38 research outputs found

    Budgeting Under-Specified Tasks for Weakly-Hard Real-Time Systems

    Get PDF
    In this paper, we present an extension of slack analysis for budgeting in the design of weakly-hard real-time systems. During design, it often happens that some parts of a task set are fully specified while other parameters, e.g. regarding recovery or monitoring tasks, will be available only much later. In such cases, slack analysis can help anticipate how these missing parameters can influence the behavior of the whole system so that a resource budget can be allocated to them. It is, however, sufficient in many application contexts to budget these tasks in order to preserve weakly-hard rather than hard guarantees. We thus present an extension of slack analysis for deriving task budgets for systems with hard and weakly-hard requirements. This work is motivated by and validated on a realistic case study inspired by industrial practice

    Monte {C}arlo Response-Time Analysis

    Get PDF

    A Framework for Multi-core Schedulability Analysis Accounting for Resource Stress and Sensitivity

    Get PDF
    Timing verification of multi-core systems is complicated by contention for shared hardware resources between co-running tasks on different cores. This paper introduces the Multi-core Resource Stress and Sensitivity (MRSS) task model that characterizes how much stress each task places on resources and how much it is sensitive to such resource stress. This model facilitates a separation of concerns, thus retaining the advantages of the traditional two-step approach to timing verification (i.e. timing analysis followed by schedulability analysis). Response time analysis is derived for the MRSS task model, providing efficient context-dependent and context independent schedulability tests for both fixed priority preemptive and fixed priority non-preemptive scheduling. Dominance relations are derived between the tests, along with complexity results, and proofs of optimal priority assignment policies. The MRSS task model is underpinned by a proof-of-concept industrial case study. The problem of task allocation is considered in the context of the MRSS task model, with Simulated Annealing shown to provide an effective solution

    Real-time scheduling for energy harvesting sensor nodes

    Get PDF
    Energy harvesting has recently emerged as a feasible option to increase the operating time of sensor networks. If each node of the network, however, is powered by a fluctuating energy source, common power management solutions have to be reconceived. This holds in particular if real-time responsiveness of a given application has to be guaranteed. Task scheduling at the single nodes should account for the properties of the energy source, capacity of the energy storage as well as deadlines of the single tasks. We show that conventional scheduling algorithms (like e.g. EDF) are not suitable for this scenario. Based on this motivation, we have constructed optimal scheduling algorithms that jointly handle constraints from both energy and time domain. Further we present an admittance test that decides for arbitrary task sets, whether they can be scheduled without deadline violations. To this end, we introduce the concept of energy variability characterization curves (EVCC) which nicely captures the dynamics of various energy sources. Simulation results show that our algorithms allow significant reductions of the battery size compared to Earliest Deadline First schedulin

    Reactive GTS Allocation Protocol for Sporadic Events Using the IEEE 802.15.4

    Get PDF
    Wireless sensor networks (WSNs) find applications in the industrial automation where periodic and sporadic events occur. The combined propagation of information generated by periodic and sporadic events from a sensor node to an actuator node is challenging due to random nature of sporadic events, particularly, if the deadlines are hard. The IEEE 802.15.4 standard provides the basis for a real-time communication mechanism between neighboring nodes of the WSN at the media access control layer. However, the standard does not address such communications over multiple hops. To support the industrial applications with such requirements, this work proposes a novel online control protocol that exploits the basis provided by the IEEE 802.15.4 standard. The proposed control protocol ensures that a given offline sporadic schedule can be adapted online in a timely manner such that the static periodic schedule has not been disturbed and the IEEE 802.15.4 standard compliance remains intact. The proposed protocol is simulated in OPNET. The simulation results are analyzed and presented in this paper to prove the correctness of the proposed protocol regarding the efficient real-time sporadic event delivery along with the periodic event propagation

    Performanzanalyse von Multiprozessor-Echtzeitsystemen mit gemeinsamen Ressourcen

    Get PDF

    Optimal Configuration of Virtual Links for Avionics Network Systems

    Get PDF
    As the bandwidth and scalability constraints become important design concerns in airborne networks, a new technology, called Avionics Full Duplex Switched Ethernet (AFDX), has been introduced and standardized as a part 7 in ARNIC 664. However, since previous research interests for AFDX are mainly bounded for analyzing the response time where flows information is given, configuration problem for both Maximum Transmission Unit (MTU) and Bandwidth Allocation Gap (BAG) over virtual links in AFDX networks has not been addressed yet even though it has great impact on required bandwidth. Thus, in this paper, we present two configuration approaches to set MTU and BAG values on virtual links efficiently while meeting the requirement of AFDX. The first is to search available feasible configuration (MTU, BAG) pairs to satisfy application requirements as well as AFDX switch constraints, and the second is to get an optimal pair to minimize required bandwidth through well-known branch-and-bound algorithm. We analyze the complexity of the proposed algorithm and then evaluate the proposed algorithm by simulation. Finally, we prove that the proposed schemes are superior to general approach in the aspects of speed and required bandwidth in AFDX networks
    corecore