
THÈSE NO 2577 (2002)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE À LA FACULTÉ I&C, SECTION D'INFORMATIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

informaticien diplômé de l'Université de Genève

de nationalité suisse et originaire de Collonge-Bellerive (GE)

acceptée sur proposition du jury:

Prof. A. Schiper, directeur de thèse
Prof. K. Aberer, rapporteur
Prof. G. Alonso, rapporteur

Prof. Ph. Pucheral, rapporteur

Lausanne, EPFL
2002

GROUP COMMUNICATIONS AND DATABASE REPLICATION:
TECHNIQUES, ISSUES AND PERFORMANCE

Matthias WIESMANN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147899862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

Databases are an important part of today’s IT infrastructure: both companies and
state institutions rely on database systems to store most of their important data. As
we are more and more dependent on database systems, securing this key facility is
now a priority. Because of this, research on fault-tolerant database systems is of
increasing importance.

One way to ensure the fault-tolerance of a system is by replicating it. Repli-
cation is a natural way to deal with failures: if one copy is not available, we use
another one. However implementing consistent replication is not easy. Database
replication is hardly a new area of research: the first papers on the subject are more
than twenty years old. Yet how to build an efficient, consistent replicated database
is still an open research question.

Recently, a new approach to solve this problem has been proposed. The idea is
to rely on some communication infrastructure calledgroup communications.This
infrastructure offers some high-level primitives that can help in the design and
the implementation of a replicated database. While promising, this approach to
database replication is still in its infancy.

This thesis focuses on group communication-based database replication and
strives to give an overall understanding of this topic. This thesis has three major
contributions. In the structural domain, it introduces a classification of replication
techniques. In the qualitative domain, an analysis of fault-tolerance semantics is
proposed. Finally, in the quantitative domain, a performance evaluation of group
communication-based database replication is presented.

The classification gives an overview of the different means to implement data-
base replication. Techniques described in the literature are sorted using this clas-
sification. The classification highlights structural similarities of techniques orig-
inating from different communities (database community and distributed system
community). For each category of the classification, we also analyse the require-
ments imposed on the database component and group communication primitives
that are needed to enforce consistency.

Group communication-based database replication implies building a system
from two different components: a database system and a group communication
system. Fault-tolerance is an end-to-end property: a system built from two com-
ponents tends to be as fault-tolerant as the weakest component. The analysis
of fault-tolerance semantics show what fault-tolerance guarantee is ensured by

i

II

group communication based replication techniques. Additionally a new fault-
tolerance guarantee,group-safety,is proposed. Group-safety is better suited to
group communication-based database replication. We also show that group-safe
replication techniques can offer improved performance.

Finally, the performance evaluation offers a quantitative view of group commu-
nication based replication techniques. The performance of group communication
techniques and classical database replication techniques is compared. The way
those different techniques react to different loads is explored. Some optimisation
of group communication techniques are also described and their performance ben-
efits evaluated.

III

Résumé

Les bases de données représentent une composante importante de l’infrastruc-
ture informatique d’aujourd’hui. Que ce soit dans le monde de l’industrie ou de
l’administration, de plus en plus d’institutions utilisent des bases de données pour
stocker les informations cruciales. Chaque jour, notre société dépend de manière
croissante des bases de données. La fiabilisation de ces systèmes est donc devenu
une priorité. De ce fait, les bases de données tolérantes aux fautes sont un domaine
de recherche dont l’importance va croissant.

Une manière d’offrir la tolérance aux pannes est la réplication. La réplication
est une approche naturelle aux problèmes des défaillances: si une copie des don-
nées ne fonctionne plus, on a recours à une autre copie. Malheureusement, assurer
une réplication consistante du point de vue des données n’est pas chose aisée. La
recherche sur les bases de données répliquées n’est de loin pas nouvelle: les pre-
mières publications sur le sujet fêteront bientôt leur quart de siècle. Toutefois, la
question d’une technique de réplication de base de données consistante et efficace
reste aujourd’hui encore ouverte.

Récemment, une nouvelle approche au problème a été proposée : elle s’appuie
sur une infrastructure de communication généralement appeléecommunications
de groupes. Cette infrastructure permet, au moyen de primitives de haut niveau, de
simplifier l’architecture et l’implémentation de techniques de réplication. Bien que
prometteuse, cette approche n’en est qu’à ses premier balbutiements et la plupart
des recherches dans ce domaine n’en sont qu’à un stade exploratoire.

Cette thèse se concentre sur les techniques de réplication de bases de don-
nées basées sur les communications de groupes. Le but est d’obtenir une certaine
compréhension du domaine et de fournir une synthèse. Cette thèse comporte trois
contributions majeures. Du point de vue structurel, elle introduit une classification
des techniques de réplication. Du point de vue qualitatif, une analyse des garan-
ties de tolérance aux pannes est proposée. Finalement, une analyse de performance
offre un point de vue quantitatif sur le sujet.

La classification donne un aperçu des différentes approches possibles au pro-
blème de la réplication de bases de données. Les différentes techniques proposées
dans la littérature sont classifiées et cataloguées. Cette classification met en évi-
dence les similarités structurelles entre des techniques originant de communautés
scientifiques différentes (communuauté des basses de donnée et communauté de
systèmes répartis). Pour chaque catégorie de techniques, les impératifs imposés

IV

au sous-système de base de donnée ainsi que les primitives de communications
nécessaires pour assurer la cohérence sont présentés.

Les techniques de bases de données basées sur les communications de groupes
s’appuient sur deux composants : un module de communication de groupes et un
module de base de données. La tolérance aux pannes est une propriété globale : un
système construit à partir de deux composants aura tendance à être aussi robuste
que le plus faible de ces deux composants. L’analyse des garanties de tolérance aux
fautes permet de comprendre quel niveau de robustesse est offert par une technique
de réplication basée sur des communications de groupes. Un nouveau critère de
tolérance aux pannes est proposé:((group-safety)). Ce critère est plus approprié
pour décrire la tolérance aux pannes des techniques de réplication basées sur des
communications de groupes. De plus, certaines techniques peuvent être adaptées à
ce critère, et ainsi offrir des performances améliorées.

Finalement, l’évaluation de performances donne une vue quantitative des per-
formances de techniques de réplication basées sur des communications de groupes.
Les performances de ces techniques, ainsi que de techniques de réplication clas-
siques, sont comparées. Le comportement de toutes les techniques à des charges
différentes est étudié et présenté. Enfin des optimisations liées à certaines tech-
niques basées sur les communications de groupe sont présentées, et leurs bénéfices
en termes de performance sont évalués.

In Memoriam Isabelle de Bellet

❧

VI

Acknowledgements

I am very grateful to many people who helped in one way or another for this work.
First of all, I would like to thankAndré Schiperfor his confidence in me, for
accepting me in his research group and supervising me in this work.

I also wish to thank all people involved in the DRAGON project:Fernando
Pedone, Bettina Kemme, Gustavo Alonsoand Roel Vandewall, all people without
whom this work would not have been possible.

I would also like to express my gratitude to all the people in the Operating
System Lab and the Distributed Systems Lab. In particular, I would like to thank
Péter UrbánandXavier Défago, for always being available to discuss issues from
distributed system algorithm to programming bugs,Philippe Altherr for the in-
teresting discussions on software architecture and programming languages,Arnas
Kupšys, Paweł WojciechowskiandSergio Mena de la Cruzfor their support.

I would also like to thank both secretaries, Kristine Verhamme and France
Faille for the logistical support they gave me and Sylvie Roux for proof-reading
the final version.

vii

http://lsrwww.epfl.ch/schiper/
http://www.hpl.hp.com/personal/Fernando_Pedone/
http://www.hpl.hp.com/personal/Fernando_Pedone/
http://www.cs.mcgill.ca/~kemme/
http://www.inf.ethz.ch/personal/alonso/
http://lsrwww.epfl.ch/urban/
http://www.jaist.ac.jp/~defago/
http://lampwww.epfl.ch/~paltherr/
http://lsrwww.epfl.ch/kupsys/
http://lsrwww.epfl.ch/kupsys/
http://lsrwww.epfl.ch/wojciechowski/
http://lsrwww.epfl.ch/mena/

VIII

Table of Contents

1 Introduction 1
1.1 Database Replication. 2
1.2 Group Communications. 3
1.3 About this Research. 4

1.3.1 Research Objectives. 4
1.3.2 Research Contributions. 4
1.3.3 Thesis Organisation. 5

2 Database and Group Communication Models 7
2.1 Overview . 8

2.1.1 Distributed Systems. 8
2.1.2 Database Systems. 9

2.2 Distributed Systems Model. 11
2.2.1 Definitions . 11
2.2.2 Synchrony . 14
2.2.3 Process State. 15
2.2.4 Communication Primitives and Associated Problems. . . 20

2.3 Database Systems. 23
2.3.1 Transactions. 23
2.3.2 Histories . 23
2.3.3 ACID properties . 24
2.3.4 Concurrency Control. 25
2.3.5 Network Model. 27
2.3.6 Distributed Transactions. 27

2.4 Practical Issues. 28
2.4.1 Client Code. 29
2.4.2 High-Level Transactions. 29
2.4.3 Cold standby vs Hot Standby. 30
2.4.4 Interactive Transactions vs Stored Procedures. 31
2.4.5 Determinism . 31
2.4.6 Optimistic and Weak Communication Protocols. 34

2.5 Summary and Synthetic Model. 36
2.5.1 Summary of Both Communities. 36

ix

X TABLE OF CONTENTS

2.5.2 Synthetic Model . 37

3 Classification of Replication Techniques 41
3.1 Classification Criteria. 43

3.1.1 Server Architecture. 43
3.1.2 Server Interaction. 44
3.1.3 Transaction Termination. 45

3.2 Replication Techniques. 47
3.2.1 Update Everywhere. 47
3.2.2 Primary-Copy. 56

3.3 Discussion. 62
3.3.1 Overview of Requirements. 62
3.3.2 Server Architecture: Primary-Copy vs. Update Everywhere63
3.3.3 Server Interaction: Constant vs. Linear. 63
3.3.4 Transaction Termination: Voting vs. Non-voting Techniques64

4 Recovery and Fault-Tolerance Issues 67
4.1 Safety Criterion. 68
4.2 View-Based Recovery. 68

4.2.1 Existing Systems. 68
4.2.2 Roll-Forward Recovery. 69
4.2.3 Conclusion. 70

4.3 Roll-back-based recovery. 70
4.3.1 Inter-Layer Messages. 71
4.3.2 Inter-Layer Ack Messages. 72
4.3.3 2-Safe Replication. 73

4.4 Group-Safe Replication. 74
4.4.1 Group-Safety. 74
4.4.2 Group-based durability. 77
4.4.3 Group-safe replication and lazy replication. 78
4.4.4 Building a Group-Safe Replication Technique. 79

4.5 Conclusion . 79

5 Performance Comparison 81
5.1 The RD-sim Simulator. 82

5.1.1 Server Structure. 82
5.1.2 Client Module . 86

5.2 Simulation Settings. 87
5.3 Experiments. 88

5.3.1 General Performance. 88
5.3.2 Scalability . 95
5.3.3 Query Proportion. 100
5.3.4 Wide Area Network . 106
5.3.5 Group-Safe replication. 107

TABLE OF CONTENTS XI

5.3.6 Optimistic Active Replication. 109
5.4 Conclusion .115

6 Conclusion 117
6.1 Research Assessment. 117

6.1.1 Classification. 117
6.1.2 Fault-Tolerance Criterion. 118
6.1.3 Performance Evaluation. 118

6.2 Open Questions and Future Research Direction. 119
6.2.1 Intra-Layer Communications. 119
6.2.2 Hybrid Replication techniques. 119
6.2.3 Best-Effort Total Order Broadcast. 120
6.2.4 Group-Safe Replication. 120
6.2.5 Optimistic Mechanisms. 120

XII TABLE OF CONTENTS

List of Figures

2.1 Basic building blocks. 7
2.2 Group communication stack. 9
2.3 Distributed transactions. 10
2.4 Process types. 12
2.5 Group communication stack state. 16
2.6 Optimistic concurrency control – non-deterministic scenario. . . 27
2.7 Spontaneous ordering in a LAN. 35
2.8 Synthetic model. 37
2.9 Relationship between database server and group communication

process . 38

3.1 Gray’s classification. 42
3.2 Update everywhere, constant interaction, non-voting. 48
3.3 Update everywhere replication, constant interaction, voting. . . . 50
3.4 Update everywhere, linear interaction, non-voting. 53
3.5 Update everywhere, linear interaction, voting. 55
3.6 Primary-copy, constant interaction, non-voting. 57
3.7 Primary-copy, constant interaction, voting. 58
3.8 Primary-copy, linear interaction, non-voting. 60
3.9 Primary-copy, linear interaction, voting. 61
3.10 Requirements, according to classification. 62

4.1 Unrecoverable failure scenario. 69
4.2 Protocol stack. 71
4.3 Messages exchange for total order broadcast. 72
4.4 Messages exchange for total order broadcast includingackmessage 73
4.5 Recovery with message replay. 74
4.6 Group-safe replication and lazy replication. 78

5.1 General simulator architecture. 83
5.2 Overall performance of replication techniques – medium-load,

slow network . 89
5.3 Overall performance of replication techniques – medium-load, fast

network . 91

xiii

XIV LIST OF FIGURES

5.4 Influence of network performance on the distributed-locking tech-
nique . 92

5.5 Overall performance of replication techniques – high-load, slow
network . 94

5.6 Overall performance of replication Techniques – high-load, fast
network . 94

5.7 Abort rate in high-load situation (fast network). 94
5.8 Scalability of update everywhere techniques with a 50% query load96
5.9 Correlation between conflict function and observed aborts. . . . 97
5.10 Conflict list scenario . 98
5.11 Abort rate with 36 servers with changing loads. 99
5.12 Scalability of update everywhere techniques with a 80% query load99
5.13 Performance with changing query rate at low-load (10 transactions

per second) .101
5.14 Performance with changing query rate at moderate load (20 trans-

actions / second) . 102
5.15 Performance of certification-based Replication with changing

query proportion and changing loads. 104
5.16 Performance of Ser-D replication with changing query proportion

and changing loads. 104
5.17 Performance of distributed-locking replication with changing

query proportion and changing loads. 105
5.18 Performance of primary-copy replication with changing query pro-

portion and changing loads. 105
5.19 Performance in a WAN setting. 107
5.20 Performance of group-safe certification. 108
5.21 Overlap of communication and processing in optimistic active

replication .110
5.22 Performance of active replication and optimistic active replication111
5.23 Response time of restarted transactions (optimistic active replication)112
5.24 Out of order message influence on overall performance. 113

List of Tables

2.1 Crash and membership properties of different models. 18
2.2 State handling of different models. 19
2.3 Summary of both communities. 36

4.1 Summary of different safety levels. 75
4.2 Safety constraints and number of crashes. 76

5.1 Simulator parameters. 87
5.2 Settings for simulating the overall performance of replication tech-

niques . 89
5.3 Scalability configurations. 95

xv

XVI LIST OF TABLES

Chapter 1

Introduction

Tout a déjà été dit, mais comme personne n’écoutait, il faut recommencer.

André Gide

The turn of the century has seen tremendous advances in the field of comput-
ing. This has brought two major changes. First, the number of computer systems
has increased by an order of magnitude. From desktop systems to embedded cir-
cuitry, computers have become ubiquitous. Secondly, the emergence of networking
infrastructure, both local and global, means that computers are increasingly inter-
connected.

Changes did not only happen in the technological field: our societies depend
more and more on computers: each day, an activity starts to rely on a computer. Al-
ready, aspects of everyday’s life that do not imply computer systems at one stage or
another are very rare. Today, the impact of computers on society is more important
than ever.

Yet, as computer system become more widespread, complex and distributed,
they also become more fragile. Failures are becoming both more frequent and
more serious in terms of consequences. Crashes, bugs and other problems have an
increasingly important impact on human lives [Neu02]. Issues like fault-tolerance
and security were considered specialised fields for a long time. Nowadays, our
society relies more and more on computers, and people become aware of this fact.
So research on security and fault-tolerance becomes more and more important.
Even mainstream software vendors have started to make security and stability their
official priority [Man02].

Many approaches to build fault-tolerant systems have been proposed. They
reach all aspects of information systems: from hardened material components to
improved management of IT projects. Techniques that promise fault-tolerance in-
clude software engineering, specialised computer languages and replication. In
this thesis we will concentrate on replication.

1

2 CHAPTER 1. INTRODUCTION

Replication is a natural way to deal with failures: if one replica fails, another
takes over. Most living organisms achieve fault-tolerance this way: if one cell
dies, the other cells share the work so that the organism as a whole can survive.
Yet, while replication seems a natural solution for fault-tolerance, implementing a
consistent replicated system is not easy.

The main issue is that computer system store data in a way that is very differ-
ent from biological entities. Another issue is that the expectations are different. If
a neuron dies in the brain, no memory is lost, but the information becomes more
“fuzzy”. This is not an acceptable solution for many computer systems. In safety
critical system that control factories or power-plants, the slightest error can have
dire consequences. Even for banking applications, having “slightly wrong” ac-
counts because of a server crash is not an acceptable solution. If we want our
system to enforce strict guarantees even in case of crash, replication is a complex
problem.

Banking systems are a typical example of database applications. In general,
databases represent a key element of the IT infrastructure of many companies:
payrolls, customer information and inventories are stored in databases. Because
of this, replicating databases to increase their fault-tolerance appears to be a good
idea. Yet, consistent data replication is a complex issue [Cap90], and database
replication even more so. Database replication is an ongoing research domain,
both in academia and industry.

This thesis discusses database replication, and in particular techniques that
have been recently proposed that rely on some network abstractions, called group
communications.

1.1 Database Replication

Database replication has been an area of research for more than twenty years:
the first publications on the subject appeared in the early eighties [Tho79, Gif79,
Sto79]. Since then, database replication has been an object of research. The core
issue is that while the techniques that were proposed are correct, they have been
shown to perform badly if the number of sites increases [GHOS96]. The main
reason for this is that those replication protocols were designed to impose minimal
changes in the database engine. This yields high synchronisation costs and a high
number of deadlocks. Legacy and performance are the two main reasons for this
“black-box” approach. A large amount of information is stored in databases and
used everyday, so changing the architecture and migrating the data would imply a
lot of work.

As databases become more and more important for enterprises, performance
expectations for replicated database have risen [Jaj99]. New replication mecha-
nisms have been searched for. One way to get increased performance for repli-
cated databases is to relax to consistency rules: this approach is currently used by
commercial database systems [Ora98, Inf98] and has also been proposed as the

1.2. GROUPCOMMUNICATIONS 3

main avenue of research [BBC+98]. This approach, called lazy replication, of-
fers promising perspectives for disconnected computing and has the advantage of
following the “black box” approach. The main issue with lazy replication is that
it does not adress the problem of consistent, fault-tolerant replication. Recently,
group communication-based replication has been proposed as an alternative to lazy
replication [SR96, Alo97, PGS98]. Those techniques use high-level primitives to
offer consistant, fault-tolerant database replication with acceptable performance,
but imply a “white box” approach – the database system must be changed to rely
on group communication abstractions.

The work unit of a database is the transaction. Transactions are sets of instruc-
tions that are executed on the database as one logical unit. Transaction processing
is defined by the ACID rules: Atomicity ensures that either that the transaction
executes completely, or not at all, Consistency ensures that the transactions brings
the database to a legal state, Isolation ensures that the parallel execution of two
transactions has no side-effect on either transaction, Durability ensures that once a
transaction is commited, its effect last forever, even in the event of failures. In order
to build consistent database replication, the ACID properties must be enforced.

1.2 Group Communications

Group communications are a set of high-level communication primitives and tools
that are designed to help build replicated services. The basic idea is to address
all replicas as one entity [HT93]. The notion of group communication origi-
nated from distributed operating systems [CZ85], and is used in systems like
Amœba [KT91, KT94]. Group communications have been an object of ongoing
research which resulted in both theoretical results and prototypes. Theoretical re-
sults include precisely defined semantics and minimal conditions needed to solve
certain problems [FLP85, CT96, CHT96]. Prototypes moved the group communi-
cation infrastructure out of the operating system, to become autonomous toolkits.

The Isis group communication system [BAD+84, BSS91] proved that group
communication could be used in practical settings. Many other group communi-
cation toolkits were developed [PSWL94, MFSW95, vBM96, MMSA+96, DM96,
BCH+00, HS00, BCH+00, MPR01], mostly in academic settings. With the emer-
gence of middleware systems, the trend has been to integrate group communication
toolkits inside the middleware infrastructure [WAL97, Fel98, BCH+98, SW99,
GNSY00, OMG01].

All group communication toolkits offer similar high-level abstractions. Group
communication mechanisms ensure two kinds of properties: agreement properties
and ordering properties. Agreement properties ensure that all members agree on
some value, or on the delivery of some message. Ordering properties ensure that
messages are delivered to all members in certain order.

4 CHAPTER 1. INTRODUCTION

1.3 About this Research

This thesis was started in the con-
text of the DRAGON project (Database
Replication bAsed onGroup Commu-
nicatiON) – a joint project between the
Swiss Federal Institute of Technology in
Lausanne (EPFL) and the Swiss Federal

Institute of Technology in Zürich (ETHZ). The goal of DRAGON was to explore
the possible use of the group communication techniques in the context of database
replication.

One important aspect of this project was its inter-disciplinary nature. The data-
base and the distributed system communities are very different. In order to build ef-
ficient replication techniques, a good understanding of both communities is needed.
While the idea of using group communications for database replication is quite old
– Chang proposed in 1984 to use broadcast protocols (a form a view synchronous
broadcast) to simplify the design of a two phase commit protocol[Cha84] – this
area of research has only become active again recently.

1.3.1 Research Objectives

A lot of research has been done in the domain of group communication-based
database replication [SR96, PG97, PGS97, Alo97, PGS98, KA98, KA99, PGS99,
KPAS99, HAA99b, PF00, KA00a, KA00b, PMJPA01, FP01, RJP01], and very
promising replication techniques have been proposed. Yet research in this domain
was mostly explorative: new techniques were proposed and their performance as-
sessed, often in special and restricted settings.

This thesis explores database replication based on group communication in a
systematic way. The goal is to get the “big picture” and to understand all issues
related to the problem. This is done in three ways: classification of replication
techniques, definition of precise failure semantics, and performance evaluation.
All three approaches require a solid groundwork to understand the differences and
common points between the models of database systems and group communication
systems.

1.3.2 Research Contributions

The research contributions of this thesis match the research objectives of the
project: classification of techniques, understanding of failure semantics and per-
formance evaluation.

1.3.2.A Classification of Replication Techniques

A large variety of replication techniques have been proposed, yet the relationship
between those techniques is often not clear. Similar techniques might appear very

http://lsewww.epfl.ch/~dragon/

1.3. ABOUT THIS RESEARCH 5

different because they are defined using different models and terminologies. At the
same time, subtle changes in one protocol can result in very different replication
techniques. To better understand database replication and the different techniques
proposed in the literature, a systematic classification is proposed.

A classification has two advantages: first it helps in understanding the concepts
and the mechanisms underlying replication, and the requirements of replication
schemes; second it helps to assert if all possible replication schemes have been de-
scribed: while many replication techniques have been proposed, some combination
might have been overlooked. By exploring the solution space in a systematic way,
such oversight can be spotted.

1.3.2.B Analysis of fault-tolerance semantics

One of the main goals of replication is fault-tolerance: the replicated system is
expected to withstand some failure scenarios. Group communication systems and
database systems have very different failure assumptions, so the guarantees offered
by a system built using those two technologies are not trivial. Fault-tolerance is
an end-to-end property: when multiple components are combined, the resulting
system typically exhibits the fault-tolerance of the weakest component. Because of
this, careful analysis is needed to understand the fault-tolerance of a system built
by combining group communication and database elements.

We show what failure guarantees can be expected when linking together group
communication and database. We also introduce new failure semantics that are
better adapted to express the fault-tolerance of group communication-based data-
base replication. We also propose new variants of existing replication schemes that
maximise performance while respecting the failure semantics.

1.3.2.C Performance Evaluation

In order to understand the performance and the behaviour of different replication
schemes, those replication schemes were implemented in a simulator and their
performance measured. Classification gives a qualitative view of the replication
techniques, performance evaluation gives a quantitative view.

The performance evaluation uses the classification as a basis: techniques from
all the relevant categories are compared. One important contribution of the per-
formance evaluation is the performance of some promising group communication-
based techniques the performance of which was never evaluated in comparison to
other techniques. The performance of the variants proposed in the analysis of fault-
tolerant semantics is also evaluated. Other optimisations of group communication-
based replication techniques are also presented and evaluated.

1.3.3 Thesis Organisation

The thesis is organised as follows: Chapter2 discusses system models, abstractions
and practical issues for both the database and distributed system communities and

6 CHAPTER 1. INTRODUCTION

gives an unified model. Chapter3 presents a classification of database replica-
tion techniques. Chapter4 discusses recovery and fault-tolerance issues. Chap-
ter5 presents a performance evaluation of different replication techniques. Finally,
Chapter6 summarises the major results of this work and outlines future research
directions.

Chapter 2

Database and Group
Communication Models

Verbosity leads to unclear, inarticulate things.

Dan Quayle

Using group communication systems to build a replicated database might seem
a logical choice and has been proposed for some time [Cha84]. By leveraging
group communications toolkits, the design of a replicated database would be easier
and would permit a layered design where network functionality is separated from
the database application (Figure2.1).

Group
Communication

Toolkit

Database
System

Replicated
Database System

Figure 2.1: Basic building blocks

While this approach seems logical and practical, it implies assembling two
components originating from two very different communities: the distributed sys-
tem community, and the database community. Because of this, both components
rely on different models and assumptions and offer very different properties.

Each community tends to concentrate on certain problems and simplify issues
outside its scope. The database community tends to have a simple network model,

7

8 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

and the distributed system community a very simple processing model. Both com-
munities have different goals, priorities, but also different models and metrics.

To build an efficient system by combining group communications and data-
bases, both models must be understood and somehow reconciliated. The resulting
unified model can help us describe and design replication strategies in a synthetic
ways. This means grouping all communication primitives in one communication
module, regardless of the fact that they originated in one community or the other.

This chapter describes both sides of the “fence” and presents the philosophies
and models of both communities. It then presents an unified model that will used in
the following chapters. This chapter is structured as follows: Section2.1gives an
overview of both communities, Section2.2 presents the distributed system model
and associated issues, Section2.3presents the database model, Section2.4presents
practical issues that further distinguish both communities. Section2.5gives a sum-
mary of the differences and presents the unified model.

2.1 Overview

While replication has been considered by both the database community and the
distributed system community for quite some time, the motivations for replication
are quite different. The focus of each community is also quite different. This
section present the basic goals and philosophies of both communities.

2.1.1 Distributed Systems

The distributed system community focuses on systems that are distributed on a
network. The components of the system are distributed on different computing
nodes and communicate by exchanging messages. The main goal of the distributed
system community is to make the system consistent by offering some guarantees on
the message flow and ordering. This is achieved by adding an abstract layer on top
of the actual network – in the same way the operating system adds an abstraction
layer on top of the actual hardware. This architecture is illustrated in Figure2.2.
Different ordering an consistency levels have been specified and the corresponding
algorithms implemented.

The system built on top of the group communication infrastructure can be an
application, or another level of infrastructure, for instance a virtual shared memory
environment [BKT92].

The main goal of replication in the distributed system community is fault tol-
erance. A system can be replicated by having multiple copies: if one copy fails,
work continues on other copies. The main problem is to keep all copies synchro-
nised and to hide failures as they occur. Ideally, failures are handled in a way that
is transparent for the application.

Because the communication infrastructure only concerns itself with the order-
ing of messages and their reliable delivery, the replication schemes associated with

2.1. OVERVIEW 9

Communication
Infrastructure

Group
Communication
Infrastructure

Application

Figure 2.2: Group communication stack

those communication primitives tend to consider a simple application model. Is-
sues like multi-threading, non-determinism, load balancing and large state transfers
are typical of complex applications. Those issues are often considered out of the
scope of group communications, and therefore not addressed in the models con-
sidered. This means that in order to replicate a complex application, those issues
have to be handled by the application – therefore an application cannot simply be
replicated by using the adequate communication primitives, a redesign is needed.

Another problem is that the communication primitives are often lacking the
precise semantics the applications would need; some applications only need cer-
tain messages to be ordered, so ordering them all might be a waste of resources.
Also group communication can be difficult to integrate with communication chan-
nels that are not under the control of the group communication system [CS93].
New communication primitives [PS99] and flexible group communication sys-
tem [BCH+00, HS00, MPR01] have started to address those issues.

An important issue is the lack of focus on practical issues: a lot of research has
been done to define precise models and understand their properties, but not much
work has been devoted to comprehensive performance study or practical quantifi-
cation of fault-tolerance [Kim00]. This has led to a wide variety of algorithms that
where not classified until recently [Déf00] it was also recently that their relative
performance was studied [UDS00]. Because of this background, group communi-
cation protocols tend to be perceived as slow and resource-consuming.

Those limitations are the main reason why group communication primitives
have not been deployed much in actual systems and current work is mostly done in
academic settings.

2.1.2 Database Systems

The database community focuses on systems that handle data and its storage.
While resilience is an important issue in databases, replication is not a central fo-
cus of the database community, instead databases are expected to recover correctly

10 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

after a crash.
Replication has often been considered for administrative reasons (the data per-

taining to certain location being in those location), performance reasons (moving
data closer to users), and also fault-tolerance. Replication is often used at hard-
ware level to ensure fault-tolerance using specialised hardware (RAID, disk shared
between processors, etc.).

Database systems rely on the notion of transactions. Transaction execution
satisfies the ACID properties (Atomicity, Consistency, Isolation and Durability,
see Section2.3.3). The system is not expected to hide failures: in case of a crash,
transactions are aborted and the system rolled-back to a consistent state. The basic
of today’s database where established by Eswaranet al. [EGLT76].

Distributed databases have been considered for some time [LSG+79], and are
usually handled as an additional layer on top of existing systems. Distributed trans-
actions span one sub-transaction on each node, those sub-transactions are synchro-
nised using an atomic commitment protocol that ensures atomicity between all
nodes. Figure2.3 illustrates this architecture.

Local Transaction
Local Transaction

Local Transaction
Local Transaction

Distributed Transaction

Atomic
Commitment

Protocol

Figure 2.3: Distributed transactions

Replication is traditionally seen as a particular case of distributed databases,
where one distributed transaction updates alln copies of the database. If one
server crashes during transaction processing, the transaction aborts and needs to
be restarted. The failure of one server is therefore not fully transparent. This is
not so much an issue, as transaction typically abort for other reasons (for instance
concurrency control) so users have to cope with transaction aborts anyway. This ap-
proach has been shown not to be scalable [GHOS96], and expensive performance-
wise, therefore it is not often used and it was proposed that research concentrates
on relaxed constraints [BBC+98]. This lack of transparency of failures and the
unpredictable aborts make database systems unsuitable for critical and real-time
applications [Kim00].

Database systems are intensively used in the core of enterprises, therefore there
is a heavy emphasis on performance. Formal models are often relaxed to get better
performance. For the same reason, database systems tend not to rely on underlying
layers, like operating systems – instead the relevant functionality is implemented
in an ad-hoc way inside the database system.

2.2. DISTRIBUTED SYSTEMS MODEL 11

2.2 Distributed Systems Model

A large number of system models have been considered by the distributed system
community (see [Gär01]) and describing them all is beyond the scope of this work.
A model is needed to specify group communication primitives, but at the same
time, the discussion about the use of group communication for database replica-
tion should not tie us to one specific model. Because of this, we will use an ab-
stract model, and describe communication primitives and the problems they solve
in this context. Then we will show how this abstract model relates to actual models.
Vitenberget al. have proposed an unifying framework for group communications
systems in [VCKD99], but this framework concentrates on systems using views.

In this section, we give an overview of some classical models and their rela-
tionship. We do not present a new model, but rather a general framework that in-
tegrates different existing models. Not all existing models will be described in this
section, but only those that are usually considered in the literature: the static crash
no-recovery model [FLP85] (also called crash-fail), the dynamic crash no-recovery
model [BJ87] (also called the crash fail model with views) and the crash-recovery
model [ACT98]. They are conceptually close to each other and can be described in
a synthetic way. Some models not considered here rely on randomisation [BO83],
others, like the timed asynchronous model [CF99] are more complex and based on
actual system measurement, but can be reduced to models presented here.

The different models considered are classified according to two basic criteria:
time and state, i.e, how they consider time, and how the state of each process
is handled. This section is structured as follow: Section2.2.1gives some basic
definitions, Section2.2.2presents different timing hypothesis, and Section2.2.3
presents different state handling policies.

2.2.1 Definitions

The system modelled is a group ofprocessesthat communicate usingmessages.
Messages are transmitted throughchannels. No other mean of communication is
available for processes to communicate, and processes do not have access to a
global clock. The sending and receiving of messages areeventsthat happen on the
process receiving or sending the message.

In order to specify the communication protocols, we need to define what pro-
cess take part in the protocol, and what processes do not. A crashed process that
will never recover cannot be expected to deliver a message. We also need to define
channels: again, a channel cannot be expected to deliver a message to a process
that has crashed and never recovers. Different models have different definitions
for processes and channels. This yields different specifications for each problem
depending on the model, something we wish to avoid. Because of this, we need a
more general abstraction.

12 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

2.2.1.A Processes

Figure2.4 illustrates how we categorise processes. There are two general cate-
gories, processes that crash, and processes that eventually stay up long enough to
finish the computation. Those two criteria are generally used to define processes
in the group communications models we consider. If we consider the intersection,
we end up with three categories:

1. processes that never crash

2. processes that crash, recover and are eventually up long enough, and

3. processes that are never up long enough.

We say a process isgreenif it never crashes. Aredprocess is a process that behaves
in a way that prevents it from participating in solving the problem, for instance by
crashing and never recovering or by beingunstable: the process crashes, recovers,
crashes again, etc. An unstable process is never up long enough to do some useful
work. A process might be neitherred nor green: it sometimes crashes, but even-
tually stays stable for enough time to take part in the computation. We call those
processesyellow.

Eventually
Forever UpCrashes

Green
Processes

Red
Processes

Yellow
Processes

Figure 2.4: Process types

In the crash no-recovery model (dynamic or static) [FLP85, CT96], green pro-
cesses are calledcorrect, and never crash. Red processes are calledincorrectand
fail. As processes do not recover, the problem of unstable processes is not encoun-
tered. All processes are therefore red or green and there are no yellow processes.

In the crash recovery model [ACT98], a red process is one that crashes and
never recover, or one that is unstable. Such processes are calledbad. A good
process is one that never crashes, or one that crashes, recover, but eventually stays
up forever – this corresponds to anon-redprocess. A good process might be green
or yellow.

The timing aspect of the model also has an impact on the specification of red
and green processes. If there are no timing assumptions in the model, then “long

2.2. DISTRIBUTED SYSTEMS MODEL 13

enough” means “forever”. So if there are no timing assumptions, a green process
stays up forever. If the timing model is synchronous, there are timing bounds on
both process speed and message delivery time. Therefore, “long enough” means
longer than some timeT , whereT is maximum bound on time needed to solve the
problem considered. Timing aspects for the model are discussed in Section2.2.2.

2.2.1.B Channels

The other important aspect of our abstract model are communication channels.
Here again we have conflicting definitions, depending on the model. In order to
have an abstract model, we need a specification that merges both models.

Crash no-recovery models tend to use either thereliable [BCBT96] or the
quasi-reliable[ACT97] channel specification. The reliable specification states that
if a process (even a red one) sends a messages to a green process, then this message
will be eventually received. Reliable channels are not a reasonable assumptions, as
real systems typically use buffers and pipelines. If a process sends a message and
then crashes, those buffers will be lost. So expecting messages sent by crashing
processes to be delivered is not very reasonable.

The quasi-reliable specification states that if a green process sends a message
to another green process, then this message will be eventually received. While this
makes sense in a model where process do not recover, this poses some problems
in a model where processes can crash and recover – the quasi-reliable specification
does not define how yellow processes should handle messages.

The crash recovery models allows yellow processes, that is processes that crash
and recover. The fact that they crash does not prevent them from participating in
the protocol: when they recover, yellow processes will be expected to take part in
distributed algorithms and therefore to send and receive messages.

When a message reaches a process that is crashed, it will be lost. So we cannot
expect yellow processes not to lose messages. On the other hand, if yellow pro-
cesses can lose all messages, it will be impossible to solve any problem. For this
reason, crash recovery models tend to rely onfair-losschannels. In this specifica-
tion, the loss specification is different: if a processp sends an infinite number of
messages to a processq andq is non-red, thenq will receive a infinite number of
messages fromq.

The important thing to notice is that those two models are, in fact, not contra-
dictory. Expecting no loss if both the sender and the receiver are green (so they
never crash) does not contradict expecting a fair loss if either the sender or the
receiver might crash. So we need to specify the loss of messages in two ways to
cover both models. The resulting specification is the following:

No Creation If processq receives messagem from p thenp sentm to q.

No duplication Processq receives messagem from p at most once.

Quasi No-Loss If p sendsm to q andp, q aregreen, thenq eventually receivesm.

14 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

Fair Loss If p sends messages to a non-red processq an infinite number of times,
thenq receives an infinite number of messages fromp.

Channels defined with this specification are equivalent to fair-loss channels in
the crash recovery model and to quasi-reliable channels in the crash no recovery
model. In the crash no recovery model, thefair lossclause can be reduced to the

other clauses and does not apply, so the resulting specification is that ofquasi-
reliable channels. In the crash recovery model, thequasi-no lossclause can be
reduced to the other clauses, so the resulting specification is that offair losschan-
nels.

Proposition 1 The fair-loss property can be reduced to the other clauses in the
crash no-recovery model.

Proof 1 There are no yellow processes in this model, sop andq are either red or
green. Asq is non-red,q is green. Ifp is green, then the quasi no-loss clause
applies, ifp sends a message toq, q will receive the message. So ifp sends an
infinite number of messages,q will receive an infinite number of messages. Ifp is
red, it will crash. Therefore it cannot send an infinite number of messages before
crashing.1

Proposition 2 The quasi no-loss property can be reduced to the other clauses in
the crash recovery model.

Proof 2 Processesp and q are green and will therefore never crash. Ifp sends
messagem an infinite number of times toq, m will be received. Therefore quasi
no-loss can be implemented using fair-loss channels and the following algorithm:
Whenp sends a messagem to q, it repeatedly sendsm to q until it receives anack
message fromq. Each timeq receives a message fromp, it sends anackmessage.
As neitherp nor q will crash, eventually,q will receivem.

2.2.2 Synchrony

One important aspect of models is the timing issue. If the model issynchronous,
there is a boundδ on the relative processing speed of processes, and a bound∆ on
the time needed for a message sent by one process to be delivered by another. This
means that if a process executes one instruction step in one time unit, then all other
process will execute it in a mostδ time units. Also, a message sent at timet will
be received at latest at timet+ ∆.

1We assume that a process cannot execute an infinite number of operations in a finite time.

2.2. DISTRIBUTED SYSTEMS MODEL 15

On the other hand, if the model isasynchronoussuch bounds do not exist.
There is no bound on the relative processing speed, or on message delivery. Be-
cause there is no time-bound, time has basically no meaning in the asynchronous
model, so it is sometimes called atimelessmodel.

It has been shown [FLP85] that the asynchronous model is not powerful enough
to solve the consensus problem if one or more process crash. Most group commu-
nication problems can be reduced to consensus. So if consensus cannot be solved,
neither can those problems.

In order to be useful, the asynchronous model can be augmented withfail-
ure detectors. Failure detectors are oracles that tell one process about the state of
others. Consensus can be solved in an asynchronous model using failure detec-
tors [CT96]. Failure detectors can be perfect or imperfect – an imperfect failure
detector might incorrectly suspect a non-failed process – this is called a false sus-
picion. A failure detector should detect red (crashed) processes (completeness)
and not suspect non-red (non-crashed) processes (accuracy). Another kind of fail-
ure detector have a leader election property, i.e all processes agree on one non-red
process[Lam98]. We consider the following failure detectors:

P This failure detector is perfect, crashed processes are eventually suspected by
all processes (strong completeness), and no non-crashed process is ever sus-
pected (strong accuracy).

3S This failure detector satisfies weak accuracy (non crashed processes might be
suspected, but eventually, all non crashed processes will not be suspected)
and implements strong completeness.

Ω This failure detector satisfies eventual leader election. That is, eventually a
leader is selected by all processes.

3Su This failure detector is similar to3S but is defined in the crash-recovery
model [ACT00] this means that it can handleunstableprocesses. Strong
completeness therefore also requires all processes to suspect unstable pro-
cesses.

Failure detectorsΩ and3S are equivalent, in the sense that both can solve
consensus and that there is an algorithm to transform each failure detector into the
other [CHT96].

2.2.3 Process State

The other important aspect of a model concerns the state of the different processes.
The state of each process is split into different layers, corresponding to the con-
ceptual layers used in the context of group communications: application, group-
communication, communication infrastructure (see Figure2.5). During the normal
course of operation, each level maintains its own state for processing.

16 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

Communication
Infrastructure

Group
Communication
Infrastructure

Application State

Figure 2.5: Group communication stack state

In case of a crash, part of the process state might be lost, because this part was
only stored in the volatile memory of the process. The state might be preserved
if replicated in the volatile memory of other processes or stored in stable storage.
Different models handle this state information in different ways. What part of the
process state is preserved in case of crash will decide if processes will be able to
recover and continue processing. This will in turn give each model certain proper-
ties. We describe and classify models according to how they handle state, which
makes it possible to establish a relationship between different models and describe
them in a general way.

Communication Infrastructure Layer. The lowest layer of each process state
concerns the communication layer. Because this layer is traditionally handled by
the operating system and the networking hardware, its state is usually volatile and
cannot survive a crash. That is, this state is not stored on stable storage, nor repli-
cated. Storing messages in stable storage would be very expensive in terms of
performance, as stable storage is usually implemented using slow disk technology.
It would also require a redesign of the operating system and the communication
hardware. Replicating the state does not make sense: at this level, while some
group abstraction exist (like IP-multicast), most abstractions are peer-to-peer re-
lationships. This is why we consider the channel model described in2.2.1.B–
messages are transmitted as long as there is no crash. If there is a crash, all state,
including pending messages, might be lost.

Application Layer. The highest layer is the application layer. The state of the
application is what needs to be replicated. When a process recovers, the application
layer state must somehow be reconstructed. This can be done in two ways: either
by getting the state from another process, or by replaying the messages to rebuild
the state. In the first case, this means that the group communication layer can
access the state from the application layer of another process. In the second case,
this means that the communication layer can replay all messages. This is only
possible if the communication layer stored those messages. This distinction has

2.2. DISTRIBUTED SYSTEMS MODEL 17

some impact on the model and will be discussed, but will be discussed in Chapter4.

Group Communication Layer. This intermediate layer offers advanced com-
munication primitives: it gives applications the tools and primitives needed by the
overall system both for normal operation and recovery. Those primitives provide
the groundwork for replicating the application layer.

The communication infrastructure is typically given by the operational settings,
and can therefore not be adapted for replication. The application layer should be
isolated from the model. By using the abstractions given by the group communica-
tion layer, design and validation are simplified and implementations are portable.
An application simply uses group communication primitives and is built on the
properties of those primitives. The design of the application layer should not be
affected by timing considerations, failures detectors issues, etc. The role of the
group communication layer is to offer high level primitives with their own guaran-
tees, and enforce those guarantees in regard of the model. For this reason, model
considerations affect mostly the group communication layer. The next section de-
scribe how the group communication layer handles state information in different
models introduced in Section2.2.1.

2.2.3.A Static Crash No Recovery Model

In this model, processes do not recover once they crashed. Because of this, recov-
ery is not an issue. Therefore, state does not need to be replicated for recovery
purposes. The application state will probably be replicated (like, for instance, for
state machine replication [Sch90]), but the group communication system will not
need that the application layer gives out its state for recovery purposes, as there is
no recovery. As processes do not recover, there is also no point in restoring the
state of the group communication layer. While this model has been the basis for
theoretical research [FLP85, CT96], it is not very useful for practical cases.

2.2.3.B Dynamic Crash No Recovery Model

The dynamic crash no recovery model has been introduced in the Isis sys-
tem [BJ87]. It addresses the shortcomings of the static crash no recovery model.
The key idea of this model is to allow a dynamic number of process in the system.
The composition of the group at some point in time is called theview. A view vi
is a set of processesvi = {pi1 . . . pin}. When a process crashes, or is suspected of
crashing, it is excluded from the view. New processes can join the view. While a
process cannot formally recover, it can rejoin the group once it recovers with a new
identity – this is called a newincarnationof the process. The system is defined as a
sequence of viewsv0, . . . vn, a new view being installed each time a process leaves
or joins the view – this event is called aview change. Between two view changes,
this model behaves like the static crash no-recovery model. The view information
is replicated in the group communication state of each process. The mechanisms

18 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

to achieve this replication are those of the group communication layer itself. The
notion of views is what makes this model very elegant: the information regarding
replication is itself replicated. Also views address two issues: the dynamic compo-
sition of the group (which is an administrative issue) and the handling of crashed
processes (which is a fault-tolerance issue).

Because only the view information is replicated in the group communication
layer, all recovery actions rely on it. In order to become part of the group, a recov-
ering server must therefore update the view to include itself in the view. If the view
is not accessible (because of too many process failures), recovery is impossible,
and the system blocks.

2.2.3.C Static Crash-Recovery Model (no stable storage)

In the crash-recovery model, a recovering process can take part in a computation
immediately – there is not need to wait for a view change to be installed. This
means a process can take part in a protocol that has started while the process was
crashed. In order to do this, part of the state of group communication system must
be restored to the recovering process.

For instance, if we consider a consensus protocol, a certain valuev can be
decided while processp was crashed. This means thatv must be kept as long as
p has not decided. If multiple instances of consensus where run, all valuesv1, v2,
must be kept. If we consider total order broadcast, all messages that have been
delivered whilep was crashed must be kept to be sent top when it recovers. So
part of the state of the group communication layer must be replicated on all servers.

When a process recovers, the application layer state can be reconstructed either
by querying the state from another process (like in the dynamic crash no-recovery
model) or by using the state information of the group communication layer, i.e
the communication layer replays messages to the application layer. The up-to-
date state is obtained by replaying messages to an old state (or even the initial
state) [RR00]. This means that a recovery process can obtain an up-to-date state,
even if no application layer has the most up-to-date state.

static membership dynamic membership

crash no-recovery static crash no-recoverydynamic crash no-recovery
crash recovery static crash recovery dynamic crash recovery

Table 2.1: Crash and membership properties of different models

One important thing to note is that the crash recovery model usually considered
is static [ACT00] – the set of processes considered never changes. So while this
model addresses failures, it does not handle system reconfigurations. Table2.2.3.C
shows all the combination of group membership and failure model: group member-
ship can be either static or dynamic, crash behaviour can be either crash recovery,
or crash no-recovery. A dynamic crash-recovery model would be possible, but

2.2. DISTRIBUTED SYSTEMS MODEL 19

quite complicated: it would imply a model that handles both the view mechanism
for long term administration and the crash-recovery model to handle short-term
failures. No such model has ever been described in the literature. Some research
about separating administrative issues from fault-tolerance issues by using differ-
ent failure detections mechanisms are discussed in [CBDS01].

2.2.3.D Static Crash-Recovery Model (with stable storage)

This model is similar to the crash-recovery with no stable storage, the main differ-
ence is that each process stores the state of the group communication layer in stable
storage. When a process recovers, the state of its group communication layer can
be reconstructed either by requesting it from other processes (like in the case when
no stable storage is present), or by reading it from stable storage. Stable storage
in itself might not be sufficient, because the state in stable storage only does not
always contain the state related to the most recent iterations of the protocols.

The use of stable storage makes it possible for the group to survive even catas-
trophic failures, i.e, the crash of all processes. Without any stable storage, recov-
ering from such a failure is impossible: if state information is not stored on stable
storage, it is definitely lost if a catastrophic crash occurs.

One important thing to note is that the presence or the absence of stable storage
only concerns the group communication layer. The application layer might have
access to stable storage and use it for its own purposes (this would typically be the
case for a replicated database). The properties obtained by relying on the stable
storage of the application layer are discussed in Chapter4.

2.2.3.E Summary

Table2.2summarises how the different models handle the state of the group com-
munication layer.

Model Name
Group Communication
State

Crash No Recovery Not replicated

Dynamic Crash No Re-
covery

View information repli-
cated

Static Crash-Recovery
(no stable storage)

Replicated

Static Crash-Recovery
(with stable storage)

Replicated & stored in
stable storage

Table 2.2: State handling of different models

20 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

2.2.4 Communication Primitives and Associated Problems

This section describes some problems that the group communication system
solves. Group communications are generally presented in the crash no recovery
model [HT93]. Here, they are specified for our general model. Note that we also
consider atomic commitment as a group communication primitive, which is not tra-
ditionally the case. Atomic commitment originated in the database community and
is often not considered as a group communication primitive. Yet atomic commit-
ment is clearly anagreement problemthat can be reduced to consensus [Gue95].
Atomic commitment protocol is a useful primitive to implement actual systems
and the implementation of atomic commitment protocols can be simplified by us-
ing group communication tools and techniques [Cha84, BT93, JPPMAA01]. So
integrating atomic commitment into a group communication toolkit makes a lot of
sense. In our case, it makes it possible to group all communication problems in
one module, without encumbering the database model with communication issues.

The primitives that are described in this Section are typically “strong”, in the
sense that their guarantees are absolute (not best effort). They also all implement
the uniform specification of the problem, so typically, processes that crash are not
allowed to do “bad” things, like delivering messages in the wrong order, or deliv-
ering a wrong decision. Primitives that solve weaker versions of those problems
are presented in Section2.4.6.

Because the problems are specified in our general model, some properties only
apply to green, red or non green processes. In general the properties are uniform,
and apply to all non-red processes (i.e. processes that are eventually forever up).
Typically, this means that all non-red process need to deliver a certain message. In
the cases where properties apply to other classes of processes (for instance only
green processes), the issue will be discussed.

2.2.4.A Uniform Reliable Broadcast

Reliable broadcast is a primitive that ensures that all processes in a set get a mes-
sage even in the case of failure. Reliable broadcast defines two primitivesR-
broadcast(m) andR-deliver(m), specified as follows:

Validity If a processR-delivers m then it wasR-broadcast by some process.

Uniform Agreement If a non red processR-delivers a messagem, then all non-
red processes eventuallyR-deliver m.

Uniform Integrity For every messagem, every processR-delivers m at most
once, and only if it was previouslyR-broadcast by sender(m).

Uniform reliable broadcast can be solved if there is a least one green pro-
cess [CT96]. In the crash-recovery model with stable storage, uniform reliable
broadcast can be solved if there is at least one yellow process.

2.2. DISTRIBUTED SYSTEMS MODEL 21

2.2.4.B Uniform FIFO Reliable Broadcast

FIFO reliable broadcast is similar to Reliable broadcast, but enforces a First-In First
Out policy. This policy only concerns messages from the same source. Formally,
FIFO reliable broadcast follows the definition of Reliable Broadcast augmented by
the following primitive.

FIFO If a processq RF-delivers m1 beforem2 and p = sender(m1) =
sender(m2) thenp sentm1 beforem2.

FIFO reliable broadcast is trivial to implement using sequence numbers.

2.2.4.C Uniform Consensus

We consider that consensus is a core problem of group communications. Many
agreement problems can be reduced to consensus. That is, algorithms that solve
those problems can be built if an algorithm that solves consensus is available. Intu-
itively, the problem of consensus is to have all processes agree on one same value.
Consensus is defined by two primitives:propose(v) anddecide(v). Consensus is
specified as follows:

Uniform Validity If a process decidesv, thenv was proposed by some process.

Uniform Agreement No two processes decide differently.

Uniform Integrity Every process decides at most once.

Termination Every non-red process eventually decides.

Consensus can be solved in the synchronous model or in a asynchronous model
with a3P failure detector if there is at least one green process. In the asynchronous
model, consensus can be solved using the with the3S [CT96], the3Su [ACT00]
and theΩ failure detector [Lam89], as long asgreen > red.2 If stable storage is
present, consensus can be solved ifgreen+ yellow > red [ACT00].

2.2.4.D Uniform Total Order Broadcast

Total order broadcast is a communication primitive that ensures that all processes
deliver the same messages in the same order. This primitive is also often called
atomic broadcast. Atomic broadcast defines two primitives:A-Broadcast and
A-deliver. It is defined by the same properties as reliable broadcast, with the fol-
lowing additional property:

Uniform Total Order If two processp andq A-deliver two messagesm andm′,
thenp deliversm beforem′ if and only if q deliversm beforem′.

2The conditiongreen > red is sufficient regardless of the fact that the model permits yellow
processes or not.

22 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

Total order broadcast can be reduced to the consensus problem [CT96]. That
is, one can implement total order broadcast using consensus. For this reason, total
order broadcast can be solved in the same situations that consensus. Total order
broadcast can be augmented with the FIFO property, yielding FIFO total order
broadcast.

2.2.4.E Uniform Non-blocking Atomic Commitment

Intuitively, this protocol ensures that if all processes voteyes, then the outcome is
yes. If not, the outcome isno. Atomic commitment is a problem that originated
in the database community, and is usually defined only with the first two proper-
ties (uniform agreement and uniform validity), when only defined with those two
properties, it is calledblockingatomic commitment. While the properties required
are always uniform, this protocol is often not called uniform, as the non-uniform
specification is never considered. Uniform non-blocking atomic commitment de-
fines two primitives:AC-vote(v) andAC-decide(v), wherev ∈ {yes, no}. Non-
blocking atomic commitment ensures the following properties:

Uniform Agreement No two processes decide differently.

Uniform Validity If a processAC-decide yes then all process haveAC-voted
yes.

Fair non-Triviality If all processes are green, and they allAC-vote yesan infinite
number of times, thenyeswill be AC-decided an infinite number of times.

Termination Every non-red process eventuallyAC-decides.

Intuitively, the non-triviality property states that if nothing goes wrong, and all
sites voteyesall processes should decideyes. Note that this property is defined
on greenprocesses. The most logical specification for non triviality would be the
following:

Strong non-Triviality If all processesAC-vote yesand all processes are green,
then all processes eventuallyAC-decide yes.

The main issue with this specification is that the problem cannot be imple-
mented using imperfect failure detectors. The following specification can be im-
plemented using failure detectors [Gue95] (by reducing it to consensus):

Weak Non-triviality If all processesAC-vote yesand all processes are green, and
none is suspected by a failure detector then all process eventuallyAC-decide
yes.

The problem is, this introduces failure detectors in the specification (see Sec-
tion 2.2.2). This is why we choose fair non-triviality. If the failure detector guar-
antees weak accuracy (like3P) then the weak non-triviality enforces the fair non-
triviality property.

2.3. DATABASE SYSTEMS 23

Proposition 3 If the model defines a failure detector that guarantees weak accu-
racy, then the weak triviality property implements the fair non-triviality property.

Proof 3 If all processes are green, eventually they will not be suspected (weak
accuracy). Once they are not suspected any more, if they allAC-vote yes, they
will AC-decide yes(weak non-triviality). Therefore if theyAC-vote yesan infinite
number of times, they willAC-decide yesan infinite number of times.

2.3 Database Systems

In the previous section we have described the model for group communication. In
this section we present the formal model for databases. While the previous section
exclusively describes the group communication system model, this section does not
only describe a single, non-replicated database model, but also some communica-
tion considerations – mostly replica consistency criteria and how transactions are
distributed. All advanced communications primitives are described in Section2.2.

The model is mainly about transactions and their correct execution. It is in-
teresting to note that most properties are defined on data, which is quite different
from group communication systems where the model defines properties on events.

2.3.1 Transactions

Transactions are sequences of data operations terminated by one control operation.
Data operations arereadandwrite, control operations arecommitandabort. Op-
erations inside a transaction have a certain order (noted<t) and must be executed
according to this order.

Formally, the databaseD is composed of data items{d1 . . . dn}. A transaction
t = {op1

t , op
2
t , . . . op

m
t } of lengthm is defined as a partial order of its operations

with respect to operator<t:

1. ∀i < m opit ∈ {read(dk), write(dk)}

2. opit <t op
j
t iff i < j

3. opmt = abort | opmt = commit

2.3.2 Histories

Transaction executions inside databases are formalised thanks to the notion of his-
tories [BHG87]. A history defines in what order a set of transactionsT are executed
in a database. LetT = {t1, t2, . . . , tj}. a complete historyH overT is a partial
order of read and write operations. The partial ordering is expressed using the
operator<H such that:

1. H =
⋃j
k=1 tk (All transaction are part of the history).

24 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

2.
⋃j
k=1 <tk⊆<H (All partial orders<tk are compatible with the partial order-

ing<H).

3. If two transactions contain operations that conflict (they touch the same data
item dk and one of them is a write) then the ordering of those operations is
the same than the ordering of their respective transactions.
For two operationsop1(dk) andop2(dk) whereop1(dk) = write(dk) and
op2(dk),∈ {read,write}, such asop1(dk) was issued byt1 ∈ H and
op2(dk) issued byt2 ∈ H and t1 6= t2 either op1(dk) <H op2(dk) or
op2(dk) <H op1(dk).

A history is a prefix of a complete history. Given some historyH,C(H) is the
history obtained by removing the operations of transactions that did not commit in
H.

2.3.3 ACID properties

Histories specify how operations execute inside transactions, but do not specify
how transactions interact with each other and the system. This is specified in the
ACID properties [GR93]:

Atomicity. A transaction’s changes to the state are atomic, either all happen or
none happen.

Consistency.A transaction is a correct transformation of state. The actions taken
as a group do not violate any of the integrity constraints associated with the
state.

Isolation. Even though transactions execute concurrently, it appears to each trans-
action,t, that others executed either beforet or aftert, but not both.

Durability. Once a transaction is successfully completed (it commits), its changes
to the state survive failures.

Those definitions are rather broad, and need to be clarified in our context.

Atomicity. Atomicity ensures the “all or nothing” property, that is, all the
changes of the transactions are performed, or none of them.

Consistency. Consistency ensures that the data inside the database stays consis-
tent. Database consistency must respect integrity constraints. Integrity constraints
are rules that define what state of the database is legal, and what transitions in this
state are permitted. If a transaction would lead to a state of the database that does
not respect those constraints, it is aborted. Consistency is typically defined at the
level of the application running on top of the database.

2.3. DATABASE SYSTEMS 25

Isolation. Transactions can be more or less isolated from each other, the ANSI
standard [ANS92] defines therefore three isolation levels. We consider level three,
which is calledserialisability [GR93]. Serialisability is the strongest isolation
level: it ensures that the effects of transactions executing in parallel are equivalent
(in the sense of the effect of write, and the values read) to a serial execution. Other
isolation levels includesnapshot isolationwhich permits a transaction to read old
data. Those weaker level of isolation are typically used to increase performance
and will not be considered here. Isolation is handled by the concurrency control
mechanism and is detailed in the next section.

Durability. Durability is based on the assumption that if the server crashes, it will
eventually recover, and that critical data has been stored on stable storage [Had88].

The ACID properties must hold for committed transactions. If the system can-
not guarantee the ACID properties for transactiont, it will abort t. Aborting a
transaction is an unilateral decision. A transaction can be aborted either by an ex-
plicit instruction (abort) inside the transaction or by the database itself. If either
party (the transaction or the database) decides to abort the transaction, the other
party cannot prevent this abort.

Each of the four ACID properties can lead to the abort of a transaction. If not
enough stable storage resources are available, the system might no be able to en-
force atomicity or durability (there is not enough disk space to write all items of
the transaction). The database enforces integrity constraints, which ensure that the
database always stays consistent. Those integrity constraints are defined by the ap-
plication using the database, and can be linked to the semantics of the information
inside the database. For instance a certain account type cannot have a negative bal-
ance. If the result of a transactiont violates the consistency of the database, thent
is aborted.

It is important to note that the ACID properties are safety properties. They
ensure that nothingwrong happens to the data. They do not guarantee that the
system will make any progress. Thus one could implement a database system that
aborts all transactions. This system would be of no use, but would respect the
ACID properties. This poses some problems when integrating a database system
with algorithms coming from the distributed system community, where liveness
properties are always specified.

2.3.4 Concurrency Control

Isolation can be enforced in a simple way in a database – if all transactions are
executed sequentially, isolation is enforced and no transaction needs to be aborted.
This concurrency control policy is very inefficient, so more reasonable concurrency
control techniques try to process multiple transactions in parallel while enforcing
isolation for each of them. The two main approaches to concurrency control are

26 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

called optimistic and pessimistic concurrency control and are described below. Ac-
tual concurrency control system are usually not strictly optimistic or pessimistic,
they are somewhere between both extremes.

Two operationsop1 andop2 conflict if they are part of different transactions,
access the same object, and eitherop1 or op2 is a write operation. Two transactions
t1 andt2 conflict if they contain operations that conflict, i.e,op1 ∈ t1, op2 ∈ t2, op1

andop2 conflict (see Section2.3.2). The concurrency control mechanism handles
conflicting operations so that conflicting transactions appear to be executed serially
(in terms of the results of read and writes).

2.3.4.A Pessimistic Concurrency Control

Pessimistic concurrency control is done using locks. Access to each item of the
database is controlled by a lock. Before a transaction accesses an object, it has to
acquire its locks. Two transactions can share a lock if they do not conflict. Usually,
locking is done using the two-phase locking protocol (2PL): during the first phase
the transaction acquires locks, the second phase starts when all locks are acquired,
which occurs after the last operation (read or write). During the second phase,
locks are released.

A variant often used is strict 2PL. In this case, write locks are kept until the
transaction commits or aborts. Two-phase locking guarantees isolation, addition-
ally, strict two-phase locking avoids cascading aborts. Cascading aborts happen
when the abort of a transactiont1 forces the database to abortt2 for concurrency
control reasons (in this case, because it acquired a lock that the aborting transaction
released). In turn, abortingt2 might force the database to abortt3, etc.

Two-phase locking can lead to deadlocks. Such deadlocks have to be detected,
either by building thewait-for graph and finding cycles in it, or by using time-
outs. In case of a conflict, one of the transactions is aborted. Deadlocks can be
avoided if the whole transaction is known in advance, which is the case forstored
procedures(see Section2.4.4). While deadlock detection based on time-out is
non-deterministic, wait-for-graph-based deadlock detection can be deterministic.

2.3.4.B Optimistic Concurrency Control

Optimistic concurrency control does not use locks: transactions are executed con-
currently. At commit time, they are certified. Certification consists in checking
if the transaction’s execution respects the serialisability property. If serialisability
cannot be ensured, for instance because transactiont reads a stale version of an
object,t is aborted.

Optimistic concurrency control is considered more efficient in low conflict rate
situations, because it requires less book-keeping and permits higher concurrency.
In high conflict situations, the abort rates tends to rise, making this concurrency
control policy unsuitable.

2.3. DATABASE SYSTEMS 27

Transaction t1

Transaction t2

Begin t1 Begin t2

Transaction t1

Conflict

Transaction t2

Figure 2.6: Optimistic concurrency control – non-deterministic scenario

Another drawback of optimistic concurrency control is the fact that it is not de-
terministic [WPS99]. Even if transactions are submitted in the same order, trans-
actions might abort in some cases and not in others. Figure2.6 illustrates the
problem: consider two transactionst1 andt2, t1 andt2 conflict, t1 is started be-
fore t2. If t1 terminates beforet2 is started, the execution will be serial and the
concurrency control has no reason to abort either transaction. Ift2 starts before
t1 terminates, the concurrency control system will need to handle the conflict, for
instance by abortingt2. Therefore, depending on the timing of the system, trans-
actiont2 might commit or abort. Thus the system is non-deterministic.

2.3.5 Network Model

There is no precise formal model of the network used in database system. Commu-
nications are usually considered point to point with some synchrony assumptions.
The crash of a process can be detected with a time-out mechanism, false suspi-
cions (a process failing to respond before the time-out while not crashed) are not
considered. This corresponds to the synchronous model, where there are known
bounds to both message transmission delays and the relative speed of processes
(Section2.2.2).

The process model is similar to the crash-recovery model with stable storage
(Section2.2.3.D). Processes are assumed to crash and recover. The log of the
database serves as stable storage. The database and the networking architecture
share the same stable storage component (the log).

2.3.6 Distributed Transactions

Distributed transaction processing relies on two protocols, but many solution and
replication techniques rely on different ad-hoc mechanisms. The two basic proto-
cols generally used are a broadcast primitive and an atomic commitment protocol.
The broadcast primitive is used to distribute the transaction to all processes, while

28 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

the atomic commitment protocol is used to decide on the transaction’s outcome.

The atomic commitment protocol follows roughly the specification described
in Section2.2.4.E. The most common protocol used is the two-phase commit pro-
tocol (2PC) [GR93], which does not ensure thetermination property – the 2PC
algorithm might never terminate. Such an algorithm is called blocking.

Three-Phase Commit protocol (3PC) [Ske81] is non-blocking, but rarely used
for performance reasons. There are many variants of the 2PC protocol, optimised
for different cases [CSAH98]. One variant of 2PC merges the broadcast with the
atomic commitment protocol: the resulting protocol does both the broadcast and
the atomic commitment. New variants of the 2PC protocol replicate some compo-
nents of the protocol in order to become non-blocking [JPPMAA01].

We considerstrict replica controlreplication: the correctness criterion isone-
copy equivalence. This criterion requires all copies of the database to be mutually
consistent at the end of each update transaction. That is, all local histories have
the same partial order<H . Because all copies enforce serialisability, the resulting
system enforcesone-copy serialisability.

2.4 Practical Issues

It is quite possible to design a system that is consistent and efficient in a model, but
is not practical to build because of practical issues. Models offer a rather abstract
view of the system, but do not express certain things like what is “reasonable” and
what is not. Database systems are advanced and complex systems, which cannot be
reduced to a simple model: their design is also dictated by issues like deployment,
compatibility, standard compliance and of course, performance. Understanding
those practical issues is important, because they constrain the overall architecture.
Some architecture that are logical in the model will not be considered for practical
reasons. To some extent, the same consideration hold for group communication
systems: the primitives specified in Section2.2.4are sometimes implemented in a
weaker form, that does not offer the same guarantees, but better performance.

In this work, the problem of practical issues is further complicated because
we are working with model originating from different communities. Each com-
munity has its own “hidden” assumptions about what is reasonable or possible –
and in some case, those assumptions conflict. Finally, in some cases, these prac-
tical issues have a large impact on some replication techniques. This means that
the same replication technique can have very different characteristics depending on
the community. In this case, understanding the practical issues makes it possible to
understand the difference between those two variants. This section describes those
issues and discusses their implications.

2.4. PRACTICAL ISSUES 29

2.4.1 Client Code

Group communication replication protocols tend to have a peer-to-peer approach.
The system is represented asn equal processes. The model does not represent
the capacities of processes (processing power, memory etc.). Processes can act as
client, servers, or both. Any process can be a “server”, as soon as an application is
running inside this process. So it is common to have the clients use group commu-
nication possibilities. This makes it possible to handle failures transparently, as the
client communicates with the whole group: the failure of one server can be hidden.

While group communication tend to consider a peer-to-peer architecture, data-
bases usually rely on the client-server paradigm. Server and client machines tend
to have different characteristics and fixed roles. Database applications run on ded-
icated machines, often with special hardware to minimise crashes and down-time:
RAID disks, UPS power supply. Clients are very diverse: they can be interactive
user terminals, application code running on a PC, or even a middle tier for more
sophisticated applications. Client machines can crash or be disconnected very of-
ten. Client processes can have little or no local stable storage and little processing
power. The number of client machines and processes is often an order of mag-
nitude greater than server machines. Client machines are also often distributed
geographically and in different administrative domains. This means clients also
have limited access to both the database and the administrative structure (i.e., the
replication scheme) for access control and security reasons.

Because of those distribution and heterogeneity issues, the assumptions on
client must be kept simple. The large number of client machines makes deploy-
ing new protocols and interfaces a very expensive task. We will therefore consider
a model where the client is not aware of an advanced replication protocol. Con-
figuration information stored on clients is minimal: clients know how to connect
to a static set of servers. This information is static and updated by human man-
agement. Clients connect to one server that will act as a proxy for the client. We
call this proxy thedelegateserver. The interaction between the client and the del-
egate is done using standard mechanisms (SQL, stored-procedures). The whole
burden of replication is therefore shifted to the servers. This enables us to different
protocols and architectures for server-server connections and client-server connec-
tions. Among themselves, servers can use peer-to-peer and group communication
techniques, as all servers reside on machines with roughly the same capacities.
The client-server connection on the other hand, relies on standard protocols and
middleware.

2.4.2 High-Level Transactions

Communication between the client and the server is often done using a high-level
language like SQL. The request is parsed by the server and translated into low-level
instructions that will be executed on the actual database. This translation requires
access to the meta-data of the database that often is quite large (even larger that the

30 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

data itself). It also includes an optimisation phase that tries to find the minimal set
of low-level instructions needed to execute the high-language command. This op-
timisation is anNP-hardproblem, and is approximated by heuristics: it consumes
a lot of processing power.

We call ahigh-level transaction, the transaction that is submitted from the
client to the server. We call alow-level transactionthe sequence of read and write
operations described in Section2.3.1. While formally there is no difference be-
tween high-level and low-level transactions, some replication techniques can more
easily handle one or the other. Techniques where a high-level transaction is trans-
mitted to all replicas will be calledhigh-level replication: each replica parses and
transforms the high-level transaction into a low-level transaction.Low-level repli-
cation techniques are those where the transformation is only done on thedelegate
server, and the low-level transaction is transmitted to all other processes.

High-level replication has the advantage or requiring little or no modification
in the database system [PF00]. Also the high-level transaction can be orders of
magnitude shorter than the equivalent low-level transaction: a single query can
imply millions of read operations. This means that, if bandwidth is scarce, high-
level replication can be an advantage. On the other hand, low-level replication
means doing the costly transformation only once and therefore give better perfor-
mance [Kem00]. Most techniques considered are low-level, if a technique is a
high-level technique, we will mention it explicitly.

2.4.3 Cold standby vs Hot Standby

Formally, the state of a database system can be expressed either as the current state
Di or as the initial stateD0 and all the modificationsδ1 . . . δi that where applied to
D0. This means that it is equivalent to have (1) a database server that is up-to-date,
or (2) the database server with a stale state and all the updates that change this state.

In practice applying all those changes can take quite a lot of time, typically if
a back-up needs to apply all modificationsδ1 . . . δi before taking over, the system
might well be unavailable during the time those updates are applied. Also keeping
all those update consumes a large amount of memory, if the load is to high, then
the server might even crash. For this reason, the database community makes the
distinction between two types of strategies:cold andhot standby [GR93].

A cold standbyserver is a server whose state is not up-to-date, the server has
only a list of changes. In order to be up-to-date, and be able to accept transactions,
all those changes must be applied. Ahot standbyserver has all the changes applied
immediately, and can therefore accept requests without delay. The difference is
especially important for replication schemes where one server acts as primary and
the others as backup, but also in the case where one server is recovering, and is
therefore acting as a back-up until it is up-to-date.

An important issue between cold standby and hot standby is flow-control: im-
plementing cold standby is easy: the changes must simply be logged on stable
storage. Installing those changes takes more time, as the transactions need to be

2.4. PRACTICAL ISSUES 31

executed and in a precise order. This means that in a case of hot standby, some flow
control mechanism might be needed to ensure the backup is not “overwhelmed”
by new changes. This means that additional messages or communication rounds
might be needed to be sure that a given server stays “hot”. Even in cold standby
situations, flow control might be needed to avoid that a slow backup is overloaded.
Algorithms that formally do not need any synchronisation rounds to ensure cor-
rectness, might in practice implement such rounds to enforce some flow-control.

2.4.4 Interactive Transactions vs Stored Procedures

We distinguish between two basic transaction types. The first type,interactive
transactions, are typically described in a high-level command language, like SQL.
Such transactions are either issued by a human operator, or by a program running
on a client machine that issues SQL commands. In both cases, the control of the
transaction is not located on the server, but on a client (either in a client program,
or handled by a human operator). In such transactions, the system does not know
at the beginning of the transaction what operations it will contain and what data
items will be touched. We call such transactionsdynamic transactions.

The second type consists ofstored procedures. Those transactions are invoked
by a remote procedure call (RPC) mechanism. The transaction that will be invoked
are represented in the form of code stored and executed on the server. Stored pro-
cedures are typically written by experts, and are used by application developers.
Stored procedures offer better performance, access control, and simplified applica-
tion development. They also have the advantage that the operations invoked and
the data items touched are known in advance.3 We also call such transactionstatic
transactions.

While on the theoretical level, the difference is slim, in practice the difference is
important. First, this has an impact on performance [Mun98], but also certain prob-
lems (like deadlocks) can be avoided by using static transactions. Also dynamic
transactions imply that the server executing the transaction has a communication
channel with the client, so they can interact. For this reason, certain replication
techniques can only handle static transactions.

2.4.5 Determinism

Another important issue for replication is determinism [Pol95]. Actual database
systems use a wide range of non deterministic mechanisms, mostly for perfor-
mance reasons. Database programs are multi-threaded, and the scheduling of
threads is typically controlled by the blocking and unblocking of input/output oper-
ations, which are unpredictable. Also, databases rely heavily on time-outs to detect
deadlocks. All this leads to a very non-deterministic system.

The problem is that determinism is an important assumption for replication.
One common way of replicating data is to have all replicas process the same se-

3At least a superset is known in advance.

32 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

quence of instructions in the same order. This replication technique, called state-
machine replication [Sch90], requires that the replicated object behaves in a com-
pletely deterministic way. Tools and techniques to make replicated applications
deterministic are an ongoing research topic [NMMS99], but building a determinis-
tic database system is a very important challenge and it is not clear if it is possible
without losing too much performance. Issues related to determinism in databases
when communication primitives are used have been studied in detail in [AAES97].

As requiring a fully deterministic database is not reasonable, other replication
techniques that require no determinism have been proposed. Alas, those techniques
require additional rounds of messages to make sure that the different copies of the
data do not diverge, leading to bad performance. Some techniques have been de-
signed to cover the middle ground: they do not require “full” determinism: exe-
cution must be deterministic to a point. To express the amount of determinism,
we define thepoint of determinism[WPS+00a] as the point in the execution of a
transaction after which the processing must be deterministic. Different replication
techniques require different points of determinism.

2.4.5.A Point of Determinism

Formally, the point of determinismdp of transactiont, is the first operation of
transactiont such as any operationo afterdp executes in a deterministic way. This
means that oncedp is executed, the execution of the rest of transactiont is deter-
ministic. The main implication is that once this point is reached the position of the
transaction in the serial history can be determined.

The notion ofpoint of determinism is related to the notion of a serialisation
point [BGMS92]. Serialisation points (sp) are the first operation in a transaction
such as when thesp1 of transactiont1 executes beforesp2 of transactiont2, then
t1 is beforet2 in the serial history. In other words, once the serialisation point of
a given transactiont has been executed, then the position of transactiont in the
serial history is known and fixed.4 Therefore serialisation points are also points
of determinism. The reverse is not true: a database might be deterministic, but
reorder transactions in some way, thus offering no serialisation point. One reason
for doing so would be to minimise the number of conflicts by using deterministic
re-ordering [Ped99].

Note that the local database and its concurrency control determines the deter-
minism point. A fully deterministic database would have its point of determinism
at the first operation of the transaction. Strict two-phase locking is deterministic
after the first phase: once all locks are acquired the system is deterministic, so
the point of determinism is after the last read or write operation (if we consider
dynamic transactions).

Databases that have an interface for an atomic commitment in order to support
distributed transactions all have a point of determinism at the last operation of the

4We assume that the outcome (commit or abort) of the transaction is also known and fixed.

2.4. PRACTICAL ISSUES 33

transaction. Once this operation is executed, the transaction isready to commit,
the system must be able to commit the transaction in a fixed position in the serial
history, the transaction cannot be aborted.

This is a direct consequence of the relationship between serialisation point and
points of determinism. The notion of serialisation points is used to determine if a
database server can participate in a distributed transaction. If a database offers a
serialisation point, then it can participate in a distributed transaction even without
the explicit interface for an atomic commitment [BGMS92]. Database servers that
offer an explicit interface for an atomic commitment protocol have a serialisation
point. As all serialisation points are also points of determinism, techniques that can
be controlled by an atomic commitment have a point of determinism.

If the database is completely non-deterministic, there is no point of determin-
ism: as thedp is the first deterministic operation, this would be the operation after
the termination operation (commit/abort). Some replication schemes typically re-
quire certain points of determinism. Because of this, some concurrency control
schemes are unsuitable for certain replication techniques.

2.4.5.B Unilateral Aborts

One important aspect related to determinism is the issue of unilateral aborts. In
normal operations, a database system can always decide to abort a transactiont
as long ast has not committed. Reasons for aborting transactions are usually re-
lated to concurrency control, but can also be caused by issues like scarce resources
(for instance not enough disk space), or a disk error. Replication techniques that
require determinism cannot tolerate unilateral aborts and must therefore address
such issues. For instance, they should have a very conservative resource handling
policy (i.e. be sure to always have enough resources), but this is not always pos-
sible. Another option is to have the system use compensating transactions, that is,
to run a new transaction that tries do redo the effects of the transaction that was
unilaterally aborted. This technique is often used in federated databases to build
distributed databases out of databases with no built-in support for atomic commit-
ment. The problem is, compensating transactions must be carefully scheduled so
that the resulting state is consistent.

Finally, one option is to artificially crash the server that did the unilateral abort.
While this makes sense in some cases (for instance when a disk failure prevents
the server from working), in other cases, an artificial crash is no warranted (for
instance if a transaction aborts because of a temporary shortage of disk space).
The overhead for crashing and then going through the recovery protocol is usually
quite high. In general, introducing artificial crashes to solve control problems is
considered expensive [CBDS01].

34 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

2.4.6 Optimistic and Weak Communication Protocols

The primitives introduced in Section2.2.4offer strong guarantees, and database
replication schemes based on those primitives use those guarantees to enforce the
ACID properties of the replicated database. Yet those strong guarantees come at
some price in terms of performance. Protocols that implement weaker primitives
have been proposed and specified – and promise better performance than their
“stronger” counterparts. In certain cases, such “weaker” primitives are sufficient,
and can be used in place of the “stronger” variants.

The properties of the communication primitives are usually used to ensure the
isolation and atomicity properties of transactions (consistency and durability are
usually enforced locally by each replica). But group communication primitives
also have other benefits, like diminished deadlocks rates [HAA00]. If only one
communication primitive is used, it must have strong properties to ensure isolation
and atomicity. If two communication primitives are used (for instance total order
broadcast and atomic commitment), then each primitive will only be responsible
of ensuring a portion of those properties. So carefully chosen weaker communi-
cation primitives can be used. For instance some techniques rely on both total
order broadcast and atomic commitment: isolation and atomicity are ensured by
the atomic commitment, total order broadcast is used to decrease deadlocks. In
this case, the total order broadcast can be weaker, as its properties are used mostly
for performance.

Another way of using “weaker” protocols is to build optimistic proto-
cols [Ped01]. Often, the weak protocol is a part of the strong protocol. For instance
a uniform total order broadcast can be seen as a non-uniform total order broadcast
with an additional communication round. So a first guess of the outcome of a total
order broadcast can be delivered early, and confirmed later. In between processing
can take place [KPAS99].

The most promising weak protocols are non-uniform total order broadcasts and
best-effort total broadcast.

2.4.6.A Non-Uniform Total Order Broadcast

Non-uniform total order broadcast [WS95] is defined by weakening the total order
and the agreement properties:

Non-Uniform Agreement If a greenprocessR-delivers a messagem, then all
greenprocesses eventuallyR-delivers m.

Non-Uniform Total Order If two green processesp and q A-deliver two mes-
sagesm andm′, thenp deliversm beforem′ if and only if q deliversm
beforem′.

The difference between uniform and non-uniform total order broadcast is that
in the non-uniform case, a process that is not green might deliver messages in the

2.4. PRACTICAL ISSUES 35

wrong order, or deliver messages that will not be delivered by all others. Typically
this means the process can deliver messages in the wrong order and then crash.

2.4.6.B Best Effort Total Order Broadcast

Best effort total order broadcast offers even weaker guarantees than non-uniform
total order broadcast. Basically a best effort total order broadcast will “try” to
respect the specifications, but might not enforce them in certain circumstances.
Best effort algorithms are easier to implement, because they can be based on model
assumptions that are true only most of the time.

For instance the timed asynchronous model [CF99] assumes that clocks are
available and that bounds on messages transmission and processing times are
known, like in the synchronous model; however those bounds do sometimes not
hold, which is a called a performance failure. In this context, any algorithm based
on timing assumptions can be used [CASD85]. As long as the timing assumptions
hold, total order will be ensured. As periods of instability where performance fail-
ures occur are rare, the total order broadcast primitive will work correctly most
of the time – which is good enough if total order broadcast is used to increase
performance.

Proportion of Out of Order Messages

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.030.040.050.060.070.080.090.10.110.120.130.140.150.16
Message interval [ms]

Error Rate

P
er

ce
n

ta
g

e
o

f
O

u
t

o
f

O
rd

er
 m

es
sa

g
es

Figure 2.7: Spontaneous ordering in a LAN

Another example of best-effort algorithm for total order broadcast is based on
the observation that messages in a LAN are delivered in total order most of the
time. This is due to the fact that in an Ethernet backbone, only one message can be
transmitted at the time, so the backbone enforces a total order.

Figure2.7 shows the observed proportion of spontaneously ordered messages
in LAN setting. TheX axis represents the interval between two messages sent, and
theY axis represents the percentage of messages that were delivered out of order.
This experiment was done on a cluster of 11 Pentium III/766 MHz machines with
128 MB or RAM and a 100-Base TV full duplex Ethernet network interface inter-
connected with an Ethernet hub. The experiment was run using the Neko [UDS01]

36 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

framework. We see that if the load is less than one message every 0.15msthe spon-
taneous ordering is above 90%. Another interesting result of this experiment was
that if messages are delivered out of order, the “error” in the sequences is always
one or two positions. I.e, if the sequence of messages ismi,mi+1,mi+2,mi+3

then, in the worst case, the spontaneous delivery order ismi+1,mi+2,mi,mi+3.
We call the amount of reordering themessage reordering level.

In those conditions a best effort implementation of total order broadcast sim-
ply relies on the underlying total order, which is correct “most of the time”. The
spontaneous ordering property can also be used to optimise certain replication tech-
niques, this is discussed in Section5.3.6.

2.5 Summary and Synthetic Model

2.5.1 Summary of Both Communities

Database Systems Distributed Systems

What is
Replicated

Data Processes

System
Model

Consistency

Synchronous Synchronous
Asynchronous etc...

1-copy Serialisability Linearisability

Motivation Performance Fault-Tolerance

Operation
Type

Multiple
(Transactions)

Single
(Remote Invocations)

Table 2.3: Summary of both communities

Table2.3 summarises the differences between both communities. Each line
describes one aspect of replication and how both communities approach it. The
motivation for replication is different: in one case replication is a mean to get
fault-tolerance, in the other it is a way to achieve better performance. The second
difference is what semantic element is replicated: in a distributed system context,
the unit of replication is a process, that is, a functional entity that does some cal-
culation. In the database context, it is data that is replicated. The operation type
considered is also different, distributed system models consider single events (like
remote procedure invocations (RPC)), while database systems consider groups of
operations (transactions). The network model is also different: database systems
are usually built on a synchronous model, while distributed systems rely on multi-
ple different models (synchronous, asynchronous, failure detectors etc...). Finally,
the consistency criteria are also very different. In the distributed system commu-
nity, application level consistency is not often considered, so consistency is defined

2.5. SUMMARY AND SYNTHETIC MODEL 37

regarding the delivery of events, typically causal order, view synchronous order or
total order. Linearisability is an application level consistency criterion sometimes
used in distributed system [HW90]. Linearisability is stronger than serialisability.

2.5.2 Synthetic Model

We have presented the models for the database module (Section2.3) and the com-
munication module (Section2.2). We now need to define the model for the overall
system: in our case, the whole replicated database system. The goal here is not
to replace the models described the previous sections, but to integrate them in a
larger model that takes into account the practical aspects described in Section2.4.
Figure2.8 illustrates the synthetic model.

Clients Clients

Group G

Clients

Replicated Database D

Group Communications

Server S1

D1

Server S2

D2

Server S3

D3

Figure 2.8: Synthetic model

We consider a databaseD distributed on servers{s1 . . . sn}, where each server
si contains a full copy of database notedDi. Each serversi contains a database
server capable of executing transactions on the local copy ofD. Each database
server is a full database system, capable of ensuring the ACID properties on the
transactions it executes.

We consider that all database servers{s1 . . . sn} form a groupG, and have
access to all group communication primitives described in Section2.2.1. So each
server is also a process for the group communication system. We call the combina-
tion of server and process areplica. Depending on the model, a replica might have
one attached process (crash-recovery model) or multiple incarnations of the same
process (crash no-recovery model). Figure2.9shows the relationship between the
database server and the group communication process for one server machine. The
left part shows a crash scenario in the dynamic crash-recovery model. Both the
database server and the group communication process crash when the machine
crashes. Upon recovery, both the database server and the group communication
process recover. The right part shows the same scenario in the dynamic crash no-

38 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

recovery model. In this case, upon recovery, the group communication process
does not recover, instead, a new incarnation of this process is created and joins
the group. This distinction has some implication on the recovery process and is
discussed in Chapter4.

Database
Server S

Group
Communication

Process P

Database
Server S

Group
Communication

Process P

Machine Crashes

Database
Server S

Group
Communication

Process P

Process
Recovers

Database
Recovers

Database
Server S

Group
Communication

Process P1

Database
Server S

Database
Server S

Group
Communication

Process P2

New Incarnation of
process createdDatabase

Recovers

Crash Recovery Model Crash No-recovery Model

Machine Crashes

Figure 2.9: Relationship between database server and group communication pro-
cess

We also consider clients. Clients are not part of the groupG and do not rely
on group communications. Clients only have access to point-to-point communica-
tions. Clients interact with the databaseD by sending transactions. Those transac-
tions can be either stored procedures or interactive transactions (Section2.4.4). To
send a transaction, clientc connects to serversc. The clientc selectssc by choosing
it among a list of servers. This list is static, and not updated by the group commu-
nication system. It contains all potential servers in the system. If a client does not
get a response from some server, it will try another. If a server cannot handle a
client’s request (for instance because it is recovering, or because it is acting as a
back-up), it will refuse to handle the request.

When clientc submits transactiontc to sc, we callsc the delegate for transac-
tion tc. The delegate is responsible for processingtc on the databaseD on behalf
of clientc. If the transaction is interactive, all interactions will be done between the
client and the delegate. If the transaction is a stored procedure, then the delegate is
responsible for sending the result of the transaction back to the client. The client is
not aware of the replication and only interacts with the delegate server.

The replicated database appears as one single non-replicated database to the
client – it guaranteesone-copy serialisability5 and the ACID properties. The sys-
tem hides any failure that is not the failure of the delegate or the client. If the client
crashes before the end of the transaction, the delegate aborts the transaction. If the
delegate crashes, the transaction can either commit or abort: the client needs to

5We do not consider quorum systems here.

2.5. SUMMARY AND SYNTHETIC MODEL 39

connect to another delegate in order to check the outcome of its transaction.

40 CHAPTER 2. DATABASE AND GROUPCOMMUNICATION MODELS

Chapter 3

Classification of Replication
Techniques

Crude classifications and false generalisations are the curse of organised life.

George Bernard Shaw

Numerous database replication techniques, from both the database community
and the distributed system community have been proposed in the literature. Yet
comparing the protocols developed in the two communities is a frustrating exercise.
Due to the many subtleties involved, mechanisms that are conceptually identical,
end up being very different in practice. So, it is very difficult to take results from
one area and apply them in the other or to relate replication techniques. Another
issue is that while many possibilities have been explored, it is difficult to see if all
possibilities have been considered.

One good way to understand and compare replication techniques is by classi-
fying them. This makes it possible to see what techniques are related and to verify
that the solution space was completely explored.

Probably the best known classification of database replication techniques has
been proposed by Grayet al. [GHOS96]. This classification uses two criteria:
where a transaction can be initiated, and in what context it will be executed. The
classification is summarised in Figure3.1. The first criterion,object ownership
describes what nodes “own” the data. Only a node that owns the data can accept
updates to it. This criterion decides to which node of the system transactions can
be submitted. If the data is owned by all nodes in the system, then transactions
can be submitted to any node. If the data is owned by a master, then transactions
need to be submitted to this master. The group ownership category is also called
update everywherereplication (or sometimespeer-to-peer) while the the master
ownership category is also calledprimary-copyor primary/backup.

41

42 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

Eager Group
Ownership

Eager Master
Ownership

Lazy Group
Ownership

Lazy Master
Ownership

T
ra

ns
ac

tio
n

E
xe

cu
tio

n
C

on
te

xt Group Master

Object Ownership

E
ag

er
La

zy

Figure 3.1: Gray’s classification

The second criterion defines in what scope transactions are executed. In the
case ofeagerreplication, the updates of all replicas are done in the scope of one
distributed transaction: the transaction can be aborted at any point, by any copy.
This guarantees that all replicas stay consistent – this is also sometimes called
synchronousreplication. In the case oflazy replication, the transaction updates
one replica, and the changes are shipped to other replicas outside of the scope of
the transactions. This can lead to an inconsistent system in case of failure, but can
also violate the ACID properties even without failures [Gol95]. This replication
scheme is also sometimes calledasynchronousreplication.

While useful, this classification is rather coarse and also has trouble coping
with non-votingreplication techniques. Those techniques do not use atomic com-
mitment, and have no final synchronisation phase at the end of the transactions, so
they should be classified aslazy. On the other hand, they ensure that the execution
of a transaction is serialisable (and should therefore be allowed to commit) before
actually committing it, so they are alsoeager. This has led some people to call
them consistent lazy techniques [HAA99a].

Other existing taxonomies of data replication techniques take into account a
broad spectrum of replication schemes, including many with weak consistency
and availability properties, but either without including techniques based on group
communication [CHKS94], or considering only simple cases [CP92]. In this chap-
ter we describe an abstract classification that focuses on eager replication tech-
niques and emphasises the synergy between communication and transaction man-
agement. Byeager replication, we mean techniques that enforce serialisability
before committing a transaction (so non-voting techniques are included). There
are two reasons for focusing on eager replication. First, eager replication is where
the use of group communications makes sense: group communication offer strong
guarantees, so they are useful to build a replicated system with strong guarantees.
Second, it is difficult to compare strategies that relax consistency. While models
with relaxed serialisability have been proposed [KLW96, KB94], the tradeoff be-
tween performance and consistency is not clear: how much consistency gives you

3.1. CLASSIFICATION CRITERIA 43

how much performance? How do you measure the loss of consistency? Mod-
els with relaxed serialisability have been proposed but their relationship with lazy
replication is not yet very clear.

The benefits of our classification effort are numerous. First, it allows us to
identify the key components of a database replication protocol. Second, it helps
us to better understand the role played by each component and its influence on the
nature of the protocol. Some of the strategies we consider have been described
in the literature, but not all. Third, the classification forms the basis for quantita-
tive comparison of the various replication strategies identified. This quantitative
comparison will be presented in Chapter5. These quantitative comparisons will
shed light on many different aspects of eager replication and the role that transac-
tion management and group communication play in implementing eager replication
protocols.

3.1 Classification Criteria

Eager replication protocols can be organised according to three parameters that
determine the nature and properties of the protocol and, in some cases, also its
performance. These parameters are: the server architecture (Section3.1.1), how
changes or operations are propagated across servers (Section3.1.2), and the trans-
action termination protocol (Section3.1.3).

3.1.1 Server Architecture

This parameter matches Gray’s classification. We distinguish between update
everywhere (group ownership) and primary-copy (master ownership) replication
techniques.

3.1.1.A Primary-Copy

This replication technique requires to have a specific site – theprimary-copy –
associated with each data item. All other sites are considered asbackups, hence
the name primary/backup.

Any update to the data item must be first sent to the primary-copy where it is
processed (executed or at least analysed to establish its serialisation order). The
primary copy than propagates the update (or its results, see Section2.4.3) to all
other sites.

Primary-copy techniques are found in both distributed system community and
database community [WPS+00b]. In the distributed system community, it is called
passive replication[BMST93, GS97] and relies on group communications mech-
anism (more specifically the view) to select the primary and to ensure that only
one primary is present in the system. In the database community those issues are
addressed in an ad hoc way.

44 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

As expected, primary-copy approaches introduce a single point of failure and a
bottleneck. These limitations can be solved by making the protocol more compli-
cated. Thus, if the primary crashes, one of the other servers takes over the role of
primary, which requires an election protocol. To avoid bottlenecks, databases do
not make a single site the primary for all data items. Instead, the data is partitioned
and different sites become the primary for different data subsets. In what follows,
we will mostly ignore these aspects of the protocols since they are orthogonal to
the discussion.

3.1.1.B Update Everywhere

Update everywhere replication allows updates to a data item to be performed any-
where in the system. That is, updates can concurrently arrive at two different copies
of the same data item (which cannot happen with primary-copy). Because of this
property, update everywhere approaches are more graceful when dealing with fail-
ures since no election protocol is necessary to continue processing. Similarly,
in principle, update everywhere introduces no performance bottlenecks. How-
ever, update everywhere may require that instead of one site doing the work (the
primary-copy) all sites do the same work – so in some sense, the bottleneck is not
eliminated, but replicated. If one is not careful with the design, update everywhere
may affect performance much more than primary-copy approaches.

3.1.2 Server Interaction

The second parameter to consider is related to the degree of communication among
database servers during the execution of a transaction. This determines the amount
of network traffic generated by the replication algorithm and the overall overhead
of processing transactions. This parameter is expressed as a function of the num-
ber of messages necessary to handle the operations of a transaction (but not its
termination). The number of network interactions will impact the design of the
replication protocol. This design will affect what properties the different commu-
nication protocol will have to offer (order, uniformity etc.). We consider two cases:
constant interaction and linear interactions. So ifmt is the number of operations
of a transactiont andkt the number of network interactions, we consider the cases
wherekt = O(1) andkt = O(mt).

3.1.2.A Constant Interaction

Constant interaction corresponds to techniques where a constant number of mes-
sages is used to synchronise the servers for a given transaction, independently of
the number of operations in the transaction. Formally, this means thatkt = O(1).
This single interaction might be a simple broadcast message, or an advanced pro-
tocol with complex properties, like total order broadcast. Replication techniques
in this category might also use a constant number of messages instead of one (typ-
ically one high-level message can imply many low-level messages). In the rest

3.1. CLASSIFICATION CRITERIA 45

of this discussion we will consider that constant interaction replication techniques
have one single interaction. This simplifies discussion without reducing the model.

Replication techniques in this category exchange a single message per trans-
action by grouping all operations of the transaction in this message. When this
interaction takes place depends on the nature of the transaction. If the transaction
is interactive (see Section2.4.4), the client and the delegate communicate during
the execution of the transaction, therefore the transaction can only be known and
bundled in a message when the clients asks the delegate to commit the transaction.
If the transactions are static, then this exchange can take place anytime.

3.1.2.B Linear Interaction

We describe a technique as having a linear number of interactions, ifkt = O(mt),
that is, if the number of network interactionskt to handle a transactiont is propor-
tional to the number of operationsmt in transactiont. Replication techniques in
this category typically propagate each operation of a transaction on a per operation
basis. The operations can be sent either as SQL statements (high-level transac-
tions) or as log records containing the results of having executed the operation in
a particular server (low-level transactions). Here again, to simplify the discussion
we consider that a linear interaction replication technique usesmt messages, where
mt is the number of operations in transactiont.

3.1.3 Transaction Termination

The last parameter to consider is the way transactions terminate, that is, how atom-
icity is guaranteed. We distinguish two cases: voting termination and non-voting
termination. This parameter distinguishes replication techniques that need some
message exchange to ensure the ACID properties, and techniques where those
properties can be ensured without explicit termination messages.

This factor is independent of the number of interactions. Yet one might argue
that transaction termination is simply one additional network interaction between
all copies of the database and should be counted as such. This factor would not
affect the order of the number of network interactions (constant or linear), and has
no influence and should therefore be discarded.

While this reasoning is legitimate, this last interaction has a important im-
pact on the design and the performance of database replication schemes and
should therefore not be simplified away. Both lazy replication schemes and group
communication-based schemes promise better performance by removing or simpli-
fying this phase. The termination phase typically implies synchronisation between
the replicas, but also operations on stable storage. Both operations are expensive
in terms of performance. The presence or absence of the termination phase, and its
complexity is therefore an important aspect of database replication.

Transaction termination is traditionally associated with two properties of repli-
cation: hot/cold standby and 1-safe/2-safe. If a primary-copy replication scheme

46 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

has no voting termination phase, there will be little or no flow control and the back-
up will tend to be cold standby backups (see Section2.4.3), while a voting phase
will help the backups to be in a hot-standby mode.

The transaction termination criterion is also related to an established way of
classifying primary copy database replications [GR93, PGM94]. In this context,
system are distinguished by the number of sites where a transaction is guaran-
teed to have committed when the client receives commit confirmation. In1-safe
techniques, the transaction is guaranteed to have committed on one site (the pri-
mary/delegate). In2-safetechniques, it is guaranteed to commit on all sites (the
primary and the backups). Traditionally, techniques are considered2-safeif the
replication protocol uses voting. We will show in Chapter4 that the issue is more
complex.

3.1.3.A Voting termination

Voting termination [ÖV99] requires an extra round of messages to coordinate the
different replicas. This round can be as complex as anatomic commitment pro-
tocol like those described in Section2.2.4.Eor as simple as a single confirmation
message sent by a given site (usually the delegate/primary) to the other sites.

The difference between an atomic commitment protocol and a simple message
has an impact on the database replication scheme. A simple message means servers
that are not the delegate might not do unilateral aborts. So the termination phase
is not simply present or absent. A replication scheme might have astrongvoting
termination phase (atomic commitment), or aweakone (simple message). Strong
voting implies that decision to abort a transaction ismultilateral; each replica might
cause the abort of a transaction. Weak voting means that this decision isunilateral:
only the primary (delegate) can decide to abort the transaction.

Another important aspect of a voting termination phase isflow-control. With-
out a strong voting phase, servers cannot tell a delegate they cannot handle the
load. Because of this, one slow server might not be able to cope with the load
and end up with more and more pending transactions and no means to request that
other servers slow down. This situation might eventually lead one server to become
overloaded and fail. The atomic commitment protocol forces all servers to wait,
so the system will naturally synchronise. The main drawback of voting, especially
strong voting, is that the system always waits for the slowest replica.

3.1.3.B Non-voting termination

Non-voting termination implies that sites can decide on their own whether to com-
mit or abort a transaction. Non-voting techniques require replicas to behave deter-
ministically – so replicas need to enforce atomicity (all replicas abort a transaction,
or all commit it) and one-copy serialisability (all replicas execute transactions in
the same serial order). This, however, is not as restrictive as it may appear at first
glance, since the determinism only affects transactions that are serialised with re-

3.2. REPLICATION TECHNIQUES 47

spect to each other. Transactions or operations that do not conflict can be executed
in different orders at different sites. Determinism is discussed in Section2.4.5.

3.2 Replication Techniques

In this section, we explore all the combinations that result from the classification
parameters in Section3.1. All technique categories are described in five parts: de-
scription, references, requirements, discussion and a summary. Thedescription
paragraph describes the general framework of the replication techniques. Existing
replication techniques that fit in this category are listed in thereferenceparagraph,
along with the relevant bibliographic references. Therequirementparagraph de-
scribes the requirements needed to build a replication technique fulfilling the clas-
sification criteria. Those requirements are expressed either for the communication
infrastructure, or for the database system on each server. Requirements on the
communication system are usually ordering or uniformity constraints on the deliv-
ery of messages to database servers. For the database system the requirement is
determinism which is expressed in terms of the point of determinism.

3.2.1 Update Everywhere

In update everywhere techniques, the clients can send their requests to any server.
The server contacted will act as thedelegatefor the requests submitted by the
client. The delegate will process the requests and synchronise with the other servers
to ensure one copy serialisability.

3.2.1.A Update Everywhere – Constant Interaction – Non-Voting Tech-
niques

Description. Figure3.2shows the basic structure of such a replication technique.
In the discussion that follows, we assume that there is only one network interaction
between servers. This simplification makes the description clearer and does not
leave out any important detail. The protocols in this category execute according to
the following steps:

1. The transaction starts on the delegate server.

2. The transaction is processed in a non-deterministic way.

3. Thepoint of determinismis reached.

4. The transaction is sent to all servers using an atomic commitment.

5. Processing continues on all replicas in a deterministic way.

6. Each replica terminates the transaction in the same way.

48 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

Transaction
Begin

Transaction
End

Server
Interaction

Total Order
Broadcast

}
Processing

(Deterministic)
Processing

} Delegate Server

}
Processing

(Deterministic)

Transaction
End Point of

Determinism

Other Server

Figure 3.2: Update everywhere, constant interaction, non-voting

References. Previous works following the Update Everywhere – Constant Inter-
action – Non-Voting model can be divided according to where the point of deter-
minism is placed.

If the point of determinism is at the beginning of the transaction, the whole
transaction processing is deterministic, and the role of the delegate server is sim-
ply to forward the transaction using the total order broadcast primitive (step 2 in
the description above does not really apply). The delegate simply acts as aproxy
for the client, contacting all servers to process the client’s request. One possible
optimisation would be that the delegate transforms the high-level transaction into
a low-level one, so that this work is only done once. Overall, this approach is close
to active replication[Sch90]. An early example of such an approach can be found
in [PGM89]. Other techniques in this category are presented in [Kei94]. The tech-
nique described in [KPAS99] also uses total order broadcast and an early point of
determinism with certain forms of optimistic transaction execution.

Techniques with the point of determinism at the end of the transaction process-
ing are called certification techniques. In this case, the whole transaction is handled
in a non-deterministic way by the delegate, and only the last stage of the processing,
the certification, is deterministic. This certification stage is executed at all sites,
and allows to decide if a transaction will be committed or aborted. In [PGS98]
information about both read and write operations is sent to all sites in order to de-
tect conflicts during the certification phase. The protocol A4 in [HAA99b] uses a
similar approach. Techniques in [KA98, KA00b] use snapshot isolation instead of
serialisability to avoid conflicts between read and write operations, and hence, the
certification phase is restricted to write operations. In all cases, the certification
phase is deterministic.

Requirements. We discuss correctness by distinguishing transaction atomicity
(i.e., all or none of the copies of the database commit a transaction) from the other
correctness criteria.

3.2. REPLICATION TECHNIQUES 49

Independently of where the point of determinism lies, the mechanism used
to guarantee one copy serialisability is always the same. The total order used in
the broadcast acts as a guideline to all sites. Each site guarantees that its local
serialisation order will follow the total order, and thus all sites will produce the
same serialisation order (since they see the same total order). The differences in
the protocols lie on the determinism point. For protocols that place the determinism
point at the beginning of the transaction, the total order suffices. For protocols that
place the determinism point at the end of the transaction, things are a bit more
complicated. In particular, when confronted with situations where a transaction
needs to be aborted, a delegate server can only abort transactions not yet seen by
other sites. The protocol must ensure that as soon as transactions are seen by other
sites, there will be no problems with their scheduling or that all sites will end up
aborting the transaction.

Related to this, techniques in this category do not need a distributed deadlock
detection system. Since transactions are sent in one step using a total order broad-
cast, locks for the whole transaction can be acquired atomically and in the same
order at all sites thereby preventing distributed deadlocks.

Transaction atomicity is enforced by a uniform reliable broadcast of the mes-
sages, and the deterministic behaviour of the different servers. This guarantees that
whenever a server delivers a message and commits the transaction, each server will
deliver the message (uniformity) and commit the transaction (determinism).

Discussion. The use of uniform reliable broadcast for transactions delivery has
the advantage that a site can commit a transaction as soon as it is delivered without
waiting for other sites. This can result in improvements to the response time since
sites are not tightly synchronised – because locks can be released as soon as the
transaction finishes; lock contention is also lower.

A point of determinism at the beginning of the transactions usually implies that
the datasets of the transactions are known in advance (static transaction). Thus,
what it is being sent to all sites is typically an invocation of a stored procedure. It
follows that all sites must execute this procedure deterministically since there is no
voting phase. This is one of the limitations of these approaches, since making all
sites completely deterministic can be difficult in practice.

Using points of determinism at the end of the transactions imposes a lower
burden on the database system. A late point of determinism does not require static
transactions: writes can be differed to the end of the transaction or executed on a
shadow copy, Nevertheless, the fact that the point of determinism comes at the end
of the transaction has several implications. The main one is that there is a degree
of optimism in the execution. Servers accept many transactions but might abort
some of them. There is a tradeoff between early points of determinism and abort
rate. Having the point of determinism early means low aborts due to conflicts.
Having this point late implies having higher chances of conflicts. Intermediate
solutions, where the point of determinism is in the middle of the transaction would

50 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

be a compromise. One way of implementing such a solution would be to execute
all the reads at the beginning of the transaction, and then do all the writes in an
atomic and deterministic step. In this case, the point of determinism would be the
first write operation.

Summary. Replication techniques based on update everywhere with a constant
number of interactions and non-voting require total order broadcast. From the
database point of view, the necessary determinism is achieved by ensuring that
the local serialisation order matches the total order and by resolving conflicts in a
deterministic way once transactions go beyond their point of determinism.

3.2.1.B Update Everywhere – Constant Interaction – Voting Techniques

Description. Figure3.3 shows the basic structure of a replication technique in
this category. This technique is similar to the one in the previous section, in that
all the interactions are done using one communication phase. Additionally, a final
voting phase is executed at the end of the transaction’s execution to ensure that all
replicas agree on the outcome. The execution is done in the following way:

Other Server

Transaction
Begin

Transaction
End

Server
Interaction }

Processing Processing

} Delegate Server

Voting Broadcast }

Processing

Transaction
End

Figure 3.3: Update everywhere replication, constant interaction, voting

1. The transaction starts on the delegate server.

2. The transaction is processed in a non-deterministic way.

3. The transaction is broadcast to all servers.

4. Processing continues on all replicas.

5. A voting termination phase takes place.

6. Each replica terminates the transaction according to the outcome of the vot-
ing protocol.

3.2. REPLICATION TECHNIQUES 51

References. As an example of this technique, in [FC94] the delegate server
broadcasts a transaction to the other sites immediately when it is submitted and
a total order broadcast is used (the total order being implemented using synchro-
nised clocks). Also here, the total order is used as a guideline at every site to
serialise transactions. The final voting phase is only used to ensure atomicity in the
case of different types of failures. Because these failures can occur at any site, an
atomic commitment is needed.

Another example of constant interaction with voting is the protocol called “se-
rialisability based protocol”, presented in [KA98, KA00b] and protocol A3 pre-
sented in [HAA99b]. In those protocols, the transaction is locally executed at the
delegate site and then sent to the other sites using a total order broadcast primitive.
Here, the delegate site is the only one to decide whether the transaction can com-
mit or must abort. Because the situation leading to an abort (due to serialisation
problems of local reads and global writes) is not seen by all sites, the delegate site
needs to communicate the decision to all other sites. This means that the voting
is weak: a single message that indicates whether the delegate server has commit-
ted or aborted the transaction. As a consequence, while the delegate site has the
choice to commit or abort the transaction unilaterally, the other sites must behave
deterministically in the sense that they have to obey the commit/abort decision of
the delegate.

A third example is the optimised form of 2PC described in [BHG87]. In this
protocol, write operations are deferred to the end of the transaction, and the first
phase of 2PC (vote request) also contains the transaction updates. Participants in
the protocol respond with ayesvote if they can obtain the locks for those updates.
Otherwise they respondno and the transaction is aborted. In this case, the only
interaction is the enhanced version of the 2PC protocol.

Finally, techniques in this category can be related to semi-active replica-
tion [PCD91]. In this replication technique, all process deliver the same requests,
but if some non-determinism appears, aleaderis chosen and this leaders sends the
result of its execution to all other processes (calledfollowers). If such a system
would handle transactions, this would mean that in case of doubt, the leader does
not send to the followers the outcome of the transaction (commit or abort), but the
serialisation order that was chosen. Of course the leader could also decide to abort
the transaction and send the result (abort) to thefollowers.

Requirements. In principle, protocols of this type could use any form of broad-
cast primitive (including unreliable broadcasts). However, the type of broadcast
primitive used determines the voting phase. If the primitive cannot guarantee that
all sites will do the same processing, then the voting phase can only be an atomic
commitment and, as part of this phase, discrepancies among sites must be resolved.
Furthermore, distributed deadlocks might occur and must be resolved. If the broad-
cast is totally ordered, then the requirements are similar to those of Section3.2.1.A
(e.g., also no need for global deadlock detection).

52 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

How atomicity is guaranteed depends on the protocol. If atomic commitment
is used (strong voting) then it guarantees the atomicity. If the technique relies on
weak voting, the primitive used for broadcasting the transaction must be uniform –
so if a single broadcast ensures atomicity, then this message must be sent using a
uniform reliable broadcast.

Discussion. Having a voting phase relaxes the determinism requirements on the
database servers. In practice, and given that complete determinism in a database
server is difficult to achieve, many protocols include a voting phase in one form
or another. Nevertheless, some limited form of determinism and the use of a total
order broadcast considerably simplifies the protocols.

Checking if the all the copies have executed the transaction in the same serial
order at commit time implies a large waste of resources if the serial orders do not
match. Conflicting serialisation orders on the different replicas are the cause of
the rising deadlock rate that was described as the main problem in eager replica-
tion [GHOS96].

While a total order broadcast will still help to decrease conflicts, having a vot-
ing phase consisting of a complete atomic commitment allows to relax the require-
ments on the total order. If the total order is not strictly enforced, the atomic com-
mitment phase will detect discrepancies. Therefore if one of the properties of the
total order is not enforced, then this will be detected and corrected by the atomic
commitment. This means that a weak total order broadcast (either non-uniform or
best effort) can be used.

Summary. The requirements are intertwined. If the broadcast does not impose
a total order, then the voting phase must be an atomic commitment and will in-
volve some form of certification. If total order broadcast is used, then the voting
phase can be significantly simplified (one confirmation message) as long as sites
are deterministic and can obey the unilateral decision of the delegate server.

3.2.1.C Update everywhere – Linear Interaction – Non-Voting Techniques

Description. This category is somewhat misleading. Non-voting implies that
there is no round where the fate of the transactions can be agreed upon. Therefore,
these protocols must be fully deterministic. Unlike for constant interactions, there
is no possibility to send the transaction as a whole. Sending operations one at a
time requires that all sites treat them in exactly the same way. Nevertheless, at the
end the delegate site has to indicate that the transaction has finished. This implies
that there is aterminationmessage. Assuming this termination message is not
used for voting, the general structure of techniques in this category are outlined in
Figure3.4:

1. The transaction starts on the delegate server.

3.2. REPLICATION TECHNIQUES 53

2. The first operation is sent to all servers using a total order broadcast.

3. The first operation is executed on all servers.

4. Items (2) and (3) are repeated until the transaction ends.

5. The delegate sends a termination message to indicate the end of the transac-
tion.

Other Server

Total Order
Broadcast

Processing
Operation 1

}
Processing
Operation 1

} Total Order
Broadcast

Transaction
Begin

Transaction
End

Delegate Server

Transaction
End

Total Order
Broadcast

Processing
Operation n

}

Processing
Operation n

}

Figure 3.4: Update everywhere, linear interaction, non-voting

References. An example of a technique of this category is presented in
[AAES97]. Each operation (reads included) is broadcast (total order) to all sites,
and sites must behave deterministically in order to react identically to each op-
eration. Techniques A1 and A2 presented in [HAA99b] also fit in this category.
Techniques in this category are very similar to replicated persistent objects [LS98].
Replicated persistent objects are modified by invocations. Those invocations are
delivered in total order to all objects and processed deterministically. Multiple in-
vocations can be part of a transaction. The transaction terminates when the last
invocation of the transaction is processed.

Requirements. Since there is no voting phase, atomicity can only be guaranteed
by sending operations using total order broadcast broadcast. one-copy serialisabil-
ity is the result of the local concurrency control mechanism used at each site, and
the determinism across sites. The total order broadcast needs to be uniform only
when sending the last operation. The problem with non uniform total order broad-
cast is the risk of delivering a message out of order and then crashing. Consider
transactiont = {op1, op2, . . . opi}. If one server deliversopi out of order and then
crashes, this might lead to an incorrectly serialised transaction to be committed,
thus violating one-copy serialisability. So the last total order broadcast must be
uniform. If one server deliversopi−1 out of order and then crashes,t will never

54 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

be committed with the wrong serial order, instead it will first be aborted (with the
wrong order) and then restarted (with the correct order). Therefore all total order
broadcasts except the last can be non-uniform.

Because sites are fully deterministic, there are no distributed deadlocks: all
sites have the same wait-for graph, so cycles in this graph cannot imply more than
one site. Local deadlocks must be assumed to be resolvable in a deterministic
fashion [AAES97].

Discussion. This technique has the major drawback of requiring absolute deter-
minism on all sites, which is a very strong requirement. In addition, there is consid-
erable network overhead since each operation results in a totally ordered broadcast.
In general, this technique has not been pursued in the literature as a viable option.

Summary This technique requires each operation to be broadcast using a reliable
total order broadcast. The last operation must be broadcast using a uniform total
order broadcast. Moreover, transaction processing must be fully deterministic.

3.2.1.D Update everywhere – Linear Interaction – Voting Techniques

Description. This form of database replication technique is the most studied in
the literature. Among its many variations, one of the best known is the read-one-
write-all technique [BHG87]. Figure3.5 shows the interactions of techniques in
this category:

1. The transaction starts on the delegate server.

2. Each operation is broadcast to a quorum of sites.

3. Each operation is executed on its quorum.

4. Items (2) and (3) are repeated until the transaction ends.

5. A voting protocol is executed.

6. Each replica terminates the transaction according to the outcome of the vot-
ing protocol.

References. This category includes all the traditional database replication pro-
tocols: read-one/write-all (ROWA), write-all-available, and quorums [BHG87].
Most of the effort in this area has been devoted to provide different ways to
build quorums. Good surveys of early solutions are [DGMS85, BHG87]. Later
approaches mainly optimise quorum sizes and communication costs or analyse
the trade-off between quorum sizes and fault-tolerance [KS93, RST95, TP98].
In [SAA98] multicast primitives with different ordering semantics are used. The

3.2. REPLICATION TECHNIQUES 55

Other Server

 Broadcast

Processing
Operation 1

}

Processing
Operation 1

}

Transaction
Begin

Transaction
End

Delegate Server

Transaction
End

Processing
Operation n

}
Processing
Operation n

} Voting Broadcast Broadcast

Figure 3.5: Update everywhere, linear interaction, voting

authors propose algorithms using reliable broadcast or causal broadcast which re-
quire an atomic commitment to guarantee serialisability. In technique A3 described
in [HAA99b], the delegate uses a total order broadcast to send all write operations
to the other replicas and a final broadcast to send the decision to commit or abort
hence implementing a weak voting protocol. In [RJP01] an optimistic version of
atomic commitment is used to reduce latency.

Requirements. One-copy serialisability is achieved by executing each read op-
eration on a read quorum of replicas, each write operation on a write quorum.
With this, each site follows a local concurrency control protocol that guaran-
tees serialisability, typically 2-phase-locking [Tho79] or time-stamp based algo-
rithms [BSR80]. Atomicity is guaranteed by an atomic commitment (typically
2PC) during the voting phase.

If total order broadcast is used to send operations to all replicas, then the tech-
nique is conceptually similar to the technique described in Section3.2.1.B, that
sends all writes in one message and uses a weak voting phase. The only con-
ceptual difference is that the sending of operations is spread onn totally ordered
messages instead of one. The requirements for the weak voting messages stay the
same. In this case, operations are send using a non-uniform total order broadcast,
and the last voting message is sent using reliable uniform broadcast.

Discussion. This technique is very well understood. However, in spite of
the amount of work invested in this technique, it is not very relevant in prac-
tice [GHOS96]. The reason is that it has a high overhead (because of the linear
number of messages) and has proven to significantly limit scalability due to dead-
locks. In addition, when the voting phase involves a complete atomic commitment,
the client only gets the response once all replica are ready to commit the changes:
this can result in very long response times.

56 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

3.2.2 Primary-Copy

In primary-copy techniques, the clients must send their requests to one particular
server. What this means is that there is only one server acting as a delegate for all
clients at any point of time; this server is called theprimary. Because there is only
one server executing the transactions, conflict between transactions are detected
and solved in one place. So there are no global transaction conflicts nor distributed
deadlocks. The only thing that has to be assured is that there is only one primary in
the system at any time. The primary-copy approach is widely used in eager repli-
cated databases to minimise conflicts among transactions executed over replicated
data.

Only the group of servers needs to know what server is the primary. Clients
have no access to this information (see Section2.4.1), and simply try all the servers
in their list. If a server is requested to handle a transaction and is not the primary,
it will reject the request and send back the identity of the current primary. Having
all the servers agree on the current primary is a problem that can be solved using
consensus. If the group communication system offers aview then the primary can
be chosen by taking the first member of the view. A similar mechanism can be
built using perfect failure detectors.

From now on we will refer to the sites that are not the primary copy for a
data itemd asbackupsof d. Primary copy techniques are often also called pri-
mary/backup techniques. The backups only install the changes sent by the primary.
There is a distinction betweenactiveandpassivebackups. An active backup is the
primary for a subset of the data, and the backup for the other data. A site that is
not the primary for any data is apassivebackup. The main issue with active back-
ups are transactions that update data of multiple primaries. Replication techniques
that support such transactions have the same requirements that update-everywhere
replication: the execution of a transaction must be synchronised on all replicas.
For this reason we will concentrate ofpassivebackup replication schemes in this
section.

3.2.2.A Primary-Copy – Constant Interaction – Non-Voting Techniques

Description. Techniques in this category are generally used for cold-standby
replication. The protocols have the following general outline (see Figure3.6):

1. The transaction is executed at the primary.

2. When the transaction terminates, the corresponding log records are sent to
all backups using a FIFO reliable broadcast.

3. The primary commits the transaction without waiting for the backups to in-
stall the changes.

4. The backups eventually install the changes.

3.2. REPLICATION TECHNIQUES 57

Transaction
Begin Transaction

End
Server

Interaction

FIFO
 Broadcast

Processing

} Primary Server

}
Processing

(Deterministic)

Transaction
End

Other Server

Figure 3.6: Primary-copy, constant interaction, non-voting

The concrete nature of the protocol depends on the type of broadcast primitive
used. In its simplest form, the protocol is based on FIFO delivery, in order to
ensure that transaction changes are installed at the backup in the same order they
were executed at the primary.

References. Techniques in this category are typically described in the database
literature as 1-safe, cold standby, primary backup replication techniques [Lyo88,
Lyo90, GR93, PGM94]. Passive Replication [BMST93, GS97] also fits into this
category. In semi-Passive replication [DSS98] the primary-copy is selected auto-
matically in the context of a variant of consensus and the update form the value
that is decided. The Pronto replication protocol [FP01] replicates high-level trans-
actions and uses the total order broadcast protocol to detect the case of two concur-
rent primaries. Some techniques send even less than one message per transaction,
transactions are grouped in batches calledepochsand backups install those changes
by batches [GMP90] – those techniques are, by design, 1-safe.

Requirements. In the case of passive backups, as long as the transaction changes
are installed in the same order as in the primary, the backups will consistently re-
flect what has happened at the primary. Thus, if the primary sends changes in FIFO
order and is producing correct histories, so do the backups. The FIFO broadcast
must also be uniform, as the broadcast ensures atomicity.

This also holds in the case of active backups as long as transactions only access
data for which the executing site is the primary. Care has to be taken if transactions
are also allowed to read data for which the executing site is not the primary or if
transactions are distributed (i.e., they update data of different primaries). In this
case, the scenario is similar to that in update everywhere server architectures and
it is not enough that primaries send changes in FIFO order but a total order is
necessary.

58 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

Discussion. Lacking a voting phase, this type of protocols are naturally cold-
standby since the primary has no way of waiting for the secondaries to apply the
changes. Depending on the guarantees offered by the communication system, tech-
niques in this category can be 1-safe or 2-safe (see Chapter4).

If the backups are passive, that is, they do not do anything but installing the
changes sent by the primary, determinism simply requires to install the changes in
the order in which they arrive from the primary. If the backups are active and are
executing transactions on their own behalf, then there must be some rules to prevent
inconsistencies. These rules can be summarised as follows: the local serialisation
order cannot contradict the order in which the remote transactions arrive. In this
case, strategies are similar to those described in Section3.2.1.A.

Summary. The requirements for this technique are, therefore, as follows: The
communication primitive must guarantee FIFO order for passive configurations
and total order for active configurations.

3.2.2.B Primary-Copy – Constant Interaction – Voting Techniques

Description. The introduction of a voting phase allows us to ensure that both the
primary and the backups install the updates. While 2-safe property can be ensured
without a voting phase (see Chapter4), having a voting phase is the traditional
way to enforce the 2-safety property. Voting also offers flow control and thus hot-
standby behaviour: the system must wait for all replicas to be ready to install the
change of a transaction before committing the transaction. Therefore, a replica
cannot be left behind (see Section2.4.3). The protocol is the following (Figure3.7):

Other Server

Transaction
Begin

Transaction
End

Server
Interaction }

Processing Processing

} Primary Server

Voting Broadcast }

Processing

Transaction
End

Figure 3.7: Primary-copy, constant interaction, voting

1. The transaction is executed at the primary.

2. When the transaction terminates, the corresponding log records are broadcast
to all backups.

3.2. REPLICATION TECHNIQUES 59

3. The primary initiates an atomic commitment.

4. The transaction is installed and committed at all sites.

References. Techniques in this category are typically 2-safe, hot standby
primary-copy replication techniques [BGHJ92].

Requirements. Compared toprimary-copy– constant interaction – non-voting,
the voting phase makes it possible use a weaker communication primitive for
broadcasting, as any discrepancies will be detected during the voting phase. This
means that the FIFO broadcast might be non-uniform or best effort. However, since
the primary waits until all backups have installed the transaction, the system is hot-
standby. A weak voting scheme would be possible, but would simply imply first
sending the transaction’s log with a non-uniform FIFO broadcast, then sending a
termination message with a uniform reliable broadcast, such techniques would be
cold-standby. If both messages are merged, then the technique is equivalent to the
non-voting technique.

Discussion. The nature of the broadcast primitive depends on what has to be
achieved. In principle, since the voting phase is anyway done via an atomic com-
mitment, there is no requirement for the broadcast primitive used when the trans-
action is sent to all backups (except FIFO). If there is any problem, the transaction
will abort during the atomic commitment. The atomic commitment can be greatly
optimised if used only as a synchronisation point and not to guarantee atomicity. It
is an open research question how to balance these two aspects in terms of cost and
overhead.

If the backups are active, the use of an atomic commitment allows to minimise
the scheduling constraints: transactions can be executed without any determinism
requirement and in any serial order. However, experience shows that minimising
these constraints results in high abort rates. Thus, it is probably best to use total
order broadcast and locally follow the delivery oder to avoid unnecessarily high
abort rates.

Summary. Since aborting transactions at the backups due to serialisation prob-
lems is very inefficient, FIFO order for passive backups and total order for active
backups is a reasonable requirement for this technique.

3.2.2.C Primary-Copy – Linear Interaction – Non-voting Techniques

Description. With constant interaction techniques, waiting until the transaction
ends in order to propagate the changes means that the replicas will have trouble
keeping up to date with the primary (hot-standby). The protocol could be faster if
the backups can process transaction in parallel to the primary. In order to do this,
the primary sends operations as they are executed, thereby allowing the backups to

60 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

start doing some work. If no voting phase is involved, the protocol is as follows
(see Figure3.8):

Other Server

 Broadcast

Processing
Operation 1

}

Processing
Operation 1

} Broadcast

Transaction
Begin

Transaction
End

Primary Server

Transaction
End

Broadcast

Processing
Operation n

}
Processing
Operation n

}

Figure 3.8: Primary-copy, linear interaction, non-voting

1. The transaction starts at the primary.

2. Read operations are executed locally.

3. The results of write operations are broadcast to the backups.

4. A termination message indicates the end of the transaction.

References Replication techniques that stream elements of the log as they are
captured fall in this category [Sta95].

Requirements. Since the backups receive operations and not transactions, one
has to be more careful about the order in which changes are installed. In the case
of passive backups, if the primary produces correct histories and sends operations
in serialisation order, then FIFO delivery is enough to guarantee correctness. In
general, since what is being sent to the backups are log records and log records
are produced in serialisation order, the primary does not need to make any extra
effort to ensure this property. If the backups are active and transactions may access
data across primaries, determinism is again achieved by relying on total order.
By serialising according to this total order, overall correctness is assured – this is
similar to what is described in Section3.2.1.C.

The last message should be sent using a uniform FIFO broadcast. The rea-
son why only the last broadcast needs to be uniform is the same reason than in
Section3.2.1.Cfor the update everywhere case: only the last operation leads to
the commit. Since there is no voting, whether the protocol is hot- or cold-standby
depends on whether the backups install the changes or they only save them to disk.

3.2. REPLICATION TECHNIQUES 61

Discussion. Sending the operation as they are executed at the primary allows the
backups to work in parallel but introduces a significant message overhead. Trans-
actions typically have 20 update operations. Thus, to sustain a throughput of 100
transactions per second, the communication system must be capable of supporting
a traffic of over 2000 broadcasts per second across the system. In practice, this is
likely to be the biggest bottleneck when using this type of protocols.

Summary. This type of protocol has the following requirements: The commu-
nication primitive must guarantee FIFO delivery (passive backups) or total order
(active backups) for the operations. The communication primitive must guarantee
uniform delivery for the message containing the last operation.

3.2.2.D Primary-Copy – Linear Interaction – Voting Techniques

Description. As for techniques described in Section3.2.2.B, the purpose of in-
troducing a voting phase is to ensure hot-standby behaviour (Figure3.9):

Other Server

 Broadcast

Processing
Operation 1

}

Processing
Operation 1

}
Transaction

Begin
Transaction

End
Primary Server

Transaction
End

Processing
Operation n

}

Processing
Operation n

} Voting Broadcast Broadcast

Figure 3.9: Primary-copy, linear interaction, voting

1. The transaction starts at the primary.

2. Read operations are executed locally.

3. The results of write operations are broadcast to the backups.

4. The primary starts an atomic commitment protocol.

5. The transaction is installed and committed at all sites.

References. This corresponds to the classical database replication scheme us-
ing a distributed transaction. This is very similar to the one described in Sec-
tion 3.2.1.D.

62 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

Requirements. Compared to non-voting, correctness is not affected by the vot-
ing phase. Nevertheless, active backups are free to abort any transaction since they
can propagate this decision during the atomic commitment phase. As the voting
phase is now responsible for atomicity, the last FIFO broadcasts do not need to be
uniform.

Discussion. As for primary, constant interaction voting techniques, the use of
atomic commitment at the end of each transaction removes any requirements for
the broadcast primitive. In fact, this protocol is very similar to traditional replica-
tion protocols, and the discussions in Section3.2.1in the context of voting tech-
niques also apply here.

Summary. The requirements for this technique are minimal. Again, since abort-
ing transactions because of serialisation problems at the backups is usually not
acceptable, FIFO, respectively total order broadcast is a reasonable requirement
for this technique.

3.3 Discussion

3.3.1 Overview of Requirements

Strong Voting Weak Voting Non-Voting

P
ri

m
ar

y
C

o
p

y
U

p
d

at
e

E
ve

ry
w

h
er

e

Atomic
Commitment

Atomic
Commitment

FIFO Reliable
Broadcast &

Uniform Reliable
Broadcast

Uniform Total
Order Broadcast

Uniform FIFO
Reliable

Broadcast

Total Order
Broadcast &

Uniform Reliable
Broadcast

Figure 3.10: Requirements, according to classification

Figure3.10shows a summary of the requirements of the different techniques
according to the classification. For clarity, only the constant interactions techniques
are shown. The requirements for linear techniques are basically the same than the
those for constant interaction techniques, simply instead of one broadcast, there
arem broadcasts. Additionally, if the broadcast used for the constant interaction
techniques needs to be uniform, then the corresponding linear interaction technique
will only require the last broadcast to be uniform (see Section3.2.1.C).

We also see that there is a symmetry between primary-copy and update ev-
erywhere. If an update everywhere technique requires a total order broadcast, the

3.3. DISCUSSION 63

corresponding primary-copy technique requires FIFO broadcast – all other require-
ments, reliability and uniformity stay the same. In the primary-copy scheme, the
primary knows in what order messages will be delivered by the FIFO broadcast,
and so can make sure that there will be no serialisation problem.

3.3.2 Server Architecture: Primary-Copy vs. Update Everywhere

While update everywhere seems a more desirable solution by promising load bal-
ancing and easier configuration, actual techniques in use nowadays are primary-
copy techniques.

The first reason for this is simplicity. Primary-copy techniques can be imple-
mented relatively easily, for instance by using high-level techniques like triggers
and stored procedures [Sta94, Gol94]. In some cases, the primary-copy runs an
unmodified version of the database, with a special process capturing updates and
sending them to the back-ups [BT00].

Update everywhere does not necessarily distribute the load among sites. Since
the data is replicated, all sites need to perform the updates anyway. This means
that unless there is a significant amount of read operations in the overall load (read
operations being local), the system might not scale up as more server nodes are
added.

One way to improve the performances of update everywhere is to preprocess
operations at one site and send the results to the other sites, that is, transform high-
level transactions into low-level transactions [Kem00]. That way, the processing
does not need to be done everywhere. Once such mechanisms are in place, update
everywhere becomes a more attractive solution since it is more robust to failures
and facilitates distributing the load among the sites.

3.3.3 Server Interaction: Constant vs. Linear

The number of messages exchanged per transaction is a key aspect of any repli-
cation protocol. As pointed out before, sending one message per operation can
quickly lead to unacceptable traffic rates. In addition, these messages need to be
processed at each site, which significantly increases the load. Finally, since op-
erations arrive at different points in time, coordinating their execution so that the
overall result is correct is much more complicated.

It is a good rule of thumb to say that the less messages exchanged per transac-
tion, the better. For instance, protocols based on linear interaction in combination
with update everywhere are largely infeasible in databases. It is exactly this type
of protocols that have been heavily criticised in the database community as un-
realistic [GHOS96]. In the primary-copy case, things are a bit different but the
consequences of how many messages are exchanged are not negligible. In partic-
ular, sending all updates in one message at the end of the transaction can help to
propagate the changes of only those transactions that actually commit.

64 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

Sending changes that will abort is useless and lowers performance: it uses
network bandwidth to transmit unneeded messages which cause contention on the
other servers. Those transactions will requests locks, and their operation will be
logged.

Exchanging one message per transaction, however, introduces its own prob-
lems. Protocols that do so, work especially well for service requests where the data
to be accessed is known in advance. In this case implementation is straightfor-
ward and abort rates are small. Those techniques can even be optimised in order to
handle the network protocol and transaction processing in parallel, yielding better
response times [KPAS99].

However, for ordinary transactions, some form of optimism must be used to
first execute the transaction at the delegate server and then determine the serialisa-
tion order. If the conflict rates are high, this optimism might result in high abort
rates.

Also, in those techniques the delegate needs to wait for the message to reach
all servers before being able to decide on the outcome of the transaction. This
means that write locks will be held during some time, which might lead to high
lock contention and increase response time.

3.3.4 Transaction Termination: Voting vs. Non-voting Techniques

Non-voting techniques are more demanding in terms of determinism requirements
than voting techniques. With non-voting protocols, each server must independently
guarantee the same serialisation as that of other servers. The typical way to do this
is to use the total order as a guideline. In general, if two transactions conflict,
their serialisation order will be that indicated by the total order. Depending on the
protocol, sites need to known different things in order to ensure global correctness
without voting. There are protocols where the whole transaction (read operations
included) is sent. In these protocols, each site performs the equivalent of global
scheduling for the whole system and, as long as this scheduling is deterministic,
correctness is guaranteed. This determinism can be implemented by following the
total order to serialise transactions.

In other protocols, only update operations are sent. In these protocols one has
to be careful about read operations since they are not seen by all sites and can
alter the serialisation order. This means that only the servers that know the read
operations can decide if the execution is serialisable. If no voting is allowed, then
transactions that are known to all sites take priority and, in case of conflicts, only
local transactions can be aborted (local meaning those not seen by all sites).

In terms of voting techniques we have considered two possibilities, one of them
is based on atomic commitment and another based on a confirmation message sent
by the delegate or primary-copy to indicate whether the transaction can be com-
mitted or must be aborted. The confirmation message is needed when only the
delegate server (or the primary-copy) of a transaction can unilaterally decide on
the outcome of the transaction. However, remote sites must still behave determin-

3.3. DISCUSSION 65

istically in such a way that they must be able to obey the commit/abort decision of
the delegate server.

When atomic commitment is used, each server can reject any transaction
thus relaxing the determinism requirements since there is always a chance to re-
solve things during the atomic commitment. Unfortunately, it has been shown
that in these cases, the coordination overhead is much higher, and according
to [GHOS96], conflict, abort and deadlock rates can quickly become a bottleneck.
Additionally, when voting is also used to provide atomicity, it can only take place
when all sites have completely executed the transaction. This means that the dele-
gate server waits for the slowest of all replicas to finish processing before returning
the result to the client, increasing transaction response times considerably.

66 CHAPTER 3. CLASSIFICATION OF REPLICATION TECHNIQUES

Chapter 4

Recovery and Fault-Tolerance
Issues

If we do not succeed, then we run the risk of failure.

Dan Quayle

One of the goals of replication is fault tolerance – if certain replica crash, the
database can still be available. In this chapter, we examine the fault tolerance
guarantees that can be obtained by basing database replication on group communi-
cations.

The basic safety criteria in the database world are 1-safety and 2-safety [GR93].
Traditionally, recovery of systems based on group communications is based on
the view change mechanism. We show in this chapter that this mechanism is not
adequate for building 2-safe replication and show the adequate recovery mecha-
nism. We also introduce a new safety criterion, stronger than 1-safe, but weaker
than 2-safe, which we callgroup-safe. This criterion is more suited to group
communication-based replication and permits implementations that promise in-
creased performance.

This chapter is structured as follows, Section4.1 introduces the 1-safe and 2-
safe safety criterion. Section4.2introduces view-based group communication sys-
tems. Section4.2.1explains the current shortcomings for building a 2-safe replica-
tion technique. Section4.2.2shows that even if those shortcomings were corrected,
the basic recovery mechanism in view-based system cannot be used to build a 2-
safe replication technique. Section4.3 discusses the check-pointing mechanism
needed for 2-safe replication. Finally, Section4.4introduces a new safety criterion
and discusses its implications.

67

68 CHAPTER 4. RECOVERY AND FAULT-TOLERANCE ISSUES

4.1 Safety Criterion

There are three safety criteria, called 1-safe, 2-safe and very safe [GR93]. When a
client receives a message that a transaction committed, durability ensures that the
effects of this transaction are preserved in stable storage. However, depending on
the safety criterion, the transaction might be lost in case of crash.

1-safe If the technique is 1-safe, when the client receives the notification oft’s
commit,t has been committed on the delegate or the primary server oft.

2-safe If the technique is 2-safe, when the client receives the notification oft’s
commit,t is guaranteed to eventually commit on all servers.

very safe If the technique is very safe, when the client receives the notification of
t’s commit,t is guaranteed tohavecommitted on all servers.

Each safety criterion has a different tradeoff between the safety and the avail-
ability of the system: 1-safe replication ensures that transactions can always be
accepted, but some transactions might get lost in case of a crash. A very safe sys-
tem ensures that a transactionhascommitted on all servers, but this means that a
single crash renders the system unavailable. This last criterion is not very practical
and most systems are therefore 1-safe or 2-safe.

The distinction between 1-safe and 2-safe replication is important in case of a
crash. If the technique is 1-safe, transactions might get lost if one server crashes
and another takes over. If the technique is 2-safe, no transaction can get lost, even
if all servers crash.

All those safety constraints implicitly assume a read-one, write-all (ROWA)
policy. Because of this, those safety constraints are difficult to map to general
quorum-based replication. In a quorum system, a given transaction might never
commit on a certain replica. Because of this, quorums will not be considered in
this discussion.

4.2 View-Based Recovery

4.2.1 Existing Systems

Database replication based on group communication usually considers that the
group communication is defined in a dynamic crash no-recovery model [HAA99b,
KA00a, Ped99, PF00]. One reason for this is that most current group-
communication toolkits [BJ87, MFSW95, vBM96, DM96, MMSA+96] are based
on this model. Recovery in this model is based on the view mechanism (see Sec-
tion 2.2.3.B). When a crashed replicab recovers, aview-changeoccurs. The group
communication system requests the state from one replicaa to transfer it to replica
b. This action is called astate-transfer. In other words, the group communica-
tion system forces a checkpoint on one replica (a), and does a roll-forward of the
recovering replica (b) to this checkpoint.

4.2. VIEW-BASED RECOVERY 69

The application of this recovery mechanism to replicated databases is described
in [KBB01]. Some optimisations are needed to avoid transferring the state of the
whole database each time a database server recovers, but conceptually the recovery
mechanism stays the same.

There are two issues with view-based system. First view-based systems cannot
tolerate a total crash: if all server crash, the group communication layer blocks and
the system cannot recover. This alone precludes the use of current group commu-
nications for building 2-safe replication techniques. 2-Safety places no bounds on
the number of crashes, e.g. a 2-safe technique must be able to tolerate an arbitrary
number of servers crashing. Second, even if a view-based systemcould tolerate a
total crash, the recovery mechanism would still be insufficient to ensure 2-safety.
This problem is discussed in the next section.

4.2.2 Roll-Forward Recovery

The main issue with state transfer recovery scheme is that it is insufficient to build
a 2-safe replication, regardless of the fact that the group communication layer can
tolerate a total crash. When a client is notified of the commit of transactiont,
the only guarantee is thatt was committed by the delegate. The use of group
communication does not ensure thatt will commit, but merely that the messagem
containingt wasdeliveredin the view. Ift is not committed because of a crash,t’s
effects must be applied by the recovery mechanism.

If a crash occurs, a replica can only recover if there is another replica that is up
with an available state. This is basic assumptions of roll-forwarding: one replica
must be available to do a state-transfer. If no replica has a consistent state to make
a state transfer, or if the replicas with a consistent state are crashed, then recovery
is impossible. For this reason, group communication systems that use view change
mechanism cannot be 2-safe.

Processing

A-Broadcast(t)

Sd

S2

S3

A-deliver(t) t Committed

Committing

Committing

Committing

?

?

A-deliver(t)

A-deliver(t)

S2 Recovers

S3 Recovers

Client Notified

Figure 4.1: Unrecoverable failure scenario

70 CHAPTER 4. RECOVERY AND FAULT-TOLERANCE ISSUES

To illustrate this problem, consider the following scenario (Figure4.1): trans-
action t is submitted on the delegate replicasd. Whent terminates,sd sends a
messagem containingt to all replicas. The messagem is sent using a total order
broadcast. The delegatesd deliversm locally, commitst and confirms the commit
to the client, and finally crashes. Sosd processedm and then crashed (t did com-
mit). All other replicas (s2 ands3) deliverm but crash before committingt. The
system cannot rebuild a consistent state that includest’s changes. So the technique
is not 2-safe.

This failure scenario illustrates the issue with a non-voting replication tech-
nique, but similar scenario exist for other replication schemes, including voting
replication schemes. Does this mean that voting replication is not 2-safe? No, be-
cause voting replication is usually done using atomic commitment protocols that
are not based on the dynamic crash no-recovery model. For instance, the 2PC pro-
tocol includes logging phases, so if a crash occurs during the protocol, the decision
of the protocol can be played back upon recovery.

4.2.3 Conclusion

It is impossible to build a 2-safe replication technique using a group communica-
tion system based on the crash no-recovery model. The reason is that the group
communication system only guarantees that messages aredeliveredwithin a view,
but offers no guarantees that the application will be able toprocessthose messages.
Moreover, the fact that a message is delivered does not mean that it is processed
by the application. Recovery schemes [Hol01] based on this assumption are sim-
ply incorrect. To build 2-safe replication, we need another model for the group
communication system.

4.3 Roll-back-based recovery

In order to build a 2-safe database replication scheme, we need to solve the issues
related with view-based recovery. 2-safety is an end-to-end property, so to ensure
2-safety, we need the group communication system to ensure not only that mes-
sages are delivered, but that they are processed by the application (the database).
In order to be sure that recovery is always possible, recovery should be based on
roll-backs, not roll-forwards.

In order to get this, we need to synchronise the application layer and the group
communication layer. As outlined in Section2.2.3, both the application layer and
the group communication layer contain some state information. One of the key
issues when recovering a database replication technique based on group commu-
nications is the synchronisation between the application layer (the database) and
the group communication system. Transactions that were executing at the time of
the crash lead to problems. They might have been delivered by the group com-
munication layer, but not yet committed by the database. For one layer, they have

4.3. ROLL-BACK-BASED RECOVERY 71

been processed, for the other they have not. Upon recovery, application and group
communication layer need to synchronise to restore those transactions. Because of
this, we need to define very precisely the relationship between the group commu-
nication layer and the application layer.

4.3.1 Inter-Layer Messages

Communication
Infrastructure

Group
Communication
 Infrastructure

Application

Physical
Network

Figure 4.2: Protocol stack

Figure4.2shows the classical layered model that we consider. The top layer is
the application, with the group communication system underneath, then the com-
munication infrastructure, and finally the physical network. Each layer relies on
the layers underneath to implement the services it offers to the layer above.

While inter-process communications are well specified, inter-layer communi-
cation, and more specifically communications between the group communication
layer and the application layer are only defined partially, typically in the form
of function calls – which often hides or confuses the flow of control. Many op-
timisation of group communication primitives also need to change those inter-
faces [DSS98, BFG01].

We express the communication between the group communication layer and
the application layer asmessages. When the application executes a certain primi-
tive, it sends a message to the group communication layer. When the group com-
munication layer delivers a message or a decision to the application, the group
communication sends a message to the application. So when for instance a replica
A-delivers a messagem, messagem is sent to the application by the group com-
munication layer.

This way, we can model the inter-layer (intra-process) communication in the

72 CHAPTER 4. RECOVERY AND FAULT-TOLERANCE ISSUES

same way than inter-process communication. The main difference is that all layers
share the same process, and therefore fail at the same moment. Channels for inter-
layer communication are reliable (no message loss, except in case of crash).

Group
Communication
 Infrastructure

Application

A-send A-deliver

Figure 4.3: Messages exchange for total order broadcast

Figure4.3shows for instance the messages exchanged between the application
and group communication layers for the total order broadcast protocol. The ap-
plication wants toA-send a message, later on, this message isA-delivered to the
application.

4.3.2 Inter-Layer Ack Messages

The specification of group communication primitives ensures that messages are
sent from the group communication to the application in precise circumstances
and precise order. Yet, the specification does not guarantee that the application
will be able to handle those messages. If the application cannot handle a message
m because of a crash, we say that the delivery ofm wasunsuccessful. The appli-
cation must roll-back before the delivery ofm, andm should be delivered again
(“replayed”) [RR00].

To ensure this, the group communication system needs to know when the ap-
plication has finished processingm, that is, when the delivery ofm wassuccessful.
This is done by having the application send a messageack(m) to the group com-
munication layer when the processing ofm is finished. This mechanism is similar
to acknowledgement messages used in inter-process communications.

We assume a well-behaved application, that is, when the application receives
messagem from the group communication layer, it will sendack(m) as soon as
possible. No application waits forever before sendingack(m). If a crash occurs,
and the group communication layer did not receive the messageack(m), thenm
should be sent again to the application. So after each crash, the group commu-
nication layer “replays” all messagesm whose ack messageack(m) where not
received from the application. By replaying messages, the group communication
layer ensures that, if the process is eventually stable (non-red), thenm will eventu-

4.3. ROLL-BACK-BASED RECOVERY 73

ally be successfully delivered.1

Group
Communication
 Infrastructure

Application

A-send A-deliver A-ack

Figure 4.4: Messages exchange for total order broadcast includingackmessage

Figure 4.4 shows the exchange of messages for an total order broadcast in-
cluding theack message. First, the application sends aA-send message to the
group communication layer. TheA-deliver message is received by the application.
The application processes it, then sends back anA-ack message to signal that it
successfully deliveredm.

Note that the group communication layers needs to garbage collect certain re-
sources, messages stored in memory or in stable storage, identifiers etc. Once the
group communication layer receivesack(m), then all resources associated withm
can be reclaimed. A mechanism to minimise log usage for total order broadcast
based on a similar idea is presented in [Boi01].

4.3.3 2-Safe Replication

So what are conditions needed to build a 2-safe database replication scheme based
on group communication? In order to be 2-safe, a replication scheme must ensure
that, eventually, all transactions will be terminated correctly on all non-red repli-
cas. If the decision to commit transactiont is delivered in messagem, thent will
be committed whenm is successfully delivered. So if the group communication
layer ensures that all messages are eventually successfully delivered on all non-
red replicas, even when all replicas crash (no green replicas), then the replication
technique will be 2-safe. So in summary we need the following conditions:

• The group communication layer can tolerate that all processes crash
(green = 0).

• The group communication layer can replay messages that where not success-
fully delivered on all non-red processes.

1The specifications of group communication primitives described in Section2.2.4need to be re-
fined, as the integrity constraint guarantees that messages are delivered at most once. When messages
are replayed, a message might be delivered multiple times, but will besuccessfullydelivered at most
once.

74 CHAPTER 4. RECOVERY AND FAULT-TOLERANCE ISSUES

Those properties can be achieved by relying on the crash-recovery model with
stable storage (see Section2.2.3.D). Formally, the group communication layer
simply needs to log messagem before sending it to the application. When the
group communication layer receivesack(m),m can be deleted from stable storage.
In practice, the logging ofm can be merged with other logging operations in the
group communication layer2 and so cause no additional performance penalty.

Processing

A-Broadcast(t)

Sd

S2

S3

A-deliver(t) t Committed

Committing

Committing

Committing

Committing

A-deliver(t) t CommittedA-deliver(t)

A-deliver(t)

S2 Recovers

S3 Recovers

Client Notified

Committing

A-deliver(t) t Committed

A-ack(t)

A-ack(t)

A-ack(t)

Figure 4.5: Recovery with message replay

Figure4.5shows the same scenario than in Figure4.1, but with a group com-
munication layer that can survive a total crash and replays messages. When the
crash occurs, replicass2 ands3 are rolled back to before the delivery ofm and the
delivery ofm is restarted and eventually the delivery ofm is successful, and thust
is committed. This way, 2-safety is ensured.

4.4 Group-Safe Replication

4.4.1 Group-Safety

We have shown in Section4.2 that techniques based on the dynamic crash no-
recovery model cannot be 2-safe. Such techniques are 1-safe: when the client is
notified of t’s commit, t did commit on the delegate server, but not on the other
servers. Traditional 1-safe techniques can lose transactions if one server (the pri-
mary/delegate) crashes [GR93]. This is not the case for techniques based on group
communications: if the primary/delegate server crashes, the broadcast mechanism
ensures that the transaction reaches all servers and is committed there. Transactions
can be lost only if enough servers crash to compromise the group, for instance if the
model is asynchronous with imperfect failure detectors and a majority of servers
crash, transactions might get lost (see Section4.2.2). So group communication

2Group communications in the crash-recovery model where all processes can crash implies stable
storage, and hence messages are logged.

4.4. GROUP-SAFE REPLICATION 75

based replication schemes enforce a safety level stronger than 1-safety, but weaker
than 2-safety. We call this safety levelgroup-safety.

A replication technique isgroup-safeif, when a client receives confirmation of
a transaction’s commit, the transaction has been delivered on all (available) repli-
cas. Traditionally, database systems rely on stable storage to ensure durability:
once a transaction is committed, it cannot be lost. If stable storage does not fail,
durability is ensured. Group-safety relies on the group of replicas. If the group
does not fail, for instance if there is always a majority of non-crashed replicas,
then durability is ensured. Notice that group safety does not specify if the transac-
tion actually committed on any replica. A client might be notified of a transaction
t’s commit beforet actually committed on any replica.

T
ra

ns
ac

tio
n

D
el

iv
er

ed

Transaction Committed
No Replica

N
o

R
ep

lic
a

A
ll

R
ep

lic
a

Group-Safe 2-Safe

1 Replica All Replica

No
Processing

Group-Safe
& 1-Safe

(Group-1-Safe)

1
R

ep
lic

a

No Safety
(zero-Safe) 1-Safe

Table 4.1: Summary of different safety levels

The relationship between group-safety and the safety criterion described in
Section4.1 are summarised in Table4.1. We use a classification based on two
criteria: the number of servers that have delivered the transaction (vertical axis),
and the number of servers that have committed it (horizontal axis). Depending on
the safety level, a transactiont can bedeliveredon a certain number of replicas
(none, one, all) andcommittedon a certain number of replicas (none, one, all). A
transaction cannot be committed on a site where it was not delivered, so the part
of the table wherecommitted > delivered is grayed out. For each position in the
remaining table, the corresponding safety level is given and described below:

No ProcessingWhen a transaction is delivered on no replica, no processing is
possible.

No Safety In this case, the client is notified when transactiont was delivered and
executed on one serversd, but did not yet commit. No safety is enforced. If

76 CHAPTER 4. RECOVERY AND FAULT-TOLERANCE ISSUES

sd crashes beforet’s writes were flushed to sable storage, thent will be lost.
We call this safetyzero-safereplication.

1-Safe In a1-safesystem, the client is notified when transactiont is delivered and
committed on one server only:sd. If sd crashes beforet is sent to the other
servers, thent might get lost. This situation occurs because the system can
accept new transactions that conflict witht. As no server exceptsd knows
aboutt, the only alternative to losingt is to block all new transactions until
sd recovers.

Group-Safe The client is notified when a transaction is delivered on all available
servers, but did not commit on any servers. If the group fails – typically
when more thanf servers crash – thent will be lost (0 < f < n, the exact
value off depends on the model of the group communication system, see
Section2.2).

Group-Safe & 1-Safe The client is notified when transactiont delivered on all
servers, and did commit on one serversd. The system is both group-safe and
1-safe, so we call this safety level group-1-safety. Transactiont might be
lost if f serversand the serversd crash. Most proposed database replication
strategies based on group communication fall in this category.

2-Safe The client is notified when a transaction was delivered and committed on
all available servers. A transaction cannot get lost.

If we consider the number of crashes that can be tolerated, we have basically
three safety levels (Table4.2). Zero-safe and one-safe replication can tolerate zero
crashes, i.e., one single crash can mean a lost transaction. Group-safe replication
can toleratef crashes and 2-safe replication can toleraten crashes (n is the number
of servers,0 < f < n).

Number of Crashes Safety Constraint
0 crashes zero-safe, 1-safe
f crashes group-safe, group-1-safe
n crashes 2-safe

Table 4.2: Safety constraints and number of crashes

The difference between zero-safe and 1-safe replication is the behaviour in case
of crash of the primary/delegate. If a crash occurs while transactiont is processed,t
will be lost if the technique is zero-safe. If the technique is 1-safe,t has committed
on one serversd, and is therefore preserved on stable storage. Sot can be restored
if the system waits for thesd to recover. So if no conflicting transaction is accepted
until this moment,t can be restored. In zero-safe replication,t is lost because of a
crash, in 1-safe replication,t is lost because of a crashand a conflict.

4.4. GROUP-SAFE REPLICATION 77

The difference between group-safe and group-1-safe replication is similar. If
all servers crash (total crash) whilet is processing, and the replication scheme is
group-safe, thent will be lost (it was not stored in stable storage). If the replication
scheme is group-1-safe and all servers crash whilet is processing,twas committed
to stable storage on serversd. This means thatt can be restoredif the system waits
for sd to recover.

The advantage of 1-safe over zero-safe and group-1-safe over group-safe is the
same: the possibility to restore transactions from stable storage. For both 1-safe
and group-1-safe there is a tradeoff between availability (accepting new transac-
tions) and safety (potentially violating the ACID properties by committing trans-
actions that conflict). Waiting for the primary server to recover can be an accept-
able alternative to losing transactions in a primary-copy setting, where the number
of servers is small and the primary can be restored in a short time. In an update-
everywhere setting, where all servers can act as delegates, this is not an acceptable
option: it means that while the system can withstand a total crash, it can only
recover from such a crash by recovering all replicas.

So in a practical update-everywhere setting, the difference between group-safe
and group-1-safe replication in terms of availability in fault tolerance is negligible.
Group-1-safe replication offers a possibility of restoring transactions from stable
storage, but in practice this possibility cannot be used without lowering the avail-
ability of the system.

4.4.2 Group-based durability

Most group communication based replication techniques are group-1-safe. They
enforce both 1-safety and group safety, but the practical difference between both
safety criteria is very small. What would be the advantages of enforcing only
group-safety and renounce to 1-safety?

In a non-replicated setting, writing to stable storage is necessary to ensuredura-
bility. The most expensive part of transaction processing is composed offorce-
writes, i.e., writing data in stable storage. A transaction cannot commit before
its changes are stored in some form on stable storage. Read operations can be
optimised using mechanisms likes caches, but force-writes are generally very ex-
pensive.

The key idea of group safe replication is that durability is not ensured by stable
storage anymore, but by thegroup (i.e., the group of servers). In a non-replicated
and in a 2-safe replicated database, durability is ensured by stable storage. As long
as the stable storage does not fail, transactions cannot get lost and durability is
guaranteed. In a group-safe replication scheme, durability is ensured by the group:
if the group does not fail (less thanf servers fail), then no transaction will be lost
and durability will be guaranteed.

A group-safe replication technique does not require any replica to actually have
finished the commit oft before responding to the client. So the response might be
sent to the client before any actual force-write operations are executed. Transfer-

78 CHAPTER 4. RECOVERY AND FAULT-TOLERANCE ISSUES

ring the responsibility of durability from stable storage to the group makes sense
a lot of sense. Sending a message through the network is faster than writing the
same data to disk [DWAP94].

4.4.3 Group-safe replication and lazy replication

Server a Server b

Disk a Disk b

Weak
Consistency

Disk a

Weak
Consistency

Disk b

Strong
Consistency

Lazy 1-Safe
Replication

Weak
Consistency

Strong
Consistency

Strong
Consistency

Server b Server a

Group-Safe
Replication

Figure 4.6: Group-safe replication and lazy replication

On a conceptual level, group-safe replication is the complement to lazy replica-
tion. Both approaches try to get better performance by weakening the link between
some elements of the system. Figure4.6 illustrates this relationship. Group-safe
replication relaxes the link between server and stable storage: when a transaction
t commits, the state in memory and in stable storage might be different (t’s writes
are not committed to disk). Lazy replication relaxes the link between replicas:
when a transaction commits, the state in the different replicas might be different
(some replicas have not seen transactiont). Both approaches relax the link whose
synchronisation cost is deemed to expensive.

The main differences between both cases are the conditions that lead to a vio-
lation of the ACID properties. In an update-everywhere setting, a lazy technique
can violate the ACID properties even if no failure occurs. On the other hand, a
group-safe replication will only violate this ACID properties if the group fails (for
instance if a majority of all servers crash).

Group-safe replication also has one large advantage over lazy replication in
cases where the number of replicasn is large. The main problem of lazy repli-
cation lies in reconciliation, as the number of servers grows, the chances that two
transaction originating from two different sites will conflict grows. So the chances
that the ACID properties will be violated grows with the number of servers. Group-
safe replication does not have the problem of reconciliation – on the other hand the
ACID properties might get violated iff servers crash. So whenn increases, the
number of failures needed to violate the ACID properties increases also. If we as-
sume that the probability off failures occurring at the same time decreases asf
increases, then the higher the number of replicas, the lower the chances of having

4.5. CONCLUSION 79

a lost transaction. So the chances that somethingbadhappens increases withn for
lazy replication, and decreases with group-safe replication.

4.4.4 Building a Group-Safe Replication Technique

Most group communication-based replication techniques described in the literature
are both 1-safe and group-safe. They can be transformed in group-safe only repli-
cations techniques quite easily. Group-safe replication basically means that all disk
writes can be done asynchronously (outside of the scope of the transaction) thus
enabling optimisations like write caching. Typically, disk writes would not be done
immediately, but periodically. Writes of adjacent pages would also be scheduled
together to maximise drive throughput.

For increased safety, a group-safe database replication can choose to dynam-
ically change its policy regarding writes. In normal operation mode, writes are
asynchronous, and the technique is group-safe. In a problematic situation, for in-
stance when a certain number of server are crashed, writes are synchronous and the
technique becomes group-1-safe.

4.5 Conclusion

Group communication-based database replication is a promising approach to data-
base replication, but existing safety properties are not adapted to quantify those
new techniques. Traditional safety criteria like 1-safety and 2-safety implicitly
assume that durability is ensured by stable storage alone.

The group communication infrastructure to build true 2-safe replication tech-
niques exists in theory, but practical implementations are not available yet. Imple-
mentation could either be based on the crash-recovery model, or be an additional
layer on top of existing group communication toolkits. In the second case, a sec-
ond explicit round of messages would be needed to signal that messages have been
logged to stable storage [Kei94].

Group communication-based 2-safe replication techniques are possible and
would address some of the issues of classical 2-safe replication techniques like
deadlocks [GHOS96, HAA00]. Yet the network protocols needed to build 2-safe
replication need to have access to stable storage. If stable storage is to be imple-
mented using disk, the resulting protocol will certainly be as slow as traditional
2-safe techniques.

Most group communication-based replication techniques that were proposed
recently are not 2-safe, but offer more than 1-safety. Those techniques are both
1-safe andgroup-safe.By removing the 1-safety criterion, we move the responsi-
bility of durability from stable storage to thegroup. While executing writes outside
of the scope of a transaction is a known way to improve the performance of transac-
tion processing systems, this generally implies not enforcing durability. Group-safe
replication enforces durability and offers the same availability and fault-tolerance

80 CHAPTER 4. RECOVERY AND FAULT-TOLERANCE ISSUES

that group-1-safe replication, with increased performance.
Simulations show (see Section5.3.5) that the performance of group-safe repli-

cation is very good, and offers an alternative to lazy replication with better perfor-
mance and better consistency. This shows that good performance can be obtained
for database replication without sacrificing consistency.

It is interesting to note that for both approaches described in this Chapter, the
functionality of the log is transferred to the group communication system. For 2-
safe replication, the group communication layer logs messages before delivering
them, so transactions do not need to be logged at the application level, as they
are already logged by the group communication system. In the case of group-safe
replication, safety is enforced by the group, and writes are done asynchronously,
so logging does not make sense. In fact the group acts as a replicated, volatile log
(messages are kept by all replicas, but not in stable storage). This shows clearly
that to build an efficient replicated database system, the logging facility and the
group communication layer need to be carefully integrated.

Chapter 5

Performance Comparison

There is more to life than increasing its speed.

Mahatma Gandhi

This chapter presents a quantitative comparison between different replication
techniques. This comparison is performed using a simulator. Other simulation
studies that investigate techniques based on group communication have already
been described in the literature [HAA99b, Kem00]. The present simulation in-
cludes a more detailed model of the network layer and also covers replication al-
gorithms that have not been simulated before.

The presentation of the simulation results follows the structure of the classifi-
cation presented in Chapter3. Except for one class (linear interactions, non-voting)
which has been shown to perform badly [HAA99b], we simulated one technique
per class in the update-everywhere category. Three group communication-based
replication techniques have been simulated along with classical replication strate-
gies: lazy replication, distributed locking and primary-copy replication. One of
the group communication-based techniques, called the database state machine (or
certification based replication), was never compared in simulation with other repli-
cation techniques. Additionally, the performance gains realised with some optimi-
sations in group communication-based replication techniques are also evaluated.

This chapter is structured as follows: Section5.1describes the architecture of
the simulator, and presents the different replication techniques. Section5.2 de-
scribes the general settings used for the experiments and Section5.3describes the
different experiments and their results. Section5.4discusses the results and com-
pares them to other simulation and performance measurements in the literature.

81

82 CHAPTER 5. PERFORMANCECOMPARISON

5.1 The RD-sim Simulator

All experiment described in this chapter were performed using a discrete event sim-
ulator: RD-sim. The simulator is written in C++ and relies on the C-sim discrete
event simulation engine [Mes94]. The goal was to have a detailed simulation to get
an understanding of how different parameters of database replication interact. The
resulting simulator is over 13’000 lines of code long.

The overall simulator can be roughly divided in two conceptual parts: the
clients and the servers. The clients represent the source of transactions: they gen-
erate transactions according to certain parameters, send them to servers and collect
end-to-end performance data. The servers implement the whole replicated database
logic, including the local database, the group communication system and the repli-
cation strategies. The simulation concentrates on low-level aspects. High-level
issues, like transaction parsing and optimising are not considered.

5.1.1 Server Structure

The architecture of the servers follows the logical structure outlined in Chapter2,
Figure2.1. Each replica is both a network node with a group communication stack
and a local database system. The simulator is therefore structured in four large
modules, as illustrated in Figure5.1. The four modules are:

1. The low-level machine module.

2. The communication module

3. The database module

4. The database replication module

Both the communication module and database module run on top of the low-
level machine module. They implement the group communication infrastructure
and a local non-replicated database, respectively. The database replication module
represents a replicated database and is implemented on top of the group commu-
nication module and the database module. All modules have been implemented as
one or more C++ classes, which export the relevant functionality.

5.1.1.A Machine Module

The Machine Module represents the hardware of one machine. Machine Modules
are only used to simulate servers. There is one instance of this module for each
server in the system. Each server machine is simulated using two basic resources:
CPU and disks. Those resources are used by other high-level modules of the simu-
lator. The CPU resources model the processing units. The disks resources are used
by the database module. Basic input/output operations use both the CPU and the
disk resources.

5.1. THE RD-SIM SIMULATOR 83

Database Replication Module

Communication
Module

Database
Module

Machine Module

Figure 5.1: General simulator architecture

Theses low-level resources (CPUs and disks) are simulated as C-sim resources.
High-level operations, like the execution of a network protocol, or that of a transac-
tion operation, are implemented and executed by the simulator. Other simulations
of replication techniques based on group communication [Kem00, HAA99b] sim-
ulate high-level protocols like total order broadcast as a single operation. This
hides the complexity of the group communication sub-system and ignores the in-
teractions between communication system and database system: for instance the
CPU is used both for processing transactions and sending messages. Simulating
the system at a finer granularity makes it possible to understand what role low-level
resources play in the performance of different replication techniques. This way, we
can see the influence of the network performance on the overall system.

5.1.1.B Communication Module

The Communication Module models all network interactions. There is one in-
stance of this module for each server. At a low level, both point-to-point and
multicast messages are modelled. High-level group communications primitives
described in Section2.2.4are implemented on top of those low-level messaging
facilities. The use of high-level primitives like total order broadcast will therefore
result in a simulated execution of a total order broadcast protocol using low-level
messages. The algorithms are simulated in failure-free runs – the most common
case in normal operating conditions.

The Communication Modules relies on two kinds of simulated resources: the
CPU and the network. The CPU is the resource exported by the Machine Module.
The network is a resource shared by the Communication Modules of all servers: it
represents the network between the servers.

The sending of message is modelled in three steps: first the outgoing message
is processed on the sending node, then the message transits through the network,
and finally the message is processed on the receiving node [UDS00]. The resources
queues are handled by a FIFO policy. This means that three resources are involved
in simulating the sending of one message: the CPU resource of the sending ma-
chine, then the network resource and finally the CPU resource on the receiving

84 CHAPTER 5. PERFORMANCECOMPARISON

machine. This way we can model network and CPU contention between messages,
but also contention between the communication system and the database system.

5.1.1.C Database Module

The database module simulates a single database system. This modules includes
a lock manager and an I/O manager. The lock manager offers lock queues for
each item in the database. The lock queues can be used to enforce strict 2 phase
locking (2PL), but the locking manager also supports other locking operations, like
atomic locking for a transaction or “force-locking”, that is, inserting locks in front
of the lock queue. Those variants are typically used for non-voting replication
techniques. The I/O manager handles operations to read and write items of the
database. Data items are distributed on the different disks of the machine (each disk
holds a partition of the data). The I/O manager also simulates the cache system.

5.1.1.D Database Replication Module

This module represents the database replication strategy. There is one instance
of this module for each server. Depending on the replication strategy, a different
implementation of this module is used. Each replication scheme is represented by
an concrete subclass of the abstract Database Replication class.

We implemented one strategy for each update everywhere category, except
for non-voting update everywhere with a constant number of interaction (Sec-
tion 3.2.1.C). This category was never considered as interesting for replicated
databases. One algorithm in this category was simulated in [HAA99b], and its
performance was significantly worse than other group communication-based tech-
niques.

We implemented three update everywhere replication techniques based on
group communications, and the distributed locking replication technique. Addi-
tionally, we implemented two primary-copy techniques (cold standby and lazy)
and one non-replicated technique to get a reference for relative performance.

The implemented techniques are the following:

No Replication. A special setting lets the system run a single, non-replicated data-
base using standard 2 phase-locking (2PL). This is useful for comparison
purposes.

Active Replication. This technique fits into the update-everywhere constant in-
teraction, non-voting category with an early point of determinism (Sec-
tion 3.2.1.A). The point of determinism is at the beginning of the trans-
action. Transactions are simply forwarded to all servers using a total order
broadcast. All servers process the transaction in a deterministic way. This
technique requires static transactions (see Section2.4.4).

5.1. THE RD-SIM SIMULATOR 85

Optimistic Active Replication This technique is a variant of the active replica-
tion scheme based on an optimistic assumption on the network (spontaneous
ordering, see Section2.4.6). Transactions are delivered before the total or-
der is determined and processing starts using this tentative order. When the
total order is determined, the system checks if the execution according to
the tentative order respects one copy serialisability. If this is not the case,
the execution is aborted and restarted according to the definitive total order.
This algorithm is presented in [KPAS99] under the name Fine Granularity
Locking (FG-locking).

Certification. This technique is described in [PGS99] and [Ped99] under the
“database state machine” name. It fits into the update-everywhere con-
stant interaction, non-voting category (Section3.2.1.A) like active replica-
tion. The difference between active replication and certification replication
is the position of the point of determinism. In the certification technique,
the point of determinism is late (last operation before termination) instead
of being at the beginning of the transaction. Transactions are executed on
the delegate. At commit time, the transactions are sent to all replicas using
a total order broadcast. A certification mechanism checks if the transaction
might conflict with other transactions that are currently executing. If this is
the case, the transaction is aborted by all replicas. The certification test uses
a conflict list that contains a list of transactions recently delivered that might
not have committed on all servers [Van00].

Group-Safe Certification. This technique is the group-safe variant of the certifi-
cation technique (see Section4.4). The technique is similar to the certifica-
tion technique, but uses asynchronous write operations.

Weak-Voting. This technique is described in [Kem00] under the name SER-D.
It fits in the update everywhere, constant interaction voting category (Sec-
tion 3.2.1.B). It is similar to the certification-based technique, but instead of
relying on a deterministic certification test, the delegate checks if the execu-
tion of a transaction is serialisable and sends the outcome (abort or commit)
of the transaction using a reliable broadcast.

Distributed Locking. This technique fits into the update-everywhere, linear in-
teraction, voting category (Section3.2.1.D). This is the classical read-one
write-all (ROWA) technique. Each operation is broadcast to all replicas
where locks are first acquired (hence the name); the operations are then exe-
cuted. Traditionally, deadlock detection is done using a timeout mechanism,
but implementing such a mechanism would introduce a additional parameter
in the simulator. Also, as timeouts are not deterministic, this would imply
that the locking system would be different from other techniques and make
the comparison less valid. To avoid these problems, distributed deadlocks
are resolved by building the wait-for graph. The cost of the deadlock detec-

86 CHAPTER 5. PERFORMANCECOMPARISON

tion mechanism is not included in the simulation, so the distributed locking
technique relies on a perfect, cost-less deadlock detector. This is not much
of an issue, because distributed deadlocks were very rare in most simulation
settings.

Primary-Copy. This technique fits into the primary-copy, constant interactions,
non-voting technique (Section3.2.2.A). This is typical of cold standby
primary-copy techniques.

Lazy Update-everywhere.This technique is an implementation of a lazy update-
everywhere replication scheme. This implementation has no conflict detec-
tion, nor any reconciliation function. This technique simply executes the
transaction on the delegate and ships the updates to the other replicas. No
consistency checks are done. As the processing is minimal, no other repli-
cation technique can outperform this one. The price to pay is that such a
system violates the ACID properties. This technique has been implemented
in the simulator to give a upper bound for performance, lazy replication is
considered much more efficient than eager replication [GHOS96].

5.1.2 Client Module

The clients of the replicated database system were also modelled in addition to
servers. Clients are simple sources of transactions. Clients submit one transaction,
wait until it is processed, sleep for some time, and start the work cycle again. A
client can only submit one transaction at a time — multiple sources are modelled
with multiple clients. The most important parameter of clients is the time between
submitting transactions. This parameter is the time between the start of two trans-
actions. If a client starts a transaction at timet1, once the transaction is finished,
the clients waits until timet1 + d before issuing the next transaction. The vari-
abled is a random variable with an exponential distribution so that the mean ofd
matches the requested interval between transactions. By adding some randomness,
we avoid “bursty” load situations.

Typically, a server has many clients attached. If the replication strategy is up-
date everywhere, each server has the same number of clients attached. If the repli-
cation technique is primary-copy, only the primary has clients attached. Clients do
not consume any network bandwidth: we consider that the network interface that
interconnects the servers is separate from the network interface used to communi-
cate between clients and servers.1

Clients gather all the performance data and compute statistics. The clients also
control simulations runs and experiment settings, typically stopping the simulation
when the results obtained fit into a certain confidence interval.

1Client’s request do not consume the CPU resource when being delivered, this is considered part
of the transaction parsing and optimising and is not considered here.

5.2. SIMULATION SETTINGS 87

5.2 Simulation Settings

We performed an extensive set of simulations to compare the different replica-
tion techniques. All techniques shared the same infrastructure layer and the same
operational parameters. The main performance metric is the mean response time
observed by clients. Simulation where run until this value was at least within a
95% confidence interval with a half width of 5% of the mean response time; often,
better confidence interval were obtained. To avoid skewed measures due to initial
startup factors [Jai91], the response times associated with the first 500 transactions
are discarded.

Parameter Value

Number of items in the database 10’000
Number of Servers 9

Number of Clients per Server 2 or 4
Disks per Server 2
CPUs per Server 2

Transaction Length 10 – 20 Operations
Probability that an operation is a write 50%
Probability that an operation is a query 50%

Buffer hit ratio 20%
Time for a read 4 - 12ms
Time for a write 4 - 12ms

CPU Time used for an I/O operation 0.4ms
Time for a message on the Network 0.5 or 0.07ms
CPU time to send/receive a message 0.5 or 0.07ms
Time for a broadcast on the Network 0.5 or 0.07ms
CPU time to send/receive a broadcast 0.5 or 0.07ms

Table 5.1: Simulator parameters

In general, simulations were run with the operational parameters in Table5.1,
with one or two parameters being the variables of the experiment. There are two
load settings. The first consists of 18 clients connected to 9 servers, either 2 clients
per server if the technique is update everywhere, or 18 clients connected to the
primary if the technique is primary-copy. The other settings consists in 36 clients
connected to 9 servers, with 4 clients per server for update everywhere techniques
and 36 clients connected to the primary in the primary-copy case.

The data set contains 10’000 items. Servers are composed of two CPUs and
two data disk units. Each CPU has access to any disk, but only one CPU can access
a disk at a time. Data items are distributed on the different data disks. The transac-
tion length is uniformly distributed between 10 and 20 operations. Each transaction
is either an update transaction (50%) or a query transaction (50%). Queries contain
only read operations, updates contain both read (50%) and write (50%) operations.

88 CHAPTER 5. PERFORMANCECOMPARISON

Read and write operations access one item of database (uniform distribution). A
write operation might overwrite a read data, with uniform probability 1

database_size .
Operating a read or a write operation uses the disk between 4 and 12ms(uni-

form distribution). Read operations have a 20% chance of hitting the cache, and
therefore occur no disk usage. Each input/output operation (read and write) has a
CPU overhead of 0.4ms. The database settings where based on numbers in the
literature [ACL87, NSB97, HAA99b, Kem00].

Network settings are based on observed values on a cluster of PC machines.
Each machine is equipped with a 733 MHz processor and a 100 Mb/s full duplex
network interface. The machines are connected using an Ethernet hub. Network
performance was estimated using the Neko framework [UDS01] by sending short
messages of approximately 256 bytes. Sending a point-to-point message consumes
0.07 msof CPU at the sender, 0.07msof the network resource and 0.07msof
CPU at the receiver. We assume a low-level multicast facility (like IP-multicast)
with which we can send a multicast in a single operation. The cost is 0.07ms
on the network, and 0.07ms of CPU at both the sender and the receiver. We
also did experiments using settings that roughly represent a 10 Mb/s network with
slower network adapters. In this case, the cost of sending and receiving a message
is 0.5 ms, and the the cost of message transmission is 0.5ms. We call the first
setting (100 Mb/s) thefast networksetting, and the second theslow networksetting
(10 Mb/s).

5.3 Experiments

We performed several experiments to compare the different database replication
strategies. This section presents the different experiments and their results. Each
experiment explores different aspects of a replicated database. Section5.3.1
presents the overall performance of the different techniques, Section5.3.2explores
the issues of scalability, that is how the techniques behave when the number of
server increases. Section5.3.3examines how certain replication techniques can
distribute the execution of queries. Section5.3.4shows how group communication-
based replication techniques perform in a WAN setting. Section5.3.5presents ex-
periments that compare group-safe replication to 1-safe replication. Section5.3.6
compares the performance of optimistic active replication with active replication.
Finally Section5.4discusses the different results.

5.3.1 General Performance

5.3.1.A Description of the Experiment

The first experiment aims at comparing the performance of the different replication
techniques under moderate-high load, with a medium number of servers (9). We
compared the performance of the different replication techniques by varying the
system load. This was done by changing the time interval that clients wait before

5.3. EXPERIMENTS 89

issuing a new transaction (this time is measured between two transaction starts).
The time between transactions was between 900msand 1’800msin 50 msincre-
ments. The experiment was done once with two clients and once with four clients
per server. With two clients, the load varied between 10 and 20 transactions per
second, with four clients, the load varied between 20 and 40 transactions per sec-
ond. This experiment was done once with the slow network settings (10 Mb/s) and
once with the fast network settings (100 Mb/s). This gave four basic settings which
are summarised in Table5.2. The other operational parameters for the experiment
are described in Section5.2.

Medium Load Slow Network Medium Load Fast Network
10 - 20 trx/s 10 Mb/s 10 - 20 trx/s 100 Mb/s
High Load Slow Network High Load Fast Network

20 - 40 trx/s 10 Mb/s 20 - 40 trx/s 100 Mb/s

Table 5.2: Settings for simulating the overall performance of replication techniques

5.3.1.B Results

0

100

200

300

400

500

600

700

800

10 11 12 13 14 15 16 17 18 19 20
Load [transactions /sec]

R
es

p
o

n
se

 T
im

e
[m

s]

Active
Certification
Distributed Locking
Primary Copy
Lazy
Ser-D

Figure 5.2: Overall performance of replication techniques – medium-load, slow
network

Medium Load, Slow Network Figure5.2illustrates the result of the experiment
with 2 clients per server and the slow network. The experiment shows the perfor-
mance of different replication schemes under the same operating conditions. The
X axis represents the load of the system, expressed in transactions per second.
TheY axis represents the average response time of committed transactions. Each
replication technique is represented by one performance curve.

90 CHAPTER 5. PERFORMANCECOMPARISON

The observed conflict rate in the local database managers changed depending
on the replication technique: at low load situation, it was below 5%, at high-load it
would reach above 20%.2 The abort rate for all techniques was below 5%, and is
not shown.

The lazy replication scheme does not enforce consistency. It is presented to
give a reference in the form of the best performance that can be achieved in this
setting. Because this technique does little extra processing and does no synchro-
nisation at all, its performance is very good and is not affected by changes in the
load. Basically, the performance of lazy replication withn servers is equivalent to
n non replicated servers getting1/n of the load.

In low load situations (left part of the graph), most techniques have very sim-
ilar performance: certification, Ser-D, active and primary-copy have basically the
same response time. This reflects the fact that all those techniques fit in the same
category, with a constant number of network interactions. Lazy replication does
outperform those techniques by a rather small margin. The main advantage of lazy
replication is very good load balancing, but as the load is limited, this results in
a small difference. This explains why there is no noticeable difference between
techniques that do load balancing (certification-based replication), and others that
do not (primary-copy and active replication).

Distributed locking has a response time that is 60% higher. This is caused by
contention on the network, as distributed locking sends one broadcast per opera-
tion. This leads to a situation where the network becomes the bottleneck – in the
simulator, the usage rate of the network resource quickly reached 100%.

As the load increases, we can see that the response time of all techniques in-
creases, yet the relative performance of the different techniques changes. The re-
sponse time of distributed locking increases and shows that there is an asymptotic
limit to throughput around 13 transactions per second. This is caused by high
network contention. A similar phenomenon is observable with active replication,
which has a maximum throughput around 16.5 transactions per second. The rea-
son, this time, is not the network (at the highest load, the network usage rate was
around 6%), but high load and the important serialisation phase needed to enforce
determinism. Transactions need to be serialised until their locks are granted and
active replication does no load balancing: all transactions are executing on all repli-
cas. Those two factors form the bottleneck of active replication: high load causes
lock contention, and lock contention slows down the serialisation phase. This se-
rialisation phase becomes a bottleneck. Primary-copy replication also has a load
problem, as most of the work is done on the same server, so performance tends to
degrade as the load increases.

The performance of the Ser-D technique and the certification-based technique
remains very close to lazy replication. It is interesting to note that the response
time of the Ser-D replication is around 15ms higher than the response time of

2The observed conflict rate was calculated by marking transactions that had to wait on a lock held
by another transaction during their execution.

5.3. EXPERIMENTS 91

the certification-based technique. This is explained by the differences between
both techniques. The Ser-D techniques is weak voting, so before a transaction can
commit, all replicas must wait for the delegate to decide the outcome of the trans-
action. The certification based technique has no such need, all replicas decide on
the outcome of the transaction using the total order of delivery. Still, the difference
between certification and Ser-D techniques cannot be explained only by the cost of
a broadcast which “costs” around 1.5ms, the 15msdifference is mostly explained
by the cost of coordination: all servers need to wait for the delegate to finish pro-
cessingt in order to be able to terminatet locally. In other words, the time needed
to broadcast the data is negligible, but the time lost waiting is not.

0

100

200

300

400

500

600

700

800

10 11 12 13 14 15 16 17 18 19 20
Load [transactions /sec]

R
es

p
o

n
se

 T
im

e
[m

s]

Active
Certification
Distributed Locking
Primary Copy
Lazy
Ser-D

Figure 5.3: Overall performance of replication techniques – medium-load, fast
network

Medium Load, Fast Network Figure5.3 shows the results of the same exper-
iment but with a fast network (100 Mb/s). While most techniques behave in a
very similar fashion, one technique has a very different performance curve: the
distributed-locking technique. This makes sense: as the network was the bottle-
neck of this technique in the previous experiment, a faster network implies a dif-
ferent performance. While performance of distributed locking is much better with
a fast network, the response time is still higher than the response time of group
communication-based techniques (≈ 50 ms). This difference can only be partly
explained by network usage (it takes around 0.2ms to send a message), with an
average of 15 operations per transaction and two messages per operations (request
lock and confirm), this gives a network overhead of around 6ms. This means
that the major part of the performance penalty is related to the way transactions
are processed. This processing overhead is probably also partially responsible for
the overhead of the distributed-locking technique with the slow network (previous

92 CHAPTER 5. PERFORMANCECOMPARISON

experiment), but the majority of the overhead with the slow network was due to
network contention.

Another interesting thing to note when comparing Figures5.3 and5.2 is that
the difference between the certification-based technique and the Ser-D technique
stays roughly the same. This shows that the difference between those two tech-
niques is not related to the use of the network, but the way those two techniques
are structured.

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5

Cost of Sending a message
CPU and Network value in ms.

R
es

p
o

n
se

 T
im

e

Figure 5.4: Influence of network performance on the distributed-locking technique

Network Cost and Distributed Locking To understand the relationship between
the performance of the network and the response time of the distributed locking
technique we measured the response time of the technique while changing the per-
formance of the network. The result of this experiment is illustrated in Figure5.4.
In this experiment, we changed the “cost” of sending a message on the network
and plotted the response time of the distributed-locking technique with a interval
between transactions of 1500ms, resulting in a load of 12 transactions per second.
TheX axis represents the cost of sending one message – this cost is changed for
both CPU and network. WhenX = 0.07 ms this corresponds to the settings of
the fast network, whenX = 0.5 msthis represents the slow network. TheY axis
represents the response time in milliseconds. The graph shows that the response
time of the distributed-locking technique increases with the cost of networking op-
erations. We also see that this curve is not linear: When the network becomes the
bottleneck, the response time increases much more: this can be seen when the cost
of the network is at 0.35ms. At this point, the network facility is used at 67% and
on average, processes had to wait more than 2msto access the network resource.

High Load, Fast and Slow Network Figure5.5 shows the result of the experi-
ment with 4 clients and the slow network. Only the curves of the Ser-D, certifica-

5.3. EXPERIMENTS 93

tion and lazy techniques were plotted, the others being unable to sustain more than
20 transactions per second. Figure5.6 shows the results of the experiment with 4
clients and the fast network.

Figures5.5 and5.6 are very similar, except for the fact that the distributed-
locking technique is not present in the slow network case (in this setting distributed-
locking cannot sustain such high loads). As the main difference between both ex-
periments is the behaviour of the distributed-locking technique, we will concentrate
the discussion on the experiment with the fast network, so as to include distributed
locking. Except for distributed-locking, all considerations are the same, as the
influence of network performance on overall performance is weak.

With both the fast and the slow network, we see that performance degrades
steadily when the load is around 30 transactions per second. At first glance, the
behaviour of the certification technique is much better that distributed locking and
Ser-D: the response time stays significantly lower even when the system starts to
become overloaded. In fact, in the fast network setting, when the load reaches 32
transactions per second, the response time decreases. When the load is above 34
transactions per second, the response time of the certification technique is within
the confidence interval of lazy replication.

The difference lies in the abort rate of the different techniques. While in mod-
erate load situations, the abort rate of the different techniques were marginal, in
high-load situation, the abort rate becomes significant. Figure5.7shows the abort
rate of certification, Ser-D and distributed locking techniques in high-load situa-
tions (fast network) – the parameters are the same as in Figure5.6. We see that
while the response time of certification-based replication is low, its abort rate is
significantly higher. The overload of the system yields a high conflict rate in the
certification phase, therefore a lot of update transactions abort. In fact most of
the aborts are update transactions. We can also see that distributed locking has a
sharp increase of aborts once the load reaches 28 transactions per second: at this
point deadlocks start to become significant. It is interesting to note that while the
response time of Ser-D replication increases, the abort rate stays stable, below 2%.

5.3.1.C Discussion

The performance measurements show that replication techniques can be split
into four categories: network bound replication techniques (distributed-locking),
performance bound techniques (active and primary-copy), efficient group
communication-based techniques (Ser-D and certification) and the lazy technique.

Distributed-locking is affected by network performance, most other techniques
are not: their performance is similar with both the slow and the fast network. This is
due to the fact that they rely on a single broadcast operation, either a simple broad-
cast (primary-copy and lazy) or a total order broadcast (group communication-
based techniques).

The performance of group communication-based techniques depends mostly
on their architecture: techniques that where designed for database replication (cer-

94 CHAPTER 5. PERFORMANCECOMPARISON

0

200

400

600

800

1000

1200

1400

1600

20 25 30 35 40
Load [transactions /sec]

R
es

p
o

n
se

 T
im

e
[m

s]

Certification
Lazy
Ser-D

Figure 5.5: Overall performance of replication techniques – high-load, slow net-
work

0

200

400

600

800

1000

1200

1400

1600

20 25 30 35 40
Load [transactions /sec]

R
es

p
o

n
se

 T
im

e
[m

s]

Certification
Lazy
Ser-D
Distributed Locking

Figure 5.6: Overall performance of replication Techniques – high-load, fast net-
work

0%

10%

20%

30%

40%

50%

60%

70%

80%

20 22 24 26 28 30 32 34 36 38 40
Load [transaction / second]

A
b

o
rt

 R
at

e

Certification
Distributed Locking
Ser-D

Figure 5.7: Abort rate in high-load situation (fast network)

5.3. EXPERIMENTS 95

tification and Ser-D) outperform significantly the basic technique (active replica-
tion). The culprits for active replication’s bad performance are the serialisation
phase and the lack of load balancing.

Even in a fast network configuration, distributed-locking is outperformed by
efficient group communication-based techniques. The reason for this is that the
execution of transactions in distributed-locking replication is tightly coupled be-
tween the replicas. All those synchronisation phases cause a serious slow-down.
Synchronisation is also the cause of the performance difference between Ser-D and
certification-based replication. The Ser-D technique has one synchronisation phase
(weak voting phase), that “costs” this technique around 50mswhen compared to
the certification technique.

The behaviour of certification-based replication in high-load situations could
be alleviated with flow-control techniques. Flow-control would help to avoid sit-
uations where the conflict rate causes too many aborts and thus the technique be-
comes unusable.

5.3.2 Scalability

5.3.2.A Description of the Experiment

One important aspect of replication techniques that is worth analysing is their scal-
ability. A good replication technique must be usable even if the number of replicas
is high. In this experiment we measured how the system reacted to a changing
number of servers. The interval between transactions was fixed at 1800msand the
number of clients at 36, thus resulting in a load of 20 transactions per second. We
then changed the number of servers and observed the performance of the system.
The different configurations are listed in Table5.3. As primary-copy only requires
one broadcast, this technique is very scalable. Therefore we concentrated on the
scalability of update everywhere techniques. We did the experiment with the fast
network and two different types of transaction loads. The first is called “mixed
load”, and contains 50% of queries. The second is called “mostly queries” and
contains 80% of queries.

Servers Clients per Server
36 1
18 2
12 3
9 4
6 6
4 9
3 12
2 18

Table 5.3: Scalability configurations

96 CHAPTER 5. PERFORMANCECOMPARISON

5.3.2.B Results

0

250

500

750

1000

1250

1500

36181296432
Number of Servers

R
es

p
o

n
se

 T
im

e
[m

s]
Distributed

Locking

Ser-D

Certification

Lazy

Figure 5.8: Scalability of update everywhere techniques with a 50% query load

Mixed Load Figure5.8 shows the results of the experiment with a query load
of 50%. We compared the response time of the following replication techniques:
certification-based replication, Ser-D, distributed-locking and lazy. Each set of bar
represents the performance with a given number of servers, starting with 2 servers
for the leftmost bar. Each technique is represented with a different bar, the height
of each bar (Y axis) represents the response time in milliseconds.

The general performance is similar to the experiment presented in Sec-
tion 5.3.1: lazy replication outperforms all other techniques. Group
communication-based techniques outperform distributed-locking. In general, we
see that the response time decreases as the number of replica increases. This
shows that as the number of servers grows, some part of the load (queries) can
be distributed on more replicas, thus giving better performance. The most interest-
ing part appears in the extreme case, when the number of replicas is maximal (36
servers): the performance of distributed-locking decreases significantly. This is
not due to network usage (which stays below 5%), neither to distributed deadlocks
(the abort rate was below 1%), but to the cost of coordination that is inherent to
this technique.

While aborts had no significant impact on distributed-locking, this was not the
case for the certification technique. Figure5.9 shows the abort rates for both the
certification technique and the Ser-D technique. TheX axis represents the number
of servers, the leftY axis represents the abort rate, in percentage. We see that
while the abort rate of the Ser-D technique is stable below 2%, the abort rate of the
certification technique increases with the number of servers. When the number of
server is maximal, the abort rate reaches 20%!

A first hypothesis to explain this behaviour is related to the difference on how
local and global conflicts are handled. If two transactions conflict, the conflict can

5.3. EXPERIMENTS 97

0

5

10

15

20

25

30

35

 N
u

m
b

er
 o

f
S

er
ve

rs

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

36181296432
 Number of Servers

A
b

o
rt

 R
at

e

Certification Technique Abort Rate
Ser-D Technique Abort Rate
Servers Number (f(x)=x)

Figure 5.9: Correlation between conflict function and observed aborts

be handled in two ways. If both transactions originate from the same server (they
have the same delegate server), the conflict will be handled by the local locking
mechanism. The local locking system will serialise the execution of the conflicting
transactions: if no deadlock occurs, there will be no abort. If both transactions
originate from different servers, the conflict will only be detected at certification
time, and will result in the abort of one transaction. So as the number of replicas
increases, so does the chances of abort. So if two transactionsta andtb conflict,
the chances that the conflict results in an abort is proportional to the probability
that they are on different servers:1− (1/n), wheren is the number of servers.

Still, the observed abort rate cannot be explained by this phenomenon. First,
the observed conflict rate is roughly proportional ton: the black line on Figure5.9
represents the linear functionf(x) = x (the rightY axis represents the number of
servers) and is clearly correlated with the abort rate. Secondly, the conflict rate is
much too low to explain such an abort rate. This can be seen by comparing the abort
rate of both the certification and the Ser-D techniques. The Ser-D technique is very
similar to the certification-based technique: both execute transactions in the order
of delivery by the total order broadcast and check for conflicts. The certification
technique uses a deterministic check mechanism, while the Ser-D relies on the
delegate server to detected actual conflicts. The certification needs to “guess” what
transaction might conflict, and might therefore do unnecessary aborts. So while
the number of aborts of the certification technique might be slightly higher than
the abort rate of the Ser-D technique, both abort rates should be roughly the same.
Figure5.9also shows the abort rate of the Ser-D technique: clearly, this rates stays
low. Soreal conflicts cannot explain the abort rate.

The actual issue is related to the way the certification algorithm was imple-
mented. When a transaction is delivered, it is placed in a conflict list. This list is
used to check for potential conflicts by the certification test. When a transaction

98 CHAPTER 5. PERFORMANCECOMPARISON

has been committed on a replica, it becomesstableon this replica. The informa-
tion that a transaction is stable is piggy-backed on subsequent total order broadcast
messages. Once a transaction is known to be stable on all replicas, it is removed
from the conflict list. So a transaction is removed from the conflict list once it has
committed on all replicas,and all those replicas have sent a total order broadcast
message.

Server S1

Transaction t0
stable on S1

Server S1

Message m1
(Contains t1)

Message m2
(Contains t2)

Transaction t0
stable on S1

Transaction t1 is
Processed

Transaction t1 is
Processed

Transaction t0
stable on S1 & S2

Transaction t2 is
Processed

Transaction t2 is
Processed

Transaction t0 is
Processed

Transaction t0 is
Processed

Transaction t0
stable on S1 & S2

Figure 5.10: Conflict list scenario

This means that even if transactions are executed sequentially (so there should
be no conflict), conflicts appear because transactions stay too long on the conflict
list. Figure5.10illustrates this problem in the case of a system with two servers.
The system consists of two replicas:s1 ands2. Initially transactiont0 is in the
conflict list. Transactiont0 will be removed from the conflict list on all replicas
once two total order broadcast messages have been delivered:m1 (from s1) and
m2 (from s2). Each message contains one transaction, that we callt1 andt2 re-
spectively. Let us assume thatm1 is delivered beforem2: whenm1 is delivered,
all replicas know thatt0 is stable ons1 (the sender ofm1), but the status oft0 on
s2 is unknown, sot0 stays in the conflict list. All replicas then start to process the
content ofm1, transactiont1. As t0 is still in the conflict list,t0 can cause the abort
of t1 if they conflict (even thought0 might be terminated on all replicas). When
m2 is delivered, the system knows thatt0 is now stable ons2 (the sender ofm2).
As t0 is stable on all replicas (s1 ands2) it can be removed from the conflict list.
Thereforet0 can cause the abort oft1, but nott2.

Now if we haven replicas, transactiont will be removed from the conflict
list once messagesm1 . . .mn have been delivered. This means thatt0 can poten-
tially conflict with transactionst1 . . . tn−1. So the number of potential conflict is
proportional to the number of serversn, regardlessof the load of the system.

To verify this hypothesis, we measured the abort rate of the certification tech-
nique with varying loads (between 1 and 30 transactions per second) and a large
number of servers (36). Figure5.11shows the results of this experiment. TheX
axis represents the load of the system, theY axis the abort rate. We see that while
the load varies by a factor of 30, the abort rate stays the same, slightly below 20%.

5.3. EXPERIMENTS 99

0%

5%

10%

15%

20%

25%

0 5 10 15 20 25 30

Load [transaction/second]

A
b

o
rt

 R
at

e

Figure 5.11: Abort rate with 36 servers with changing loads

“Mostly Queries” Load Figure5.12shows the experiment with a query load of
80%. The overall graph is similar to the one in Figure5.8, with better response
time – this is expected as there are more queries in the workload. We also see that
while the increase is not as significant as with 50% of queries, the performance of
distributed locking still starts to degrade when the number of servers is high (36).

5.3.2.C Discussion

In general, group communication-based replication techniques scale well assuming
a moderate load and a large proportion of queries. The response time does not
increase with the number of servers, but diminishes, as one would expect. We
showed that the certification technique has a problem that leads to many aborts
when the number of servers is high. The Ser-D technique has no such problems.
The abort problem of the certification technique can be addressed in two ways:

• Using a version-based database. In this case the certification test would then

0

250

500

750

1000

36181296432
Number of Servers

R
es

p
o

n
se

 T
im

e
[m

s]

Distributed
Locking

Ser-D

Certification

Lazy

Figure 5.12: Scalability of update everywhere techniques with a 80% query load

100 CHAPTER 5. PERFORMANCECOMPARISON

rely on the version number of items instead of a conflict list. While this ap-
proach solves the problem, its drawback is that it imposes some requirements
(access to version numbers) on the database system.

• Use additional messages. When a transactiont is stabilised on serversi, this
server sends a total order broadcast message3 that contains no transaction
but signals thatt is stable on the sending replica. This message is sent after
t committed, and does not impact directly on the response time oft’s pro-
cessing. The main problem with this approach is that it generates a message
explosion. If there aren servers, then the processing of each transaction will
requiren + 1 total order broadcast messages (1 for the algorithm andn for
distributing the information thatt is stable. Even with an efficient total order
broadcast algorithm, the impact of all those messages would be important.

The interesting aspect of group communication-based replication is that issues
like scalability are resolved outside the replication scheme: if the total order broad-
cast primitive scales well [RFV96], then the replication technique will scale well.

5.3.3 Query Proportion

5.3.3.A Description of the Experiment

The proportion of queries in the load of the system can have an important effect on
the performance of a replicated database. If the read-write policy of a replication
technique is ROWA, queries only need to be executed on one replica. In some
cases, they can be executed without requiring any communication. By changing
the query rate, we can compare the load-balancing capacities of each replication
strategy.

To measure how different replication techniques handle queries we fixed the
load of the system, changed the proportion of queries submitted in the load, and
measured changes in the response time. When the query proportion is 100% there
are no update transactions; if the query proportion is 0%, all transactions are up-
dates. The query proportion was increased from 0% to 100% in 10% increments.
We measured the impact of the query load in two settings:

Low-Load In this setting, the system is configured with 36 clients and 4 servers
connected by thefastnetwork. The interval between transactions is fixed at
3’600ms. This yielded a load of 10 transactions per second. When the query
rate is 50%, this setting corresponds to the left edge of Figure5.3.

Moderate-Load In this setting, the system also consists of 36 clients and 4 servers
connected by thefast network. But this time, the interval between transac-
tions is 1’800msand thus a load of 20 transactions per second. When the
query rate is 50%, this setting corresponds to the right edge of Figure5.3.

3The message must be a total order broadcast, because it updates the state of the certification test
module, which must behave in a deterministic way – the same for all servers.

5.3. EXPERIMENTS 101

5.3.3.B Results

0

50

100

150

200

250

300

350

400

0% 20% 40% 60% 80% 100%

Query Proportion

R
es

p
o

n
se

 T
im

e[
m

s]
Active Replication
Certification
Distributed Locking
Lazy
Ser-D
Primary

Figure 5.13: Performance with changing query rate at low-load (10 transactions
per second)

Low Load Figure5.13shows the results of the experiment at low-load (10 trans-
actions per second). When the query rate is 100%, the load consists of only read
operations and transactions can be distributed on all servers. In this situation, cer-
tification and Ser-D replication have the same performance than lazy replication:
the load is perfectly balanced between all servers and no communication occurs.
Distributed-locking suffers from a slight overhead because of the protocol com-
plexity, but has roughly the same performance.

The two remaining techniques, active replication and primary-copy have worse
performances because they do no load balancing. In both techniques, all the work
is done on one server. In the primary-copy case, all the work is done on the primary.
In active replication, the situation is slightly different: all the work is done onall
replicas – so technically, all replicas do the work of the primary. In both cases,
there is no load-balancing.

As both techniques handle the load in the same way, one would expect that
they have the same performance. In fact primary-copy should outperform active
replication by the cost of a total order broadcast. Yet the results show that ac-
tive replication outperforms primary-copy replication by approximately 30%. The
reason for this lies in the way active replication works. In active replication, the
delegate server merely acts as a proxy for all servers: when a transaction is deliv-
ered, it is sent to all servers (including itself) using a total order broadcast. Each
server processes the transactions and sends the results back to the delegate, the
delegate forwards thefirst response to the client. So in practice, this means that

102 CHAPTER 5. PERFORMANCECOMPARISON

the perceived response time of the client is the response time of the fastest server.
So the observed response timer is the minimum response time for all replicas:
r = min{r1 . . . , rn}.

Why are there difference between the response times of servers? The response
time of a transaction on one replica depends on multiple factors: actual load of
the system, number of items in cache and time needed for a seek. These factors
are, to some extent, random4. So as the number of replicas increases, the observed
response time will improve more and more, as we are more likely to get a fast
first response. Here we benefit from the fact that all replicas do all the work, i.e.,
that the technique does no load balancing. This improvement is similar to the read
operation improvement in RAID level 1 systems [CT92].

As the proportion of queries diminishes, the performance of all techniques de-
grades. This performance degradation is more noticeable for distributed-locking:
as the number of writes increases, the overhead of this technique becomes more
obvious. It is interesting to note that the performance of the certification-based
technique cannot be distinguished from the performance of lazy replication if the
query proportion is larger than 40%. This shows that for high query rates and low
load, certification-based replication is close to optimum.

0

200

400

600

800

1000

1200

1400

0% 20% 40% 60% 80% 100%

Query Proportion

R
es

p
o

n
se

 T
im

e[
m

s]

Certification
Distributed Locking
Lazy
Ser-D
Primary

Figure 5.14: Performance with changing query rate at moderate load (20 transac-
tions / second)

4Caching algorithms that are usually used are not random, but rather deterministic. Classic deter-
ministic caching algorithms would not benefit active replication, because all the replicas would have
the same caching behaviour. In the simulation, caching was simulated as a statistical process, so it
benefited active replication. Special algorithms could be tailored for active replication and give even
better benefits: for instance by having each replica keep in cache only a subset of the data.

5.3. EXPERIMENTS 103

Moderate Load Figure5.14shows the results for the same experiment with a
higher load (20 transactions per second). The first thing we see is that some tech-
niques have very bad performance: active replication (whose curve is outside the
graph), and primary-copy replication (upper right corner). Most other techniques
have non-linear response curves: if the query proportion is to low, performance
drops suddenly.

If we compare this graph with the one in Figure5.13it is interesting to see that
the relative performance between active replication and primary-copy replication
is inverted: while both techniques perform poorly, primary-copy has better perfor-
mance. In high-load situations, the advantages of selecting the fastest response is
offset by the fact that much more processing is needed. Additionally, the seriali-
sation phase of active replication becomes a bottleneck in high-load situations (see
Section5.3.1).

Changing load and query rate To understand how the linear curves in Fig-
ure5.13transform into those in Figure5.14, we plotted 3 dimensional graphs for
the following techniques:

• Certification (Figure5.15)

• Ser-D (Figure5.16)

• Distributed-locking (Figure5.17)

• Primary-copy (Figure5.18)

We did not plot the remaining two techniques, as their performance in moder-
ate load setting is very bad. For each technique, theX axis represents the query
proportion, theY axis (depth) represents the load of the system in transactions per
second and theZ axis (height) represents the resulting response time. Each tech-
nique is represented by a separate surface.On each surface, we marked the limit
whereZ = 200 msand whereZ = 300 ms.

First we see that all four surfaces are continuous: this shows that all four tech-
niques are stable in the parameter space considered. The most noticeable aspect
of those four figures is that distributed-locking, certification and Ser-D replication
have the same general shape: performance is good if the load is low or the query
proportion high. Response time reaches a “peak” in high-load, low query propor-
tion situations. Primary-copy (Figure5.18) on the other hand, has a very different
general shape. While the technique is also sensitive to some extent to the query
proportion, the load has a far greater influence on performance. As the load in-
creases, the response time forms a “wall”, even if the load is composed only of
queries. The reason for this is that primary-copy does no load-balancing.

Let us consider the parameter values where the response time reaches
200 ms and 300ms respectively, we can see the performance difference be-
tween the distributed-locking technique on one hand (Figure5.17), and the group

104 CHAPTER 5. PERFORMANCECOMPARISON

0%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

10

20
0

100

200

300

400

500

600

700

800

900

1000

R
es

p
o

n
se

 t
im

e
[m

s]

Query Rate

L
o

ad
 [

tr
an

sa
ct

io
n

s
/ s

ec
o

n
d

]

300 ms

200 ms

Figure 5.15: Performance of certification-based Replication with changing query
proportion and changing loads

0%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

10

20
0

100

200

300

400

500

600

700

800

900

1000

R
es

p
o

n
se

 t
im

e
[m

s]

Query Rate

L
o

ad
 [

tr
an

sa
ct

io
n

s
/s

ec
o

n
d

]

300 ms

200 ms

Figure 5.16: Performance of Ser-D replication with changing query proportion and
changing loads

5.3. EXPERIMENTS 105

0%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

10

20
0

100

200

300

400

500

600

700

800

900

1000
R

es
p

o
n

se
 t

im
e

[m
s]

Query Rate L
o

ad
 [

 t
ra

n
sa

ct
io

n
s

/ s
ec

o
n

d
]

300 ms

200 ms

Figure 5.17: Performance of distributed-locking replication with changing query
proportion and changing loads

0%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

10

20
0

100

200

300

400

500

600

700

800

900

1000

R
es

p
o

n
se

 t
im

e
[m

s]

Query Rate

L
o

ad
 [

 t
ra

n
sa

ct
io

n
s

/ s
ec

o
n

d
]

Figure 5.18: Performance of primary-copy replication with changing query pro-
portion and changing loads

106 CHAPTER 5. PERFORMANCECOMPARISON

communication-based replication techniques (Ser-D and certification, Figures5.16
and5.15) on the other hand. Group communication-based replication techniques
outperform distributed-locking systematically. In general the difference is roughly
equivalent to a difference of 10% of the query proportion, e.g. distributed-locking
behaves with a 40% query proportion like group communication-based replication
with a 50% query proportion. This is consistent with the performance difference
observed in overall load performance (Section5.3.1).

5.3.3.C Discussion

The experiment shows that the load balancing features of the different replica-
tion techniques has an important impact on performance, especially when the load
contains a large proportion of queries. We see that group communication based
replication techniques offers good load-balancing. As those techniques are built on
optimistic hypotheses (execute first, check for network conflicts after), they work
best when the proportion of queries is high. In good conditions (moderate load and
high query proportion), those techniques have a performance close to the perfor-
mance of lazy replication.

5.3.4 Wide Area Network

5.3.4.A Description

All previous experiments were based on local area network (LAN) settings, with
servers connected with a moderate (10 Mb/s) or fast network (100 Mb/s). Classical
database replication strategies simply cannot cope with the long delays associated
with a wide area network (WAN). Yet, we have seen in Section5.3.1that group
communication-based replication is not very sensitive to the performance of the
network – the latency of the network will affect the response time and the time
locks are held (write locks are kept until the total order broadcast is delivered), but
as there is only one network interaction this influence is limited. Other group com-
munication based WAN database replication scheme have been proposed, but they
are based on the primary-copy scheme [FP01]. For this reason, it is interesting to
evaluate the performance of Ser-D and certification replication in a WAN context.

To do this, we changed the time for message transmission to 100ms, both for
point-to-point an multicast messages. This represents the time for an intercontinen-
tal message and is quite large (A ping round-trip from EPFL to the USA is between
100 and 200msdepending on the location).

Contrary to a LAN situation, network contention is not an issue in a WAN con-
text, so it was not modelled. Instead of “using” a resource, the sending of message
is simply a wait in the simulator. The system was set-up with 36 clients connected
to 9 servers. By changing the interval between transactions, a load between 10
and 20 transactions per second was submitted to the system. The load was com-
posed only of update transactions. Query execution does not involve any network
operation and so the performance of query processing is not affected by the long

5.3. EXPERIMENTS 107

network delay modelled here; query response time is therefore the same than in a
LAN setting. All other parameters are those described in Table5.1.

5.3.4.B Results

0

500

1000

1500

2000

2500

3000

10 11 12 13 14 15 16 17 18 19 20

Load [transaction / second]

R
es

p
o

n
se

 T
im

e
[m

s]

Ser-D
Certification

Figure 5.19: Performance in a WAN setting

Figure5.19 shows the result of this experiment. While the response time is
quite high (above 2500ms), it is very stable. The abort rate was also stable, around
4.5%. It is interesting to note that while certification replication outperformed
Ser-D replication in LAN settings, the difference in the WAN setting is within the
confidence interval.

5.3.4.C Discussion

While large, the response time of group communication-based replication tech-
niques stays reasonable in a WAN setting. Overall, the performance of both tech-
niques is only affected by the the response time of the total order broadcast algo-
rithm. In our case, the total order broadcast algorithm was not one optimised for
latency [Déf00], so choosing a different algorithm might improve latency signifi-
cantly.

5.3.5 Group-Safe replication

5.3.5.A Description

The goal of this experiment was to measure the performance improvement that can
be gained by transforming a group communication based replication strategy so
that in enforces group-safety (as opposed to group-1-safety). This improvement is
discussed in Section4.4.

108 CHAPTER 5. PERFORMANCECOMPARISON

For this, we compared three replication strategies: certification, lazy and a
group-safe version of certification. The experimental settings are the same than
those for the experiment of Section5.3.1: 36 clients connected to 9 servers gener-
ating a moderate load (20-40 transactions per second) and using the fast network
(100 Mb/s).

5.3.5.B Results

0

50

100

150

200

250

300

350

400

450

500

20 22 24 26 28 30 32 34 36 38 40

Load [transaction / second]

R
es

p
o

n
se

 T
im

e
[m

s]

Certification Group-1-Safe
Certification Group Safe
Lazy

Figure 5.20: Performance of group-safe certification

Figure5.20 shows the results of this experiment. TheX axis represents the
load of the system in transactions per second, theY axis the measured response
time, in milliseconds. Each technique is represented by one performance curve.
The curve of lazy and certification are the same as in Figure5.6 for clarity; we
removed the part of the certification curve above 30 transactions per second, where
the response time drops when the technique aborts most of the update transactions.

The performance curves shows that group-safe replication has very good per-
formance. We see that the group-safe certification technique outperforms even lazy
replication when the load is below 38 transactions per second. The abort rate of
this technique was constant, slightly below 7%. The very good performance of
the group-safe technique is due to the use of asynchronous writes. This means that
writes to disk are basically done in a separate thread, outside the scope of the trans-
action. In high-load situations, group-safe replication loses its advantage over lazy
replication.

5.3. EXPERIMENTS 109

5.3.5.C Discussion

Group-safe replication offers, as expected, very good performance, and in moder-
ate load situations, outperforms even lazy replication. This shows that transferring
the responsibility of durability from stable storage to the group (see Section4.4)
makes sense in a LAN: in our setting, writing a value to disk takes around 10ms,
while performing a total order broadcast (which is considered a very complex and
costly protocol) takes approximately 1ms.

5.3.6 Optimistic Active Replication

5.3.6.A Description

The previous experiments showed that active replication was not very good when
compared to other group communication-based techniques like certification or
Ser-D replication. Additionally, active replication requires static transactions,
which restricts its usage. The main advantage of active replication is that it does
not abort any transactions: transactions are broadcast at the beginning and do not
need to pass a certification phase (like certification-based replication) or to wait for
a commit message from the delegate site (like Ser-D replication). Static transac-
tions can be executed without any risk of deadlock and are therefore never aborted.
All those characteristics make active replication very interesting for real-time ap-
plications, where aborted transactions mean unpredictable delays.

In this section evaluate an optimisation of active replication, that we call op-
timistic active replication. This replication technique was proposed in [KPAS99]
under the name Fine Granularity Locking. This technique relies on a early opti-
mistic delivery of messages to start processing earlier. Optimistic early delivery
is possible in a LAN setting because of the spontaneous order property (see Sec-
tion 2.4.6): in a LAN, messages are in the right order most of the time. By starting
the processing earlier, the execution of transactiont and the execution of the total
order broadcast algorithm that will deliverst’s order overlap. If the message order-
ing generated by the spontaneous ordering does not match the definitive delivery
order and a conflict occurs,t will be aborted and restarted. The client does not
need to be notified oft’s abort and subsequent restart.

Both active replication and optimistic active replication collect the responses
of all servers and transmit the first response to the client. This yields improved
response time as the response time observed by the client is the response time
of fastest server. This gives increased performance for active replication (see Sec-
tion 5.3.3.B), but also for optimistic active replication – if a transactiont is restarted
on a serversi, then the client will get the response of a serversj wheret did not
restart. We call this technique “response collection”: the delegate collects the re-
sponse from all servers (including itself) and forwards the first to the client. All
experiments in this section are done using response collection. The same exper-
iments were conducted without response collections, that is servers do not send
back their results to the delegate server. In this setting, when a client gets a re-

110 CHAPTER 5. PERFORMANCECOMPARISON

sponse, it contains the results of the delegate server. In this case, the results were
similar but with a higher response times (around 30msmore).

For the optimistic technique to make sense, we need two things: first that the
spontaneous ordering property holds most of the time, second that the processing
time of a transactions is of the same order of magnitude than the time needed to
execute the total order broadcast algorithm. The improvement of the response time
will be a portion of the time needed to do the total order broadcast. If processing a
transaction is much longer than processing the total order broadcast, the improve-
ment will be negligible. If processing time of a transaction is shorter than the
transmission time, then transactions will need to wait for the final delivery in order
to commit. As write locks are kept until commit, this will increase lock-contention.

Communication
Processing

Transaction
 Processing

OPT-delivery TO-delivery

Processing
Begin

Processing
End

Inactive
Period

Figure 5.21: Overlap of communication and processing in optimistic active repli-
cation

Figure5.21 illustrates the problem when the processing time of the transac-
tion is shorter than the processing time of the total order broadcast algorithm.
OPT-delivery represents the optimistic delivery of the total order broadcast,TO-
delivery the effective delivery in total order. The “inactive period” time of trans-
action processing represents the period of time during which locks are held and no
processing occurs.

The experiments for optimistic active replication were done using the parame-
ters described in Table5.1, with a slow network and 36 clients attached to 9 servers.
To represent faster processing, the transaction length was shortened (uniform dis-
tribution between 5 and 10 operations) and the cache hit ratio was raised to 80%.
As the difference between both techniques are slim, experiments were run until the
relative error rate of the response time was below 2%. The time between the start
of two consecutive transactions was in the interval from 900 to 1’800ms, which
resulted in a load between 20 and 40 transactions per second.

5.3.6.B Results

Overall Performance. Figure5.22shows the compared performance of active
replication and the optimistic version of active replication. TheX axis represents
the load of the system, expressed in transactions per second, while theY axis rep-
resents the response time expressed in milliseconds. We measured the performance
of active replication and two configurations of the optimistic active replication: one
with no out of order messages, and therefore no transactions restarts (no restart),

5.3. EXPERIMENTS 111

0

20

40

60

80

100

120

20 22 24 26 28 30 32 34 36 38 40

Load [Transactions / second]

R
es

po
ns

e
T

im
e

[m
s]

Optimistic Active � No Restart

Optimistic Active � Restart

Active

Figure 5.22: Performance of active replication and optimistic active replication

and one with message reordering (restart).

Message reordering is measured by two factors: the proportion of messages
that are reordered, and the reordering level. The reordering level expresses by how
many positions in the serial order a message can be displaced. For instance if the
the correct sequence of messages ism1,m2,m3,m4, . . . and the reordering level is
2, whenm1 is delivered out of order, the sequence will bem2,m3,m1,m4,m5, . . .
As observed in Section2.4.6, the message reordering level in a LAN is at worst of
2. In our simulation the reordering level was either 1 or 2 (uniform distribution).
Reordering was simulated by tossing a dice for each message, if the message was
reordered, it was pushed back by one or two positions in the serial order. In the
present case (for therestart setting) 100% of the messages were shuffled by one
or two positions.

The delegate server collects responses from all servers, so the observed re-
sponse time is the shortest response time of all servers. This means that if a restart
occurs, it will probably have no effect on the response time, as the response will
come from a server were no restart did occur. So the influence of a restart can
only be measured on the overall response time if the restart occurs on all servers.
If we consider that out of order messages (and therefore transaction restarts) are
independent random events for each server, the chances of a restart occurring on
all servers is quite low. Therefore, in order to measure of the response time of
restarted transaction, we have set the simulator to deliver messages out of order on
all servers at the same time.

We see that when the conditions are good (no restarts) the optimistic algo-
rithm outperforms the classical algorithm by around 7ms. Using the optimistic
algorithm, transaction processing starts after the initial broadcast, while in normal
active replication, processing starts after the end of the total order broadcast proto-
col. The difference should therefore amount for two broadcasts, and one round of

112 CHAPTER 5. PERFORMANCECOMPARISON

point-to-point messages. Given the parameters of the simulator, and considering
that there is little network contention, both a point to point message and a broadcast
take 1.5ms(0.5 msat the sender, 0.5mson the wire and 0.5mson the receiver).
The difference between optimistic and active replication should therefore amount
to 2× 1.5 + 1× 1.5 = 4.5 ms. The observed difference is quite close to that.

We also see that the performance of the optimistic algorithm is not good when
all messages are out of order. We will show in the next paragraph that is not due to
restarted transaction, but to the increased lock contention and degraded synchro-
nisation. It is interesting to note that the difference in response time between the
two settings of the optimistic technique (with restarts and without) is much more
important when the load is low. This is probably due to the fact that as transac-
tions are delivered at a lower rate, conflicts are detected later and so the “cost” of
a restart, in terms of processing, is higher. In fact, the response time of restarted
transactions was more or less stable at around 180ms, regardless of the load.

Restart Rates, Restart Times. We see that the optimistic technique is good
when the spontaneous ordering property holds, but not so good when it does not.
To understand the influence of out of order messages, we fixed the load at 40 trans-
actions per second and changed the proportion of out of order messages. During
this experiment, we measured the following data:

Redo-Rate. The proportion of transactions that needed to be restarted.

Response Time.The mean response time of the overall system.

Redo Response Time.The mean response time of transactions that were restarted
because of out of order messages.

0

20

40

60

80

100

120

140

160

180

200

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Message Reordering Rate

R
es

po
ns

e
T

im
e

[m
s]

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

R
ed

o
R

at
e

Response Time

RedoResponse Time

Redo Rate

Figure 5.23: Response time of restarted transactions (optimistic active replication)

5.3. EXPERIMENTS 113

Figure5.23shows the result of this experiment with three curves: one for the
overall response time, one for the response time of restarted transactions and one
for the transaction restart rate. The leftY axis represents the response time, ex-
pressed in milliseconds, and is used for response time curves. The rightY axis
represents the restart rate of transactions, i.e. the proportion of transactions that
needed to be restarted. The redo response time has no point whenX = 0, as there
are no restarts.

80

82

84

86

88

90

92

94

96

98

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Message Reordering Rate

R
es

po
ns

e
T

im
e

[m
s]

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

R
ed

o
R

at
e

Optimistic Active Replication (Response Time)

Active Replication (Response Time)

Redo Rate

Figure 5.24: Out of order message influence on overall performance

Figure5.24shows a close up of the response time of the optimistic technique
compared to response time of the active replication technique. The restart propor-
tion is also plotted. TheX axis represents the proportion of out of order messages.
The leftY axis represents again the response time and was zoomed to the range
between 80 and 100ms. The rightY axis represents the proportions of restarted
transactions. WhenX = 0 the response time corresponds to the response time of
“no restarts” curve in Figure5.22, whenX = 1.0, the response time corresponds
to the response time of the “restarts” curve in the same figure.

As expected, we see that the number of restarted transactions increases with
the number of out of order messages, still this rate stays low (less than 0.25%)
even when all messages are out of order. We also see that the overall response time
increases with the number of out of order messages. The interesting thing is that
the increase of the response time cannot be explained simply by the increased num-
ber of restarted transactions: overall this contribution would be negligible (0.25%
of the transactions with doubled response time would increase the mean response
time by less than 1%). The increase of the mean response time is mostly due to
higher lock contention and synchronisation costs.5 At some point, the optimistic
technique is out performed by the classical active replication technique. This point

5When a transaction is delivered out of order and restarted, all the locks it held before being
aborted delayed other transactions.

114 CHAPTER 5. PERFORMANCECOMPARISON

is reached when more than 30% of the messages are out of order (circle in Fig-
ure5.24).

Restarted transactions have roughly a response time that is twice as large as
the response time of non-restarted transactions. Traditionally, it is assumed that
restarted transactions would have a response time that is 50% higher than non-
restarted transactions, as a transaction is restarted in average in the middle of its
execution. This is not the case here. The response time of a restarted transac-
tion is 100% because transactions are not restarted immediately when they are
aborted, but when the definitive total order is known. This avoids situations were a
transaction might restart multiple times6 and also ensures that the response time is
bounded. Contention on the latch used for locking all items in a transaction in one
atomic step is also lowered.

5.3.6.C Discussion

Overall, the optimistic active replication technique makes sense if the spontaneous
ordering property holds most of the time (70%). If out of messages are very rare
(as is the case most of the time in a LAN), the optimisation improves the response
time by around 6%. Depending on the condition and the respective performance
of transaction processing and communication protocol, this gain can change quite
a lot.

Restarts are rare because they only occur when two messagesm1 andm2 that
contain conflicting transactionst1 andt2 are delivered in the wrong relative order.
If the conflict rate is reasonable, this event is rare. In our setting, the restart rates
stayed below 0.25%. If out of order messages occur independently on all servers,
then the probability that a client observes the response time of restarted transaction
is pn wherep is the probability of a restart on one server, andn the number of
servers. Whenp is low andn is large, this number is very small. In the event
that a message is delivered out of order on all servers, the number of restarts is
bounded. This is interesting because this means that this replication technique has
a stable response time most of the time, and could therefore be used for soft-real
time applications.

The added delay of restarted transactions is hidden because we collect the re-
sponse from all servers. While this increases the network usage, the response time
is lowered. Response collection makes sense when the time to send a message
between servers is below the standard deviation of the response time.

While the spontaneous ordering property only holds in a LAN setting, op-
timistic active replication could also be used in a WAN setting, by using some
heuristics to build a reasonable tentative order – as long as this tentative order is
generally the same as the final delivery order, the impact will not be significant in
terms of restarted transactions. Using this technique in a WAN setting makes sense,

6If this were not the case, a transaction could potentially restart for each level of out of order
delivery. So if a message was 10 positions out of order, then a transaction could restart 10 times.

5.4. CONCLUSION 115

because optimistic active replication tries to optimise out the time needed to pro-
cess the total order broadcast protocol. In a LAN setting, the response time of total
order broadcast is very low, so optimising it out is probably not worth the trouble.
In a WAN the response time of the total order broadcast is large, so optimising it
out makes sense. Response collection would not make less sense in a WAN setting:
the increased latency means that response from remote servers will always arrive
on the delegate after the local response, even if the event of a transaction restart.
The impact on bandwidth would also be important.

To summarise, optimistic active replication offers increased performance and
is an interesting option when the processing time is roughly the same as the time
needed to execute the total order broadcast protocol and the spontaneous ordering
property holds. The cost of restarts can be hidden by collecting the response from
all servers.

5.4 Conclusion

In this chapter, we measured the performance of different replication tech-
niques. We focused on different group communication-based techniques and
compared their performance with classical replication schemes like primary-copy,
distributed-locking, and lazy update-everywhere replication. We also measured
the performance gain of two optimisations: group-safe certification replication and
optimistic active replication.

Ser-D was evaluated in [Kem00] and compared to other techniques, like
distributed-locking, but with a more simplified network model. The performance of
certification-based replication was evaluated in [Ped99], but not compared to other
techniques. This evaluation also relied on a simplified network model and used a
database with versioning. Another evaluation of the performance of certification
replication using a prototype and a CORBA middleware is presented in [Van00].

Performance evaluations show that group communication-based replication
significantly outperforms traditional database replication protocols like distributed-
locking. The performance difference is large if the network is slow and subject to
contention. This is due to the fact that distributed-locking uses a lot of messaging.
Group communication-based replication uses less networking resources by relying
on abstractions like total order broadcast. This kind of replication is therefore very
efficient with a slow network. When the network is fast, and contention rare, group
communication-based replication still outperforms distributed-locking, albeit by a
smaller amount – a faster network reduces the cost of such techniques, but does not
negate the cost of synchronising all replicas.

The results presented in this chapter confirm the overall statements of previous
simulation work [Ped99, HAA99b, Kem00]: group communication-based data-
base replication offers good performance. The results presented here are consistent
with those described in [Kem00] that shows the performance of different variants
of Ser-D, all outperforming distributed-locking. It is interesting to note that most

116 CHAPTER 5. PERFORMANCECOMPARISON

variants proposed in [Kem00] offer increased performance by relaxing serialisabil-
ity and relying instead on cursor stability. In this context, it is worth noting that
certification replication outperforms Ser-D replication in most cases, while still en-
forcing serialisability. The results are also consistent with the observations about
the performance of certification based replication in [Ped99].

The lack of difference between the experiment with the slow and the fast net-
work and the resource usage of the simulator confirms a general observation that
in a LAN situation, network contention is not a real problem. Resources like CPU
and disks are much more likely candidates for being bottlenecks in a LAN. This
does not mean that communication is not an issue in database replication: multi-
ple copies still induce several problems like synchronisations costs and high abort
rates. However those issues are not related to the performance of the network,
but to the design of the replication scheme. The performance difference between
certification-based replication and Ser-D replication is not due to the cost of ex-
ecuting a total order broadcast, but the cost of adding a synchronisation barrier
between the replicas.

Chapter 6

Conclusion

That is not dead which can eternal lie,
And with strange æons even death may die.

Abdul Alhazred

6.1 Research Assessment

This research has led to three contributions to the understanding of database repli-
cation based on group communication. One contribution is structural, one is qual-
itative, and one quantitative. The structural contribution is a classification of repli-
cation techniques. The qualitative contribution is an exploration of fault-tolerance
criterion and their relationship with database replication based on group commu-
nication. The quantitative contribution is a performance evaluation.

6.1.1 Classification

A systematic classification of database replication techniques has been proposed.
This classification shows the different way databases can be replicated and analyses
the requirements for each category of techniques. The requirements are expressed
for both the database sub-system (amount of determinism required) and the group
communication sub-system (properties of the communication primitives).

The classification highlights the logical structure of replication techniques and
shows the relationship between techniques described in the literature. It also shows
categories of techniques that have not be explored thoroughly.

117

118 CHAPTER 6. CONCLUSION

6.1.2 Fault-Tolerance Criterion

The relationship between the model of the group communication and the resulting
fault-tolerance criterion has been explored. We show that 2-safe replication based
on group communication is not possible with current group communication imple-
mentations. This shows the limitation in the way group communication systems
are designed and how their interfaces are specified when considering applications
that, like database systems, can recover their state.

Group-safety. An alternative safety criterion,group-safety,is proposed. This
criterion is more suited for group communication-based replication techniques than
the classical 1-safety or 2-safety criterion. Group-safe database replication tech-
niques represents a middle-ground between 1-safe and 2-safe database replication.
A 1-safe replication technique can lose transactions when one replica crashes; in a
2-safe technique, alln replicas may crash, and no transaction will be lost. Group-
safe replication can withstandf (0 < f < n) failures without losing a transaction.

Group-safe replication. Group-safety implies a shift in the way the durability
aspect of the ACID properties is considered. In a group-safe technique, durability
is not ensured with stable storage, like in traditional databases. Instead thegroup
is responsible of ensuring that a transaction’s effect is durable. This shift is pos-
sible because a replicated database has basically two fault-tolerance mechanisms:
stable-storage and replication. Transferring the responsibility from one component
(the disks) to another (the group of servers) makes sense for performance reasons:
in a LAN network access is much faster than disk access.

6.1.3 Performance Evaluation

Performance evaluation offers an insight of the performance and scalability of
group communication-based replication techniques. The results confirm that group
communication-based replication can offer good performance and very good scal-
ability.

Group communication-based Database Replication. Experiment show that
group communication-based replication offers a good alternative to distributed-
locking database replication. The different is very important in presence of a slow
network, but remains apparent even if the network is fast.

Active Replication. The experiment with the active replication technique
showed that in low-load setting, the group of servers could offer improved per-
formance, giving the client the impression of having always the best latency. Ac-
tive replication can also be improved using optimistic delivery of the total order
broadcast primitive.

6.2. OPEN QUESTIONS ANDFUTURE RESEARCHDIRECTION 119

Certification and Ser-D techniques The evaluation of the two group
communication-based techniques that were designed for database replication
(Ser-D and certification) show that those technique are very interesting from the
performance point of view. The comparison of the Ser-D and the certification
technique show that while communication costs are very low in a LAN, synchro-
nisation always has an impact on performance. This comparison shows that the
performance of the Ser-D technique can be improved even without relaxing seri-
alisability. Experiments also showed that the kind of certification algorithm has a
large impact on the scalability of the certification technique.

Group Safe Replication. The group-safe version of the certification technique
showed very impressive results, outperforming even lazy replication. This confirms
that group-safe replication is an interesting alternative to lazy replication. Group-
safe replication offers good performance and strong fault-tolerance.

6.2 Open Questions and Future Research Direction

Besides the contributions presented in the previous section, this research has raised
many interesting questions and issues, that deserve further research.

6.2.1 Intra-Layer Communications

The problem of 1 and 2-safety has led us to analyse the communications between
the application and the group communication layer in terms of message exchange.
This approach could be used to specify in a clear way group communication prim-
itives. This would help unify all the variants of group communication primitives
that use different flow controls and calling semantics [DSS98, Boi01]. Such a tool
would also help design new variants of group communication primitives. A clear
specification of group communication primitives would also give a clearer view
of the interface between application and group communication layer, and permit a
better design of both components.

The ack messages also highlight how, when both the group communication
and application layer have stable storage, data and the responsibility (for fault-
tolerance) gets transferred from one component to the other. This notion could be
extended to a context where the transport layer also has access to stable storage, for
instance if message queues are used for sending messages [MS97]. This raises the
question of end-to-end durability: how to ensure durability in an-tier architecture
when certain elements have access to stable storage, and others do not?

6.2.2 Hybrid Replication techniques

Some of the possible replication techniques described in the classification have
not been implemented – most of them use the total order broadcast primitive to

120 CHAPTER 6. CONCLUSION

avoid deadlocks but still rely on a voting phase to ensure atomicity. Those “hy-
brid” techniques are interesting because they mix the mechanisms used in voting
and non-voting replication. They rely on total order broadcast to minimise dead-
locks and network communication, but do not require the strict determinism, like
other group communication-based replication techniques. Replicas can act in a
non-deterministic way and unilaterally abort transactions, the atomic commitment
ensures that all replicas end up with the same state.

6.2.3 Best-Effort Total Order Broadcast

Hybrid techniques, but also optimistic active replication, benefit from a very fast,
best-effort total order broadcast implementation. The spontaneous ordering prop-
erty can be used to build one such implementation, but many others are certainly
possible – one area of particular interest would be best-effort total order broadcast
in an MAN settings, where group communication-based replication would make a
lot of sense and spontaneous ordering property would not hold.

6.2.4 Group-Safe Replication

The group-safe version of the certification technique showed very good perfor-
mance, but this performance could certainly be improved with other optimisations.
One possible approach would be to use a middle-tier to route certain transactions to
certain replicas, thus optimising the caching behaviour. In group-safe replication,
writes are executed outside of the scope of the transaction and therefore, have no
direct impact on the response time. This means that read operations are respon-
sible for a large part of the response time, so optimising the performance of read
operations by using improved caching makes a lot of sense.

6.2.5 Optimistic Mechanisms

The optimistic active replication scheme presented in Chapter5 represents only
one possible use early delivery of messages. One drawback of this technique is
its complexity: the whole transaction handling policy needs to be changed to take
advantage of early delivery. One interesting use of early delivered messages would
be to control caching: when a message is delivered in tentative order, the transac-
tion it contains is parsed and the relevant items loaded in the cache. Such a design
would be interesting because it couples two optimistic designs: early delivery and
caching. A wrong spontaneous ordering requires no special care – if messages are
tentatively delivered in the wrong order, some items might not be preloaded in the
cache.

Another opportunity for optimism would be in techniques that replicate high-
level transactions [PF00]. In those techniques the high-level transactions are trans-
formed in low-level transactions on each replica. This transformation could be
started upon optimistic delivery and the result cached. Upon total order delivery,

6.2. OPEN QUESTIONS ANDFUTURE RESEARCHDIRECTION 121

the cached version is used. In case of out of order early delivery, the content of
the cache is discarded. This scheme would be very interesting for WAN replica-
tion schemes [FP01], where the time difference between optimistic delivery and
total-order delivery could be quite important.

122 CHAPTER 6. CONCLUSION

Bibliography

[AAES97] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi.Exploiting
atomic broadcast in replicated databases. In Proceedings of EuroPar
(EuroPar’97), Passau (Germany), 1997.

[ACL87] R. Agrawal, M. J. Carey, and M. Livny.Concurency control perfor-
mance modeling: Alternatives and implications. ACM Transactions
on Database Systems, 12(4):609–654, December 1987.

[ACT97] M. K. Aguilera, W. Chen, and S. Toueg. Quiescent reliable commu-
nication and quiescent consensus in partitionable networks. Techni-
cal Report TR97-1632, Cornell University, Computer Science De-
partment, June 1997.

[ACT00] M. K. Aguilera, W. Chen, and S. Toueg.Failure detection and
consensus in the crash recovery model. Distributed Computing,
13(2):99–125, April 2000.

[ACT98] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and con-
sensus in the crash recovery model. InProceedings of the12th

International Symposium on Distributed Computing (DISC’1998
fomerly WDAG), volume 1499 ofLecture Notes in Computer Sci-
ence, pages 231–245, Andros, Greece, September 98. Springer Ver-
lag.

[Alo97] G. Alonso. Partial database replication and group communication
primitives (extended abstract). In Proceedings of the2nd Euro-
pean Research Seminar on Advances in Distributed Systems (ER-
SADS’97), pages 171–176, Zinal (Valais, Switzerland), January
1997.

[ANS92] American National Standart for Information Systems, 1819 L
Street, NW, Washington, DC 20036, USA.ANSI X3.135-1992 –
Database Language SQL, November 1992.

[BAD+84] K P. Birman, A. El Abbadi, W. Dietrich, T. A. Joseph, and
T. Raeuchle. An overview of the Isis project. Technical Report

123

http://www.inf.ethz.ch/personal/alonso/PAPERS/EPar97.ps.Z
http://www.inf.ethz.ch/personal/alonso/PAPERS/EPar97.ps.Z
http://www.acm.org/pubs/articles/journals/tods/1987-12-4/p609-agrawal/% p609-agrawal.pdf
http://www.acm.org/pubs/articles/journals/tods/1987-12-4/p609-agrawal/% p609-agrawal.pdf
http://link.springer.de/link/service/journals/00446/papers/0013002/001% 30099.pdf
http://link.springer.de/link/service/journals/00446/papers/0013002/001% 30099.pdf
http://www.inf.ethz.ch/personal/alonso/PAPERS/ERSDAS97.ps.Z
http://www.inf.ethz.ch/personal/alonso/PAPERS/ERSDAS97.ps.Z

124 BIBLIOGRAPHY

TR84-642, Cornell University, Computer Science Department, Oc-
tober 1984.

[BBC+98] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin, H. Garcia-
Molina, J. Gray, J. Held, J. Hellerstein, H. V Jagadish, M. Lesk,
D. Maier, J. Naughton, H. Pirahesh, M. Stonebraker, and J. Ullman.
The Asilomar report on database research. Technical Report MSR-
TR-98-57, Microsoft Research, One Microsoft Way, Redmond, WA
98052, September 1998.

[BCBT96] A. Basu, B. Charron-Bost, and S. Toueg.Solving problems in
the presence of process crashes and lossy links. Technical Report
TR06-1609, Cornell University, Computer Science Departement,
Ithaca NY 14853 USA, September 1996.

[BCH+98] A. Baratloo, P. E. Chung, Y. H. Huang, S. Rangarajan, and S. Ya-
jnik. Filterfresh: Hot replication of java rmi server objects. In
Proceedings of the4th Conference on Object Oriented Technolo-
gies and Systems (COOTS), pages 59–63, Santa Fe, New Mexico,
USA, 1998. USENIX.

[BCH+00] K. Birman, R. Constable, M. Hayden, C. Kreitz, O. Rodeh, R. van
Renesse, and W. Vogels.The Horus and Ensemble projects: Ac-
complishments and limitations. In Proceedings of the DARPA In-
formation Survivability Conference & Exposition (DISCEX ’00),
Hilton Head, South Carolina USA, January 2000.

[BFG01] R. Boichat, S. Frølund, and R. Guerraoui. Open consensus.Con-
curency and Computation: Practice and Experience, 2001.

[BGHJ92] A. Bhide, A. Goyal, H. Hsiao, and A. Jhingran. An efficient scheme
for providing high availability. InProceedings of 1992 SIGMOD
International Conference on Management of Data, pages 236–245,
May 1992.

[BGMS92] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview
of multidatabase transaction management.The VLDB Journal,
1(2):181–239, June 1992.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[BJ87] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in
distributed systems. InProceedings of the11th ACM Symposium on
OS Principles, pages 123–138, Austin, TX, USA, November 1987.
ACM SIGOPS, ACM.

http://www.research.microsoft.com/scripts/pubdb/pubsasp.asp?RecordID=1% 96
ftp://ftp.cs.cornell.edu/pub/sam/crash.link.failures.ps
ftp://ftp.cs.cornell.edu/pub/sam/crash.link.failures.ps
http://www.usenix.org/publications/library/proceedings/coots98/baratlo% o.html
http://www.cs.cornell.edu/Info/Projects/Spinglass/public_pdfs/Horus%20% and%20Ensemble.pdf
http://www.cs.cornell.edu/Info/Projects/Spinglass/public_pdfs/Horus%20% and%20Ensemble.pdf
http://research.microsoft.com/pubs/ccontrol/
http://research.microsoft.com/pubs/ccontrol/

BIBLIOGRAPHY 125

[BKT92] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum.Orca: a language
for parallel programming of distributed systems. IEEE Transactions
on Software Engineering, 18(3):190–205, 1992.

[BMST93] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg.Dis-
tributed Systems, chapter 8 – The primary-backup approach, pages
199–216. ACM Press. Addison-Wesley, second edition, July 1993.

[BO83] M. Ben-Or. Another advantage of free choice: Completely asyn-
chronous agreement protocols. InProceedings of the Second An-
nual Symposium on Principles of Distributed Computing, pages 27–
30. ACM, 1983.

[Boi01] R. Boichat. Reliable and Total Order Broadcast in the Crash Re-
covery Model. PhD thesis 2472, École Polytechnique Fédérale Lau-
sanne, Switzerland, November 2001.

[BSR80] P. A. Bernstein, D. W. Shipman, and J. B. Rothnie. Concurrency
control in a system for distributed databases (SDD-1).ACM Trans-
actions on Database Systems, 5(1):18–51, March 1980.

[BSS91] K. P. Birman, A. Schiper, and P. Stephenson.Lightweight causal
and atomic group multicast. ACM Transactions on Computer Sys-
tems, 9(3):272–314, August 1991.

[BT93] Ö. Babaŏglu and S. Toueg.Understanding non-blocking atomic
commitement. Technical Report UBLCS-93-2, Laboratory for
Computer Science, University of Bologna, 5 Piazza di Porta S. Do-
nato, 40127 Bologna (Italy), January 1993.

[BT00] R. Bergman and C. Tsounis.DB2 univeral data base version 7 fea-
tures and facilities. White paper, IBM Corporation, April 2000.

[Cap90] C. H. Cap. Distributed systems with data replication: A non-
technical survey. Technical Report ifi-90.11, Department of Com-
puter Science, University of Zürich, 190, Winterthurstraße CH-
8057 Zürich, Switzerland, November 1990.

[CASD85] F. Cristian, H. Aghili, R. Strong, and D. Doley.Atomic broadcast:
From simple message diffusion to byzantine agreement. Proceed-
ings of the15th Internationnal Conference on Fault-Tolerant Com-
puting, pages 1–12, June 1985.

[CBDS01] Bernadette Charron-Bost, Xavier Défago, and André Schiper.Time
vs. space in fault-tolerant distributed systems. In Proceedings of the
6th International Workshop on Object-oriented Real-time Depend-
able Systems (WORDS’01), Rome, Italy, January 2001. IEEE, IEEE
Computer Society.

http://citeseer.nj.nec.com/bal92orca.html
http://citeseer.nj.nec.com/bal92orca.html
http://www.acm.org/pubs/articles/journals/tocs/1991-9-3/p272-schiper/p% 272-schiper.pdf
http://www.acm.org/pubs/articles/journals/tocs/1991-9-3/p272-schiper/p% 272-schiper.pdf
ftp://ftp.cs.unibo.it/pub/TR/UBLCS/atomic-commitment.ps.gz
ftp://ftp.cs.unibo.it/pub/TR/UBLCS/atomic-commitment.ps.gz
http://www-4.ibm.com/software/data/pubs/papers/#db2udbv7
http://www-4.ibm.com/software/data/pubs/papers/#db2udbv7
ftp://ftp.ifi.unizh.ch/pub/techreports/TR-90/ifi-90.11.ps.gz
ftp://ftp.ifi.unizh.ch/pub/techreports/TR-90/ifi-90.11.ps.gz
http://citeseer.nj.nec.com/cristian85atomic.html
http://citeseer.nj.nec.com/cristian85atomic.html
http://lsewww.epfl.ch/Publications/ById/270.html
http://lsewww.epfl.ch/Publications/ById/270.html

126 BIBLIOGRAPHY

[CF99] F. Cristian and C. Fetzer.The timed asynchronous distributed sys-
tem model. IEEE Transactions on Parallel and Distributed Systems,
10(6), June 1999.

[Cha84] J. M. Chang. Simplifying distributed database systems design by
using a broadcast network. In Beatrice Yormark, editor,SIG-
MOD’84, Proceedings of Annual Meeting, volume 14, pages 223–
233, Boston, Massachusetts USA, 18–21 June 1984. ACM, Special
Interest Group on Management of Data, New York, NY, USA.

[CHKS94] S. Ceri, M. Houtsma, A. Keller, and P. Samarati.A classification
of update methods for replicated databases. Technical Report CS-
TR-91-1392, Stanford University, Computer Science Departement,
May 1994.

[CHT96] T. D. Chandra, V. Hadzilacos, and S. Toueg.The weakest failure
detector for solving consensus. Journal of the ACM, 43(4):685–
722, July 1996.

[CP92] S. W. Chen and C. Pu.A structural classification of integrated
replica control mechanisms. Technical Report CUCS-006-92,
Columbia University, Departement of Computer Science, New
York, NY 10027, 1992.

[CS93] D. R. Cheriton and D. Skeen.Understanding the limitations of
causally and totally ordered communication. In Barbara Liskov,
editor, Proceedings of the14th Symposium on Operating Systems
Principles, volume 27, pages 44–57, Asheville, North Carolina, De-
cember 1993. ACM Press, New York, NY, USA.

[CSAH98] P. K. Chysanthis, G. Samaras, and Y. J. Al-Houmaily.Recovery
Mechanisms in Database Systems, chapter Recovery and Perfor-
mance of Atomic Commit Processing in Distributed Database Sys-
tems. Prentice-Hall, first edition, 1998.

[CT92] S. Chen and D Towsley. A performance evaluation of RAID
architectures. Technical Report UM-CS-1992-067, Departement
of Computer Science, University of Masschusetts, Amherst, MA
01003 USA, September 1992.

[CT96] T. D. Chandra and S. Toueg.Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, March
1996.

[CZ85] D. R. Cheriton and W. Zwaenepoel.Distributed process groups in
the V kernel. ACM Transactions on Computer Systems, 3(2):77–
107, May 1985.

http://www-cse.ucsd.edu/users/cfetzer/MODEL/
http://www-cse.ucsd.edu/users/cfetzer/MODEL/
http://www-db.stanford.edu/pub/keller/1991/fauve-survey.ps
http://www-db.stanford.edu/pub/keller/1991/fauve-survey.ps
http://www.acm.org/pubs/toc/Abstracts/jacm/234549.html
http://www.acm.org/pubs/toc/Abstracts/jacm/234549.html
http://citeseer.nj.nec.com/chen92structural.html
http://citeseer.nj.nec.com/chen92structural.html
ftp://ftp.dsg.stanford.edu/pub/papers/catocs.ps.Z
ftp://ftp.dsg.stanford.edu/pub/papers/catocs.ps.Z
http://citeseer.nj.nec.com/chrysanthis98recovery.html
http://citeseer.nj.nec.com/chrysanthis98recovery.html
ftp://ftp.cs.umass.edu/pub/techrept/techreport/1992/UM-CS-1992-067.ps
ftp://ftp.cs.umass.edu/pub/techrept/techreport/1992/UM-CS-1992-067.ps
http://www.acm.org/pubs/toc/Abstracts/jacm/226647.html
http://www.acm.org/pubs/toc/Abstracts/jacm/226647.html
http://doi.acm.org/10.1145/214438.214439
http://doi.acm.org/10.1145/214438.214439

BIBLIOGRAPHY 127

[Déf00] X. Défago. Agreement-Related Problems: From Semi-Passive
Replication to Totally Ordered Broadcast. PhD thesis 2229, École
Polytechnique Fédérale de Lausanne, Switzerland, August 2000.

[DGMS85] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in
partitioned networks. ACM Computing Surveys, 17(3):341–370,
September 1985.

[DM96] D. Dolev and D. Malki. The Transis approach to high availability
cluster communication. Communications of the ACM, 39(4):64–70,
April 1996.

[DSS98] X. Défago, A. Schiper, and N. Sergent.Semi-passive replication.
In Proceedings of the17th Symposium on Reliable Distributed Sys-
tems (SRDS), pages 43–50, West Lafayette, IN, USA, October 1998.
IEEE.

[DWAP94] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson.
Cooperative caching: Using remote client memory to improve file
system performance. In Proceedings of the First Symposium on Op-
erating Systems Design and Implementation, pages 267–280, Mon-
terey, California, November 1994. USENIX Association. Also ap-
peared as University of California Technical Report CSD-94-844.

[EGLT76] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The no-
tions of consistency and predicate locks in a database system.Com-
munications of the ACM, 19(11):624–633, November 1976. Also
published in/as: IBM Research Report RJ1487, San Jose, CA, De-
cember, 1974.

[FC94] A. W. Fu and D. W. Cheung. A transaction replication scheme for a
replicated database with node autonomy. InProceedings of the In-
ternational Conference on Very Large Databases, Santiago, Chile,
1994.

[Fel98] P. Felber.The CORBA Object Group Service: A Service Approach
to Object Groups in CORBA. PhD thesis 1867, École Polytechnique
Fédérale de Lausanne, Switzerland, 1998.

[FLP85] M. H. Fischer, N. A. Lynch, and M. S. Paterson.Impossibility of
consensus with one faulty process. Journal of the ACM, 32(2):374–
382, April 1985.

[FP01] S. Frølund and F. Pedone. Continental pronto. InProceeding of
the20th Symposium on Reliable Distributed Systems, pages 46–55,
New Orleans, LA, USA, October 2001. IEEE Computer Society,
Los Alamitos, California, USA.

http://lsewww.epfl.ch/Documents/acrobat/Def00.pdf
http://lsewww.epfl.ch/Documents/acrobat/Def00.pdf
http://www.acm.org/pubs/articles/journals/cacm/1996-39-4/p64-dolev/p64% -dolev.pdf
http://www.acm.org/pubs/articles/journals/cacm/1996-39-4/p64-dolev/p64% -dolev.pdf
http://dlib.computer.org/conferen/srds/9218/pdf/92180043.pdf
http://www.cs.princeton.edu/~rywang/berkeley/papers/osdi94.ps
http://www.cs.princeton.edu/~rywang/berkeley/papers/osdi94.ps
http://lsewww.epfl.ch/Documents/acrobat/Fel98.pdf
http://lsewww.epfl.ch/Documents/acrobat/Fel98.pdf
http://www.acm.org/pubs/articles/journals/jacm/1985-32-2/p374-fischer/% p374-fischer.pdf
http://www.acm.org/pubs/articles/journals/jacm/1985-32-2/p374-fischer/% p374-fischer.pdf

128 BIBLIOGRAPHY

[Gär01] F. C. Gärtner.A gentle introduction to failure detectors and related
problems. Technical Report TUD-BS-2001-01, Darmstadt Univer-
sity of Technology, Department of Computer Science, April 2001.

[GHOS96] J. N. Gray, P. Helland, P. O’Neil, and D. Shasha.The dangers of
replication and a solution. In Proceedings of the 1996 Interna-
tional Conference on Management of Data, pages 173–182, Mon-
treal, Canada, June 1996. ACM-SIGMOD.

[Gif79] D. K. Gifford. Weighted voting for replicated data. InProceedings
of the Seventh Symposium on Operating System Principles SOSP 7,
pages 150–162, Asilomar Conference Grounds, Pacific Grove CA,
December 1979. ACM, New York.

[GMP90] H. Garcia-Molina and C. A. Polyzois. Two epoch algorithms for
disaster recovery. InProceedings of16th VLDB Conference, pages
222–230, Brisbane, Australia, 1990.

[GNSY00] A. Gokhale, B. Natarajan, D. C. Schmidt, and S. Yajnik.DOORS:
Towards high-performance fault-tolerant CORBA. In Proceedings
of the2nd International Symposium on Distributed Objects and Ap-
plications (DOA ’00), Antwerp, Belgium, September 2000. Object
Management Group.

[Gol94] R. Goldring. A discussion of database replication technology.Info
DB, 1(8), May 1994.

[Gol95] R. Goldring.Things every update replication customer should know
(abstract). In Proceedings of the 1995 ACM SIGMOD international
conference on Management of data, pages 439–440, San Jose, CA
USA, May 1995.

[GR93] J. N. Gray and A. Reuter.Transaction Processing: concepts and
techniques. Data Management Systems. Morgan Kaufmann Pub-
lishers, Inc., San Mateo (CA), USA, 1993.

[GS97] R. Guerraoui and A. Schiper.Genuine atomic multicast. In Pro-
ceedings of the11th International Workshop on Distributed Algo-
rithms (WDAG-11), Saarbrücken, Germany, September 1997.

[Gue95] R. Guerraoui. Revisiting the relationship between non-blocking
atomic commitment and consensus. In Proceedings of the9th

International Workshop on Distributed Algorithms (WDAG-9),
LNCS 972, pages 87–100, Le Mont-St-Michel, France, September
1995. Springer-Verlag.

http://www.informatik.tu-darmstadt.de/BS/Gaertner/publications/TUD-BS-% 2001-01.ps.gz
http://www.informatik.tu-darmstadt.de/BS/Gaertner/publications/TUD-BS-% 2001-01.ps.gz
ftp://ftp.research.microsoft.com/pub/tr/tr-96-17.doc
ftp://ftp.research.microsoft.com/pub/tr/tr-96-17.doc
http://www.cs.wustl.edu/~schmidt/PDF/DOA-2000.pdf
http://www.cs.wustl.edu/~schmidt/PDF/DOA-2000.pdf
http://www.acm.org/pubs/articles/proceedings/mod/223784/p439-goldring/% p439-goldring.pdf
http://www.acm.org/pubs/articles/proceedings/mod/223784/p439-goldring/% p439-goldring.pdf
http://lsewww.epfl.ch/Documents/postscript/GS97.ps
http://lsewww.epfl.ch/Publications/ById/53.html
http://lsewww.epfl.ch/Publications/ById/53.html

BIBLIOGRAPHY 129

[HAA99a] J. Holliday, D. Agrawal, and A. El Abbadi. Database replication: If
you must be lazy, be consistent. InProceedings of18th Symposium
on Reliable Distributed Systems SRDS’99, pages 304–305. IEEE
Computer Society Press, October 1999.

[HAA99b] J. Holliday, D. Agrawal, and A. El Abbadi.The performance of
database replication with group multicast. In Proceedings of Inter-
national Symposium on Fault Tolerant Computing (FTCS29), pages
158–165. IEEE Computer Society, 1999.

[HAA00] J. Holliday, D. Agrawal, and A. El Abbadi.Using multicast com-
munication to reduce deadlocks in replicated databases. In Pro-
ceedings of the19th Symposium on Reliable Distributed Systems
SRDS’2000, pages 196–205, Nürnberg, Germany, October 2000.
IEEE Computer Society, Los Alamitos, California.

[Had88] V. Hadzilacos. A theory of reliability in database systems.Journal
of the ACM, 35(1):121–145, January 1988.

[Hol01] J. Holliday. Replicated database recovery using multicast commu-
nications. In Proceedings of the Symposium on Network Comput-
ing and Applications (NCA’01), pages 104–107, Cambridge, MA,
USA, October 2001. IEEE.

[HS00] M. A. Hiltunen and R. D. Schlichting.The cactus approach to build-
ing configurable middleware services. In Proceedings of the Work-
shop on Dependable System Middleware and Group Communica-
tion (DSMGC 2000), Nürnberg, Germany, October 2000.

[HT93] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related
problems. In Sape Mullender, editor,Distributed Systems, chap-
ter 5. Addison-Wesley, second edition, 1993.

[HW90] M. P. Herlihy and J. M. Wing.Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Programming
Languages and Systems, 12(3):463–492, July 1990.

[Inf98] Informix, 4100 Bohannon Drive, Menlo Park, California 94025
USA. Informix Replication: A High-Performance Solution for Dis-
tributing and Sharing Information, June 1998.

[Jai91] R. Jain. The art of computer system performance analysis: tech-
niques for experimental design, measurement, simulation and mod-
eling. John Wiley and Sons, Inc., New York USA, 1991.

[Jaj99] S. Jajodia. Data replication gaining popularity.IEEE Concurency,
pages 85–86, April 1999. Interview of Yuri Breitbart and Hank
Korth.

http://www.cs.ucsb.edu/~joanne46/ftcs29.ps
http://www.cs.ucsb.edu/~joanne46/ftcs29.ps
http://citeseer.nj.nec.com/holliday00using.html
http://citeseer.nj.nec.com/holliday00using.html
http://www.cse.scu.edu/~jholliday/NCAtechrep.ps
http://www.cse.scu.edu/~jholliday/NCAtechrep.ps
ftp://ftp.cs.arizona.edu/ftol/papers/dsmgc00.pdf
ftp://ftp.cs.arizona.edu/ftol/papers/dsmgc00.pdf
http://www.cs.ucsb.edu/~ambuj/Courses/290I/linear.pdf
http://www.cs.ucsb.edu/~ambuj/Courses/290I/linear.pdf
http://www.informix.com/informix/whitepapers/entrep.pdf
http://www.informix.com/informix/whitepapers/entrep.pdf

130 BIBLIOGRAPHY

[JPPMAA01] R. Jiménez-Paris, M. Patiño-Martínez, G. Alonso, and S. Arévalo.
A low latency non-blocking commit server. In J. Welch, editor,
Proceeedings of the15th Internationnal Conference on Distributed
Computing (DISC 2001), volume 2180 oflecture notes on computer
science, pages 93–107, Lisbon, Portugal, October 2001. Springer
Verlag, Berlin Heidelberg.

[KA98] B. Kemme and G. Alonso.A suite of database replication protocols
based on group communication primitives. In Proceedings of the
18th International Conference on Distributed Computing Systems
(ICDCS’98), Amsterdam, The Netherlands, May 1998.

[KA99] B. Kemme and G. Alonso.Transactions, messages and events:
Merging group communication and database system. In 3rd

Europeean Research Seminar on Advances in Distributed Sys-
tems (ERSADS’99), Madeira Island (Portugal), April 23–28, 1999.
BROADCAST Esprit WG 22455.

[KA00a] B. Kemme and G. Alonso.Don’t be lazy, be consistent: Postgres-R,
a new way to implement database replication. In Proceedings of the
26th International Conference on Very Large Databases (VLDB),
Cairo, Egypt, September 2000.

[KA00b] B. Kemme and G. Alonso.A new approach to developing and im-
plementing eager database replication protocols. ACM Transactions
on Database Systems, 25(3):333–379, 2000.

[KB94] N. Krishnakumar and A. J. Bernstein.Bounded ignorance: A tech-
nique for increasing concurrency in a replicated system. ACM
Transactions on Database Systems, 19(4):586–625, December
1994.

[KBB01] B. Kemme, A. Bartoli, and Ö. Babaoğlu. Online reconfiguration in
replicated databases based on group communication. In Proceed-
ings of the Internationnal Conference on Dependable Systems and
Networks (DSN2001), Göteborg, Sweden, June 2001.

[Kei94] I. Keidar. A highly available paradigm for consistent object repli-
cation. Master’s thesis, The Hebrew University of Jerusalem,
Jerusalem, Israel, April 1994. also technical report CS94.

[Kem00] B. Kemme. Database Replication for Clusters of Workstations.
PhD thesis 13864, Swiss Federal Institute of Technology Zürich,
Switzerland, August 2000. No. 13864.

[Kim00] K. H. Kim. Issues insufficiently resolved in century 20 in the fault-
tolerant distributed computing field. In Proceedings of the19th

http://www.inf.ethz.ch/department/IS/iks/publications/files/ka98a.ps.g% z
http://www.inf.ethz.ch/department/IS/iks/publications/files/ka98a.ps.g% z
http://www.inf.ethz.ch/department/IS/iks/publications/files/ka99b.ps.g% z
http://www.inf.ethz.ch/department/IS/iks/publications/files/ka99b.ps.g% z
http://www.inf.ethz.ch/department/IS/iks/publications/files/ka00.pdf
http://www.inf.ethz.ch/department/IS/iks/publications/files/ka00.pdf
http://www.acm.org/pubs/articles/journals/tods/2000-25-3/p333-kemme/p3% 33-kemme.pdf
http://www.acm.org/pubs/articles/journals/tods/2000-25-3/p333-kemme/p3% 33-kemme.pdf
http://www.acm.org/pubs/toc/Abstracts/tods/195670.html
http://www.acm.org/pubs/toc/Abstracts/tods/195670.html
http://www.cs.mcgill.ca/~kemme/papers/dsn01.pdf
http://www.cs.mcgill.ca/~kemme/papers/dsn01.pdf
http://theory.lcs.mit.edu/~idish/ftp/keidar-msc.ps.gz
http://theory.lcs.mit.edu/~idish/ftp/keidar-msc.ps.gz
http://www.cs.mcgill.ca/~kemme/papers/phd-dina4.pdf
http://dream.eng.uci.edu/TMO/pdf/srds2000.pdf
http://dream.eng.uci.edu/TMO/pdf/srds2000.pdf

BIBLIOGRAPHY 131

Symposium on Reliable Distributed Systems, pages 106–115, Nürn-
berg Germany, October 2000. IEEE Computer Society. Invited Pa-
per.

[KLW96] E. Kindler, A. Listl, and R. Walter. A specification method for
transaction models with data replication. Technical Report 56,
Humboldt-Universität zu Berlin Germany, March 1996.

[KPAS99] B. Kemme, F. Pedone, G. Alonso, and A. Schiper.Processing trans-
actions over optimistic atomic broadcast protocols. In Proceedings
of the International Conference on Distributed Computing Systems,
Austin, Texas, June 1999.

[KS93] A. Kumar and A. Segev. Cost and availability tradeoffs in repli-
cated concurrency control.ACM Transactions on Database Sys-
tems, 18(1):102–131, March 1993.

[KT91] M. F. Kaashoek and A. S. Tanenbaum. Group communication in
the Amoeba distributed operating system. InProceedings of the
11th International Conference on Distributed Computing Systems
ICDCS, pages 222–230, Washington, D.C., USA, May 1991. IEEE
Computer Society Press.

[KT94] M. F. Kaashoek and A. S. Tanenbaum. Efficient reliable group com-
munication for distributed systems. Technical report, M.I.T., Cam-
bridge, and Vrije Universiteit, Amsterdam, 1994.

[Lam89] L. Lamport.The part-time parliament. Technical report, System Re-
search Center Digital Equipement Corp, Palo Alto, USA, Septem-
ber 1989. A revised version was published in [Lam98].

[Lam98] L. Lamport.The part-time parliament. ACM Transactions on Com-
puter Systems, 16(2):133–169, May 1998.

[LS98] M. C. Little and S. K. Shrivastava. Understanding the role of atomic
transactions and group communications in implementing persistent
objects. InEighth International Workshop on Persistent Object Sys-
tems: Design Implementation and Use, August 1998.

[LSG+79] B. G. Lindsay, P. G. Selinger, C. Galtieri, J. N. Gray, R. A. Lorie,
T. G. Price, F. Potzulo, and B. W. Wade. Notes on distributed data-
bases. Technical Report RJ2571(33471), IBM, San Jose Research
Laboratory, 1979.

[Lyo88] J. Lyon. Design considerations in replicated database systems for
disaster protection. InProceedings of IEEE Compcon, 1988.

http://www.informatik.hu-berlin.de/~kindler/PostScript/HUIB56.ps
http://www.informatik.hu-berlin.de/~kindler/PostScript/HUIB56.ps
http://www.inf.ethz.ch/department/IS/iks/publications/files/kpas99a.ps% .gz
http://www.inf.ethz.ch/department/IS/iks/publications/files/kpas99a.ps% .gz
http://wilma.cs.brown.edu/courses/cs275/p133-lamport.pdf
http://www.acm.org:80/pubs/citations/journals/tocs/1998-16-2/p133-lamp% ort/

132 BIBLIOGRAPHY

[Lyo90] J. Lyon. Tandem’s remote data facility. InProceedings of IEEE
Compcon, 1990.

[Man02] K. Maney. Microsoft shifts its focus to security. USA Today, Jan-
uary 2002.

[Mes94] Mesquite Software Inc., 3925 West Braker Lane Austin Texas TX-
78759-5321, USA. CSIM18 simulation engine (C++ version),
1994.

[MFSW95] C. P. Malloth, P. Felber, A. Schiper, and U. Wilhelm.Phœnix: A
toolkit for building fault-tolerant distributed applications in large
scale. In Workshop on Parallel and Distributed Platforms in In-
dustrial Products, San Antonio, Texas, USA, October 1995. IEEE.
Workshop held during the7th Symposium on Parallel and Dis-
tributed Processing, (SPDP-7).

[MMSA+96] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia,
and C. A. Lingley-Papadopoulos.Totem: a fault-tolerant multi-
cast group communication system. Communications of the ACM,
39(4):54–63, April 1996.

[MPR01] H. Miranda, A. Pinto, and L. Rodrigues.Appia: A flexible protocol
kernel supporting multiple coordinated channels. In Proceedings of
the 21st International Conference on Distributed Computing Sys-
tems (ICDCS-01), pages 707–710, Phoenix, Arizona, USA, April
2001. IEEE Computer Society.

[MS97] S. Maffeis and D. C. Schmidt.Constructing reliable distributed
communication systems with CORBA. IEEE Communications
Magazine, 14(2):56–61, February 1997.

[Mun98] T. Munk. DB2 Familly: Client/Server Performance Measurement
Series. IBM, IBM Santa Teresa Laboratory, San Jose, California
USA, August 1998.

[Neu02] P. G. Neumann.The risk digest: Forum on risks to the public in
computers and related systems. ACM Committee on Computers and
Public Policy, 21(87), January 2002.

[NMMS99] P. Narasimhan, L. Moser, and P. Melliar-Smith. Enforcing deter-
minism for the consistent replication of multithreaded CORBA ap-
plications. InProceedings of the18th IEEE Symposium on Re-
liable Distributed Systems (SRDS’99), pages 263–273, Lausanne,
Switzerland, October 1999. IEEE.

http://www.usatoday.com/money/tech/2002-01-17-microsoft.htm
http://lsewww.epfl.ch/Documents/postscript/MFS+95.ps
http://lsewww.epfl.ch/Documents/postscript/MFS+95.ps
http://lsewww.epfl.ch/Documents/postscript/MFS+95.ps
http://www.acm.org/pubs/articles/journals/cacm/1996-39-4/p54-moser/p54% -moser.pdf
http://www.acm.org/pubs/articles/journals/cacm/1996-39-4/p54-moser/p54% -moser.pdf
http://appia.di.fc.ul.pt/appiadocs/miranda01.ps.gz
http://appia.di.fc.ul.pt/appiadocs/miranda01.ps.gz
http://www.softwired-inc.com/people/maffeis/articles/research/ieeecomm% .pdf
http://www.softwired-inc.com/people/maffeis/articles/research/ieeecomm% .pdf
http://www.software.ibm.com/data/db2/performance/2vs3tier.pdf
http://www.software.ibm.com/data/db2/performance/2vs3tier.pdf
http://catless.ncl.ac.uk/Risks/21.87.html
http://catless.ncl.ac.uk/Risks/21.87.html

BIBLIOGRAPHY 133

[NSB97] K. Nørvåg, O. Sandstå, and K. Bratbergsengen.Concurrency con-
trol in distributed object-oriented database systems. In ADBIS,
pages 9–17, St. Petersburg (Russia), 1997.

[OMG01] Common Object Request Broker Architecture (CORBA) version 2.5,
chapter Fault-Tolerant CORBA, pages 25–1 – 25–116. Object Man-
agement Group, 250 First Avenue, Suite 201 Needham, MA 02494
USA, September 2001.

[Ora98] Oracle Corporation, 500, Oracle Parkway, Redwoord City, CA
94065. Oracle8iTMAdvanced Replication, November 1998. Ora-
cle Technical White Paper.

[ÖV99] M. Tamer Özsu and P. Valdurez.Principles of Distributed Data-
base Systems. Prentice Hall, Upper Saddle River, New Jersey 07458
USA, second edition, 1999.

[PCD91] D. Powell, M. Chéréque, and D. Drackley. Fault-tolerance in Delta-
4*. ACM Operating Systems Review, SIGOPS, 25(2):122–125,
April 1991.

[Ped99] F. Pedone.The Database State Machine and Group Communication
Issues. PhD thesis 2090, École Polytechnique Fédérale de Lau-
sanne, Switzerland, 1999.

[Ped01] F. Pedone.Boosting system performance with optimistic distributed
protocols. Computer, 34(12):80–86, December 2001.

[PF00] F. Pedone and S. Frølund.Pronto: A fast failover protocol for off-
the-shelf commercial databases. In Proceedings of19th IEEE Sym-
posium on Reliable Distributed Systems (SRDS’2000), Nürnberg,
Germany, October 2000. IEEE Computer Society.

[PG97] F. Pedone and R. Guerraoui.On transaction liveness in replicated
databases. In Proceedings of IEEE Pacific Rim International Sym-
posium on Fault-Tolerant Systems (PRFTS’97), December 1997.

[PGM89] F. Pittelli and H. Garcia-Molina. Reliable scheduling in a TMR
database system. ACM Transactions on Computer Systems,
7(1):25–60, February 1989.

[PGM94] C. A. Polyzois and H. García-Molina.Evaluation of remote backup
algorithms for transaction-processing systems. ACM Transactions
on Database Systems, 19(3):423–449, September 1994.

[PGS97] F. Pedone, R. Guerraoui, and A. Schiper.Transaction reordering
in replicated databases. In Proceedings of the16th Symposium on
Reliable Distributed Systems (SRDS-16), Durham, North Carolina,
USA, October 1997.

http://www.idt.unit.no/IDT/grupper/DB-grp/tech_papers/ADBIS97_dbsim/ad% bis97.html
http://www.idt.unit.no/IDT/grupper/DB-grp/tech_papers/ADBIS97_dbsim/ad% bis97.html
ftp://ftp.omg.org/pub/docs/formal/01-09-29.pdf
http://lsewww.epfl.ch/Documents/acrobat/Ped99.pdf
http://lsewww.epfl.ch/Documents/acrobat/Ped99.pdf
http://dlib2.computer.org/co/books/co2001/pdf/rz080.pdf
http://dlib2.computer.org/co/books/co2001/pdf/rz080.pdf
http://www.hpl.hp.com/techreports/2000/HPL-2000-96.pdf
http://www.hpl.hp.com/techreports/2000/HPL-2000-96.pdf
http://lsewww.epfl.ch/Documents/postscript/PG97.ps
http://lsewww.epfl.ch/Documents/postscript/PG97.ps
http://www.acm.org/pubs/articles/journals/tods/1994-19-3/p423-polyzois% /p423-polyzois.pdf
http://www.acm.org/pubs/articles/journals/tods/1994-19-3/p423-polyzois% /p423-polyzois.pdf
http://lsewww.epfl.ch/Documents/postscript/PGS97.ps
http://lsewww.epfl.ch/Documents/postscript/PGS97.ps

134 BIBLIOGRAPHY

[PGS98] F. Pedone, R. Guerraoui, and A. Schiper.Exploiting atomic broad-
cast in replicated databases. In Proceedings of EuroPar (Eu-
roPar’98), September 1998.

[PGS99] F. Pedone, R. Guerraoui, and A. Schiper.The database state ma-
chine approach. Technical Report SSC/1999/008, École Polytech-
nique Fédérale de Lausanne, Switzerland, March 1999.

[PMJPA01] M. Patiño-Martínez, R. Jiménez-Peris, and S. Arévalo.Group trans-
actions: An integrated approach to transactions and group commu-
nication. In Workshop on Concurrency in Dependable Computing,
Newcastle Upon Tyne, United Kingdom, June 2001.

[Pol95] S. Poledna. Fault-Tolerant Real-Time Systems: the Problem of
Replica Determinism, volume 345 ofEnginering and Computer Sci-
ence. Kluwer Academic Publishers, Boston, November 1995.

[PS99] F. Pedone and A. Schiper.Generic broadcast. In Proceedings of the
13th International Symposium on Distributed Computing (DISC’99,
formerly WDAG), September 1999.

[PSWL94] G. D. Parrington, S. K. Shrivastava, S. M. Wheater, and M. C. Little.
The design and implementation of Arjuna. Technical Report TR94-
65, ESPRIT Basic Research Project BROADCAST, October 1994.

[RFV96] L. Rodrigues, H. Fonseca, and P. Veríssimo.Totally ordered multi-
cast in large-scale systems. In Proceedings of the16th International
Conference on Distributed Computing Systems (ICDCS’96), pages
503–510, Hong Kong, May 1996. IEEE.

[RJP01] G. Alonso R. Jiménez-Peris, M. Patiño-Martínez.Is reliable mul-
ticast too expensive? let’s be optimistic. In Proceedings of the4th

CaberNet Workshop, Pisa, Italy, October 2001.

[RR00] L. Rodrigues and M. Raynal.Atomic broadcast in asynchronous
crash-recovery distributed systems. In Proceedings of the20th

International Conference on Distributed Systems (ICDCS’2000),
pages 288–295, Taipei, Taiwan (ROC), April 2000. IEEE Computer
Society, Los Alamitos USA.

[RST95] S. Rangaranjan, S. Setia, and S. K. Tripathi. A fault-tolerant algo-
rithm for replicated data management.IEEE Transactions on Par-
allel and Distributed Systems, 6(12):1271–1282, December 1995.

[SAA98] I. Stanoi, D. Agrawal, and A. El Abbadi.Using broadcast primitives
in replicated databases. In Proceedings of the18th IEEE Interna-
tional Conference on Distributed Computing Systems ICDCS’98,
pages 148–155, Amsterdam, The Netherlands, May 1998. IEEE.

http://www.springer.de/comp/lncs/index.html
http://www.springer.de/comp/lncs/index.html
http://lsewww.epfl.ch/Documents/postscript/PGS99.ps
http://lsewww.epfl.ch/Documents/postscript/PGS99.ps
http://lml.ls.fi.upm.es/~rjimenez/papers/2001/grouptrans.pdf
http://lml.ls.fi.upm.es/~rjimenez/papers/2001/grouptrans.pdf
http://lml.ls.fi.upm.es/~rjimenez/papers/2001/grouptrans.pdf
http://www.wkap.nl/prod/b/0-7923-9657-X
http://www.wkap.nl/prod/b/0-7923-9657-X
http://lsewww.epfl.ch/Documents/acrobat/PS99c.pdf
http://www.research.ec.org/broadcast/trs/papers/65.ps
http://citeseer.nj.nec.com/rodrigues96totally.html
http://citeseer.nj.nec.com/rodrigues96totally.html
http://www.inf.ethz.ch/personal/alonso/PAPERS/CA-WS-01.pdf
http://www.inf.ethz.ch/personal/alonso/PAPERS/CA-WS-01.pdf
http://citeseer.nj.nec.com/rodrigues00atomic.html
http://citeseer.nj.nec.com/rodrigues00atomic.html
http://www.cs.ucsb.edu/~ioana/icdcs98.ps
http://www.cs.ucsb.edu/~ioana/icdcs98.ps

BIBLIOGRAPHY 135

[Sch90] F. B. Schneider. Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys,
22(4):299–319, December 1990.

[Ske81] D. Skeen. Nonblocking commit protocols. In Y. Edmund Lien,
editor,Proceedings of the 1981 International Conference on Man-
agement of Data, pages 133–142, Ann Arbor, Michigan USA, April
1981. ACM SIGMOD, New York.

[SR96] A. Schiper and M. Raynal.From group communication to trans-
actions in distributed systems. Communications of the ACM,
39(4):84–87, April 1996.

[Sta94] D. Stacey. Replication: DB2, Oracle, or Sybase.Database Pro-
gramming & Design, 7(12), 1994.

[Sta95] D. Stacey. Replication: DB2, Oracle, or Sybase.SIGMOD Record
(ACM Special Interest Group on Management of Data), 24(4):95–
101, December 1995.

[Sto79] M. Stonebraker. Concurrency control and consistency of multiple
copies of data in distributedINGRES. IEEE Transactions on Soft-
ware Engineering, SE-5:188–194, May 1979.

[SW99] R. Schenkel and G. Weikum.Experiences with building a feder-
ated transaction manager based on CORBA OTS. In Proceedings
of the 2nd Workshop EFIS’99, pages 79–94, Kühlungsborn, Ger-
many, May 1999. Infix, Sankt Augustin.

[Tho79] R. H. Thomas. A majority consensus approach to concurrency con-
trol for multiple copy databases.ACM Transactions on Database
Systems, 4(2):180–209, June 1979.

[TP98] O. Theel and H. Pagnia. Optimal replica control protocols exhibit
symmetric operation availabilities. InProc. of the Int. Symp. on
Fault-Tolerant Computing FTCS, 1998.

[UDS00] P. Urbán, X. Défago, and A. Schiper.Contention-aware metrics for
distributed algorithms: Comparison of atomic broadcast algorithms.
In Proceedings of the9th IEEE International Conference on Com-
puter Communications and Networks (IC3N 2000), October 2000.

[UDS01] P. Urbán, X. Défago, and A. Schiper.Neko: A single environ-
ment to simulate and prototype distributed algorithms. In Proc. of
the 15th Int’l Conf. on Information Networking (ICOIN-15), Beppu
City, Japan, February 2001.

http://www.acm.org/pubs/articles/journals/surveys/1990-22-4/p299-schne% ider/p299-schneider.pdf
http://www.acm.org/pubs/articles/journals/surveys/1990-22-4/p299-schne% ider/p299-schneider.pdf
http://www.acm.org/pubs/articles/journals/cacm/1996-39-4/p84-schiper/p% 84-schiper.pdf
http://www.acm.org/pubs/articles/journals/cacm/1996-39-4/p84-schiper/p% 84-schiper.pdf
http://www-dbs.cs.uni-sb.de/public_html/papers/efis99_final.ps.gz
http://www-dbs.cs.uni-sb.de/public_html/papers/efis99_final.ps.gz
http://lsewww.epfl.ch/Publications/ById/244.html
http://lsewww.epfl.ch/Publications/ById/244.html
http://lsewww.epfl.ch/Publications/ById/255.html
http://lsewww.epfl.ch/Publications/ById/255.html

136 BIBLIOGRAPHY

[Van00] R. Vandewall.Database replication prototype. Master’s thesis, Rijk-
suniversiteit Groningen and École Polytechnique Fédérale de Lau-
sanne, Netherlands and Switzerland, August 2000.

[vBM96] R. van Renesse, K. P. Birman, and S. Maffeis.Horus: A flexi-
ble group communication system. Communications of the ACM,
39(4):76–83, April 1996.

[VCKD99] R. Vitenberg, G. V. Chockler, I. Keidar, and D. Dolev.Group com-
munication specifications: A comprehensive study. Technical Re-
port MIT-LCS-TR-790, Massachusetts Institute of Technology, 77
Massachusetts Avenue Cambridge, MA 02139-4307 USA, Septem-
ber 1999.

[WAL97] Y. M. Wang, O. P. Amani, and W. J. Lee.Reliability issues in dis-
tributed component object model (DCOM). In Proceedings of4th

International Workshop on Community Networking (CN4), pages
59–63, Atlanta, Georgia, USA, September 1997. IEEE, IEEE. po-
sition paper.

[WPS99] M. Wiesmann, F. Pedone, and A. Schiper.A systematic classi-
fication of replicated database protocols based on atomic broad-
cast. In Proceedings of the3rd Europeean Research Seminar on
Advances in Distributed Systems (ERSADS’99), pages 264–274,
Madeira Island (Portugal), April 23–28, 1999. BROADCAST Es-
prit WG 22455.

[WPS+00a] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso.
Database replication techniques: a three parameter classification.
In Proceedings of19th Symposium on Reliable Distributed Systems
(SRDS’2000), pages 206–215, Nürnberg, Germany, October 2000.
IEEE Computer Society.

[WPS+00b] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso.
Understanding replication in databases and distributed systems. In
Proceedings of20th International Conference on Distributed Com-
puting Systems (ICDCS’2000), Taipei, Taiwan, R.O.C., April 2000.
IEEE Computer Society Los Alamitos California.

[WS95] U. G. Wilhelm and A. Schiper.A hierarchy of totally ordered mul-
ticasts. In Proceedings of the14th IEEE Symposium on Reliable
Distributed Systems (SRDS-14), Bad Neuenahr, Germany, Septem-
ber 1995.

http://lsewww.epfl.ch/Documents/acrobat/Van00.pdf
http://www.acm.org/pubs/articles/journals/cacm/1996-39-4/p76-van_renes% se/p76-van_renesse.pdf
http://www.acm.org/pubs/articles/journals/cacm/1996-39-4/p76-van_renes% se/p76-van_renesse.pdf
http://theory.lcs.mit.edu/~idish/ftp/gcs-survey-tr.ps
http://theory.lcs.mit.edu/~idish/ftp/gcs-survey-tr.ps
http://www.bell-labs.com/user/woeijyhlee/pubs/cn4/CN4.ps
http://www.bell-labs.com/user/woeijyhlee/pubs/cn4/CN4.ps
http://lsewww.epfl.ch/Documents/acrobat/WPS99.pdf
http://lsewww.epfl.ch/Documents/acrobat/WPS99.pdf
http://lsewww.epfl.ch/Documents/acrobat/WPS99.pdf
http://lsewww.epfl.ch/Documents/acrobat/WPS+00b.pdf
http://lsewww.epfl.ch/Documents/acrobat/WPS+00.pdf
http://lsewww.epfl.ch/Documents/postscript/WS95.ps
http://lsewww.epfl.ch/Documents/postscript/WS95.ps

Curriculum Vitæ

I was born in Winterthur (Switzerland) in 1972. I attended primary and secondary
school in Geneva. At this time, I started to fiddle with a Commodore 64 and got
interested in computing. In 1991, I obtained aMaturité Fédérale Latinein Collège
Calvin, in Geneva.

I started to study computer science at theCentre Universitaire Informatiquein
the University of Geneva. From 1995 onwards, I served as a technical assistant
and system administrator in different sections of University. My master thesis was
about fault-tolerant designs, I obtained my Diploma in 1997.

Since 1998, I have been working in theDistributed System Laboratory(LSR,
formerly LSE) at theSwiss Federal Institute of Technologyas a research and teach-
ing assistant and a PhD student under the guidance of Professor André Schiper. In
2000 and 2001 I also worked as a teacher in theUniversity of Applied Science in
Fribourg.

137

http://wwwedu.ge.ch/po/calvin/
http://wwwedu.ge.ch/po/calvin/
http://cui.unige.ch/
http://www.unige.ch/
http://lsrwww.epfl.ch/
http://www.epfl.ch/
http://www.eif.ch/
http://www.eif.ch/

Index

0-safe,seezero-safe
1-safe,45, 68, 76
2-safe,45, 68, 76

replication, 73–74
2PC,4, 28, 55
2PL,26, 55, 84

strict,26, 32
3PC,28

abort
multilateral,46
unilateral,33, 46

ACID, 3, 10, 24–25,38, 78–79,86
active

backup,56
replication,48, 84, 118

optimistic,84
active replication

optimistic, 109–115
Amoeba,3
ANSI, 25
asynchronous

replication,42
timing model,15
writes,80

atomic broadcast,see total order
broadcast

atomic commitment, 22–23,28
blocking,22

atomicity,24

backup
active,56
copy,43
passive,56

bad process,12

best-effort
total order broadcast,35

black box,3
blocking atomic commitment,22
box

black,3
white,3

broadcast
causal,55
total order

best-effort ,35
non-uniform,34

uniform FIFO reliable,21
uniform reliable,20
uniform total order,21
uniform, atomic,21

C-sim,82
certification

replication,85, 119
group-safe,85

channel,11
fair-loss,13
quasi-reliable,13
reliable,13

client-server
architecture,29

cold standby,30, 45
commit protocol

atomic,seeatomic commitment
three-phase,see3PC
two-phase,see2PC

communication primitive, 20–23
optimistic,34
weak,34

concurrency control,25

138

INDEX 139

optimistic,26
pessimistic,26

consensus,15, 21
consistency,24
consistent lazy replication,42
constant

interaction,44
copy

backup,43
primary,43

correct process,12
CPU

resource,82
crash, 74–77

artificial, 33
fail model,11
no-recovery model,11, 17–18,

37
recovery model,11, 18–19,37
total,77

deadlock
distributed,85

delegate server,29, 38
delivery, successful,72
delivery, unsuccessful,72
3S failure detector,15
discrete event simulation,82
disk

resource,82
distributed

operating system,3
transaction,27

distributed deadlock,85
distributed locking

replication,85
DRAGON,4
durability,25

group-based, 77–78
dynamic transaction,31

eager
replication,42

epoch,57

failure detector, 15,22
3S, 15
Ω, 15
P , 15
perfect,15, 56

FG-locking,85
FIFO,21

atomic broadcast,22
total order broadcast,22
uniform reliable broadcast,21

fine granularity locking replication,
85

flow-control,30, 46, 95
follower, 51
force write,77

good process,12
green, process,12
group

ownership,41
group-one-safe,76
group-safe

certification,85
replication, 74–77, 79, 107–109,

119

high-level
replication,30
transaction,30, 45

history,23, 28
complete,23

hot standby,30, 45

I/O
manager,84

incarnation,17
incorrect process,12
interaction

constant,44
linear,45

interactive transaction,31
IP-multicast,88
Isis,3
isolation,25

snapshot,25, 48

140 INDEX

LAN, 35, 106, 109, 111
lazy

replication,42, 78–79,86
consistent,42

leader,51
linear

interaction,45
linearisability,37
load-balancing, 100–106
local area network,seeLAN
lock, 26

manager,84
locking

two-phase,see2PL
low-level

replication,30
transaction,30, 45

manager
I/O, 84
lock, 84

master
ownership,41

message,11
intercontinental,106
reordering level,36

message reordering level,111
message replay,72
middleware,3
model

crash no-recovery,11, 37
crash-recovery,11, 37
timed synchronous,11

Neko,35, 88
non-uniform total order broadcast,34
non-voting

replication,42
termination,46

object
ownership,41

Ω failure detector,15
one-copy

equivalence,28

serialisability,28, 38
one-safe,see1-safe
optimistic

active replication,84, 109–115
communication primitive,34
delivery,109

ownership
group,41
master,41
object,41

P failure detector,15
passive

backup,56
replication,43

peer-to-peer
architecture,29
replication,41

persistent objects,53
ping,106
point

determinism, 32–33
serialisation,32

primary-copy,43
replication,41, 56–62,86

primary/backup
replication,41, 43

process,11
bad,12
correct,12
good,12
green,12
incarnation,17, 37
incorrect,12
red,12
view, 17
yellow, 12

proxy,48

quasi-reliable channel,13
quorum,54, 68

RAID, 10, 29, 102
real-time,109

soft,114

INDEX 141

red, process,12
reliable broadcast, uniform,20
reliable channel,13
replay, message,72
replica,37
replica control

strict,seestrict replica control
replication

active,48, 84, 118
optimistic,84

asynchronous,42
certification,48, 85, 119

group-safe,85
database state machine,85
distributed locking,85
eager,42
FG-locking,85
fine granularity locking,85
group-safe, 79, 107–109,119
high-level,30
lazy,42, 78–79,86
low-level,30
non-voting,42
passive,43
peer-to-peer,41
primary backup,41
primary-copy,41, 56–62,86
semi-active,51
Ser-D,85, 119
state-machine,32
synchronous,42
update everywhere,44, 47–55
weak voting,85

resource
CPU,82
disk,82

ROWA, 54, 68, 85, 100
RPC,31, 36

safe
1, see1-safe
2, see2-safe
group,seegroup-safe

one,seegroup-one-safe

one,see1-safe
two, see2-safe
very,seevery-safe
zero,seezero-safe

Ser-D replication,119
serialisability,25, 28, 37

one-copy,28, 38
server

delegate,29, 38, 47
primary,56
proxy,48

snapshot isolation,25
spontaneous order, 35–36,109
SQL,29, 31, 45
standby

cold,seecold standby
hot,seehot standby

state-machine replication,32
stored procedure,26, 31
stored procedures,29
strict replica control,28
strong voting,46
successful, delivery,72
suspicion

false,15, 27
synchronous

replication,42
timing model,14, 27

termination,45
threads,31
three-phase commit protocol,see

3PC
timed asynchronous model,11, 35
timeless

timing model,15
total order broadcast,21

best-effort,35
non-uniform,34

transaction,23
distributed,seedistributed trans-

action
dynamic,31
high-level,30

142 INDEX

interactive,31
low-level,30
static,31
termination,45

two-phase
commit protocol,see2PC
locking,see2PL

two-safe,see2-safe

uniform
atomic commitment,seeatomic

commitment
consensus,21
FIFO reliable broadcast,21
reliable broadcast,20
total order broadcast,21

unilateral abort,33
unsuccessful delivery,72
update everywhere,41

replication,44, 47–55
UPS,29

very-safe,68
view, 56

change,17
of processes,17

voting
strong,seestrong voting
termination,46
weak,seeweak voting

wait-for graph,26
WAN, 106–107
weak communication primitive,34
weak voting,46
white box,3
wide area network,seeWAN
write, force,77

yellow, process,12

zero-safe,76

	Front Matter
	Abstract
	Résumé
	Acknowlegements

	Introduction
	Database Replication
	Group Communications
	About this Research
	Research Objectives
	Research Contributions
	Classification of Replication Techniques
	Analysis of fault-tolerance semantics
	Performance Evaluation

	Thesis Organisation

	Database and Group Communication Models
	Overview
	Distributed Systems
	Database Systems

	Distributed Systems Model
	Definitions
	Processes
	Channels

	Synchrony
	Process State
	Static Crash No Recovery Model
	Dynamic Crash No Recovery Model
	Static Crash-Recovery Model (no stable storage)
	Static Crash-Recovery Model (with stable storage)
	Summary

	Communication Primitives and Associated Problems
	Uniform Reliable Broadcast
	Uniform FIFO Reliable Broadcast
	Uniform Consensus
	Uniform Total Order Broadcast
	Uniform Non-blocking Atomic Commitment

	Database Systems
	Transactions
	Histories
	ACID properties
	Concurrency Control
	Pessimistic Concurrency Control
	Optimistic Concurrency Control

	Network Model
	Distributed Transactions

	Practical Issues
	Client Code
	High-Level Transactions
	Cold standby vs Hot Standby
	Interactive Transactions vs Stored Procedures
	Determinism
	Point of Determinism
	Unilateral Aborts

	Optimistic and Weak Communication Protocols
	Non-Uniform Total Order Broadcast
	Best Effort Total Order Broadcast

	Summary and Synthetic Model
	Summary of Both Communities
	Synthetic Model

	Classification of Replication Techniques
	Classification Criteria
	Server Architecture
	Primary-Copy
	Update Everywhere

	Server Interaction
	Constant Interaction
	Linear Interaction

	Transaction Termination
	Voting termination
	Non-voting termination

	Replication Techniques
	Update Everywhere
	Update Everywhere -- Constant Interaction -- Non-Voting Techniques
	Update Everywhere -- Constant Interaction -- Voting Techniques
	Update everywhere -- Linear Interaction -- Non-Voting Techniques
	Update everywhere -- Linear Interaction -- Voting Techniques

	Primary-Copy
	Primary-Copy -- Constant Interaction -- Non-Voting Techniques
	Primary-Copy -- Constant Interaction -- Voting Techniques
	Primary-Copy -- Linear Interaction -- Non-voting Techniques
	Primary-Copy -- Linear Interaction -- Voting Techniques

	Discussion
	Overview of Requirements
	Server Architecture: Primary-Copy vs. Update Everywhere
	Server Interaction: Constant vs. Linear
	Transaction Termination: Voting vs. Non-voting Techniques

	Recovery and Fault-Tolerance Issues
	Safety Criterion
	View-Based Recovery
	Existing Systems
	Roll-Forward Recovery
	Conclusion

	Roll-back-based recovery
	Inter-Layer Messages
	Inter-Layer Ack Messages
	2-Safe Replication

	Group-Safe Replication
	Group-Safety
	Group-based durability
	Group-safe replication and lazy replication
	Building a Group-Safe Replication Technique

	Conclusion

	Performance Comparison
	The RD-sim Simulator
	Server Structure
	Machine Module
	Communication Module
	Database Module
	Database Replication Module

	Client Module

	Simulation Settings
	Experiments
	General Performance
	Description of the Experiment
	Results
	Discussion

	Scalability
	Description of the Experiment
	Results
	Discussion

	Query Proportion
	Description of the Experiment
	Results
	Discussion

	Wide Area Network
	Description
	Results
	Discussion

	Group-Safe replication
	Description
	Results
	Discussion

	Optimistic Active Replication
	Description
	Results
	Discussion

	Conclusion

	Conclusion
	Research Assessment
	Classification
	Fault-Tolerance Criterion
	Performance Evaluation

	Open Questions and Future Research Direction
	Intra-Layer Communications
	Hybrid Replication techniques
	Best-Effort Total Order Broadcast
	Group-Safe Replication
	Optimistic Mechanisms

	Appendixes
	Bibliography
	Curriculum Vitae

