) is ensured by the Agreement property.

abc
ast
(m
1)

abc
ast
(m
2)

ade
live
r(m
1)

com
mit
()

ade
live
r(m
2)

abc
ast
(m
3)

ade
live
r(m
2)

abc
ast
(m
4)

ade
live
r(m
4)

com
mit
()

del-commited
ab-commited

che
ckp
oin
t

t1 t2

che
ckp
oin
t

Figure 8.1: Example execution. After pappl
i checkpoints its state, it calls commit.

This solution works as long as the checkpoint and the commit operations are
executed atomically, that is, a process can never crash between t1 and t2 in Fig-
ure 8.1. Moreover, all events (depicted as circles in Fig. 8.1) are assumed to be
atomic so far. We now explain how these two assumptions can be relaxed, while
keeping sappl

i and sabcast
i consistent upon recovery.

8.3.2 Addressing the Atomicity Problem

Since sappl
i and sabcast

i are in the same OS process, an obvious and simple way to
keep them consistent is a checkpoint mechanism (triggered by a call to commit)
that atomically checkpoints sappl

i and sabcast
i . However, this solution introduces

a dependency between the application and the atomic broadcast protocol. In this
section, we present a simple solution that keeps the atomic broadcast protocol and
the application independent of each other.

For a process pi, we have introduced the distinction between pappl
i and pabcast

i .
The interaction between pappl

i and pabcast
i is naturally expressed by means of func-

tion calls (e.g., abcast function, commit function). Function calls are synchronous:
the caller blocks while the call is being executed. This yields a useful property:
the caller is sure that the callee has completely processed the call when it returns.
Consider now that pi crashes during the function call (e.g., during abcast or com-
mit). When pi recovers, it does not know whether the function was successfully
executed or not.

To address this problem, we model the communication between pappl
i and

pabcast
i in terms of messages. When pappl

i invokes primitive F (PARAMETERS)
on the atomic broadcast interface, we say it sends the (local) message < F , PA-
RAMETERS> to pabcast

i (see Fig. 8.2). Likewise, when pabcast
i invokes primitive

F ′(PARAMETERS’) on the application interface, we say it sends the (local) mes-
sage < F ′, PARAMETERS’> to pappl

i [WS04].
When modeling intra-process communication using the message-passing mod-

el, a single process pi becomes a distributed system with two processes pappl
i and

8.3. KEEPING THE PROCESS STATE CONSISTENT 121

APPLICATION

ATOMIC BROADCAST

m = <F, PARAMETERS> m' = <F', PARAMETERS'>

pappl
i

pabcast
i

Figure 8.2: Function calls and callbacks can be modeled as messages.

pabcast
i . If we represent Figure 8.1 using this message-passing model, it becomes

Figure 8.3. The atomicity problem now becomes the problem to recover pappl
i and

pabcast
i in a consistent global state.

This modeling allows us now to apply results from the existing checkpointing
literature [EAWJ02]. A message m becomes orphan when its sender is rolled back
to a state before the sending of m (m is unsent), but the state of its receiver still
reflects the reception of m. In this case, the receiver is said to be an orphan process.
Orphan processes cannot be tolerated: the orphan process needs to be rolled back
(even if it did not crash). A message m is in-transit when its receiver is rolled back
to a state before the reception of m (m is unreceived), while the sender is in a state
in which m was sent. In-transit messages are tolerated under the condition that
the rollback-recovery protocol is built on top of lossy channels [EAWJ02]. In our
model communication is reliable, so we cannot recover in a state with in-transit
messages. Therefore, in-transit messages cannot be tolerated, either.

abcast(m
1)

abcast(m
2)

adelive
r(m

1)

commit()

adelive
r(m

2)

abcast(m
3)

adelive
r(m

2)

abcast(m
4)

adelive
r(m

4)

commit()

checkp
oint B

checkp
oint A

t1 t3t2

application
atomicbroadcast

checkp
oint B

'

checkp
oint A

'

Figure 8.3: Expressing Figure 8.1 using message passing communication.

We now discuss how to recover pappl
i and pabcast

i in a global state with no
orphan and no in-transit messages. This solution is similar to the process-pairs
in the Tandem NonStop Kernel [Bar81]. We explain the solution in Figure 8.3.
Consider the second checkpoint-commit pair. First of all, we can assume that no
crash can occur between a checkpoint and the subsequent sending of the commit

122 CHAPTER 8. ATOMIC BROADCAST IN THE CRASH-RECOVERY MODEL

1: At application level
2: Initialisation:
3: nb_checks← 0; ∀i ∈ N : st[i]← ⊥

4: to checkpoint(state)
5: nb_checks← nb_checks + 1
6: st[nb_checks]← state
7: st[nb_checks− 2]← ⊥
8: log(st); abcast.commit()

9: upon recovery do
10: retrieve(st); nb_checks← max{i : st[i] 6= ⊥}
11: if abcast.get_nb_commits() < nb_checks then
12: st[nb_checks]← ⊥; log(st)
13: nb_checks← nb_checks− 1

14: At atomic broadcast level
15: Initialisation:
16: . . . ; nb_commits← 0; . . .

17: procedure get_nb_commits()
18: return(nb_commits)

19: upon commit() do
20: . . .
21: nb_commits← nb_commits + 1
22: log(nb_commits)
23: . . .

24: upon recovery do
25: . . . ; retrieve(nb_commits); . . .

Figure 8.4: Keeping local consistency between the atomic broadcast protocol and
the application.

message.2 This reduces the problem to three cases: (1) crash at t1, i.e., before the
checkpoints B and B′, (2) crash at t2, i.e., after checkpoint B but before checkpoint
B′, and (3) crash at t3, after the checkpoints B and B′.

Cases (1) and (3) are analog: there are no in-transit and orphan messages in the
global state (A,A′) and in the global state (B,B′). Thus, we only discuss case (3).
Since there is no in-transit message in the global state (B,B′), pappl

i is rolled back
to the checkpoint B and pabcast

i is rolled back to the checkpoint B′.

In case (2), the global state (B,A′) contains at least one in-transit message
(the commit), therefore pi cannot be rolled back to (B,A′). So pappl

i is forced to
rollback to checkpoint A and pabcast

i is rolled back to checkpoint A′.

So the only problem is to know whether case (2) or (3) occurs. This can easily
be done by counting the number of sappl

i checkpoints and the number of sabcast
i

checkpoints. If the two numbers are equal we are in case (3). Otherwise, we are in
case (2). Figure 8.4 shows the corresponding pseudo-code. At the atomic broad-
cast level, i.e., pabcast

i , the variable nb_commits counts the number of commits
executed so far. Its value is logged with the data that the commit procedure logs,
so it really reflects the number of commits executed despite crashes. At the appli-
cation level, i.e., pappl

i , the array st represents the sequence of checkpoints of sappl
i .

The variable nb_checks keeps track of the number of checkpoints done so far. It
is important that no message is adelivered during the checkpointing phase (lines 4
through 8). Upon recovery (atomic broadcast must recover before the application),
st is retrieved and the value nb_checks is computed (line 10). Then, pappl

i queries
pabcast

i to find out whether (a) it can resume execution from its very last checkpoint,
or (b) it has to roll back to the previous checkpoint. Note that actually pappl

i only
keeps the two most recent checkpoints.

2Upon recovery, if we find a checkpoint, we assume that a commit was sent immediately after.

8.4. SOLVING UNIFORM AND NON-UNIFORM ATOMIC BROADCAST 123

8.4 Solving Uniform and Non-Uniform Atomic Broadcast

There are several alternatives to solving atomic broadcast in the crash-recovery
model, in the same way as there are various algorithms that have been proposed
to solve it in the crash-stop model [DSU04]. In this section, we have chosen to
illustrate how to implement the new atomic broadcast specifications of Section 8.2
by reduction to a sequence of consensus. This technique is well accepted in the
crash-stop model, which justifies our choice. We first present an algorithm that im-
plements uniform atomic broadcast in the crash-recovery model. Then, we discuss
how to convert this algorithm into a more efficient one that satisfies the weaker
non-uniform atomic broadcast specification. Both algorithms solve the problem by
reduction to consensus.

8.4.1 Building Blocks

The algorithms we present below rely on the following building blocks.

Logging. During normal execution, processes use non-persistent memory to keep
their state. They access stable storage from time to time to save data from non-
persistent memory. When a process crashes and later recovers, only the data saved
to stable storage is available for retrieving. A process uses function log(X) to log
the content of variable X to stable storage, and the function retrieve(X) to retrieve
(upon recovery) the previously logged value of X . These two functions are very
costly and should be used as sparsely as possible.

Fair-Lossy Channels. Processes communicate using channels. Because of the
crash-recovery model, we cannot assume reliable channels. Indeed, consider pro-
cesses p and q: if p sends a message m to q while q is down, the channel cannot
deliver m to q. So we assume fair-lossy channels and the two communication
primitives: send(message) to destination and receive(message) from source.
They ensure the following property: if p sends an infinite number of messages to
q and q is good, then q receives an infinite number of messages from p. Fair-lossy
channels can be implemented without access to stable storage.

Consensus. The algorithms below solve atomic broadcast by reduction to con-
sensus, i.e., we need a building block that solves consensus. In consensus, each
process proposes a value, and (1) all good processes decide a value, (2) this value
is the same for all processes that decide,3 and (3) it is the initial value proposed
by some process. With these properties, a process can decide several times (if
it crashes and recovers) but its decision must always be the same. Section 8.4.4
discusses how to solve consensus.

3Actually, this defines uniform consensus. In this chapter, consensus always stands for uni-
form consensus. Note that the specification of non-uniform consensus in the crash-recovery
model [ACT00] is not well-adapted for this work.

124 CHAPTER 8. ATOMIC BROADCAST IN THE CRASH-RECOVERY MODEL

1: For every process p
2: Initialisation:
3: ∀i ∈ N : Proposed[i]← ⊥
4: Unord← ∅ ; A_deliv ← ∅
5: k ← 0; gossip_k ← 0
6:→ nb_commits← 0

7: procedure process_decision(decision)
8: result← decision \A_deliv
9: A_deliv ← A_deliv :: result

10:→ adeliver(result)
11: k ← k + 1
12: Unord← Unord \A_deliv

13: procedure replay()
14: while Proposed[k] 6= ⊥ do
15: Unord ← Unord ∪ Proposed[k]

16: propose(k, Proposed[k])
17: wait until decide(k, decision)
18: process_decision(decision)

19: upon initialization or recovery do
20:→ retrieve(k, A_deliv,Unord, nb_commits)
21:→ fork_task(Gossip)
22: retrieve(Proposed); replay()

23: fork_task(Sequencer)

24: upon abcast(m) do
25: Unord← Unord ∪ {m}

26:→ upon commit() do
27:→ nb_commits← nb_commits + 1
28:→ log(k, A_deliv, Unord, nb_commits)

29: upon receive(k′, Unord′) from q do
30: Unord← Unord ∪ Unord′ \A_deliv
31: gossip_k ← max(gossip_k, k′)

32: task Gossip
33: repeat forever
34: send(k, Unord) to all

35: task Sequencer
36: repeat forever
37: wait until Unord 6= ∅ or gossip_k > k

38: Proposed[k]← Unord

39: log(Proposed[k])

40: propose(k, Proposed[k])
41: wait until decide(k, decision)
42: process_decision(decision)

Figure 8.5: Solving uniform atomic broadcast. Small arrows mark the differences
with [RR03]. Non-uniform atomic broadcast is obtained by removing the code
inside the boxes.

8.4.2 Uniform Atomic Broadcast

Overview. The algorithm depicted in Fig. 8.5 implements the uniform variant of
our atomic broadcast specification. The algorithm reduces atomic broadcast to a
sequence of consensus as in [CT96] for the crash-stop model. It is also influenced
by the algorithms in [RR03] (which are actually derived from [CT96]). The al-
gorithm has two tasks: the Sequencer task and the Gossip task. The Sequencer
task executes a sequence of consensus to decide on the delivery order of messages,
while logging every value proposed to stable storage. For clarity, the presented
algorithm proposes full messages to consensus, although it can be optimized to use
only message IDs [ES06]. The Gossip task is responsible for disseminating new
messages among all processes. This is necessary to ensure eventual message re-
ception with fair-lossy channels. When commit is executed, the algorithm also logs
the part of its state that is necessary in the case of a crash followed by a recovery.
Upon recovery, the algorithm “replays” (see lines 13 to 18) all messages adelivered
beyond the most recent commit executed before the crash. This is needed in order
to satisfy the specification of uniform atomic broadcast.

Innovations. Since the basic idea of the atomic broadcast algorithm is inspired
by [CT96] and [RR03], we find it inappropriate to explain the details. More inter-

8.4. SOLVING UNIFORM AND NON-UNIFORM ATOMIC BROADCAST 125

esting is to focus on the differences. Thus, we now explain the main differences
between the algorithm in Fig. 8.5 and the algorithm presented in [RR03] (and we
also point out a bug in this algorithm, see below). We highlight these differences
with small arrows to the left of the involved lines (e.g., line 6, line 10, etc.). The
rectangles surrounding part of the code should be ignored for the moment (e.g.,
lines 13 to 18): they are discussed in Section 8.4.3.

The only new variable is nb_commits (line 6), which counts the number of
commits locally performed since system start-up time (see Section 8.3). This vari-
able is accessed in lines 20, 27, and 28.

Lines 26 through 28 are executed upon commit. Commit saves to stable storage
all data necessary to restore its state upon recovery. These data are (1) the number
of the current instance of consensus (or the next one, if there is no consensus run-
ning at the local process), (2) the variable A_deliv containing messages already
adelivered, (3) the set Unord of messages received but not yet adelivered,4 and (4)
the variable nb_commits defined above. The rest of the state is either not needed
(variable gossip_k), or logged elsewhere (the array Proposed, which stores the
values proposed to consensus).

Note that, unlike [RR03], our algorithm does include the primitive adeliver
(see Section 8.2). Adeliver occurs every time a message is added to set A_deliv,
i.e., in line 10.

Upon recovery, procedure replay proposes again the initial values that were
proposed before the crash. It does so in line 16. This line is necessary because
we assume the consensus specification for the crash-recovery model [ACT00] (see
Sect. 6.3.4), and thus, each consensus k that decided before the crash need to be
restarted upon recovery to have the guarantee that consensus k decides again af-
ter the recovery. Line 16 would not be necessary if consensus specification also
considered the commit primitive.

Finally, line 21 differs from [RR03]: it is incorrect in the optimized algorithm
in [RR03] (if line 21 is placed after the call to replay, replay may block forever in
line 17).

The correctness argument of the algorithm in Fig. 8.5 is similar to [RR03].

8.4.3 Non-Uniform Atomic Broadcast

Informally, the difference between the uniform and non-uniform atomic broadcast
algorithms is that the non-uniform algorithm only needs to write to stable storage
upon execution of commit. The uniform algorithm presented in the previous sec-
tion needs to log every value proposed to consensus (Fig. 8.5, line 39). The reason
is that volatile events have to be replayed upon recovery, exactly as they occurred
before the crash. The uniform algorithm thus accesses the stable storage every time
an instance of consensus is started. In contrast, the non-uniform algorithm can for-
get volatile events at any process, while still fulfilling its specification. Thus, if a

4This differs from [RR03], where this information is logged every time a new message is abcast,
which is less efficient.

126 CHAPTER 8. ATOMIC BROADCAST IN THE CRASH-RECOVERY MODEL

process crashes and recovers, it only needs to remember its state at the time of the
last commit. Applications that can afford losing uncommitted parts of the execu-
tion can typically benefit from non-uniform atomic broadcast. Note that the total
order and agreement properties do hold at good processes even if processes forget
volatile events when crashing, so the application state does not become inconsis-
tent at those good processes. The non-uniform algorithm is easily derived from
Fig. 8.5 by removing the code in the white boxes (e.g., lines 13 to 18, line 22, etc.).

Access to stable storage is extremely expensive and should be used as sparsely
as possible. Thus, if the application does not execute commit frequently, the perfor-
mance of the non-uniform algorithm is highly improved compared to the uniform
algorithm. Furthermore, if the underlying consensus algorithm does not access the
stable storage too frequently, the performance of non-uniform atomic broadcast
can even be close to a crash-stop atomic broadcast algorithm. We discuss this issue
in the next section.

8.4.4 Which Consensus Algorithm Should Be Used?

Both atomic broadcast algorithms presented require an algorithm solving consen-
sus in the crash-recovery model. Aguilera et al propose two such algorithms: one
of them accesses stable storage, whereas the other does not [ACT00].

Consensus with Access to Stable Storage. The consensus algorithm with access
to stable storage is well suited for uniform atomic broadcast. It solves consensus as
long as a majority of processes are good, but accesses the stable storage very often:
(1) every time the state changes locally, and (2) when the process decides. The
stable storage is thus accessed at least twice per consensus. This does not impact
performance of uniform atomic broadcast as much as one could think, since the
uniform atomic broadcast itself logs its proposed value at the beginning of every
consensus.

However, using this algorithm with our non-uniform atomic broadcast is o-
verkill. It reintroduces frequent access to stable storage that we managed to sup-
press with our non-uniform algorithm, i.e., performance of the non-uniform atomic
broadcast becomes poor: the performance of non-uniform atomic broadcast algo-
rithm is almost the same as the performance of the uniform atomic broadcast algo-
rithm.

Consensus without Access to Stable Storage. Aguilera et al show that con-
sensus can also be solved in the crash-recovery model without accessing stable
storage. This consensus algorithm suits our non-uniform atomic broadcast in the
sense that it does not reduce performance, as it does not access stable storage. With
this solution, we achieve our goal of avoiding access to stable storage as long as
commit is not executed. However, the algorithm requires the number of always-up
processes to be larger than the number of bad processes [ACT00]. This is not a big
constraint from a practical point of view. Indeed, by having commit log part of the

8.5. PERFORMANCE EVALUATION 127

state of the consensus algorithm, the always-up processes are only required to stay
up between two consecutive commits.

8.5 Performance Evaluation

We have implemented different atomic broadcast algorithms to compare their per-
formance for various group sizes: n = 3 and n = 7.5 The algorithms implemented
are: (a) the optimized uniform atomic broadcast algorithm proposed by Raynal
and Rodrigues [RR03], (b) the uniform atomic broadcast algorithm of Section 8.4,
(c) the non-uniform atomic broadcast algorithm of Section 8.4, and (d) a well-
known uniform atomic broadcast algorithm in the crash-stop model [CT96]. All
these algorithms reduce atomic broadcast to a sequence of consensus: algorithms
(a) and (b) use a crash-recovery consensus algorithm that accesses stable storage
(see Section 8.4.4), algorithm (c) uses a crash-recovery consensus that does not
access stable storage (see Section 8.4.4), algorithm (d) uses a crash-stop consensus
algorithm [CT96]. All algorithms were implemented in Java and follow Fortika’s
conventions (see Sect. 9.2). These conventions allow protocol composition with
different composition frameworks. We used the Cactus [BHS98, HS98] frame-
work for these experiments. Algorithms (a), (b) and (c) use the same libraries for
stable storage and for fair-lossy channels. Algorithm (d) uses TCP-based reliable
channels.

The hardware used for the measurements was (1) a 100 Base-TX Ethernet, with
no third-party traffic, (2) seven PCs running Red Hat Linux 7.2 (kernel version
2.4.18-19). The PCs have a Pentium III 766Mhz processor, 128 MB of RAM, and
a 40 GB (Maxtor 6L040J2) hard disk drive. The Java Virtual Machine was Sun’s
JDK 1.4.0.

In our experiments, the first process in the group (i.e., the process with the
smallest id) steadily abcasts 128-byte-long messages.6 The offered load was con-
stant at 100 messages per second (i.e., the benchmark tries to abcast 100 messages
per second, but protocol flow control will block it from time to time). The actual
throughput was less than that, since the sending thread is blocked when there are
too many messages in the local set Unord (Fig. 8.5, line 25). Besides, all pro-
cesses execute commit every t seconds, where t ranged from 100 milliseconds to
5 seconds. In each experiment, we measured the average early latency of mes-
sages after the execution became stationary. The early latency for message m is
the time elapsed between the abcast of m and first adelivery of m [Urb03]. We
also measured the average throughput, defined as the number of messages adeliv-
ered per second. Note that the experiments where performed with no crashes and
no false crash suspicions. The main goal of these experiments was to see how the
performance is affected as the frequency of commits increases.7

5We did the same tests for n = 5 and the results are in-between.
6We have also done the same experiments with multiple senders, yielding similar results.
7For Rodrigues-Raynal [RR03], a checkpoint is taken instead of a commit, which is the same in

128 CHAPTER 8. ATOMIC BROADCAST IN THE CRASH-RECOVERY MODEL

 0

 100

 200

 300

 400

 500

 600

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

av
er

ag
e

ea
rly

 la
te

nc
y

(m
se

c)

time between two commits (sec)

load = 100 msgs/s; message size = 128 bytes; n=3

 NonUniform
 RodriguesRaynal

 Uniform

 Crash−stop

(a) group size: 3 processes

 0

 100

 200

 300

 400

 500

 600

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

av
er

ag
e

ea
rly

 la
te

nc
y

(m
se

c)

time between two commits (sec)

load = 100 msgs/s; message size = 128 bytes; n=7

 Crash−stop
 NonUniform

 RodriguesRaynal
 Uniform

(b) group size: 7 processes

Figure 8.6: Early latency of various atomic broadcast algorithms

Figure 8.6 shows the early latency results with the 95% confidence interval. As
expected, Rodrigues-Raynal and our uniform algorithm perform similarly since
both of them use the stable storage for every consensus. An important observa-
tion is that the non-uniform algorithm performs much better than the two uniform
algorithms when commits are not frequent, since it only accesses the stable stor-
age when executing commit. The performance of the non-uniform algorithm can
even compete with the crash-stop atomic broadcast algorithm (which does not ac-
cess stable storage at all). As the commit period reduces, the performance of all
crash-recovery algorithms, including the non-uniform algorithm, degrades asymp-

terms of implementation.

8.5. PERFORMANCE EVALUATION 129

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1/
th

ro
ug

hp
ut

 (m
se

c/
m

sg
)

time between two commits (sec)

load = 100 msgs/s; message size = 128 bytes; n=3

 Crash−stop
 NonUniform

 RodriguesRaynal
 Uniform

(a) group size: 3 processes

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1/
th

ro
ug

hp
ut

 (m
se

c/
m

sg
)

time between two commits (sec)

load = 100 msgs/s; message size = 128 bytes; n=7

 Crash−stop
 NonUniform

 RodriguesRaynal
 Uniform

(b) group size: 7 processes

Figure 8.7: 1 / throughput of various atomic broadcast algorithms

totically, since access to stable storage becomes more and more frequent.

The throughput results are shown in Figure 8.7, also with the 95% confidence
interval. Actually, in order to compare the curves of Figures 8.6 and 8.7, we have
plotted the values of 1 / throughput in Figure 8.7. We can observe that the results
in the two figures are very similar. Note that the performance obtained is not spec-
tacular: our proof-of-concept implementations have not been optimized, e.g., they
all make extensive use of the standard Java serialization, which is known to be
very inefficient (see Sect. 3.3.3). However, this does not preclude the performance
comparison of the different algorithms.

Figures 8.6 and 8.7 do not show directly the impact of commit on the latency.

130 CHAPTER 8. ATOMIC BROADCAST IN THE CRASH-RECOVERY MODEL

200

250

300

350

400

450

500

0 20 40 60 80 100

la
te

nc
y

(m
se

c)

time at which abcast is executed (sec)

p1
p2
p3
p4
p5

commit period = 50 sec; load = 100 msgs/sec; size = 128 bytes; n = 5

Figure 8.8: Latency in a single experiment with the non-uniform atomic broadcast
algorithm.

This can be seen in Figure 8.8. The figure corresponds to one single experiment
with the non-uniform atomic broadcast algorithm for a group of size n = 5. The
figure shows the latency, once the steady state is reached, as a function of the
time at which the abcast is issued. The figure shows all latencies, not only the
early latency: if the abcast(m) is issued at time t and m is adelivered at p1 at
time t + ∆1, at p2 at time t + ∆2 at p2, etc., we plot five dots with coordinates
(t, ∆1), (t, ∆2), . . . , (t, ∆5). In Figure 8.8, commit was executed approximately at
t = 50 and t = 100. We can clearly observe how latency is affected by the execu-
tion of commit. The high latencies around t = 50 and t = 100 come from messages
that were already abcast but not yet adelivered when the commit operation started:
the latency of these messages was affected by the commit operation.

8.6 Conclusion

We have proposed two novel specifications of atomic broadcast in the crash-re-
covery model, for uniform and non-uniform atomic broadcast. The key point in
these two specifications is the distinction between permanent and volatile events.
This distinction allows us to properly define the concept of non-uniformity in the
crash-recovery model. Despite some attempts in the literature [ACT00, BG00],
the concept of non-uniformity in the crash-recovery model did not have so far a
satisfactory definition. We have also pointed out the problem of process recovery
after a crash, where the application state needs to be consistent with the state of
the atomic broadcast algorithm. We have shown how this problem can be solved.
It is important to understand that this consistency problem does not arise in the

8.6. CONCLUSION 131

crash-stop model, which explains that it was overlooked up to now. Finally, we
have run experiments to compare the performance of the two new atomic broadcast
algorithms with two other algorithms, one based on the crash-stop model, the other
based on the crash-recovery model.

132 CHAPTER 8. ATOMIC BROADCAST IN THE CRASH-RECOVERY MODEL

Part III

Putting It All Together: Fortika

133

Chapter 9

The Fortika Group
Communication Toolkit

This chapter presents Fortika, a group communication toolkit written in Java. It is
the main prototype implementation of the thesis. All architectural and algorithmic
contributions presented in the previous chapters have a proof-of-concept imple-
mentation in Fortika. Its algorithmic code is not implemented for a particular pro-
tocol composition framework, which in theory permits the use of any event-driven
protocol composition framework. To this day, Fortika includes compositions pro-
viding atomic broadcast for three different system models.

9.1 Introduction

The key idea behind Fortika’s design is to isolate the algorithmic code from the
code related to protocol composition. Thus, Fortika does not define its own proto-
col composition framework, but rather a set of conventions that protocol program-
mers must follow. According to these conventions, every protocol: (1) is a Java
class containing the algorithmic code, (2) consists of a set of handlers and private
state, and (3) reacts to events exclusively. The third-party framework, (1) routes
events from one protocol module to the following one, (2) provides special ser-
vices, like flow control, timers, etc, and (3) is responsible for interacting with the
environment (the application and the network).

Three complete compositions providing atomic broadcast have been imple-
mented in Fortika, one for each of the following system models: static crash-stop,
dynamic crash-stop, and static crash-recovery. The application interface is easy to
use: it consists of three methods for joining/removing processes (in dynamic com-
positions) and abroadcasting messages. Additionally, the application implements a
set of callback methods for view changes (in dynamic compositions) and message
adelivery.

To the best of our knowledge, Fortika is the first group communication toolkit
to offer atomic broadcast semantics in the crash-recovery model.

135

136 CHAPTER 9. THE FORTIKA GROUP COMMUNICATION TOOLKIT

9.2 Conventions for Obtaining Framework-Independent
Code

Almost all existing modular group communication toolkits that use a general-
purpose protocol composition framework are optimized for that framework: the
protocol code has been written bearing in mind that it will be composed using that
particular framework. As a result, the part of the code that is strongly dependent on
the framework (triggering events, binding events to handlers, etc.) and the purely
algorithmic code are usually mixed up. This has an inherent drawback: protocol
modules are barely reusable in other protocol composition frameworks. The es-
sential idea behind Fortika’s design is to increase reusability of protocol modules
across frameworks to a maximum extent.

The Fortika prototype implementation does not include any protocol compo-
sition framework, it rather uses already existing ones. The basic requirement for
composing Fortika protocol modules with a third-party framework, is that the lat-
ter must use events for interactions between protocol modules (see Sect. 3.3.1.1).
Moreover, protocol programmers have to follow a set of strict conventions when
writing the protocol if they want their protocol modules to be composable in the
context of Fortika. The aim of these conventions is making the algorithmic code
independent from the code related to the protocol composition framework.

The Protocol Code. Every protocol module is implemented as a Java class. The
protocol state corresponds to private attributes of that Java class. Event handlers
are public methods, and the method bodies contain the algorithmic code.

A set of protocol modules implemented in this way can not be put together
directly. Every class implementing a protocol module is wrapped by a framework-
dependent Java class that represents the protocol module in the framework chosen
(e.g., class Microprotocol in Cactus, classes Layer and Session in Appia, etc.). The
wrapper class is usually a very simple class with few lines of code. It is responsible
for routing incoming events to the appropriate handler, routing outgoing events to
the framework, and any other task required by the framework for correct composi-
tion .

Incoming events are usually handled in the following manner. The wrapper
class defines a set of event handlers (using the framework’s facilities) and binds
them to the appropriate event types. The code within these handlers is simplest:
a method call to the handler in the algorithmic class. Outgoing events, i.e, events
triggered by the protocol module are managed as follows. The constructor of the al-
gorithmic class accepts a callback method to be called when the algorithm needs to
trigger an event. This callback method contains two parameters: the event type and
its arguments. This callback is typically implemented by the wrapper class: it cre-
ates and triggers an event with the type and arguments using framework-dependent
mechanisms. The transitions from the wrapper to the algorithmic class and vice-
versa are implemented using method calls, so they are very cheap.

9.2. CONVENTIONS FOR OBTAINING FRAMEWORK-INDEPENDENT CODE137

Concurrency Model. In Chapter 4 we argued that the concurrency aspect of a
composition cannot be solved at the level of protocol modules (i.e., by the pro-
tocol programmers on their own). In Fortika, protocol programmers write their
code without worrying about concurrency: it is up to the framework to solve race
conditions, deadlocks, etc. Hence, the solution implemented requires the protocol
composer’s intervention.

In particular, the code of every protocol module assumes that only one event is
being handled at a time within the whole composition. Moreover, if two events e1

and e2 are triggered in the same handler, it assumes that any event e′1 that causally
depends on e1 is executed before any event e′2 that causally depends on e2. In
short, protocol programmers assume that extended causal order is enforced (see
Sect. 4.6.2) when writing their code.

To enforce these properties at the level of the composition, the approach de-
pends on the framework being used:

• Appia. By default, Appia allows no concurrency inside the composition. It
enforces an order of events very close to extended causal order. Besides, the
framework design ensures that event execution never overlaps. Therefore,
little needs to be done when composing Fortika protocols.

• Cactus. The approach for Cactus is the following. The whole composition
behaves like a monitor: all threads that execute code inside the composition
do so in mutual exclusion. The protocol code can only invoke events, and
never raise them (see Sect. 2.3.2). The advantage of event invocation is that
the same thread executing the triggering protocol module executes a method
call and thereby jumps to the handling protocol module. The use of method
calls for event triggering has an additional advantage: it provides extended
causal order for free. However, to avoid overlapping execution of handlers,
which is an undesirable behavior, Fortika protocol modules must follow the
conventions presented in Sect. 4.5.

• Samoa. In Sections 2.3.3 and 4.3, we have described Samoa’s transparent
concurrency model. Protocol modules have the impression that there is no
concurrency in the composition, hence, nothing is needed to support Samoa.
Method calls are used for event triggering, which enforces extended causal
order, but requires the same programming conventions as in Cactus (so that
execution of handlers does not overlap).

In all three cases, protocol modules must be reactive (see Sect. 4.3): (1) they
should not spawn new threads, (2) their handlers should not block for a long time
(otherwise, the whole composition may block), and (3) direct interaction with the
outside world (which may block on I/O operations) is not permitted.

138 CHAPTER 9. THE FORTIKA GROUP COMMUNICATION TOOLKIT

9.3 Compositions Implemented

All algorithms and architectures presented in Part II have been implemented in
Fortika. Currently, there are three different compositions for each of the three sys-
tem models: the crash-stop model with static and dynamic groups, and the crash-
recovery model with static groups.

9.3.1 Static Crash-Stop Model

This composition was the first to be implemented, and allowed us to compare Appia
and Cactus1 (see Sect. 3.2). The protocol modules of this composition have been
described in Chapter 3.

9.3.2 Dynamic Crash-Stop Model

Chapter 7 described a new architecture for group communication in the dynamic
crash-stop model. The architecture was implemented in Fortika, yielding the com-
position shown in Fig. 9.1. The protocol modules marked with a gray background
in the figure were reused from the basic static composition (see Sect. 9.3.1). These
modules implement protocols whose operation remains the same when switching
from static to dynamic groups. The remaining modules are briefly described below:

Dynamic Abcast

Reliable Channel

Failure Detection

Consensus

Membership

Monitoring

Application

sta
rt_

sto
p_

m
on

ito
r

de
ci

de
pr

op
os

e
ab

ca
st

ad
el

iv
er

Unreliable Transport

u_
se

nd

u−
re

cv tc
p−

se
nd

tc
p−

re
cv

se
nd

re
ce

iv
e

jo
in

_r
em

ov
e_

lis
t

bu
ff_

fu
ll

su
sp

ec
t

jo
in

re
m

ov
e

ne
w_

vi
ew

Dynamic Abcast

Reliable Channel

Failure Detection

Consensus

Membership

Monitoring

Application

sta
rt_

sto
p_

m
on

ito
r

de
ci

de
pr

op
os

e
ab

ca
st

ad
el

iv
er

Unreliable Transport

u_
se

nd

u−
re

cv tc
p−

se
nd

tc
p−

re
cv

se
nd

re
ce

iv
e

jo
in

_r
em

ov
e_

lis
t

bu
ff_

fu
ll

su
sp

ec
t

jo
in

re
m

ov
e

ne
w_

vi
ew

. . .

Network

Process 1 Process n

Figure 9.1: Atomic Broadcast. Composition in Fortika for the dynamic crash-stop
Model.

1A preliminary comparison of Appia and Cactus was performed in [Men01, WMS02a].

9.3. COMPOSITIONS IMPLEMENTED 139

• Monitoring: the module is responsible for converting a process suspicion
into a process exclusion. In that case, this protocol module triggers a remove
event on the Membership module.

• Dynamic Atomic Broadcast: implements uniform dynamic atomic broad-
cast [Sch06]. Upon view change, it provides the same view delivery prop-
erty (see Sect. 6.3.6). It relies on the Consensus protocol module to achieve
total order of the delivered messages and view changes, and on the Reliable
Channel protocol module to disseminate messages.

• Membership: enables processes to join/leave the group. It implements pri-
mary-partition membership (see Sect 6.2.3). The module depends on the
Dynamic Atomic Broadcast and Reliable Channel protocol modules.

The most noteworthy feature of this composition coincides with the architec-
tural contribution presented in Chapter 7: atomic broadcast should be solved first,
and then group membership. Thus, (dynamic) atomic broadcast becomes aware of
changes to the group of processes and provides total order of view changes along
with total order of application messages. This provides several advantages (see
also Sect. 7.4):

• The composition is less complex because all ordering problems are solved at
the same level (atomic broadcast): (1) ordering application messages, (2) or-
dering view changes, and (3) ordering messages with respect to view changes
(i.e., same view delivery property).

• In traditional compositions, atomic broadcast always depends on group mem-
bership, that is, membership is below atomic broadcast. In that case, the
atomic broadcast algorithm is not fault-tolerant itself, and gets blocked in
the presence of process crashes until group membership excludes faulty pro-
cesses. In the new composition, atomic broadcast relies on a fault-tolerant
consensus algorithm, which makes it fault tolerant as well. As a result,
atomic broadcast is able to continue operation even in the presence of crashes.
This makes the whole composition more responsive.

As discussed in Chapter 7, the stack can be extended with a Generic Broadcast
protocol module. This is considered as future work (see Sect. 11.2).

9.3.3 Static Crash-Recovery Model

The third composition implemented in Fortika is depicted in Fig. 9.2. It provides
crash-recovery atomic broadcast to the application. It assumes static groups: the
group is configured at system start-up time and cannot be changed afterwards.
Hence, there is no membership protocol module. To the best of our knowledge,
Fortika is the only group communication toolkit to offer atomic broadcast in the
crash-recovery model.

140 CHAPTER 9. THE FORTIKA GROUP COMMUNICATION TOOLKIT

CR Atomic Broadcast

Stubborn Channel

Unreliable Transport

Failure Detection

CR Consensus

Recovery

Application
sta

rt_
sto

p_
m

on
ito

r

u−
se

nd

ki
ll_

m
es

sa
ge

re
co

ve
ry

ab
ca

st
de

ci
de

nb
_c

om
m

its
u−

re
cv

u−
se

nd

u−
re

cv

pr
op

os
e

ad
el

iv
er

re
cv

se
nd

tru
st_

lis
t

CR Atomic Broadcast

Stubborn Channel

Unreliable Transport

Failure Detection

CR Consensus

Recovery

Application

sta
rt_

sto
p_

m
on

ito
r

u−
se

nd

ki
ll_

m
es

sa
ge

re
co

ve
ry

ab
ca

st
de

ci
de

nb
_c

om
m

its
u−

re
cv

u−
se

nd

u−
re

cv

pr
op

os
e

ad
el

iv
er

re
cv

se
nd

tru
st_

lis
t

Network

Process 1

. . .

Process n

Figure 9.2: Atomic Broadcast. Composition in Fortika for the Static/crash-
recovery Model.

With respect to the two previous compositions, this one represents a major
model shift. From an algorithmic point of view, the fact that processes are able to
recover implies that all protocols need to be redesigned. This is why this composi-
tion could not reuse any protocol module from the previous compositions. Here is
a brief description of the protocol modules that are part of this composition:

• Recovery: detects (by accessing the disk) whether the process is started for
the first time or is recovering from a crash.

• Atomic Broadcast: implements the atomic broadcast specification for the
crash-recovery model (see Sect. 8.2). The composer can choose between
three versions: the uniform and non-uniform versions presented in Chapter 8,
and the algorithm of [RR03]. All implementations use the Stubborn Channel
and the Consensus protocol modules.

• Consensus: implements consensus for the crash recovery model [ACT00]. It
uses the Stubborn Channel protocol module.

• Stubborn Channel: yields point-to-point communication with the No-crea-
tion and Stubborn properties defined in Sect. 6.3.1. It uses a low-level pro-
tocol module (not shown in Fig. 9.2) that provides fair-lossy channels.

• Failure Detection: provides failure detector 3Su, proposed for the crash-
recovery model [ACT00].

9.4. RELEVANT IMPLEMENTATION ISSUES 141

The main advantages of crash-recovery protocols are the following (see Chap-
ter 8):

• The application can checkpoint its (replicated) state in synchrony with the
composition. This makes such replicated state less volatile. Assume, for an
illustration, that all replicas crash at a given time. In the crash-stop model,
as the replicated state is stored in main memory (checkpoints synchronized
with the composition are not supported), it would be gone forever. In the
crash-recovery model, the checkpoints of the application state (performed
together with the execution of the commit primitive) would permit crashed
processes to continue operation after recovery.

• Even if not all processes crash, the advantage of crash-recovery protocols is
evident. In the (static) crash-stop model, a majority of correct processes must
be correct so that consensus (and atomic broadcast2) can make progress. In
the (static) crash-recovery model, still a majority is needed, but a majority of
good processes [ACT00]. As presented in Sect. 6.2.4.2, good processes can
crash, as long as they recover after some time. As a result, if a majority of
processes is down at a given moment, the execution gets blocked, but some
process recoveries are enough so that the composition can make progress
again [ACT00].

As there is no free lunch, these advantages come at the expense of frequent
log operations to disk, which is expensive in terms of performance. This makes
crash-recovery protocols much slower than their crash-stop equivalents. However,
as proposed in Chapter 8, if the application can afford non-uniformity we can get
the best of two worlds: a non-uniform atomic broadcast algorithm that accesses the
disk sparsely, which yields good performance, close to that of crash-stop protocols.

For the moment, the composition is designed for the static model, yet it is
possible to extend it to a (crash-recovery) dynamic model in the same way as we
extended composition of Sect. 9.3.1 to that of Sect. 9.3.2.

9.4 Relevant Implementation Issues

In this section, we discuss some issues related to the implementation of Fortika.

9.4.1 Interface with the Application

Relevant group communication toolkits, such as Ensemble or JavaGroups, offer a
powerful interface to the user, allowing him to specify the sequence of protocol
modules (or a set with their properties) that compose the stack. When experiment-
ing with such interface, our feeling was that the user has to be familiar enough
with the implementation of the protocol modules if she is to be sure that the stack

2Consensus and atomic broadcast are equivalent problems [CT96].

142 CHAPTER 9. THE FORTIKA GROUP COMMUNICATION TOOLKIT

is correct. In some occasions, we even ended up using some by-default composi-
tion appearing in a tutorial because of the lack of success when trying to customize
a stack.

When we were confronted to the design of Fortika’s interface with the applica-
tion, we wanted it to be as simple to use as possible. The key issue here is that what
we call composer in this thesis (the person that puts protocol modules together to
build a composition) is not necessarily the same actor as the user, which maybe
only wants some predefined composition that works. As a result, every different
composition supported by Fortika is represented by a different Java class that acts
as a proxy between the application and the composition. For each composition, the
primitives available to the application can change (for instance, static compositions
do not define primitives join or remove). We have exploited Java class inheritance
to minimize repetition of primitives in the interface.

From the point of view of the user, every composition in Fortika is represented
by two classes: the proxy class, and the callback class. The former contains the
primitives called from the application to the composition, whereas the latter con-
tains callbacks that the composition uses to communicate with the application.

We now present an example. The following line

abcast = new DynamicAbcast(v0, callbacks)

creates a (local) composition offering atomic broadcast in the dynamic model
(see Sect. 9.3.2), with view v0 as initial view:

The application uses object abcast to communicate with Fortika:

• abcast.send(m) to abroadcast message m.

• abcast.join(q) to request process q to be joined to the group.

• abcast.remove(q) to request process q to be removed from the group.

Besides, the application provides object callbacks, which implements interface
DynAbcastCallbacks and contains the following methods:

• adeliver(m, q) notifies of the adelivery of message m whose sender was q.

• new_view(id, vid) notifies that view number id has been installed.

9.4.2 Interface with the Network

In Fortika, as in any group communication toolkit, low-level protocol modules need
to access the network. The problem arises when a reactive protocol module3 needs
to use TCP sockets, with blocking methods like send or recv.

To solve this problem, Fortika includes a library for non-blocking access to
TCP sockets. This library contains only non-blocking methods, and allows the

3For a definition of reactive protocol module, see Sect. 4.3.

9.5. CONCLUSION 143

management of external threads from inside the composition. So, using only non-
blocking methods, a protocol module can: (1) create server or client sockets, (2)
connect to remote server sockets, (3) handle closed or broken connections, (4)
launch external threads that send/receive messages or that accept incoming client
connections, and (5) stop those threads. For further details on this library we refer
the reader to Fortika’s Javadoc files.

9.4.3 Flow Control

When the application issues requests so fast that the composition can not keep up
with it, a flow control mechanism is needed, otherwise the system is not stable.
A good flow control mechanism should not be activated unless the composition is
operating near the system limits. We believe that protocol modules do know best
when the composition can not keep up with the workload generated by the appli-
cation. For instance, if an atomic broadcast protocol realizes that more messages
are being abcast than adelivered, it is seemingly a situation where the application
must be slowed down.

Fortika provides flow control to the protocol modules via a very simple library.
Some protocols are not related at all to flow control (e.g., failure detection). A pro-
tocol module interested in using flow control registers for it using library method
getFreshKey, which returns an integer key used by the library to identify that mod-
ule. The flow control can be in one of the following two states: open or blocked. A
registered protocol module executes method block whenever it requires flow con-
trol to be in a blocked state, and method release when this requirement disappears.
As there can be several protocol modules using it, the flow control is in blocked
state if there is at least one protocol module that demands it, otherwise it is open.
When the application accesses the composition code (via one of the methods de-
scribed in Sect. 9.4.1), method enter is called. If flow control is open this method
has no effect, but it will suspend the calling thread if the flow control is blocked.

In summary, the flow control library gives protocol modules the opportunity
to block the application temporarily when it can not keep up with the workload
generated.

9.5 Conclusion

In this chapter, we have presented Fortika, a prototype group communication toolkit
that played the role of testbed for the ideas developed in this thesis. Thanks to
the conventions for writing framework-independent protocol code, Fortika proto-
col modules contain highly reusable algorithmic code, which can be used by any
event-driven protocol composition framework. Fortika’s modular design allows the
composer to choose both at the level of individual protocols and complete compo-
sitions. There are at present compositions for three different system models, as
well as several well-known algorithms for some key protocol modules: Chandra-

144 CHAPTER 9. THE FORTIKA GROUP COMMUNICATION TOOLKIT

Toueg [CT96] or Mostefaoui-Raynal [AR01] consensus, ping-based or heartbeat-
based failure detector, etc. In short, Fortika represents a modular, framework-
independent solution to group communication.

There are some projects in which Fortika is used as a tool. Arnas Kupšys uses
Fortika’s crash-recovery atomic broadcast composition to replicate the JMSGroups
server [KPSW04, KE05]. Samoa’s designers use all three Fortika stacks to con-
duct research on transparent concurrency and dynamic protocol update [WRS04,
RWS06]. Finally, Fortika is also used for research on fault injection, which is
presented in next chapter.

Chapter 10

Fault Injection: Assessing the
Crash-Failure Assumption of
Fortika

10.1 Introduction

Group communication toolkits often assume that processes only fail by crashing
(see Sect. 6.2.2), i.e., they suddenly stop their operation. This crash-failure as-
sumption provides a powerful means to simplify algorithm design. When making
this assumption, however, one should not forget that the errors that affect real-life
implementations often involve complex error-propagation patterns that cannot be
directly modeled with abstract crashes. Importantly, the crashes that are modeled
in theory are quite different from the common notion of crashes (e.g., process ter-
mination due to a segmentation violation). The crash failure assumption was orig-
inally formulated with the caveat that systems should embed robust self-checking
mechanisms (e.g., internal assertions) to provide error detection with high coverage
and negligible latency. On detecting an internal error (e.g., an out-of-range value
in a process variable due to a software bug or a hardware transient), the process
terminates itself, and thus, converts the error into a clean crash failure. Ignoring
such a discrepancy between reality and theory can lead to complex replicated ap-
plications that pay a large price in terms of performance overhead yet fail to deliver
the promised dependability level.

In [BWKI03], the authors present a systematic, experimental study of the En-
semble toolkit to analyze how the system responds to a variety of real errors (e.g.,
bit flips in memory segments and network messages). The key result of that study is
that up to 5–6% of the manifested errors involve safety/liveness property violations
and error propagations to multiple processes (basically cases occurring because the
crash failure assumption does not always hold). Detailed analysis of the Ensemble
system shows that these failures are due to internal self-checking mechanisms with
poor coverage (less than 10%). The results of that analysis are not reported as an

145

146 CHAPTER 10. FAULT INJECTION

indictment of Ensemble, which is a well-engineered product, but rather because
they probably hold for many other fault-tolerant systems.

We believe that experimental evaluation and theoretical development must go
hand in hand when designing a fault-tolerant system. The present chapter leverages
and extends [BWKI03] by demonstrating a error-injection-driven design method-
ology to build robust fault-tolerant systems, where error injection is integrated in
the design process. The methodology is demonstrated on Fortika and operates as
follows: (1) perform error injection on an early prototype of the system to identify
and quantify reliability bottlenecks in the systems; (2) based on the obtained in-
sights, enhance the system’s design and implementation to reduce (ideally remove)
the identified bottlenecks; (3) perform a followup error injection campaign to mea-
sure the reliability improvement obtained with the enhanced version of the system,
and reiterate if necessary.

Often the designer must make important decisions (e.g., in the early stages of
a design) that may have a significant impact on the overall reliability of the sys-
tem yet such an impact is hard to predict beforehand. For instance, Ensemble’s
architects decided to write the system in the OCAML dialect of the ML language
so that the code would be amenable to automated proof checking (as demonstrated
in [KHH98]). In theory, OCAML may be preferable, as implementation language,
to Java. In actuality, the experimental study presented in this chapter reveals the
opposite. In [BWKI03] the authors show that the code formally proved for correct-
ness (i.e., the code of the group communication protocols) can be as small as 5%
of the code executed at runtime. A large number of problems originate in portions
of the code on which the designer has little control (e.g., OCAML runtime support
in case of Ensemble). In this study we show that the Java runtime support offers
more efficient self-checking capabilities than the OCAML runtime support, which
makes a system built in Java (Fortika, in our case study) significantly more reliable
(less number of fail-silence violations) than a system built in OCAML. This result
corroborates the validity and the importance of the proposed design methodology.

10.2 Experimental Setup

Out of the three compositions implemented in Fortika, this study focuses on the one
offering atomic broadcast in the dynamic crash-stop model (see Sect. 9.3.2). We
recall that such composition enforces uniform properties (see Sect. 6.3.3). While
uniformity has been extensively studied in the literature (e.g., most group commu-
nication protocols designed under the crash failure assumption provide uniformity),
the actual cost of achieving uniformity in real systems subjected to failures is not
well understood. One of the contributions of this work is an experimental assess-
ment of the difficulty implementing uniformity in realistic operational conditions.

In this study, the protocol composition framework used to compose Fortika’s
protocol modules is Cactus (see Sect. 2.3.2), which provides good performance as
compared to other frameworks (see Sect. 3.3.3).

10.3. ERROR INJECTION INTO MEMORY 147

The experimental testbed consists of three nodes interconnected by an Ethernet
100 Mbps LAN. The nodes are Pentium III 500 MHz-based machines running
Linux 2.4 and Sun’s Java Virtual Machine (JDK 1.4.2). NFTAPE [SFKI00], a
software framework for conducting automated fault/error injection experiments, is
used to launch the experiments, monitor the test execution, and gather the output
results in a log file. To create system activity during the error injection campaigns,
we use as workload a synthetic benchmark application. The application employs
Fortika’s atomic broadcast to send 200 messages at a constant rate of 10 messages
per second. Each application message has a fixed size of 1000 bytes. The workload
executes on three machines, forming a group of three processes.

Clean Crash Injection. An initial set of 900 experiments is performed to study
the behavior of Fortika applications in the presence of clean crash failures caused
by sending a term, kill or segv UNIX signal, thereby forcing the target process
to terminate immediately. Since Fortika is designed to cope with crash failures
this type of injections is merely intended to reveal defects in the design or the
implementation of Fortika’s protocols. The obtained results did not reveal any flaw
in the design and implementation of Fortika’s crash-resilient group communication
protocols.

Roadmap. Clean crash failures provide a coarse approximation of the effects
that errors can have in real distributed systems. A thorough study of these effects
is the objective of the following sections, where two major sets of error injection
campaigns are conducted: (1) memory injections, to assess the impact of errors in
the memory segments of a Fortika process; and (2) network injections, to analyze
the impact of errors in the contents of messages exchanged in support of Fortika’s
group communication protocols. Each experimental error injection campaign is
performed in three macro-steps: (i) initial set of injections to identify reliability
bottlenecks of Fortika’s design/implementation, (ii) removal of the identified de-
sign/implementation flaws, and (iii) final set of injections to assess the error re-
silience of the enhanced design/implementation.

10.3 Error Injection into Memory

The experimental setup described in Sect. 10.2 is used to study the impact of errors
in a Fortika process. In each experiment we execute three copies of the benchmark
application discussed in Sect. 10.2 on three different machines, and inject a sin-
gle error, at a random time, in a selected process. The experiment ends when all
application processes terminate and, subsequently, the system is reset.

In the experiments considered in this section, errors are injected in the process
with the lowest id, namely the coordinator process. The coordinator process has a
special role in the consensus protocol module. Upon coordinator failure, any other
process p blocks until p suspects the coordinator and selects a new coordinator:

148 CHAPTER 10. FAULT INJECTION

Table 10.1: Error models.
Error Model Description
JVM TEXT A single bit is flipped in the text segment of the JVM process.
JVM HEAP A bit is periodically flipped (every 5 seconds) in allocated regions of the heap

memory of the JVM, until the process terminates or crashes. Note that more
than one error may be injected during a single experiment.

BYTECODE STACK A single bit is flipped in the execution stack of a Java thread running in the
target process.

Fortika’s consensus algorithm uses the rotating coordinator paradigm to recover
from a coordinator failure [CT96]. This mechanism can lead to all processes in the
group to block indefinitely, as discussed later in the section. We expect injections
in the coordinator to provide worst case scenarios and, in particular, to generate
error propagations.

10.3.1 Error Models and Outcome Categories

Two main types of error injections are conducted:

Java Virtual Machine Errors. Fortika’s Java code is compiled into Java byte-
code and executed/interpreted at runtime by the Java Virtual Machine (JVM).
The JVM runs as a native UNIX process and, thus, its execution can be af-
fected by accidental errors, e.g., software bugs or hardware transients. We
study the error behavior of the JVM by injecting bit errors in text and heap
memory segments of the JVM of the coordinator process.

Bytecode Errors. The Java bytecode of Fortika’s protocols that is executed/inter-
preted by the JVM is placed in a read/write memory region and can thereby
be affected by random errors in memory. We study the error behavior of
Fortika’s bytecode by injecting single-bit errors in the stack segment of a
selected Java thread running in the coordinator process.

The error models introduced above are further discussed in Table 10.1 and rep-
resent a combination of those used in several past experimental studies [Fuc98,
MJ94]. By injecting single bits in the targeted process, we emulate errors in the
main memory, the cache, the processor execution buffer, and the processor exe-
cution core, as well as errors occurring during transmission over a bus. Previous
research on microprocessors [ROT94] has shown that most (90–99%) device-level
transients can be modeled as logic-level, single-bit errors. Data on operational
errors also shows that a large number of errors in the field are single-bit errors.

Manifested errors are divided in two major outcome categories: (1) crash fail-
ures, in which the injected process stops executing and no incorrect state transition
is performed before the failure, and (2) fail silence violations, in which the injected
process performs incorrect state transitions—this failure type covers cases such as
corrupted data delivered to the application or a corrupted message sent to other
processes. The two categories and their corresponding subcategories are reported
in Table 10.2.

10.3. ERROR INJECTION INTO MEMORY 149

Table 10.2: Outcome categories.
Activated The corrupted instruction/datum is executed/used.
Manifested The corrupted instruction/datum is executed/used and does cause a visible abnormal impact on

the system.
Crash Failure SIGNAL: the operating system terminates the target process by sending a signal (e.g.,

SIGSEGV, SIGILL, SIGBUS, SIGFPE).
ASSERT: the target process shuts itself down owing to an internal check violation detected (in
the JVM code or in Fortika code).
HANG: the target process does not terminate and does not make progress.

Fail Silence
Violation

The target process misbehaves and possibly sends corrupted messages to other processes, caus-
ing them to fail.

10.3.2 Software-Based Error Injectors

Three software-based error injectors were used in the memory error injection cam-
paign: (1) a JVM text injector, which utilizes the hardware debug registers available
in the Pentium processors to automatically inject errors in the memory segments
of a process executing the Java Virtual Machine (JVM); (2) a JVM heap injector,
which overrides the libc shared library to intercept calls to malloc/free memory al-
location routines, so that it can keep track of the allocated heap memory regions
and perform periodic injections into these regions; (3) a Bytecode stack injector,
which utilizes the debug interface provided by the JVM to automatically inject
errors in the Java bytecode executed/interpreted by the JVM. The injection mech-
anism employed by the JVM text injector and the Bytecode stack injector includes
the following steps: (1) set an instruction breakpoint to be used as a trigger address
for the error injection, (2) inject an error at a target address when the breakpoint
is hit a predetermined number of times, (3) monitor error activation, and (4) col-
lect and store the outcomes from the injection for off-line analysis. The choices
of the trigger breakpoint and the target address aim at maximizing the rate of error
activations and are based on profiling information (discussed in the next section).

10.3.3 Profiling

To maximize the rate of error activations we profile the system execution both at
the level of the Java Virtual Machine, which executes/interpretes Fortika bytecode,
and at the level of Fortika bytecode, which constitutes the actual implementation
of Fortika’s group communication protocols.

Java Virtual Machine Profiling. Most JVM functionalities are contained in a
set of shared libraries that are linked on-demand by a small front-end executable
(about 64KB), which is the java program. In general, a Fortika application does
not use all JVM shared libraries with the same frequency. By profiling these li-
braries under the workload generated by the benchmark described in Sect. 10.2 we
can identify the most frequently used library functions and determine the relative
importance of the different subsystems of the JVM. Profiling is done by using a

150 CHAPTER 10. FAULT INJECTION

ptrace-based tool.1 As Figure 10.1 indicates, when running a Fortika application
the java executable loads four JVM shared libraries, but only three are intensively
used: libjava.so, libjvm.so, and libnet.so. These three libraries contain 41,032 func-
tions. Profiling enables us to identify the 4,196 functions that cover 99.9% of run-
time function invocations to the JVM code. Trigger addresses and target addresses
for JVM text injections are randomly selected from this smaller set of functions.

10
0

10
2

10
4

10
6

10
8

10
10

libjvm.so

libjava.so

libnet.so

libverify.so

number of invocations

Figure 10.1: Profiling at the JVM level.

Bytecode Profiling. Figure 10.2 shows profiling information for Fortika byte-
code. We observed that most of the function invocations are to the java.io library
(74%) and, more specifically, to the object serialization subsystem of this library.
This result is consistent with Section 3.3.3, which shows that Fortika spends a sig-
nificant fraction of time in marshaling and unmarshaling network messages. We
used the profiling information to select trigger addresses and target addresses for
the bytecode injections.

java.lang (19%)

java.util (4.5%)

Fortika (1.3%)

other (0.8%)

java.io (74%)

Figure 10.2: Profiling at the bytecode level.

1Ptrace is a process-tracing facility offered by UNIX operating systems.

10.3. ERROR INJECTION INTO MEMORY 151

10.3.4 Memory Injection Results

Table 10.3 reports the results from error injection experiments for the JVM-error
model and the bytecode-error model listed in Table 10.1. Before discussing the
results in detail, we point the reader to two important columns in Table 10.3: the
ASSERT column, which corresponds to cases in which self-checking mechanisms
embedded in the system are able to enforce the assumed crash failure semantics (by
detecting an internal error and converting it into a self-termination); and the Fail
Silence Violations column, which corresponds to cases in which Fortika’s fault-
tolerant protocols fail to tolerate the failures originating from the injected errors.
We expect a robust system to maximize the number of ASSERT cases and mini-
mize the number of Fail Silence Violation cases.

Table 10.3: Memory injection results.

Error Total Total∗ Total† Manifested Errors‡

Model Injected Activated Manifested Crash Failures Fail-silence
Errors Errors Errors SIGNAL ASSERT HANG violations

JVM Heap 14490 N.A. 2138 1783 (83%) 320 (15%) 34 (1.6%) 1
JVM Text

libjava.so 2055 1491 (73%) 1134 (76%) 811 (72%) 200 (18%) 59 (5.2%) 64 (6%)
libjvm.so 2600 711 (27%) 531 (75%) 406 (76%) 88 (17%) 20 (3.8%) 17 (3%)
libnet.so 2217 719 (32%) 536 (75%) 363 (68%) 115 (22%) 28 (5.2%) 30 (6%)

Bytecode Stack 5466 3294 (60%) 2009 (61%) 34 (1.7%) 1428 (71%) 21 (1.0%) 526 (26%)
∗ The ratio activated/injected is shown in parenthesis.
† The ratio manifested/activated is shown in parenthesis.
‡ Percentages with respect to total manifestations are shown in parentheses.

JVM Error Injections. The heap-injection results of Table 10.3 show a rela-
tively low manifested/injected ratio (2138/14490=0.15). Also, one can see that
there is only one fail silence violation, which indicates that most of manifested
heap errors are either caught by validity checks embedded in the JVM (15%) or
result in segmentation violation of the JVM process (83%). On the contrary, the
text-injection results show a larger manifested/injected ratio (e.g., 1134/2055=0.55
for libjava.so injections) and, more importantly, a significantly larger number of
fail silence violations (3–6% of manifested errors). The latter result is due to errors
in the program execution that are not captured by JVM internal checks.

Bytecode Error Injections. The bytecode-injection results of Table 10.3 show
surprisingly large percentages of detected errors (71%), but a worrying amount
of fail silence violations (26%). While the former figure indicates good coverage
of the self-checking mechanisms within the code, the latter one is unacceptable if
one wants to implement highly dependable systems. In most of the observed fail
silence violations all non-injected processes block indefinitely and cannot recover
from a single injected error.

152 CHAPTER 10. FAULT INJECTION

Fail Silence Violations. Analysis of the fail silence violations reported in Ta-
ble 10.3 reveals three main failure scenarios, reported in Table 10.4 and discussed
below:

• Liveness Violations. An injected error propagates to non-injected processes,
which eventually crash. As a result, the entire system goes down.

• Uniform Safety Violations. The injected replica violates the safety properties
of atomic broadcast (e.g., a message lost or delivered out of order), but it
occurs only at the injected replica.2

• General Safety Violations. An injected error propagates to non-injected pro-
cesses, which violate the correctness properties of atomic broadcast with-
out/before crashing.

Detailed analysis of the fail silence violation cases reveals the presence of reliabil-
ity bottlenecks in Fortika’s design, which is discussed in the next section.

Table 10.4: Breakdown of fail silence violations.

JVM JVM Text∗ Bytecode
Heap libjava.so libjvm.so libnet.so Stack∗

Liveness violations
1. Non-injected process hang 1 54 (84%) 5 (29%) 22 (73%) 448 (85%)
2. Non-injected process crash 0 3 (5%) 9 (53%) 8 (27%) 74 (14%)

Uniform safety violations 0 4 (6%) 3 (18%) 0 4 (0.8%)
General safety violations 0 3 (5%) 0 0 0
Total 1 64 17 30 526
∗ All percentages are with respect to the Total row.

10.3.5 Discovered Reliability Bottlenecks

This section discusses two key reliability bottlenecks we discovered in Fortika’s
design while performing an analysis of the fail silence violation cases of Table 10.3
and Table 10.4.

Partial Process Crashes. The largest contribution to the observed fail silence
violations is shown in row 1 of Table 10.4 and corresponds to cases in which a
single injected error causes the whole system to hang. Analysis of traces from
these experiments reveals the following failure pattern. A thread t in the injected
process p raises a Java Runtime exception. Because t’s code does not catch such an
exception, the JVM kills the offending thread t. However, other threads of process
p are allowed to continue their execution normally. In the considered experiments,
thread t happens to be a thread that executes a Fortika communication protocol

2With non-uniform properties this would not constitute a safety violation.

10.3. ERROR INJECTION INTO MEMORY 153

other than the Failure Detector protocol. Consequently, a non-injected process q
never suspects the faulty process p, since p is still able to respond to ping messages.
Nonetheless, all processes in the group eventually hang as they expect messages
to be received from faulty process p, messages that should have been sent by the
killed thread t.3

In summary, the observed fail silence violations are due to partial crashes of
the injected process p, i.e., cases in which a critical communication thread is ter-
minated while the thread responsible for responding to ping messages continues
executing. Note that this behavior does not regularly occur in UNIX multithreaded
applications, where the default operating system behavior is to terminate the whole
multithreaded process if a thread performs an offending action. However, Java’s
default behavior is to terminate only the offending thread. This creates subtle prob-
lems when using multithreading in systems designed under the crash failure as-
sumption. Overriding Java’s default behavior to handle faulty threads is possible,
yet it is made relatively simple only in the recently shipped Java 1.5.

Malformed Message Propagation. The second largest contribution to the ob-
served fail silence violations is shown in row 2 of Table 10.4 and corresponds
to cases in which a single injected error causes the whole system to crash. Our
analysis indicates that the injected error results in invalid computation leading to a
corrupted message being sent from the target process to some other processes. The
recipient process raises an exception when reading the malformed message and,
eventually, terminates in the exception handler.

Eliminating these error propagations requires changes to Fortika’s design. Two
cases are considered: (1) If a malformed message is received from an unreliable
channel (e.g., an UDP socket), a recipient process can simply drop the message.
As the channel is unreliable, the sender process will eventually retransmit the mes-
sage because it does not receive an acknowledgment from the recipient. (2) If a
malformed message is received from a reliable channel (e.g., a TCP socket), drop-
ping the message does not suffice. TCP sockets handle acknowledgment messages
transparently to higher layers and, thus, before Fortika code is delivered the mes-
sage. The solution we propose in this case is to close the socket and suspect the
sender process.

10.3.6 Assessment of Enhanced Fortika Design

This section presents a new set of injection experiments performed on Fortika en-
hanced by incorporating the design improvements discussed in Sect. 10.3.5. In the
new design, we derive a new Java class from the standard Java class ThreadGroup,
which groups together one or more Java threads. ThreadGroup allows us to over-
ride the default treatment of uncaught Java exceptions. Also, we have inserted code
to handle reception of malformed messages from the network. As suggested in

3This is usually called send omission failures.

154 CHAPTER 10. FAULT INJECTION

Sect. 10.3.5, we cope with a malformed UDP datagram by discarding the message,
while in the case of a TCP stream we close the TCP socket and suspect the sender
process. The changes made to the original code are small (approximately 20 lines
of Java code). The results from the new experiments are reported in Table 10.5.
One can clearly see that the number of fail silence violations is substantially re-
duced (e.g., 6% for Bytecode Stack injections against 26% in Table 10.3), while
the number of internally detected errors (ASSERT column) is increased (e.g., 31%
for libnet.so against 22% in Table 10.3). These results demonstrate the reliability
benefit of the considered design improvements.

Table 10.5: Memory injection results for enhanced Fortika design.

Error Total Total∗ Total† Manifested Errors‡

Model Injected Activated Manifested Crash Failures Fail-silence
Errors Errors Errors SIGNAL ASSERT HANG violations

JVM Heap 15177 N.A. 1221 1077 (88%) 123 (10%) 21 (2%) 0
JVM Text
libjava.so 1000 779 (78%) 616 (79%) 425 (69%) 115 (18.7%) 40 (6.5%) 36 (5.8%)
libjvm.so 910 666 (73%) 269 (40%) 202 (75%) 45 (16.8%) 15 (5.6%) 7 (2.6%)
libnet.so 755 283 (37%) 215 (76%) 133 (62%) 67 (31%) 13 (6%) 2 (1%)

Bytecode Stack 5509 3049 (55%) 1825 (60%) 15 (0.8%) 1651 (91%) 50 (2.7%) 109 (6.0%)
∗ The ratio activated/injected is shown in parenthesis.
† The ratio manifested/activated is shown in parenthesis.
‡ Percentages with respect to total manifestations are shown in parentheses.

10.4 Network Injections

This section discusses the impact of errors in the messages exchanged by Fortika
processes. A single-bit error is injected in a randomly selected message sent by
a target process. The corrupted message propagates to another process and can
possibly cause a failure at the receiving end. In this way, we mimic failures occur-
ring in the system and leading to malformed messages being sent/received. Note
that the modeled errors occur before/after any encoding (e.g. checksum) is ap-
plied/removed to protect messages against transmission errors. The goals are: (1)
to test the robustness of Fortika with respect to erroneous input data (e.g. corrupted
network messages) and (2) to provide further insight into the error propagation
mechanisms leading to the fail silence violations observed in the memory injection
experiments.

In order to perform the network injection experiments, we have extended the
NFTAPE framework [SFKI00] to include a network-error injector customized for
the Fortika framework. The injection mechanism used is similar to the one pro-
posed in [DJMT96]. By inserting an additional layer between the Java Virtual
Machine (on which Fortika code executes) and the standard socket interface of the
operating system, we can alter the messages that pass through the layer.4 This

4In practice, the injector is in a shared library that overloads, at run-time, the operating system’s
shared library that offers the socket interface.

10.4. NETWORK INJECTIONS 155

Table 10.6: Fortika message types.
Message Description

Type
Length Short messages of fixed length (4 bytes) that are used by Fortika’s Reliable Channel proto-

col module to specify the length of a subsequent message of variable size.
Abcast Messages used by Fortika’s Atomic Broadcast protocol module to convey an application

message from the broadcast sender to each destination.
Propose Messages used by Fortika’s Consensus protocol module to convey the proposed value that

the coordinator tries to impose as the decision. Only the coordinator sends these mes-
sages [CT96].

Ack Messages used by the Consensus protocol module to acknowledge the reception of a
propose message. Acknowledgment messages contain a boolean variable that specifies
whether the message is a positive acknowledgment (ack) or a negative acknowledgment
(nack) [CT96]. Since the coordinator never sends these messages, injection experiments
for ack messages target a non-coordinator process.

Decide Messages used by the Consensus protocol module to convey the final decision of an in-
stance of consensus to all processes [CT96].

Alive UDP messages used by Fortika’s Failure Detector protocol module to ping alive processes.
Other Other message types used by Fortika’s modules. They are rarely used (0.1%, see Fig-

ure 10.3) and we did not obtain any interesting result injecting those messages.

allows us to monitor messages exchanged by Fortika processes with minimal in-
trusiveness. Besides injecting errors, the network-error injector enables reliably
logging of experiment data to persistent storage for off-line analysis.

10.4.1 Message Types

This section introduces Fortika message types. The discussion is essential in ana-
lyzing and explaining the observed system behavior. Figure 10.3 shows how fre-
quently Fortika message types are used during an experimental run (the data is
obtained by profiling network activity during a single experiment). Table 10.6 pro-
vides a concise description of the six message types that are most frequently used.5

abcast (33%)

decide (7.9%)

length (45%)

propose (6.6%)

ack (3.6%)

alive (2.9%)
other (0.1%)

Figure 10.3: Fortika message profiling.

In order to illustrate how these messages are used by Fortika’s Atomic Broad-
cast and Consensus protocol modules, Figure 10.4 depicts an execution scenario

5Unless explicitly stated, these messages are transmitted over TCP connections.

156 CHAPTER 10. FAULT INJECTION

where a non-coordinator process r atomic-broadcasts a message m to the group
members. In the figure, horizontal arrows represent time, oblique arrows represent
message exchanges, abcast(m) indicates that the application (benchmark) has ex-
ecuted abcast of message m, and adeliver(m) indicates the adelivery of message m
to the application.

p

q

r
abcast propose ack decide

adeliver(m)abcast(m)

coordinator

Figure 10.4: Atomic Broadcast execution example.

10.4.2 Error Models and Outcome Categories

The network injection campaign is performed by corrupting a random bit in a mes-
sage sent by the target process. The injected message is randomly selected from the
messages exchanged during a single experiment, i.e. a single run of the benchmark
application. A separate set of experiments is performed to corrupt each message
type introduced in Sect. 10.4.1. The outcome categories considered are based on
those introduced in Sect. 10.3.1. Since a network injection occurs when a target
process sends a message to another group member, all failure scenarios defined
in Sect. 10.3.1 correspond to the failure of a recipient of the corrupted message.
Additionally, we distinguish between the following failure scenarios:

Unmarshal exception. The recipient process raises a Java exception because it is
unable to unmarshal the corrupted message received from the network.

Incorrect unmarshal. The recipient process incorrectly unmarshals the corrupted
message, which leads to the allocation of invalid objects in memory. The
recipient process can either (i) immediately crash while trying to access the
invalid objects (no propagation case), or (ii) behave erratically by sending
an invalid message to other processes (propagation case).

10.4.3 Network Injection Results

Table 10.7 reports the results from the network injections. We distinguish between
not marshaled messages (length messages), which do not use standard Java Serial-

10.4. NETWORK INJECTIONS 157

Table 10.7: Network injection results.

Message Total Total Manifested errors†

type experiments manifested Unmarshal Incorrect unmarshal
errors∗ exception No propagation Propagation

Not marshaled
length 961 831 (86.5%)‡ N.A. N.A. N.A.

Marshalled
abcast 996 658 (66.1%) 560 (85.1%) 92 (14.0%) 6 (0.9%)
propose 987 641 (64.9%) 555 (86.6%) 86 (13.4%) 0
ack 995 851 (85.5%) 633 (74.4%) 218 (25.6%) 0
decide 996 598 (60.0%) 528 (88.3%) 69 (11.5%) 1 (0.2%)
alive 999 671 (67.2%) 604 (90.0%) 67 (10.0%) 0

∗ Percentages with respect to total experiments are shown in parentheses.
† Percentages with respect to total manifestations are shown in parentheses.
‡ In all the cases the receiving process terminates after raising an OutOfMemoryError Java exception.

ization, and marshaled messages (the rest of the messages). The following obser-
vations can be made:

• Less-than-100% observed manifestation rate (i.e., percentage between man-
ifested and injected errors) can be explained by the redundant information
that marshaled Java objects carry (e.g., full description of ancestor classes).
This information is not used by the unmarshal routines unless sender and re-
ceiver processes have different versions of the Java classes that are serialized
in the network messages, which is not the case in our setup.

• In a significant number of cases a corrupted message is incorrectly unmar-
shaled, with subsequent memory corruption in the recipient process and pos-
sibly erratic behavior of the process. In particular, injections in ack messages
show 218 of such cases. Detailed analysis of the results reveals that these
scenarios are due to flaws in the mechanisms (1) implemented by Fortika
to manage event-routing information, and (2) implemented by standard Java
Serialization to transmit Java objects over the network. These two reliability
bottlenecks are discussed in detail in Sect. 10.4.4.

• Error propagations are observed only for abcast and decide messages. De-
tailed analysis reveals that these propagations always follow the same pat-
tern: (1) a corrupted message m is incorrectly unmarshaled and reaches ei-
ther the Consensus or the Atomic Broadcast module of the recipient process;
(2) as the injected error corrupted some part of the message that the mod-
ule does not process (e.g., message headers used by an upper-level proto-
col module such as the Membership module), the recipient module can re-
send m to all other processes—accordingly with the module’s algorithm—
before delivering m to the upper level modules; (3) m is received by all group
members, which eventually fail when they process the corrupted portion of
m.

158 CHAPTER 10. FAULT INJECTION

Table 10.8: Breakdown of experiments with incorrectly unmarshaled messages
in Table 10.7.

Affected message Message type∗

region abcast propose ack decide alive
1. Fortika event-routing data 68 (69.4%) 49 (70.0%) 157 (72.0%) 57 (66.3%) 0
2. Java Serialization

2.1. Ancestor classname 22 (22.4%) 19 (27.1%) 61 (28.0%) 27 (31.4%) 59 (88.1%)
2.2. Attribute name 2 (2.0%) 0 0 0 6 (9.0%)

3. Protocol data 6 (6.1%) 2 (2.9%) 0 2 (%) 2 (3.0%)
Total 98 70 218 86 67
∗ Percentages with respect to total row are shown in parentheses.

10.4.4 Discovered Reliability Bottlenecks

The performed network injection experiments enabled us to discover two important
reliability bottlenecks. The first is related to connectors: the mechanism imple-
mented by Fortika to route events to the correct protocol modules (see Sect. 3.4.2).
The second is related to the marshaling/unmarshaling mechanisms implemented
by the standard Java Serialization library [Sun01]. Both cases result in a corrupted
message being incorrectly unmarshaled (see Table 10.7). Table 10.8 provides a
breakdown of these cases.

Fortika Event Routing Mechanism. Connectors are implemented in Fortika in
the following manner. Messages contain a classname string that indicates the Java
class of the protocol module to which the message is addressed. An error injected
in this classname string results in the incorrect unmarshaling of a corrupted mes-
sage. Row 1 of Table 10.8 shows that 60–70% of incorrectly unmarshaled cases
are due to such error cases. Because of a design flaw, when the receiver process
unmarshals a corrupted classname string (e.g., a string indicating a non-existent
Fortika protocol module) no error is detected by Fortika, and the message is routed
to an arbitrary protocol module. We corrected this problem by using integer IDs
instead of classname strings to indicate a destination module, and by checking for
the existence of a protocol module indicated by received messages. If the check
fails, we use the same policy proposed in Section 10.3.5: the receiving process ei-
ther (1) drops the invalid message (if the message is sent over UDP), or (2) closes
the socket and suspects the message sender (if the message is sent over TCP).

Table 10.9: Network injection results with the new design.

Message Total Total Manifested errors†

type experiments manifested Unmarshal Incorrect Unmarshal
errors∗ exception No propagation Propagation

Not marshaled 829 734 (88.5%)‡ N.A. N.A. N.A.
Marshalled 1062 625 (58.9%) 543 (86.8%) 76 (12.1%) 6 (1.1%)

∗ Percentages with respect to total experiments are shown in parentheses.
† Percentages with respect to total manifestations are shown in parentheses.
‡ In all the cases the receiving process terminates after raising an OutOfMemoryError Java exception.

10.5. JAVA vs. OCAML 159

Java Serialization Mechanism. Fortika makes intensive use of Sun’s Java Seri-
alization mechanisms (see Sect. 10.3.3), which is highly stressed by our network
injections. In the experiments reported in rows 2.1 and 2.2 of Table 10.8, Java
Serialization mechanisms fail to detect corruption in a serialized message, which
results in an incorrect unmarshaling of the corrupted message. Analysis of the ex-
perimental traces shows that the problem is due to two subtle issues in the Java
Serialization code:

• If the injected error affects the name of an ancestor class (row 2.1 in Ta-
ble 10.8), the unmarshaling routines return a null Java object instead of
throwing an exception to report an unknown Java class.

• If the injected error affects the name of an attribute in a class description
(row 2.2 in Table 10.8), the unmarshaling routines create an attribute with a
default value (e.g., 0 for integer attributes) instead of throwing an exception
to indicate an unknown attribute name.

The data in Table 10.8 shows that errors affecting classnames are more frequent
(row 2.1) than errors affecting attribute names (row 2.2). The reason can be at-
tributed to the longer length of a full classname with respect to an attribute name.

To remove the two problems described above, the Java unmarshaling code must
be modified. This task, however, is not as simple as it may seem. First, a possible
reason for the observed behavior of Java Serialization code is that it is designed
to support compatibility between different versions of the same Java class. Thus,
changing the code to throw an exception instead of replacing an invalid field with
a default value may break this compatibility. Second, modifying Sun’s JDK code
is not permitted by Sun’s end user license agreement.

10.4.5 Assessment of Enhanced Fortika Design

This section presents a new set of injection experiments performed on Fortika en-
hanced by incorporating the design improvements discussed in Sect. 10.4.4 to im-
prove Fortika’s mechanism to route events through protocol modules. The results
from the new set of network injections are summarized in Table 10.9. One can
see that the percentage of incorrectly unmarshaled messages is lower than the one
observed in the previous experiments of Table 10.7, yet it is not null. The reason
for this can be attributed to the error contribution brought by the Java Serialization
code (see Sect. 10.4.4), which is left unchanged from the experiments reported in
Table 10.9 (see Sect. 10.4.4).

10.5 Java vs. OCAML

Our initial goal was to use error injection to compare Fortika’s error resilience,
discussed in this chapter, with that of Ensemble, studied using error injection
in [BWKI03]. An important finding from [BWKI03] is that despite a significant

160 CHAPTER 10. FAULT INJECTION

effort spent in formally modeling and proving the correctness of the Ensemble de-
sign [KHH98], the Ensemble implementation exhibits high sensitivity to real errors
(in memory segments and in network messages), which often leads to uncontrolled
crashes of the entire system and creates significant impediment in achieving high
dependability. This work demonstrates how the lessons learned from the Ensem-
ble study and the use of error injection as an evaluation methodology can be used
to guide a designer to enhance a system (Fortika in our case) so that it achieves a
desired level of reliability or availability. While carrying out this work, we soon
realized that the error resilience of the systems under study (Fortika and Ensemble)
are greatly influenced by the platform on which the systems are built. [BWKI03]
states that Ensemble layers (i.e., protocol modules) constitute only 5% of the run-
time function invocations, while a significant percentage (50%) of invocations is
for the runtime language support of OCAML: the functional language in which
Ensemble is written. In Sect. 10.3.3 we show that the Java Virtual Machine and
the associated Java libraries account for 98% of the runtime function invocations
in Fortika. These observations are fundamental when building a fault-tolerant sys-
tem, because they show that a major source of reliability (or unreliability) is in parts
of the system (the underlying OCAML or Java platform) over which the designer
has no (or little) control.

Table 10.10: Comparison of Fortika and Ensemble memory injection results.

Error Total Total∗ Total† Manifested Errors
Model Injected Activated Manifested Crash Failures Fail-silence

Errors Errors Errors SIGNAL ASSERT HANG violations

OCAML Heap 11278 N.A. 412 352 (85%) 26 (6%) 13 (3%) 21 (5%)
(Ensemble) Text 7401 2583 1878 (73%) 1604 (85%) 142 (8%) 27 (1%) 105 (6%)
Java JVM Heap 15177 N.A. 1221 1077 (88%) 123 (10%) 21 (2%) 0
(Fortika) JVM Text

libjava.so 1000 779 (78%) 616 (79%) 425 (69%) 115 (19%) 40 (7%) 36 (6%)
libjvm.so 910 666 (73%) 269 (40%) 202 (75%) 45 (17%) 15 (6%) 7 (3%)
libnet.so 755 283 (37%) 215 (76%) 133 (62%) 67 (31%) 13 (6%) 2 (1%)
∗ The ratio activated/injected is shown in parenthesis.
† The ratio manifested/activated is shown in parenthesis.

Table 10.11: Comparison of Fortika and Ensemble network injection results.

Injected Manifested† Manifested errors
experiments errors SIGNAL ASSERT Erratic Beh.

Serialized OCAML Messages 999 189 (19%) 124 (66%) 11 (6%) 44 (28%)
(Ensemble)

Serialized Java Messages 1062 625 (59%) 0 543 (87%) 82 (13%)
(Fortika)

† The ratio manifested/injected is shown in parenthesis.

To illustrate these aspects, Table 10.10 and Table 10.11 summarize the assess-
ment results obtained for Fortika and Ensemble,6 in the case of errors in memory

6The data considered for Ensemble is from the experiments with Ensemble’s sequencer-based

10.6. CONCLUSION 161

segments and in network messages, respectively. The following observations can
be made:

• Table 10.10 shows that Java does a better job in providing crash-failure se-
mantics to applications. The coverage of internal self-checking mechanisms
(ASSERT column) and the percentage of fail silence violations are notice-
ably improved with respect to OCAML. Note that here we are considering
Fortika executed as interpreted Java bytecode and Ensemble compiled to na-
tive machine-code. Hence, there remains the question of whether a Java
application preserves this improved reliability when compiled in a native
machine-code (e.g., by the Java just-in-time compiler).

• Table 10.11 shows a three-fold increase in the percentage of manifested er-
rors when using Java. This result can be attributed to more compact seri-
alized messages for Java than for OCAML. When an error does manifest,
however, Java is significantly more efficient in detecting it (ASSERT col-
umn), and preventing uncontrolled crashes (SIGNAL column) and erratic
behavior (last column).

To summarize, it appears that Java provides a better development platform for
fault-tolerant systems than OCAML. This result is quite unexpected, and perhaps
controversial, given that OCAML applications are more amenable for formal anal-
ysis [KHH98]. Nonetheless, recall the serious deficiencies, for both reliability
and performance, of the standard Java Serialization mechanisms discussed in Sec-
tion 10.4.4.

10.6 Conclusion

This chapter provides a thorough study of error effects in Fortika and demonstrates
how experimental error injection can be integrated in the design process of a robust
fault-tolerant system. Use of error injection enables us to uncover subtle reliability
bottlenecks both in the design of Fortika and in the implementation of Java. One
of the results obtained in Chapter 3 is that standard Java Serialization is a perfor-
mance bottleneck for Fortika. In this chapter, error injection in Fortika shows that
standard Java Serialization is also a serious dependability bottleneck. Given the
emerging popularity of Java-based fault tolerance middleware, the significance of
our findings is clear. Comparison of Fortika’s error assessment results with those
obtained for the Ensemble toolkit in [BWKI03] allows us to investigate the reli-
ability implications that the choice of the development platform can have when
building fault-tolerant systems. We argue that Java provides a better enforcement
of the crash-failure semantics than OCAML, the functional language in which En-
semble is written. This result is unexpected, given that OCAML applications are
more amenable for formal analysis [KHH98].

atomic broadcast protocol.

162 CHAPTER 10. FAULT INJECTION

Chapter 11

Conclusion

11.1 Research Assessment

In Part I, we analyzed state-of-the-art protocol composition frameworks and pro-
posed novel features to enhance their design. In Part II, we studied modular group
communication protocols in the context of several system models. We proposed
a new architecture to structure protocol modules in the dynamic system model,
and we specified and implemented atomic broadcast in the crash-recovery system
model. In Part III, we explain how to combine our contributions in the fields of
protocol composition frameworks and modular group communication in order to
build a new modular group communication toolkit: Fortika. Also in Part III, we
put Fortika robustness under test using software-based fault injections. We now
assess each of the contributions in more detail.

11.1.1 Protocol Composition Frameworks

Perspectives for Framework Description and Comparison. We proposed four
perspectives for framework description and comparison, namely (1) the composi-
tion model, which determines how protocol modules are arranged in a composition,
(2) the interaction model, which specifies how protocols modules can communi-
cate within the local process, (3) the concurrency model, which defines how con-
currency is managed, and (4) the interface with the environment, which describes
how the protocol modules can interact with the code outside the composition.

We used these four perspectives systematically whenever protocol composition
frameworks were described or compared. Moreover, they constitute the backbone
of Part I’s structure: Chapter 3 explored all four perspectives, Chapter 4 focused
on the concurrency model and some aspects of the interface with the environment,
and Chapter 5 proposed a new interaction model along with a composition model.

Comparing two Frameworks Using the Four Perspectives Defined. We com-
pared Appia and Cactus, two of the most relevant protocol composition frame-

163

164 CHAPTER 11. CONCLUSION

works. The preliminary result was that neither framework was neatly better than
the other. However, a closer comparison using the four perspectives presented
above, yielded the following conclusions. (1) Cactus’s non-hierarchical compo-
sition model is more flexible than the strict order imposed by Appia’s channels.
(2) As for the interaction model, none of the frameworks provides a convincing
mechanism to multiplex events transparently to protocol modules. (3) Appia’s
single-threaded concurrency model is easier to use and less error-prone than the
unrestricted concurrency offered by Cactus. (4) Appia offers a good mechanism
for communication from the environment to the composition but a similar mecha-
nism is missing for communication from the composition to the environment.

We also measured the performance of Appia and Cactus, the latter being sig-
nificantly faster in our tests. To investigate these results we performed an execution
profiling of the tests, which uncovered the performance bottleneck in both frame-
works: standard Java serialization. The execution time spent on serializing objects
was particularly long in Appia, which explains why it performed slower.

On the Concurrency of Protocol Composition Frameworks. We surveyed the
concurrency model of eight protocol composition frameworks, analyzing the way
they provide concurrency and the means they offer to deal with multiple threads.
We proposed a set of features that these frameworks can offer with a negligible
performance cost: (1) islands of protocol modules with reactive behavior that can
coexist with active protocol modules; (2) non-overlapping execution of protocol
modules involved in a chain of events, to avoid inconsistencies; and (3) extended
causal order as the best ordering guarantee for handler invocation. We provide a
definition of extended causal order, which is the simplest we are aware of.

The Header-Driven Interaction Model. Events are present in most protocol
composition frameworks nowadays. The main reason is that they reflect the re-
active nature of protocols in an intuitive way. However, we showed that events
are not as unquestionable as they may seem: we pointed out inherent drawbacks
and presented a new model for protocol interaction: the header-driven model. Its
main advantages are (1) better routing mechanisms, (2) better type information in
messages, (3) better protocol readability, and (4) less compositional problems.

The header-driven model does not have events at the core of its interaction
scheme: it uses message headers instead. For this reason, legacy event-driven
protocols are not compatible with header-driven ones. This is the main reason why
Fortika (as it is at present) does not support event-driven protocols.

11.1.2 Modular Group Communication

A New Architecture for Modular Group Communication. We proposed a new
architecture for group communication toolkits in the dynamic system model, i.e.,
providing a group membership service. The architecture proposed has the follow-
ing advantages: (1) it is less complex: all ordering problems are solved at the same

11.1. RESEARCH ASSESSMENT 165

place; (2) it is more powerful: not only can it be used for both passive and ac-
tive replication, but also for other customized setups; and (3) it can be made more
responsive to failures thanks to its double timeout scheme: very short timeout to
avoid blocking and a very long one to eventually exclude crashed processes.

Atomic Broadcast in the Crash-Recovery Model. We discussed why existing
specifications of atomic broadcast in the crash-recovery model are not satisfactory;
and proposed two new specifications: a uniform and a non-uniform one. The con-
cept of uniformity is not well understood in the crash-recovery model and we de-
fined it as an extension of the concept of uniformity in the crash-stop model, which
is widely accepted. We proposed the distinction between permanent and volatile
events as the key to define uniform and non-uniform properties. We then pre-
sented implementations for uniform and non-uniform atomic broadcast. Our non-
uniform atomic broadcast algorithm does not require frequent disk accesses, and
has thereby the potential to achieve a level of performance comparable to atomic
broadcast algorithms in the crash-stop model, which never access the disk.

11.1.3 Fortika

The Fortika Group Communication Toolkit. Fortika is the main prototype im-
plementation in the context of the thesis. It is a novel group communication toolkit,
written in Java, whose algorithmic code is not targeted to the protocol composition
framework used to build the composition. This is achieved by a set of conventions
that protocol programmers must observe. As a result, Fortika’s protocol modules
can be composed using any event-driven framework. Fortika has been the testbed
of the architectures and algorithms studied in the thesis. Currently, it includes com-
positions offering atomic broadcast for three different system models: (1) the static
crash-stop model, used to compare Appia and Cactus, (2) the dynamic crash-stop
model, which demonstrates the new architecture proposed for modular group com-
munication, and (3) the static crash-recovery model, which is a proof-of-concept
implementation of the atomic broadcast algorithms proposed.

Assessing the Crash-Failure Assumption with Fault Injection. Fortika proto-
cols (as most group communication toolkits) assumes that processes can only fail
by crashing. We used software-based fault injectors to test Fortika’s robustness in
the presence of more severe failure types like spurious memory or message cor-
ruption. We uncovered several reliability bottlenecks both in Fortika and in Java.
Fortika’s design was enhanced to properly transform the errors injected into clean
crash failures. Finally, our results were compared with a previous work that per-
formed fault injection into Ensemble. The (perhaps controversial) conclusion of
this comparison was that the Java platform offers better support than OCAML (the
functional language in which Ensemble is written) to cleanly transform memory
and message corruption into clean crash failures.

166 CHAPTER 11. CONCLUSION

11.2 Open Questions and Future Research Directions

Fortika Protocol Modules and the Header-Driven Model. Fortika conventions
for protocol programmers assume that protocol modules use events to interact. This
is the key issue that makes it possible to use any event-driven protocol composi-
tion framework in Fortika. On the other hand, a contribution of this thesis is the
header-driven interaction model presented in Chapter 5, which drops events and
uses messages headers exclusively. As a future work we envisage to adapt pro-
tocols in Fortika so that they can work with message headers. We reckon that
the adaptation will be deep in the sense that it will require a substantial rewriting
of protocol modules, which will probably become incompatible with event-driven
protocol composition frameworks.

Dynamic Generic Broadcast. Our new architecture for group communication
toolkits in the dynamic system model includes generic broadcast as an important
protocol module. The current implementation in Fortika does not yet have generic
broadcast. Even though some implementations of generic broadcast have been pro-
posed in the literature, all of them assume a static system model, and not a dynamic
one as needed here. This is the main obstacle to including a generic broadcast
protocol module. We are currently studying existent implementations of generic
broadcast in the static model in order to come up with a dynamic implementation
that can be incorporated to Fortika’s dynamic composition.

Improving Specification of Consensus in the Crash-Recovery Model. We have
introduced the commit primitive in Chapter 8, which is instrumental to a clean dis-
tinction between volatile and permanent events. This is the main innovation of our
specification of atomic broadcast. After a preliminary study, we believe that con-
sensus specification in the crash-recovery model can be considerably improved if
it takes into account permanent and volatile events as well. We envision this as
future work.

Combining the Crash-Recovery and Dynamic Models. We have conducted
our research in the (1) static crash-stop, (2) dynamic crash-stop, and (3) static
crash-recovery system models. The obvious missing combination is the dynamic
crash-recovery model. In such a model, not only could processes be added and
removed on the fly (group membership), but also crashed processes could recover
and, thereby, would not necessarily be excluded from the group. This would avoid
costly state transfer operations every time a crashed process is replaced by another
one (which could be a different incarnation of the same process). We plan to assess
the interest of this system model, as well as propose specifications and implemen-
tations for this model.

11.2. OPEN QUESTIONS AND FUTURE RESEARCH DIRECTIONS 167

Optimization of Fortika. We have recently modified Fortika so that it does not
use standard Java serialization, but a light-weight marshaling library [HMP05].
Instead of fully describing the class to be serialized and all its ancestors, as standard
Java serialization does [Sun01], this library only marshals the class name and the
attribute values. Preliminary measurements indicate that the gain in performance
is significant. As a result, it appears that serialization is no more the performance
bottleneck in Fortika; we intend to run again Fortika with an execution profiler
to detect new performance bottlenecks. The ultimate goal along this path is to
optimize Fortika to a maximum extent.

Fault Injection with the New Serialization Library. In Chapter 10, we saw
that standard Java serialization is also a serious reliability bottleneck since its un-
marshaling routines fail to detect errors injected in certain parts of a message. A
natural follow-up of this work is to assess and compare the robustness of the new
light-weight serialization library [HMP05] under the same error conditions.

168 CHAPTER 11. CONCLUSION

Bibliography

[AAEAS97] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting
atomic broadcast in replicated databases. In Proceedings of EuroPar
(EuroPar’97), number 1300 in Lecture Notes in Computer Science,
pages 496–503, Passau, Germany, August 1997. Extended abstract.

[ACT00] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and
consensus in the crash-recovery model. Distributed Computing,
13(2):99–125, 2000.

[ADGFT00] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg.
Thrifty generic broadcast. In M. Herlihy, editor, Proc. 14th Int’l
Symp. on Distributed Computing (DISC’00), volume 1914 of LNCS,
pages 268–282, Toledo, Spain, October 2000.

[AMMS+95] Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, and P.Ciarfella.
The Totem single-ring ordering and membership protocol. ACM
Trans. on Computer Systems, 13(4):311–342, November 1995.

[AR01] M. Achour and M. Raynal. Leader-based consensus. Parallel Pro-
cessing Letters, 11:95–107, 2001.

[AT02] Y. Amir and C. Tutu. From total order to database replication.
In Proc. 22nd IEEE Intl. Conf. on Distributed Computing Systems
(ICDCS-22), pages 494–503, Vienna, Austria, July 2002.

[Ban02] B. Ban. JavaGroups 2.0 User’s Guide, Nov 2002.

[Bar81] J. F. Bartlett. A NonStop kernel. In Proceedings of the 8th ACM
Symp. on Operating Systems Principles (SoSP-8), November 1981.

[BDGB95] O. Babaoglu, R. Davoli, L. Giachini, and M. Baker. Relacs: A com-
munication infrastructure for constructing reliable applications in
large-scale distributed systems. In Proceedings of the 28th Hawaii
Interntional Conference on System Sciences, volume II, pages 612–
621, Jan 1995.

169

170 BIBLIOGRAPHY

[BG00] R. Boichat and R. Guerraoui. Reliable broadcast in the crash-
recovery model. In Proc. of 19th IEEE Symposium on Reliable
Distributed Systems (SRDS’00), Nuremberg, Germany, oct 2000.

[BGH87] J. Bartlett, J. Gray, and B. Horst. The Evolution of Fault-Tolerant
Systems, chapter Fault Tolerance in Tandem Computer Systems,
pages 55–76. Springer-Verlag, 1987.

[BGT+01] F. Brasileiro, F. Greve, F. Tronel, M. Hurfin, and J.-P. Le Narzul.
Eva: An event-based framework for developing specialized com
munication protocols. In Proc. IEEE Int’l Symp. on Network Com-
puting and Applications (NCA’01), pages 108–119, Cambridge,
MA, USA, October 2001.

[Bha96] N. T. Bhatti. A system for constructing configurable high-level pro-
tocols. PhD thesis, University of Arizona, 1996.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley, 1987.
http://research.microsoft.com/pubs/ccontrol/.

[BHS98] N. T. Bhatti, M. A. Hiltunen, and D. Schlichting. Coyote: A
system for constructing fine-grain configurable communication ser-
vices. ACM Trans. on Computer Systems, 16(4):321–366, Novem-
ber 1998.

[BHSC98] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W. Chiu. Coy-
ote: A system for constructing fine-grain configurable communica-
tion services. ACM Trans. on Computer Systems, 16(4):321–366,
November 1998.

[Bir93] K. P. Birman. The process group approach to reliable distributed
computing. Comm. ACM, 36(12):36–53, December 1993.

[BJ87] K. P. Birman and T. A. Joseph. Reliable communication in pres-
ence of failures. ACM Trans. on Computer Systems, 5(1):47–76,
February 1987.

[BSS91] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and
atomic group multicast. ACM Transactions on Computer Systems,
9(3):272–314, August 1991.

[BvR94] K. Birman and R. van Renesse. Reliable Distributed Computing
with the Isis Toolkit. IEEE Computer Society Press, 1994.

[BWKI03] C. Basile, L. Wang, Z. Kalbarczyk, and R. Iyer. Group communi-
cation protocols under errors. In Proc. of 22th IEEE Symposium on
Reliable Distributed Systems (SRDS’03), 2003.

BIBLIOGRAPHY 171

[CBDS02] B. Charron-Bost, X. Défago, and A. Schiper. Broadcasting mes-
sages in fault-tolerant distributed systems: the benefit of handling
input-triggered and output-triggered suspicions differently. In Pro-
ceedings of the 20th IEEE Symposium on Reliable Distributed Sys-
tems (SRDS), pages 244–249, Osaka, Japan, October 2002.

[CF99] F. Cristian and C. Fetzer. The timed asynchronous distributed
system model. IEEE Trans. on Parallel & Distributed Systems,
10(6):642–657, June 1999.

[CHT96] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure
detector for solving consensus. Journal of the ACM, 43(4):685–
722, July 1996.

[CHTCB96] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On
the impossibility of group membership. In Proc. of the 15th Annual
ACM Symp. on Principles of Distributed Computing (PODC’96),
pages 322–330, New York, USA, May 1996. ACM.

[CKV01] G. Chockler, I. Keidar, and R. Vitenberg. Group communication
specifications: A comprehensive study. ACM Computing Surveys,
33(4):427–469, May 2001.

[CM84] J. Chang and N. F. Maxemchuck. Reliable broadcast protocols.
ACM Trans. on Computer Systems, 2(3):251–273, August 1984.

[CT91] T. D. Chandra and S. Toueg. Unreliable failure detectors for asyn-
chronous systems. In Proceedings of the 10th ACM Symposium on
Principles of Distributed Computing (PODC-10), pages 325–340,
Montreal, Quebec, Canada, August 1991.

[CT94] T. D. Chandra and S. Toueg. Unreliable failure detectors for re-
liable distributed systems. Technical Report TR94-1458, Dept. of
Computer Science, Cornell University, Ithaca, NY, USA, October
1994.

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of ACM, 43(2):225–267, March 1996.

[CZ85] D. R. Cheriton and W. Zwaenepoel. Distributed process groups in
the V kernel. ACM Trans. on Computer Systems, 3(2):77–107, May
1985.

[DFS00] L. Duchien, G. Florin, and L. Seinturier. Partial order relations
in distributed object environments. SIGOPS Oper. Syst. Rev.,
34(4):56–75, 2000.

http://www.acm.org/pubs/toc/Abstracts/jacm/234549.html
http://www.acm.org/pubs/toc/Abstracts/jacm/234549.html

172 BIBLIOGRAPHY

[DJMT96] S. Dawson, F. Jahanian, T. Mitton, and T. Tung. Testing of fault-
tolerant and real-time distributed systems via protocol fault injec-
tion. In Proc. of the Symp. on Fault-Tolerant Computing, pages
404–414, 1996.

[DLS88] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the pres-
ence of partial synchrony. Journal of ACM, 35(2):288–323, April
1988.

[DM96] D. Dolev and D. Malkhi. The Transis approach to high availability
cluster communication. Comm. ACM, 39(4):64–70, April 1996.

[DSU04] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and mul-
ticast algorithms: Taxonomy and survey. ACM Computing Surveys,
36(4):372–421, 2004.

[EAWJ02] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A
survey of rollback-recovery protocols in message-passing systems.
ACM Comput. Surv., 34(3):375–408, 2002.

[EHS97] J. Ellsberger, D. Hogrefe, and A. Sarma. SDL: Formal Object-
Oriented Language For Communicating System s. Prentrice Hall,
Harlow, England, 1997.

[EMPS04a] R. Ekwall, S. Mena, S. Pleisch, and A. Schiper. Towards flexible
finite-state-machine-based protocol composition. Technical report,
IC/2004/63. École Polytechnique Fédérale de Lausanne, July 2004.

[EMPS04b] R. Ekwall, S. Mena, S. Pleisch, and A. Schiper. Towards flexible
finite-state-machine-based protocol composition. In Proceedings of
the 3rd International Symposium on Network Computing and Ap-
plications (IEEE NCA04), Cambridge, MA, USA, August 2004.

[EMS95] P. D. Ezhilchelvan, R. A. Macêdo, and S. K. Shrivastava. Newtop:
A fault-tolerant group communication protocol. In Proceedings of
the 15th International Conference on Distributed Computing Sys-
tems (ICDCS-15), pages 296–306, Vancouver, Canada, May 1995.

[ES06] R. Ekwall and A. Schiper. Solving atomic broadcast with indirect
consensus. In 2006 IEEE International Conference on Dependable
Systems and Networks (DSN 2006), 2006.

[EUS02] R. Ekwall, P. Urbán, and A. Schiper. Robust TCP connections for
fault tolerant computing. In Proc. 9th Int’l Conf. on Parallel and
Distributed Systems (ICPADS), Chung-li, Taiwan, December 2002.

[Fis83] M. J. Fischer. The consensus problem in unreliable distributed
systems (a brief survey). Technical Report 273, Department of

BIBLIOGRAPHY 173

Computer Science, Yale University, New Haven, Conn., USA, June
1983.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, April 1985.

[Fuc98] E. Fuchs. Validating the fail-silence assumption of the MARS ar-
chitecture. In Proc. of the Dependable Computing for Critical Ap-
plications Conf., pages 225–247, 1998.

[FvR96] R. Friedman and R. van Renesse. Strong and Weak Virual Syn-
chrony in Horus. In 15th IEEE Symp. on Reliable Distributed
Systems (SRDS-15), pages 140–149, Niagara-on-the-Lake, Ontario,
Canada, September 1996.

[Gen04] C. Gensoul. Implementing nuntius in the Objective Caml system.
Master’s thesis, École Polytechnique Fédérale de Lausanne (EPFL),
2004.

[GOS98] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn communication
channels. Technical Report 98/272, École Polytechnique Fédérale
de Lausanne, Switzerland, March 1998.

[GP96] A. Galleni and D. Powell. Consensus and Membership in Syn-
chronous and Asynchronous Distributed Systems. RR 96104,
LAAS-CNRS, Toulouse, April 96.

[Gra86] J. Gray. Why do computers stop and what can be done about it ?
In Proceedings of the 5th Symposium on Reliablity in Distributed
Software and Database systems, January 1986.

[GS97] R. Guerraoui and A. Schiper. Software-Based Replication for Fault
Tolerance. IEEE Computer, 30(4):68–74, April 1997.

[Hay98] M. Hayden. The Ensemble system. Technical Report TR98-1662,
Dept. of Computer Science, Cornell University, January 8, 1998.

[HMP05] B. Haumacher, T. Moschny, and M. Philippsen. Fast Object Seri-
alization: uka.transport. Universität Karlsruhe, Fakultät für
Informatik, Karlsruhe, Germany, March 2005.

[HMR98] M. Hurfin, A. Mostéfaoui, and M. Raynal. Consensus in asyn-
chronous systems where processes can crash and recover. In Pro-
ceedings of the 17th Symposium on Reliable Distributed Systems
(SRDS), pages 280–286, West Lafayette, IN, USA, October 1998.

http://www.acm.org/pubs/toc/Abstracts/0004-5411/214121.html
http://www.acm.org/pubs/toc/Abstracts/0004-5411/214121.html

174 BIBLIOGRAPHY

[HP91] N. C. Hutchinson and L. L. Peterson. The x-Kernel: An architec-
ture for implementing network protocols. IEEE Trans. on Software
Engineering, 17(1):64–76, January 1991.

[HS98] M. A. Hiltunen and R. D. Schlichting. A configurable membership
service. IEEE Transactions on Computers, 47(5):573–586, May
1998.

[HS00] M. A. Hiltunen and R. D. Schlichting. The Cactus approach to
building configurable middleware services. In Proc. Workshop
on Dependable System Middleware and Group Communication
(DSMGC 2000), Nürnberg, Germany, October 2000.

[HT94] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant
broadcasts and related problems. TR 94-1425, Dept. of Computer
Science, Cornell University, Ithaca, NY, USA, May 1994.

[IBM00] IBM Corporation. SockPerf: A Peer-to-Peer Socket Benchmark
Used for Comparing and Measuring Java Socket Performance,
2000.

[ISO96] ISO. Information technology – Open Systems Interconnection
– Connection-oriented Session protocol: Protocol specification.
ISO/IEC 8327-1. International Organization for Standards, 1996.

[JKN96] W. Jia, J. Kaiser, and E. Nett. RMP: Fault-tolerant group communi-
cation. IEEE Micro, 16(2):59–67, April 1996.

[KA00] B. Kemme and G. Alonso. A new approach to developing and
implementing eager database replication protocols. ACM Trans.
Database Syst., 25(3):333–379, 2000.

[KE05] A. Kupsys and R. Ekwall. Architectural issues of JMS compliant
group communication. In 4th IEEE International Symposium on
Network Computing and Applications (IEEE NCA 2005), 2005.

[Kem00] B. Kemme. Database Replication for Clusters of Workstations.
PhD thesis 13864, Swiss Federal Institute of Technology, Zürich,
Switzerland, August 2000.

[KHH98] C. Kreitz, M. Hayden, and J. Hickey. A proof environment for the
development of group communication systems. Lecture Notes in
Computer Science, 1421:317–332, 1998.

[KM00] J. S. I. Keidar and K. Marzullo. Optimistic virtual synchrony. In
Proc. of 19th IEEE Symposium on Reliable Distributed Systems
(SRDS’00), pages 42–51, Nuremberg, Germany, October 2000.

BIBLIOGRAPHY 175

[KPSW04] A. Kupsys, S. Pleisch, A. Schiper, and M. Wiesmann. Towards
JMS compliant group communication - a semantic mapping. In
Proceedings of the 3rd International Symposium on Network Com-
puting and Applications (IEEE NCA04), 2004.

[KT91] F. Kaashoek and A. Tanenbaum. Group communication in the
Amoeba distributed operating system. In Proceedings of the
11th International Conference on Distributed Computing Systems
(ICDCS-11), pages 222–230, Arlington, TX, USA, May 1991.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[Lap92] J.-C. Laprie, editor. Dependability: Basic Concepts and Terminol-
ogy in English, French, German, Italian and Japanese, volume 5
of Dependable Computing and Fault Tolerant Systems. Springer-
Verlag, 1992.

[Ler00] X. Leroy. The Objective Caml system: Documentation and user’s
manual, 2000. With Damien Doligez, Jacques Garrigue, Didier
Rémy, and Jérôme Vouillon.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals
problem. ACM Trans. on Progr. Languages and Syst., 4(3):382–
401, 1982.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[Mal96] C. P. Malloth. Conception and Implementation of a Toolkit for
Building Fault-Tolerant Distributed Applications in Large Scale
Networks. PhD thesis, École Polytechnique Fédérale de Lausanne,
Switzerland, September 1996.

[MDB01] A. Montresor, R. Davoli, and Ö. Babaoğlu. Middleware for depend-
able network services in partitionable distributed systems. Operat-
ing Systems Review, 35(1):73–84, January 2001.

[Men01] S. Mena. Configuration and extension of group communication pro-
tocols. Final Report. Graduate School in Computer Science. École
Polytechnique Fédérale de Lausanne, July 2001.

[MFSW95] C. P. Malloth, P. Felber, A. Schiper, and U. Wilhelm. Phoenix: A
toolkit for building fault-tolerant distributed applications in large
scale. In Workshop on Parallel and Distributed Platforms in Indus-
trial Products, San Antonio, Texas, USA, October 1995. Workshop
held during the 7th IEEE Symp. on Parallel and Distributed Pro-
cessing, (SPDP-7).

176 BIBLIOGRAPHY

[MJ94] H. Madeira and J.G.Silva. Experimental evaluation of the fail-silent
behavior in computers without error masking. In Proc. of the Int’l
Symp. on Fault-Tolerant Computing, pages 350–359, 1994.

[MMSA+96] L. E. Moser, P. M. Melliar-Smith, D. A. Agrawal, R. K. Budhia,
and C. A. Lingley-Papadopoulos. Totem: A fault-tolerant multicast
group communication system. Comm. ACM, 39(4):54–63, April
1996.

[Mon94] T. Montgomery. Design, implementation, and verification of the re-
liable multicast protocol. Master’s thesis, West Virginia University,
Dec 1994.

[MPR00] H. Miranda, A. Pinto, and L. Rodrigues. Application Program In-
terface Specification of Appia, November 2000.

[MPR01] H. Miranda, A. Pinto, and L. Rodrigues. Appia: A flexible protocol
kernel supporting multiple coordinated channels. In 21st Int’l Conf.
on Distributed Computing Systems (ICDCS’ 01), pages 707–710,
Washington - Brussels - Tokyo, April16–19 2001.

[MPS93] S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A com-
munication substrate for fault-tolerant distributed programs. Dis-
tributed Systems Engineering, 1(2):87–103, 1993.

[MR99a] H. Miranda and L. Rodrigues. Communication support for multi-
ple QoS requirements. In 3rd European Research Seminar on Ad-
vances in Distributed Systems (ERSADS’99), Madeira Island, Por-
tugal, April 1999.

[MR99b] H. Miranda and L. Rodrigues. Flexible communication support
for CSCW applications. In 5th Int’l Workshop on Groupware
- CRIWG’99, pages 338–342, Cacún, México, September 1999.
IEEE.

[OGS97] R. Oliveira, R. Guerraoui, and A. Schiper. Consensus in the crash-
recover model. Technical Report 97/239, École Polytechnique
Fédérale de Lausanne, Switzerland, August 1997.

[PGS98] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic broad-
cast in replicated databases. In Proceedings of EuroPar (Eu-
roPar’98), September 1998.

[Pin01] A. Pinto. Appia group communication manual, February 2001.

[PMJPKA00] M. Patiño-Martínez, R. Jiménez-Peris, B. Kemme, and G. Alonso.
Scalable replication in database clusters. In M. Herlihy, editor, Proc.
14th Intl. Symp. on Distributed Computing (DISC-14), volume 1914
of LNCS, pages 315–329, Toledo, Spain, October 2000.

BIBLIOGRAPHY 177

[PMR01] A. Pinto, H. Miranda, and L. Rodrigues. Light-weight groups: an
implementation in ensemble. In Fourth European Research Sem-
inar on Advances in Distributed Systems (ERSADS’01), Bertinoro
(Forli),Italy, May 2001.

[PS99] F. Pedone and A. Schiper. Generic broadcast. Technical Re-
port SSC/1999/012, École Polytechnique Fédérale de Lausanne,
Switzerland, April 1999.

[PS02] F. Pedone and A. Schiper. Handling message semantics with generic
broadcast protocols. Distributed Computing, 15(2):97–107, April
2002.

[Ric96] A. Ricciardi. Impossibility of (repeated) reliable broadcast. Techni-
cal Report TR-PDS-1996-003, Univ of Texas, Austin, April 1996.

[ROT94] M. Rimen, J. Ohlsson, and J. Torin. On microprocessor error behav-
ior modeling. In Proc. of the Int’l Symp. on Fault-Tolerant Comput-
ing, 1994.

[RR03] L. Rodrigues and M. Raynal. Atomic broadcast in asynchronous
crash-recovery distributed systems and its use in quorum-based
replication. IEEE Transactions on Knowledge and Data Engineer-
ing, 15(4), 2003.

[RWS06] O. Rütti, P. T. Wojciechowski, and A. Schiper. Structural and algo-
rithmic issues of dynamic protocol update. In 20th IEEE Interna-
tional Parallel and Distributed Processing Symposium, April 2006.

[Sch93] F. B. Schneider. Replication management using the state-machine
approach. In S. Mullender, editor, Distributed Systems, ACM Press
Books, chapter 7, pages 169–198. Addison-Wesley, second edition,
1993.

[Sch06] A. Schiper. Dynamic group communication. Distributed Comput-
ing, 18(5):359–374, 2006.

[SFKI00] D. Stott, B. Floering, Z. Kalbarczyk, and R. Iyer. Dependability
assessment in distributed systems with lightweight fault injectors in
NFTAPE. In Proc. of the Int’l Computer Performance and Depend-
ability Symp., 2000.

[SS93] A. Schiper and A. Sandoz. Uniform reliable multicast in a virtually
synchronous environment. In Proceedings of the 13th International
Conference on Distributed Computing Systems (ICDCS-13), pages
561–568, Pittsburgh, Pennsylvania, USA, May 1993. IEEE Com-
puter Society Press.

178 BIBLIOGRAPHY

[ST06] A. Schiper and S. Toueg. From set membership to group member-
ship: A separation of concerns. IEEE Transactions on Dependable
and Secure Computing, 3(1):2–12, 2006.

[Sun01] Sun Microsystems Inc., Palo Alto, CA. Java Object Serialization
Specification, 2001. Revision 1.4.4.

[UDS02] P. Urbán, X. Défago, and A. Schiper. Neko: A single environment
to simulate and prototype distributed algorithms. Journal of Infor-
mation Science and Engineering, 18(6):981–997, November 2002.

[Urb03] P. Urbán. Evaluating the Performance of Distributed Agreement Al-
gorithms: Tools, Methodology and Case Studies. PhD thesis, École
Polytechnique Fédérale de Lausanne, Switzerland, August 2003.
Number 2824.

[vRBC+93] R. van Renesse, K. Birman, R. Cooper, B. Glade, and P. Stephenson.
The Horus system. In K. Birman and R. van Renesse, editors, Re-
liable Distributed Computing with the Isis Toolkit, pages 133–147.
IEEE Computer Society Press, 1993.

[vRBG+96] R. van Renesse, K. P. Birman, B. B. Glade, K. Guo, M. Hayden,
T. Hickey, D. Malki, A. Vaysburd, and W. Vogels. Horus: A flexible
group communications system. Technical Report TR95-1500, Dept.
of Computer Science, Cornell University, Ithaca, NY, USA, April
1996.

[VRBM96] R. Van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible
group communication system. Comm. ACM, 39(4):76–83, April
1996.

[WHS01] G. Wong, M. Hiltunen, and R. Schlichting. CTP: A configurable
and extensible transport protocol. In Proceedings of the 20th An-
nual Conference of IEEE Communications and Computer Societies
(INFOCOM 2001), Anchorage, Alaska, April 2001.

[Wie02] M. Wiesmann. Group Communications and Database Replication:
Techniques, Issues and Performance. PhD thesis, École Polytech-
nique Fédérale de Lausanne, Switzerland, May 2002. Number
2577.

[WMK94] B. Whetten, T. Montgomery, and S. Kaplan. A high performance
totally ordered multicast protocol. In Springer-Verlag, editor, The-
ory and Practice in Distributed Systems, number 938 in Lecture
Notes in Computer Science, pages 33–57, Dagstuhl Castle, Ger-
many, September 1994.

BIBLIOGRAPHY 179

[WMS02a] P. T. Wojciechowski, S. Mena, and A. Schiper. Semantics of proto-
col modules composition and interaction. In 5th Int’l Conf. on Co-
ordination Models and Languages, volume 2315 of Lecture Notes
in Computer Science, pages 389–404. Springer, April 2002.

[WMS02b] P. T. Wojciechowski, S. Mena, and A. Schiper. Semantics of pro-
tocol modules composition and interaction. Technical Report IC-
2002/02, School of Computer and Communication Sciences, EPFL,
February 2002. A shorter version appeared in Proceedings of Coor-
dination 2002 (The Fifth International Conference on Coordination
Models and Languages), April 2002.

[WRS04] P. Wojciechowski, O. Rütti, and A. Schiper. SAMOA: Framework
for synchronization augmented microprotocol approach. In Proc.
of Int. Parallel and Distributed Processing Symposium (IPDPS’04),
Santa Fe, US, 2004.

[WS04] M. Wiesmann and A. Schiper. Beyond 1-safety and 2-safety
for replicated databases: Group-safety. In Proceedings of the
9th International Conference on Extending Database Technology
(EDBT2004), Heraklion - Crete - Greece, March 2004.

[WS05] M. Wiesmann and A. Schiper. Comparison of database replication
techniques based on total order broadcast. IEEE Transactions on
Knowledge and Data Engineering, 17(4):551–566, April 2005.

[Yos01] T. Yoshida. Message ordering based on the strength of causal rela-
tion. In 15th Int’l Conf. on Information Networking (ICOIN), pages
915–920, Beppu, Japan, February 2001.

http://lsewww.epfl.ch/Publications/ById/392.html
http://lsewww.epfl.ch/Publications/ById/392.html

180 BIBLIOGRAPHY

List of publications

Published Parts of this Thesis

Chapter 3

[MCGS03] S. Mena, X. Cuvellier, C. Grégoire, and A. Schiper. Appia
vs. Cactus: Comparing protocol composition frameworks.
In Proc. of 22nd IEEE Symposium on Reliable Distributed
Systems (SRDS’03), Florence, Italy, October 2003.

Chapter 4

[UDMK06] P. Urbán, S. Mena, X. Défago, and T Katayama. Con-
currency in microprotocol frameworks. Research Report
IS-RR-2006-004, Japan Advanced Institute of Science and
Technology, Kanazawa, Japan, March 2006.

Chapter 5

[BMN05a] D. Bünzli, S. Mena, and U. Nestmann. Protocol composi-
tion frameworks: A header-driven model. In Proc. of 3rd
IEEE International Symposium on Network Computing and
Applications (IEEE NCA’04), Cambridge, MA, USA, July
2005.

[BMN05b] D. Bünzli, S. Mena, and U. Nestmann. Protocol compo-
sition frameworks: A header-driven model. Technical Re-
port IC/2005/07, École Polytechnique Fédérale de Lausanne,
Switzerland, March 2005. Extended version.

Chapter 7

[MSW03a] S. Mena, A. Schiper, and P. T. Wojciechowski. A step to-
wards a new generation of group communication systems. In
Proc. of ACM/IFIP/USENIX 4th International Middleware

181

182 LIST OF PUBLICATIONS

Conference (Middleware’03), Springer LNCS, Vol 2672. Rio
de Janeiro, Brazil, June 2003.

[MSW03b] S. Mena, A. Schiper, and P. T. Wojciechowski. A step to-
wards a new generation of group communication systems.
Technical Report IC/2003/01, École Polytechnique Fédérale
de Lausanne, Switzerland, January 2003.

Chapter 8

[MS05a] S. Mena, and A. Schiper. A new look at atomic broadcast
in the asynchronous crash-recovery model. In Proc. of 24th
IEEE International Symposium on Reliable Distributed Sys-
tems (SRDS’05), Orlando, FL, USA, October 2005.

[MS05b] S. Mena, and A. Schiper. A new look at atomic broad-
cast in the asynchronous crash-recovery model. Technical
Report IC/2004/101, École Polytechnique Fédérale de Lau-
sanne, Switzerland, December 2004.

Chapter 10

[MBK+05] S. Mena, C. Basile, Z. Kalbarczyk, A. Schiper, and R. K. Iyer.
Assessing the crash-failure assumption of group communica-
tion protocols. In Proc. of 16th IEEE International Sympo-
sium on Software Reliability Engineering (ISSRE’05), Chi-
cago, IL, USA, November 2005.

Other Publications in the Context of this Thesis

[BFM+06] D. Bünzli, R. Fuzzati, S. Mena, U. Nestmann, O. Rütti, A.
Schiper, and P. T. Wojciechowski. Advances in the de-
sign and implementation of group communication middle-
ware. In Dependable Systems: Software, Computing, Net-
works, Springer LNCS, Vol 4028. September 2006.

[EMPS04a] R. Ekwall, S. Mena, S. Pleisch, and A. Schiper. Towards
flexible finite-state-machine-based protocol composition. In
Proc. of 3rd IEEE International Symposium on Network Com-
puting and Applications (IEEE NCA’04), Cambridge, MA,
USA, August 2004.

[EMPS04b] R. Ekwall, S. Mena, S. Pleisch, and A. Schiper. Towards
flexible finite-state-machine-based protocol composition.
Technical Report IC/2004/63, École Polytechnique Fédérale
de Lausanne, Switzerland, July 2004. Extended version.

183

[WMS02a] P .T. Wojciechowski, S. Mena, and A. Schiper. Seman-
tics of Protocol Module Composition and Interaction. In
Proc. of 5th International Conference on Coordination Mod-
els and Languages (Coordination’02), Springer LNCS, Vol
2315. York, United Kingdom, April 2002.

[WMS02b] P .T. Wojciechowski, S. Mena, and A. Schiper. Semantics
of Protocol Module Composition and Interaction. Technical
Report IC/2002/02, École Polytechnique Fédérale de Lau-
sanne, Switzerland, February 2002. Extended version.

184 LIST OF PUBLICATIONS

Curriculum Vitæ

I was born in Valencia (Spain) at the end of 1975. I attended primary and secondary
school in Valencia. From 1985 to 1989, I attended weekly courses at CETISA
Study Center (Valencia), where I had my first contact with computer science. In
1993, I graduated from San José de Calasanz High School, also in Valencia, and
started studying computer science at the Technical University of Valencia. I grad-
uated with a B.Sc. (1996), and a M.Sc. (1999) degrees in Computer Engineering,
with distinction. In March 1997, I was selected for a 12-month-long computer sci-
ence internship at Iberia Spanish Airlines, in Madrid. In July 1999, 12 days after
finishing my degree, I started working at Norsistemas (Madrid), nowadays called
Soluziona, where I was a junior consultant. I served in this post for six months,
until I started my military service, back in Valencia. In February 2000, I was hired
at the Information Technology Area of Iniciativas (Valencia), a state-subventioned
enterprise devoted to prevention of working environment accidents, where I per-
formed system administration tasks, as well as web development. In October 2000,
I moved to Switzerland to follow the Graduate School in Computer Science at the
Ecole Polytechnique Fédérale de Lausanne. As part of the Graduate School, I car-
ried out a project on modular group communication in the Distributed Systems
Laboratory (LSR) under the supervision of Professor André Schiper. Since Octo-
ber 2001, I have been working at LSR as a research and teaching assistant and a
PhD student under the guidance of Professor André Schiper.

185

http://www.upv.es/
http://www.iberia.com
http://www.soluziona.com/
http://www.redpqp.com/
http://www.epfl.ch/
http://lsrwww.epfl.ch/
http://lsrwww.epfl.ch/

	Front Matter
	Abstract
	Résumé
	Acknowledgments

	Introduction
	Research Context and Motivation
	Overview of Contributions
	Protocol Composition Frameworks
	Modular Group Communication
	Fortika

	Structure of the Thesis

	I Advances in Protocol Composition Frameworks
	Protocol Composition Frameworks
	Terminology
	Composition and Protocol Modules
	Asynchronous Communication
	Synchronous Communication
	Communication over the Network
	Symmetric Compositions

	Perspectives for Framework Description and Comparison
	Relevant Protocol Composition Frameworks
	Appia
	Cactus and the x-kernel
	Samoa
	Other Protocol Composition Frameworks

	Roadmap to the Remainder of Part I

	Comparison of Protocol Composition Frameworks
	Introduction
	Composition Implemented
	Description
	Conforming to Fortika Conventions

	Comparison
	Similarities
	Differences
	Performance Comparison

	Proposals for Better Frameworks
	Composition Model
	Interaction Model
	Concurrency Model
	Interface with the Environment

	Conclusion

	Concurrency in Protocol Frameworks
	Introduction
	Protocol Composition Frameworks Considered
	Concurrency Models
	Improvements for Existing Concurrency Models
	Drawbacks of Existing Concurrency Models
	Islands of Reactive Protocol Modules
	Comparing with Transparent Concurrency

	Avoiding Overlapping Execution of Handlers
	Anticipating Consistency Problems
	Non-Overlapping Handler Executions

	Ordering Events
	Feasibility of Ordering
	Definitions of Ordering
	Implementations of Ordering

	Conclusion

	The Header-Driven Model
	Introduction
	Assumptions on the Framework
	Programming Language
	Composition and Interaction Models
	Interface with the Environment

	Shortcomings of the Event-Driven Model
	An Abstract Event-Driven Model
	The Event Routing Problem
	Ad-hoc Solutions to the Event Routing Problem
	Peer Interactions in the Event-Driven Model

	The Header-Driven Model
	From Events to Headers: Overview of the New Model
	Header-Driven Primitives
	The Composition Model

	Header-Driven vs. Event-Driven
	Conclusion

	II Advances in Modular Group Communication
	System Models, Specifications & Toolkits
	Introduction
	System and Failure Models
	Synchrony
	Failures
	Groups
	Recovery Capabilities

	From Lossy Channels to Group Communication
	Communication Channels
	Unreliable Failure Detectors
	Uniform and Non-Uniform Protocols
	Consensus
	Broadcast Protocols in the Static Model
	Broadcast Protocols in the Dynamic Model

	Group Communication Toolkits in the 90s
	Monolithic Toolkits
	Modular Protocol Stacks

	Roadmap to the Rest of Part II

	A New Architecture for Group Communication
	Introduction
	Discussion on Existing Architectures
	Membership & Failure Detection Are Strongly Coupled
	Atomic Broadcast Algorithms Rely on Group Membership
	The Consensus Abstraction Is Barely Used

	The New Architecture
	Overview of the New Architecture
	Augmented Version of the New Architecture
	Full Version of the New Architecture

	Assessment of the New Architecture
	Less Complex
	More Powerful (Provides More Functionalities)
	Higher Responsiveness
	Minor Efficiency Issue

	Conclusion

	Atomic Broadcast in the Crash-Recovery Model
	Introduction
	Specification of Abcast in the Crash-Recovery Model
	Definitions
	Specification of Atomic Broadcast
	Related Work

	Keeping the Process State Consistent
	Usage of commit
	Addressing the Atomicity Problem

	Solving Uniform and Non-Uniform Atomic Broadcast
	Building Blocks
	Uniform Atomic Broadcast
	Non-Uniform Atomic Broadcast
	Which Consensus Algorithm Should Be Used?

	Performance Evaluation
	Conclusion

	III Putting It All Together: Fortika
	The Fortika Group Communication Toolkit
	Introduction
	Conventions for Obtaining Framework-Independent Code
	Compositions Implemented
	Static Crash-Stop Model
	Dynamic Crash-Stop Model
	Static Crash-Recovery Model

	Relevant Implementation Issues
	Interface with the Application
	Interface with the Network
	Flow Control

	Conclusion

	Fault Injection
	Introduction
	Experimental Setup
	Error Injection into Memory
	Error Models and Outcome Categories
	Software-Based Error Injectors
	Profiling
	Memory Injection Results
	Discovered Reliability Bottlenecks
	Assessment of Enhanced Fortika Design

	Network Injections
	Message Types
	Error Models and Outcome Categories
	Network Injection Results
	Discovered Reliability Bottlenecks
	Assessment of Enhanced Fortika Design

	Java vs. OCAML
	Conclusion

	Conclusion
	Research Assessment
	Protocol Composition Frameworks
	Modular Group Communication
	Fortika

	Open Questions and Future Research Directions

	Bibliography
	List of publications
	Curriculum Vitae

