
Real-Time Syst (2007) 37: 233–260
DOI 10.1007/s11241-007-9027-0

Real-time scheduling for energy harvesting sensor
nodes

Clemens Moser · Davide Brunelli · Lothar Thiele ·
Luca Benini

Published online: 17 July 2007
© Springer Science+Business Media, LLC 2007

Abstract Energy harvesting has recently emerged as a feasible option to increase
the operating time of sensor networks. If each node of the network, however, is pow-
ered by a fluctuating energy source, common power management solutions have to be
reconceived. This holds in particular if real-time responsiveness of a given applica-
tion has to be guaranteed. Task scheduling at the single nodes should account for the
properties of the energy source, capacity of the energy storage as well as deadlines
of the single tasks. We show that conventional scheduling algorithms (like e.g. EDF)
are not suitable for this scenario. Based on this motivation, we have constructed opti-
mal scheduling algorithms that jointly handle constraints from both energy and time
domain. Further we present an admittance test that decides for arbitrary task sets,
whether they can be scheduled without deadline violations. To this end, we introduce
the concept of energy variability characterization curves (EVCC) which nicely cap-
tures the dynamics of various energy sources. Simulation results show that our algo-
rithms allow significant reductions of the battery size compared to Earliest Deadline
First scheduling.

Keywords Real-time scheduling · Regenerative energy · Sensor networks · Power
management

1 Introduction

Wireless sensor networks—consisting of numerous tiny sensors that are unobtru-
sively embedded in their environment—have been the subject of intensive research.

C. Moser (�) · L. Thiele
Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland
e-mail: moser@tik.ee.ethz.ch

D. Brunelli · L. Benini
Department of Electronics, Computer Science and Systems, University of Bologna, Bologna, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159150328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


234 Real-Time Syst (2007) 37: 233–260

As for many other battery-operated embedded systems, a sensor’s operating time is
a crucial design parameter. As electronic systems continue to shrink, however, less
energy is storable on-board. Research continues to develop higher energy-density bat-
teries and supercapacitors, but the amount of energy available still severely limits the
system’s lifespan. As a result, size as well as weight of most existing sensor nodes
are largely dominated by their batteries.

On the other hand, one of the main advantages of wireless sensor networks is
their independence of pre-established infrastructure. That is, in most common sce-
narios, recharging or replacing nodes’ batteries is not practical due to (a) inaccessi-
bility and/or (b) sheer number of the sensor nodes. In order for sensor networks to
become a ubiquitous part of our environment, alternative power sources should be
employed. Therefore, environmental energy harvesting is deemed a promising ap-
proach: If nodes are equipped with energy transducers like e.g. solar cells, the gener-
ated energy may increase the autonomy of the nodes significantly.

In (Roundy et al. 2004), several technologies have been discussed how, e.g., solar,
thermal, kinetic or vibrational energy may be extracted from a node’s physical envi-
ronment. Moreover, several prototypes (e.g. Ammar et al. 2005; Jiang et al. 2005)
have been presented which demonstrate both feasibility and usefulness of sensors
nodes which are powered by solar or vibrational energy.

From a networking perspective, classical protocols cannot harness the full poten-
tial provided by the harvesting technology. Here, several publications exist which
make routing or clustering decisions within the network harvesting aware (Lin et al.
2005; Voigt et al. 2004). Based on the knowledge of the currently generated power
at the single nodes, the network lifetime can be optimized by shifting the commu-
nication and computation load. In the example of a solar powered network, nodes
which are directly exposed to sunlight have to disburden nodes who are receiving
less radiation due to shadowing effects.

In contrast, we focus on the temporal variations of the energy source experienced
by a single node instead of spatial variations between several nodes. The obtained re-
sults can e.g. be applied to networks, whose nodes are independently from each other
transmitting data to a base station. But even if we are dealing with a multi-hop sce-
nario, a single sensor node may need to perform its activities in a timely manner using
a limited and uncertain energy source. For example, a node may need to communi-
cate with others by means of a energy-saving wireless protocol, e.g. by switching
on transmitters only at well-defined time instances. In addition, there are application
scenarios for which it is indispensable to fulfill real-time requirements like it is the
case in, e.g., fire or intruder detection systems. In general, one can classify real-time
application scenarios for wireless sensor networks into safety critical systems, smart
spaces as well as entertainment (Stankovic et al. 2003). For all these scenarios, our
research reveals fundamental problems and tradeoffs when real-time behavior has to
be guaranteed although a sensor’s driving energy source is highly unstable.

The example in Fig. 1 illustrates why greedy scheduling algorithms (like Earliest
Deadline First EDF) are not suitable in the context of regenerative energy. Let us
consider a node with an energy harvesting unit that replenishes a battery. For the sake
of simplicity, assume that the harvesting unit provides a constant power output. Now,
this node has to perform an arriving task “1” that has to be finished until a certain



Real-Time Syst (2007) 37: 233–260 235

Fig. 1 Greedy vs. lazy
scheduling

deadline. Meanwhile, a second task “2” arrives that has to respect a deadline which is
earlier than the one of task “1”. In Fig. 1, the arrival times and deadlines of both tasks
are indicated by up and down arrows respectively. As depicted in the top diagrams, a
greedy scheduling strategy violates the deadline of task “2” since it dispenses over-
hasty the stored energy by driving task “1”. When the energy is required to execute
the second task, the battery level is not sufficient to meet the deadline. In this example,
however, a scheduling strategy that hesitates to spend energy on task “1” meets both
deadlines. The bottom plots illustrate how a Lazy Scheduling Algorithm described
in this paper outperforms a naive, greedy approach like EDF in this situation. Lazy
scheduling algorithms can be categorized as non-work conserving scheduling disci-
plines. Unlike greedy algorithms, a lazy scheduler may be idle although waiting tasks
are ready to be processed.

The research presented in this paper is directed towards sensor nodes. But in gen-
eral, our results apply for all kind of energy harvesting systems which must schedule
processes under deadline constraints. For these systems, new scheduling disciplines
must be tailored to the energy-driven nature of the problem. This insight originates
from the fact, that energy—contrary to the computation resource “time”—is storable.
As a consequence, every time we withdraw energy from the battery to execute a task,
we change the state of our scheduling system. That is, after having scheduled a first
task the next task will encounter a lower energy level in the system which in turn will
affect its own execution. This is not the case in conventional real-time scheduling
where time just elapses either used or unused.

The rest of the paper is organized as follows: In the next section, we highlight the
contributions of our work. Subsequently, Sect. 3 gives definitions that are essential for
the understanding of the paper. In Sect. 4, we present Lazy Scheduling Algorithms for
optimal online scheduling and proof their optimality. Admittance tests for arbitrary
task sets are the topic of Sect. 5. Simulation results are presented in Sect. 6 and Sect. 7
deals with practical issues. At the end, Sect. 8 summarizes related work and Sect. 9
concludes the paper.



236 Real-Time Syst (2007) 37: 233–260

2 Contributions

The following paper builds on (Moser et al. 2006a, 2006b), where Lazy Scheduling
Algorithms have been presented for the first time. We combine both view points,
extend the theoretical results by a formal comparison of the schedulability regions
of EDF and LSA, include corresponding simulation results as well as a discussion
of implementation aspects. Thereby, we outline how our algorithms could be imple-
mented on real sensor nodes which illuminates the relevance of the proposed theory.
The contributions described are as follows:

• We present an energy-driven scheduling scenario for a system whose energy stor-
age is recharged by an environmental source.

• For this scenario, we state and prove optimal online algorithms that dynami-
cally assign power to arriving tasks. These algorithms are energy-clairvoyant, i.e.,
scheduling decisions are driven by the knowledge of the future incoming energy.

• We present an admittance test that decides, whether a set of tasks can be scheduled
with the energy produced by the harvesting unit, taking into account both energy
and time constraints. For this purpose, we introduce the concept of energy vari-
ability characterization curves (EVCC). In addition, a formal comparison to EDF
scheduling is provided.

• By means of simulation, we demonstrate significant capacity savings of our algo-
rithms compared to the classical EDF algorithm. Finally, we provide approxima-
tions which make our theoretical results applicable to practical energy harvesting
systems.

3 System model

The paper deals with a scheduling scenario depicted in Fig. 2(a). At some time t ,
an energy source harvests ambient energy and converts it into electrical power PS(t).
This power can be stored in a device with capacity C. The stored energy is denoted as
EC < C. On the other hand, a computing device drains power PD(t) from the storage
and uses it to process tasks with arrival time ai , energy demand ei and deadline di .
We assume that only one task is executed at time t and preemptions are allowed.

The problem statement presented in this section comprises two major constraints
which have to be satisfied: First, tasks can be processed exclusively with energy ES

generated by the energy source. And second, timing constraints in terms of tasks’
deadlines di must be respected. For this purpose, two degrees of freedom can be
exploited. The scheduler may decide which task Ji of all ready tasks to execute and
what amount of power PD to assign to this task. The following subsections define the
relations between these quantities in more detail.

3.1 Energy source

Many environmental power sources are highly variable with time. Hence, in many
cases some charging circuitry is necessary to optimize the charging process and in-
crease the lifetime of the storage device. In our model, the power PS incorporates



Real-Time Syst (2007) 37: 233–260 237

Fig. 2 Representation of the system model

all losses caused by power conversion as well as charging process. In other words,
we denote PS(t) the charging power that is actually fed into the energy storage. The
respective energy ES in the time interval [t1, t2] is given as

ES(t1, t2) =
∫ t2

t1

PS(t)dt.

In order to characterize the properties of an energy source, we define now energy
variability characterization curves (EVCC) that bound the energy harvested in a cer-
tain interval Δ: The EVCCs εl(Δ) and εu(Δ)with Δ ≥ 0 bound the range of possible
energy values ES as follows:

εl(t2 − t1) ≤ ES(t1, t2) ≤ εu(t2 − t1) ∀t2 > t1.

Given an energy source, e.g., a solar cell mounted in a building or outside, the EVCCs
provide guarantees on the produced energy. For example, the lower curve denotes that
for any time interval of length Δ, the produced energy is at least εl(Δ) (see Fig. 2(b)).
Three possible ways of deriving an EVCC for a given scenario are given below:

• A sliding window of length Δ is used to find the minimum/maximum energy pro-
duced by the energy source in any time interval [t1, t2) with t2 − t1 = Δ. To this
end, one may use a long power trace or a set of traces that have been measured.
Since the resulting EVCC bounds only the underlying traces, these traces must be
selected carefully and have to be representative for the assumed scenario.

• The energy source and its environment is formally modeled and the resulting
EVCC is computed.

• Approximations to EVCCs can be determined on-line by using appropriate mea-
surement and estimation methods, see Sect. 7.1.



238 Real-Time Syst (2007) 37: 233–260

In Sect. 5, the lower EVCC εl will be used in an admittance test which decides,
whether a task set is schedulable given a certain energy source. Furthermore, both
EVCCs will serve as energy predictors for the algorithms simulated in Sect. 6.

3.2 Energy storage

We assume an ideal energy storage that may be charged up to its capacity C. Accord-
ing to the scheduling policy used, power PD(t) and the respective energy ED(t1, t2)

is drained from the storage to execute tasks. If no tasks are executed and the stor-
age is consecutively replenished by the energy source, an energy overflow occurs.
Consequently, we can derive the following constraints

0 ≤ EC(t) ≤ C ∀t,

EC(t2) ≤ EC(t1) + ES(t1, t2) − ED(t1, t2) ∀t2 > t1

and therefore

ED(t1, t2) ≤ EC(t1) + ES(t1, t2) ∀t2 > t1.

3.3 Task scheduling

As illustrated in Fig. 2(a), we utilize the notion of a computing device that assigns
energy EC from the storage to dynamically arriving tasks. We assume that the power
consumption PD(t) is limited by some maximum value Pmax. In other words, the
processing device determines at any point in time how much power it uses, that is

0 < PD(t) < Pmax.

We assume tasks to be independent from each other and preemptive. More precisely,
the currently active task may be preempted at any time and have its execution resumed
later, at no additional cost. If the node decides to assign power Pi(t) to the execution
of task Ji during the interval [t1, t2], we denote the corresponding energy

Ei(t1, t2) =
∫ t2

t1

Pi(t)dt.

The effective starting time si and finishing time fi of task i are dependent on the
scheduling strategy used: A task starting at time si will finish as soon as the required
amount of energy ei has been consumed by it. We can write

fi = min{t : Ei(si, t) = ei}.
The actual running time (fi − si) of a task i directly depends on the amount of power
Pi(t) which is driving the task during si ≤ t ≤ fi . At this, the energy demand ei of
a task is independent from the power Pi used for its execution. Note that we are not
using energy-saving techniques like Dynamic Voltage Scaling (DVS), where ei =
f(Pi). In our model, power Pi and execution time wi behave inversely proportional:



Real-Time Syst (2007) 37: 233–260 239

The higher the power Pi , the shorter the execution time wi . In the best case, a task
may finish after the execution time wi = ei

Pmax
if it is processed without interrupts and

with the maximum power Pmax.
Current hardware technology does not support variable power consumption as de-

scribed above. So clearly, the continuous task processing model presented in this
section is idealized. However, a microprocessor for example may stepwise advance
a task by switching power on (Pi = Pmax) and off (Pi = 0). By tuning the so-called
duty cycle accordingly, devices can approximate the average power 0 ≤ P i ≤ Pmax.
For a more detailed discussion about practical task processing and the system model
in general, see Sect. 7.

4 Lazy scheduling algorithms LSA

After having described our modeling assumptions, we will now state and prove opti-
mal scheduling algorithms. In Sect. 4.1, we will start with the analysis of a simplified
scheduling scenario where tasks need only energy as computation resource but may
execute in zero time. By disregarding the computation resource time, we focus on the
energy-driven nature of the scheduling scenario presented in this paper. In Sect. 4.2,
we will consider finite execution times as well and construct a more general algo-
rithm which manages to optimally trade off energy and time constraints. Theorems
which prove optimality of both algorithms will follow in Sect. 4.3.

4.1 Simplified lazy scheduling

We start with a node with infinite power Pmax = +∞. As a result, a task’s execution
time wi collapses to 0 if the available energy EC in the storage is equal to or greater
than the task’s energy demand ei . This fact clearly simplifies the search for an ade-
quate scheduling algorithm but at the same time contributes to the understanding of
the problem.

As already indicated in the introduction, the naive approach of simply schedul-
ing tasks with the EDF algorithm may result in unnecessary deadline violations,
see Fig. 1. It may happen, that after the execution of task “1” another task “2” with an
earlier deadline arrives. If now the required energy is not available before the deadline
of task “2”, EDF scheduling produces a deadline violation. If task “1” would hesitate
instead of executing directly, this deadline violation might be avoidable. These con-
siderations directly lead us to the principle of Lazy Scheduling: Gather environmental
energy and process tasks only if it is necessary.

The Lazy Scheduling Algorithm LSA-I for Pmax = ∞ shown below attempts to
schedule a set of tasks Ji , i ∈ Q such that deadlines are respected. Therefore, the
processing device has to decide between three power modes. The node may process
tasks with the maximal power PD(t) = Pmax or not at all (PD(t) = 0). In between,
the node may choose to spend only the currently incoming power PS(t) from the
harvesting unit on tasks. The algorithm is based on the three following rules:

• Rule 1: If the current time t equals the deadline dj of some arrived but not yet
finished task Jj , then finish its execution by draining energy (ej −Ej(aj , t)) from
the energy storage instantaneously.



240 Real-Time Syst (2007) 37: 233–260

• Rule 2: We must not waste energy if we could spend it on task execution. There-
fore, if we hit the capacity limit (EC(t) = C) at some times t , we execute the task
with the earliest deadline using PD(t) = PS(t).

• Rule 3: Rule 1 overrules Rule 2.

Note that LSA-I degenerates to an earliest deadline first (EDF) policy, if C = 0. On
the other hand, we find an as late as possible (ALAP) policy for the case of C = +∞.

Note that LSA-I degenerates to an earliest deadline first (EDF) policy, if C = 0.
On the other hand, we find an as late as possible (ALAP) policy for the case of
C = +∞.

4.2 General lazy scheduling

The LSA-I algorithm instantaneously executes a task at its deadline. However, with
limited power consumption PD and finite, minimal computation times wi = ei

Pmax
a

general algorithm has to determine earlier starting times si ≤ di in order to respect
deadlines. In the following, we sketch how to determine optimal starting times si that
balance the time and energy constraints for each single task Ji . For a more detailed
derivation of the starting times si the reader is referred to (Moser et al. 2006a, 2006b).

At first sight, starting a task as late as possible (ALAP) seems to be a promising
approach. The upper plots in Fig. 3 display a straightforward ALAP-translation of
the starting time for task “1”: To fulfill its time condition, task “1” begins to execute
at starting time s1 = d1 − e1

Pmax
. As illustrated, it may happen that shortly after s1

an unexpected task “2” arrives. Assume that this unexpected task “2” is nested in
task “1”, i.e., it also has an earlier deadline than “1”. This scenario inevitably leads
to a deadline violation, although plenty of energy is available. This kind of timing
conflict can be solved by shifting s1 to earlier times and thereby reserving time for
the unpredictable task “2” (see lower plots Fig. 3). But starting earlier, we risk to
“steal” energy that might be needed at later times (compare Fig. 1). According to the
“lazy” principle we have to take care that we don’t start too early.

From the above example, we learned that it may be disadvantageous to prearrange
a starting time in such a way, that the stored energy EC cannot be used before the
deadline of a task. If the processing device starts running at time si with Pmax and
cannot consume all the available energy before the deadline di , time conflicts may



Real-Time Syst (2007) 37: 233–260 241

Fig. 3 ALAP vs. lazy
scheduling

occur. On the other hand, if we remember the introductory example in Fig. 1, en-
ergy conflicts are possible if the stored energy EC(t) is 0 at some time t < di . Hence
we can conclude the following: The optimal starting time si must guarantee, that the
processor could continuously use Pmax in the interval [si , di] and empty the energy
storage EC(di) = 0 exactly at time di . Before the optimal starting time si , the sched-
uler has to conserve energy and keep the storage level EC as high as possible.

A necessary prerequisite for the calculation of the optimal starting time si is the
knowledge of the incoming power flow PS(t) for all future times t ≤ di . Finding
useful predictions for the power PS(t) can be done, e.g., by analyzing traces of the
harvested power, as we will see in Sect. 6. In addition, we assume that PS(t) < Pmax,
that is, the incoming power PS(t) from the harvesting unit never exceeds the power
consumption Pmax of a busy node. Besides from being a realistic model in many
cases, this assumption ensures that no energy is wasted if the energy storage is full
and the system is running with Pmax.

To calculate the optimal starting time si , we determine the maximum amount of
energy EC(ai) + ES(ai, di) that may be processed by the node before di . Next, we
compute the minimum time required to process this energy without interruption and
shift this time interval of continuous processing just before the deadline di . In other
words, we calculate the starting time s∗

i as

s∗
i = di − EC(ai) + ES(ai, di)

Pmax
.

If now the energy storage is filled before s∗
i , it is reasonable to advance task Ji with

power PS in order to avoid an energy overflow (compare Rule 2 of LSA-I). However,
this also means that not all energy EC(ai)+ES(ai, di) can be processed continuously
in [s∗

i , di] and we find EC(t) = 0 at some time t < di . Thus a better starting time s′
i

allows for the reduced amount of energy C + ES(s′
i , di) which is processable in this



242 Real-Time Syst (2007) 37: 233–260

situation:

s′
i = di − C + ES(s′

i , di)

Pmax
.

By choosing the maximum of s∗
i and s′

i we find the optimal starting time

si = max (s′
i , s

∗
i ),

which precisely balances energy and time constraints for task Ji .
The pseudo-code of a general Lazy Scheduling Algorithm LSA-II is shown below.

It is based on the following rules:

• Rule 1: EDF scheduling is used at time t for assigning the processor to all waiting
tasks with si ≤ t . The currently running task is powered with PD(t) = Pmax.

• Rule 2: If there is no waiting task i with si ≤ t and if EC(t) = C, then all incoming
power PS is used to process the task with the smallest deadline (PD(t) = PS(t)).

Although it is based on the knowledge of the future incoming energy ES , LSA-
II remains an online algorithm. The calculation of si must be performed once
the scheduler selects the task with the earliest deadline. If the scheduler is not
energy-constraint, i.e., if the available energy is more than the device can consume
with power Pmax within [ai, di], the starting time si will be before the current time t .
Then, the resulting scheduling policy is EDF, which is reasonable, because only time
constraints have to be satisfied. If, however, the sum of stored energy EC plus gener-
ated energy ES is small, the scheduling policy changes towards an ALAP policy. In
doing so, LSA avoids spending scarce energy on the “wrong” tasks too early.

In summary, LSA-II can be classified as an energy-clairvoyant adaptation of the
Earliest Deadline First Algorithm. It changes its behavior according to the amount of
available energy, the capacity C as well as the maximum power consumption Pmax of
the device. For example, the lower the power Pmax gets, the greedier LSA-II gets. On
the other hand, high values of Pmax force LSA-II to hesitate and postpone the starting
time si . For Pmax = ∞, all starting times collapse to the respective deadlines, and we
identify LSA-I as a special case of LSA-II. In the remainder of the paper, we will
solely consider the general LSA-II algorithm derived in this section. From now on,
we will denote this algorithm LSA.



Real-Time Syst (2007) 37: 233–260 243

4.3 Optimality of lazy scheduling

In this section, we will show that Lazy Scheduling algorithms optimally assign power
PD to a set of tasks. For this purpose, we formulate Theorem 1 and Theorem 2 which
show that LSA makes the best use of the available time and energy, respectively. With
the help of Theorems 1 and 2, we proof optimality of LSA in Theorem 3.

The scheduling scenario presented in this paper is inherently energy-driven.
Hence, a scheduling algorithm yields a deadline violation if it fails to assign en-
ergy ei to a task before its deadline di . We distinguish between two types of deadline
violations:

• A deadline cannot be respected since the time is not sufficient to execute avail-
able energy with power Pmax. At the deadline, unprocessed energy remains in the
storage and we have EC(d) > 0. We call this the time limited case.

• A deadline violation occurs because the required energy is simply not available at
the deadline. At the deadline, the battery is exhausted (i.e., EC(d) = 0). We denote
the latter case energy limited.

For the following theorems to hold we suppose that at initialization of the system, we
have a full capacity, i.e., EC(ti) = C. Furthermore, we call the computing device idle
if no task i is running with si ≤ t .

Let us first look at the time limited case.

Theorem 1 Let us suppose that the LSA algorithm schedules a set of tasks. At time
d the deadline of a task J with arrival time a is missed and EC(d) > 0. Then there
exists a time t1 such that the sum of execution times

∑
(i) wi = ∑

(i)
ei

Pmax
of tasks with

arrival and deadline within time interval [t1, d] exceeds d − t1.

Proof Let us suppose that t0 is the maximal time t0 ≤ d where the processor was idle.
Clearly, such a time exists.

We now show, that at t0 there is no task i with deadline di ≤ d waiting. At first,
note that the processor is constantly operating on tasks in time interval (t0, d]. Sup-
pose now that there are such tasks waiting and task i is actually the one with the
earliest deadline di among those. Then, as EC(d) > 0 and because of the construc-
tion of si , we would have si < t0. Therefore, the processor would actually process
task i at time t0 which is a contradiction to the idleness.

Because of the same argument, all tasks i arriving after t0 with di ≤ d will have
si ≤ ai . Therefore, LSA will attempt to directly execute them using an EDF strategy.

Now let us determine time t1 ≥ t0 which is the largest time t1 ≤ d such that the
processor continuously operates on tasks i with di ≤ d . As we have si ≤ ai for all of
these tasks and as the processor operates on tasks with smaller deadlines first (EDF),
it operates in [t1, d] only on tasks with ai ≥ t1 and di ≤ d . As there is a deadline
violation at time d , we can conclude that

∑
(i) wi > d − t1 where the sum is taken

over all tasks with arrival and deadline within time interval [t1, d]. �

It can be shown that a related result holds for the energy limited case, too.



244 Real-Time Syst (2007) 37: 233–260

Theorem 2 Let us suppose that the LSA algorithm schedules a set of tasks. At time d

the deadline of a task J with arrival time a is missed and EC(d) = 0. Assume further,
that deadline d is the first deadline of the task set that is violated by LSA. Then there
exists a time t1 such that the sum of task energies

∑
(i) ei of tasks with arrival and

deadline within time interval [t1, d] exceeds C + ES(t1, d).

Proof Let time t1 ≤ d be the largest time such that (a) EC(t1) = C and (b) there
is no task i waiting with di ≤ d . Such a time exists as one could at least use the
initialization time ti with EC(ti) = C. As t1 is the last time instance with the above
properties, we can conclude that everywhere in time interval [t1, d] we either have
(a) EC(t) = C and there is some task i waiting with di ≤ d or we have (b) and
EC(t) < C.

It will now be shown that in both cases (a) and (b), energy is not used to advance
any task j with dj > d in time interval [t1, d]. Note also, that all arriving energy
ES(t1, d) is used to advance tasks.

In case (a), all non-storable energy (i.e. all energy that arrives from the source)
is used to advance a waiting task, i.e., the one with the earliest deadline di ≤ d . In
case (b), the processor would operate on task J with dj > d if there is some time
t2 ∈ [t1, d] where there is no other task i with di ≤ d waiting and sj ≤ t2. But sj is
calculated such that the processor could continuously work until dj . As dj > d and
EC(d) = 0 this can not happen and sj > t2. Therefore, also in case (b) energy is not
used to advance any task j with dj > d .

As there is a deadline violation at time d , we can conclude that
∑

(i) ei > C +
EC(t1, d) where the sum is taken over all tasks with arrival and deadline within time
interval [t1, d]. �

From the above two theorems we draw the following conclusions: First, in the time
limited case, there exists a time interval before the violated deadline with a larger
accumulated computing time request than available time. And second, in the energy
limited case, there exists a time interval before the violated deadline with a larger
accumulated energy request than what can be provided at best. These considerations
lead us to one of the major results of the paper:

Theorem 3 (Optimality of Lazy Scheduling) Let us consider a system characterized
by a capacity C and power Pmax driven by the energy source ES . If LSA cannot
schedule a given task set, then no other scheduling algorithm is able to schedule it.
This holds even if the other algorithm knows the complete task set in advance.

Proof The proof follows immediately from Theorems 1 and 2. Assume a set of tasks
is scheduled with LSA and at time d the deadline of task J is missed. Assume fur-
ther, that deadline d is the first deadline of the task set that is violated by LSA. In
the following, we distinguish between the case where the energy at the deadline is
EC(d) > 0 and EC(d) = 0, respectively.

In the first case, according to Theorem 1, there exists a time t1 such that the sum of
execution times

∑
(i) wi = ∑

(i)
ei

Pmax
of tasks with arrival and deadline within time

interval [t1, d] exceeds d − t1. Here, knowing arrival times, energy demands and



Real-Time Syst (2007) 37: 233–260 245

deadlines in advance does not help, since every scheduling algorithm will at least
violate one deadline in [t1, d].

In the energy limited case with EC(d) = 0, according to Theorem 2, there exists

a time t1 such that the sum of task energies
∑

(i) ei of tasks with arrival and dead-
line within time interval [t1, d] exceeds C + ES(t1, d). Hence, no algorithm can hold
deadline d without violating an earlier deadline in [t1, d]. This holds also for omni-
scient scheduling algorithms, since (a) at the beginning of the critical interval [t1, d],
the energy level may be EC(t1) = C at most and (b) the execution of the critical tasks
can start at time t1 at the earliest.

So every time LSA violates deadline d , we have either the time limited case
(EC(d) > 0) or the energy limited case (EC(d) = 0). Since in both cases it is im-
possible for another algorithm to respect deadline d and all earlier deadlines simulta-
neously, we conclude that LSA is optimal. �

If we can guarantee that there is no time interval with a larger accumulated com-
puting time request than available time and no time interval with a larger accumulated
energy request than what can be provided at best, then the task set is schedulable. This
property will be used to determine the admittance test described in the next section.

On the other hand, given a task set and a certain energy source ES(t) we can
also make a statement about the necessary hardware requirements of the sensor node:
Due to its optimality, LSA requires the minimum processing power Pmax and the
minimum capacity C necessary to avoid deadline violations:

Theorem 4 (Optimal tuple (C;Pmax)) Let us assume a given task set has to be sched-
uled using an energy source ES . Among all algorithms, LSA requires the minimum
capacity C and the minimum power Pmax that are necessary to successfully schedule
the task set.

Proof We proceed by contradiction. Let us denote C and Pmax the minimum capacity
and the minimum processing power which are needed to schedule a given task set
with LSA. Assume that an adversary algorithm succeeds to schedule the task set
with some C′ < C or P ′

max < Pmax given the same energy source. This means the
adversary algorithm can schedule the respective task set with (C′,P ′

max) and LSA
cannot. This however contradicts the optimality of LSA according to Theorem 3. �

The admittance test in the next section will allow us to explicitly determine the
minimum values of C and Pmax for LSA scheduling.

5 Admittance test

5.1 Lazy scheduling algorithm

In this section, we will determine an offline schedulability test in case of periodic,
sporadic or even bursty sets of tasks. In particular, given an energy source with lower
EVCC εl(Δ), the device parameters (C;Pmax) and a set of periodic tasks Ji , i ∈ I



246 Real-Time Syst (2007) 37: 233–260

Fig. 4 Examples of an arrival curve αi(Δ), a demand curve αi(Δ) and a total demand curve A(Δ) in case
of periodic tasks

with period pi , relative deadline di and energy demand ei , we would like to determine
whether all deadlines can be respected.

To this end, let us first define for each task its arrival curve α(Δ) which denotes
the maximal number of task arrivals in any time interval of length Δ. The concept of
arrival curves to describe the arrival patterns of sets of tasks is well known (request
bound functions) and has been used explicitly or implicitly in, e.g. (Baruah 2003)
or (Wandeler et al. 2005). To simplify the discussion, we limit ourselves to periodic
tasks, but the whole formulation allows to deal with much more general classes (spo-
radic or bursty) as well.

In case of a periodic task set, we have for periodic task Ji , see also Fig. 4:

αi(Δ) =
⌈

Δ

pi

⌉
∀Δ ≥ 0.

In order to determine the maximal energy demand in any time interval of length Δ,
we need to maximize the accumulated energy of all tasks having their arrival and
deadline within an interval of length Δ. To this end, we need to shift the correspond-
ing arrival curve by the relative deadline. We are doing this since the actual energy
demand becomes due at the deadline of the respective task. In case of a periodic task
Ji , this simply leads to:

αi(Δ) =
{

ei · αi(Δ − di) Δ > di ,

0 0 ≤ Δ ≤ di .

In case of several periodic tasks that arrive concurrently, the total demand
curve A(Δ) (called demand-bound function in Baruah 2003) can be determined by
just adding the individual contributions of each periodic task, see Fig. 4:

A(Δ) =
∑
i∈I

αi(Δ).

Using the above defined quantities, we can formulate a schedulability test for the
LSA algorithm that can be applied to a quite general class of tasks specifications.



Real-Time Syst (2007) 37: 233–260 247

Theorem 5 (LSA Schedulability Test) A given set of tasks Ji , i ∈ I with arrival
curves αi(Δ), energy demand ei and relative deadline di is schedulable under the
energy-driven model with initially stored energy C, if and only if the following con-
dition holds

A(Δ) ≤ min(εl(Δ) + C,Pmax · Δ) ∀Δ > 0.

Here, A(Δ) = ∑
i∈I ei · αi(Δ − di) denotes the total energy demand of the task set

in any time interval of length Δ, εl(Δ) the energy variability characterization curve
of the energy source, C the capacity of the energy storage and Pmax the maximal
processing power of the system. In case of periodic tasks we have A(Δ) = ∑

i∈I ei ·
	Δ−di

pi

.

Proof The proof of the if direction is omitted, since it is a direct consequence of
Theorems 1 and 2. We just prove the only-if direction.

Remember that the total demand curve A(Δ) denotes the maximal energy demand
of tasks in any interval [t1, t2] of length Δ. It equals the maximal accumulated energy
of tasks having their arrival and deadline within [t1, t2]. Therefore, in order to satisfy
all deadlines for these tasks, at least energy A(t2 − t1) must be available.

Let us suppose that the condition in Theorem 5 is violated for some Δ due to
missing energy. Let us suppose also that the task arrival curve and the energy vari-
ability characterization curve are strict, i.e., there exists some time interval [t1, t2]
where the energy demand is A(t2 − t1) and at the same time the energy ES(t2 − t1)

is received. Then in time interval [t1, t2] with Δ = t2 − t1 the difference between the
energy demand and the received energy is larger than the maximal stored energy C

as A(Δ) > εl(Δ) + C. As a result, the task set is not schedulable.
On the other hand, whenever the demanded computation time A(Δ)

Pmax
of a task set in

the interval Δ is larger than the interval itself, a task set is not schedulable. Therefore
it is evident, that both the energy condition A(Δ) ≤ εl(Δ)+C and the time condition
A(Δ) ≤ Pmax · Δ must be fulfilled in order to avoid deadline violations. �

Theorem 5 tells us that we can decouple energy and time constraints if we have to
decide whether a task set is schedulable or not. On the one hand, only if

Pmax ≥ max
0≤Δ

(
A(Δ)

Δ

)
,

the system is fast enough to process the given task set. This condition is independent
of the energy provided by the environmental source (i.e. εl) and the capacity of the
storage device. Even increasing the capacity does not help. If a task set however
satisfies the time constraint, the role of the capacity C as a design parameter for the
energy harvesting system becomes important.

Suppose now that the time constraint is fulfilled. For this case, Theorem 5 states
that the capacity C needed to schedule a task set with A(Δ) using a source with εl(Δ)

is constrained by

C ≥ max
0≤Δ

(0,A(Δ) − εl(Δ)).



248 Real-Time Syst (2007) 37: 233–260

Fig. 5 Determining the optimal tuple (C;Pmax) according to Theorem 5

Figure 5 illustrates an example schedulability test. The left diagram displays the
total demand curve A(Δ) for two periodic tasks with p1 = 2, d1 = 1, e1 = 2 and
p2 = 3, d2 = 4, e2 = 1. Furthermore, the EVCC εl(Δ) is given by a piecewise linear
function using three pieces (0,0,0), (2,0,1), (5,3,3), where each piece i is defined
by the triple of the form (initial Δi , initial εl(Δi), slope of piece i). Now, the maximal
difference between the total demand curve A and the EVCC εl can be computed. It
has value 4 and is obtained at Δ = 5. Therefore, one can conclude that the set of tasks
can be scheduled (with LSA) using a minimal capacity C = 4. The respective schedu-
lability test with C = 4 is shown in the middle diagram of Fig. 5. As displayed in the
right diagram, power Pmax = 2 is required to fulfill the time condition in Theorem 5.

As a last point to mention, let us consider the middle diagram in Fig. 5 once
again. Regarding the slopes of the curves, we can guess that A and εl won’t inter-
sect after the critical time interval of length 5. Formally, this is because the minimum

average power limΔ→∞ εl (Δ)
Δ

is higher than the maximum average power demand

limΔ→∞ A(Δ)
Δ

of the task set. Simply stated, the average harvested power is higher
than the average power demand of the application. It becomes evident that an opti-
mal algorithm, like LSA, can only optimize the short-term behavior of the system
by suitable power management. LSA achieves the minimum capacity C needed to
temporarily buffer energy for single tasks, but on the long run the average of power
PD is dictated by the task set.

5.2 Comparison to EDF

It is useful to formally compare LSA with the well know EDF algorithm in terms
of the schedulability region and the required capacity C. In order to simplify the
discussion, we will investigate an energy limited scenario only, see Sects. 4.1 and
4.3. Then we can state the following result:

Theorem 6 (EDF Schedulability Test) A given set of tasks Ji , i ∈ I with arrival
curves αi(Δ), energy demand ei and relative deadline di is schedulable with initially
stored energy C, only if the following condition holds for any deadline dk , k ∈ I :

∑
i∈I

ei · αi(Δ − dk) ≤ C + εl(Δ) ∀Δ > 0.

In case of periodic tasks with period pi we have αi(Δ) = 	 Δ
pi


.



Real-Time Syst (2007) 37: 233–260 249

Fig. 6 Simple EVCC for
comparing EDF and LSA
scheduling

Proof Remember that the left hand side of the condition denotes the maximal energy
used by all the tasks in any interval [t1, t2] of length t2 − t1 = Δ − dk . There is an
instance of task arrivals compliant with the arrival curves αi such that task Jk arrives
at time t2, i.e. by correctly adjusting the phase of all instances of task Jk . In this case,
the deadline of the task instance arriving at t2 is t2 + dk . In order to be able to execute
this instance within its deadline, the available energy in any interval [t1, t2 + dk]
must be larger than

∑
i∈I ei · αi(t2 − t1), i.e. the energy used by tasks arriving in

[t1, t2]. The maximal energy available in [t1, t2 + dk] is in the worst case given by
C + εl(t2 + dk − t1). Replacing t2 − t1 by Δ − dk yields the desired result. �

The strongest bound is obtained by using the task Jk with the smallest deadline
dmin = mini∈J {di}. Comparing Theorems 5 and 6 in the energy-constraint case we
obtain the two constraints

∑
i∈I ei ·αi(Δ−dmin) ≤ C + εl(Δ) for EDF and

∑
i∈I ei ·

αi(Δ − di) ≤ C + εl(Δ) for LSA. Clearly, EDF has a smaller schedulability region
as

∑
i∈I ei · αi(Δ − dmin) ≥ ∑

i∈I ei · αi(Δ − di) for all Δ ≥ 0.
Finally, let us derive specialized results in the case of periodic tasks Ji with pi = di

(period equals deadline) and a simple energy variability characterization curve εl(Δ)

shown in Fig. 6 with εl(Δ) = max{σ · (Δ − ρ),0}.
We also suppose that the available average power σ from the energy source is

sufficient to support the long term power demand σ̄ of the task set

σ ≥ σ̄ =
∑
i∈I

ei

pi

as otherwise, deadline violations are unavoidable. In the following comparison, we
suppose that the energy source has a minimal average power, i.e. σ = σ̄ , i.e. it is as
weak as possible. Under these assumptions (periodic task with periods equal dead-
lines, energy-limited scenario) and using the results of Theorems 5 and 6, one can
compute the minimal possible capacities of the energy storage for the two scheduling
methods LSA and EDF as follows:

CEDF =
∑
i∈I

ei + (δ − pmin) · σ̄ , CLSA = δ · σ̄ .

Therefore, the relative gain in the necessary storage capacity between the two
scheduling methods can be quantified and bounded by

0 ≤ CEDF − CLSA

CLSA
= 1

δ · σ̄
(∑

i∈I

ei + pmin · σ̄
)

≤ pmax − pmin

δ
.



250 Real-Time Syst (2007) 37: 233–260

For the bounds we use the fact that pmin ≤ (
∑

ei)(
∑

(ei/pi)) ≤ pmax where pmin

and pmax denote the minimal and maximal period of tasks Ji , respectively. In other
words, the maximal relative difference in storage capacity depends on the differences
between the task periods. The larger the difference between the largest and smallest
period is, the large the potential gain in storage efficiency for the LSA algorithm.

6 Simulation results

In the previous section, a method to compute the minimum capacity for a certain
energy source characterization εl was presented. In the following, we will call this
optimal value Cmin. The value Cmin obtained represents a lower bound since it is ob-
tained for energy-clairvoyant LSA scheduling. In addition, it remains unclear, which
capacities C∗

min are required if other scheduling disciplines are applied. For this rea-
son, we performed a simulative study to evaluate the achievable capacity savings in a
more realistic scenario. The EDF algorithm—which is optimal in traditional schedul-
ing theory—serves as a benchmark for our studies.

We investigated variants of LSA which utilize the measured EVCCs εl and εu

to predict the future generated energy ES(t) for the LSA algorithm. Each time a
starting time si has to be calculated for the task i with the earliest deadline di , the
energy εl(di − ai) (or εu(di − ai)) plus the stored energy EC(ai) is assumed to be
processable before the deadline.

The trace of the power source PS(t) is generated by a random number generator
according to

PS(t) =
∣∣∣∣10 · N(t) · cos

(
t

70π

)
· cos

(
t

100π

)∣∣∣∣,
where N(t) denotes a normally distributed random variable with mean 0 and varian-
ce 1. The values of PS have been cut off at the value PS,max = 10. As illustrated in
Fig. 7(a), the obtained power trace PS(t) exhibits both stochastic and deterministic,
periodic behavior. The latter is simulating day and night periods similar to those
experienced by solar cells in an outdoor environment. From this trace we compute
the average power P S as well as upper and lower EVCCs εu and εl .

A task set consists of an arbitrary number of periodic tasks. Periods p are taken
from a set {10, 20, 30, . . . , 100}, each value having an equal probability of being
selected. The initial phases ϕ are uniformly distributed between [0,100]. For sim-
plicity, the relative deadline d is equal to the period p of the task. The energies e of
the periodic tasks are generated according to a uniform distribution in [0, emax], with
emax = P S · p.

We define the utilization U ∈ [0,1] of a scheduler as

U =
∑

i

ei

P S

pi

.

One can interpret U as the percentage of processing time of the device if tasks are
solely executed with the average incoming power P S . A system with, e.g., U > 1



Real-Time Syst (2007) 37: 233–260 251

Fig. 7 Calculation of Cmin in two steps: (1) Extract εl (Δ) from PS(t) and (2) Compute Cmin for every
task set with respective energy demand A(Δ)

is processing more energy than it scavenges on average and will deplete its energy
reservoir.

In dependence of the generated power source PS(t), N task sets are generated
which yield a certain processor utilization U . For that purpose, the number of periodic
tasks in each task set is successively incremented until the intended utilization U is
reached. Hence, the accuracy of the utilization U is varying ±1% with respect to its
nominal value.

At the beginning of the simulation, the energy storage is full. We set Pmax = 10.
The simulation terminates after 10 000 time units and is repeated for 5000 task sets.
In order to show the average behavior of all task sets in one plot, we normalized the
capacities C with the respective Cmin of the task set. Fig. 7(b) shows the calculation
of Cmin for a random task set.

Figure 8 illustrates the percentage of tasks that could be scheduled without dead-
line violations for different utilizations U . Clearly, no deadline violations occur for
energy-clairvoyant LSA scheduling and values of C

Cmin
≥ 1. For all values of U , both

approximations of LSA with εl and εu outperform the EDF algorithm, whereat the
lower curve εl seems to be the better approximation. At U = 40% and C = Cmin, e.g.,
almost no task set is schedulable with EDF. Here, LSA with εu is able to schedule
≈78% of all task sets; LSA with εl even ≈85%.

Concerning the relative capacity savings achieved with our algorithms, we are
especially interested in the smallest capacities C necessary to avoid any deadline
violations. The highest savings are obtained at U = 20%, where EDF needs more
than 2.0 · Cmin to respect deadlines whereas LSA using εl shows the same behavior
at 1.1 · Cmin. This translates into capacity savings of ≈45%. At higher values of the
utilization U these savings are decreasing, yet they are still significant: At utilizations
of U = 40%, 60%, 80%, the capacity savings of LSA with εl compared to EDF are
still ≈40%, 21%, 20%, respectively.

Albeit randomized task sets are not necessary representative for all kind of ap-
plications, these simulation results demonstrate that significant capacity savings are
possible. If the application involves bursty instead of periodic task processing, the
benefits of Lazy Scheduling may be indeed even more striking: As showed in (Moser



252 Real-Time Syst (2007) 37: 233–260

Fig. 8 Comparison of pure LSA, LSA using εl , LSA using εu and EDF for different utilizations U

et al. 2006a, 2006b), a greedy algorithm like EDF may violate an arbitrary number
of deadlines and may suffer from worst case scenarios. This holds in particular for
sensor nodes, where the energy demands of different tasks are highly varying (e.g.
communication, sensing and data processing tasks) and tasks have to satisfy various
timing constraints (e.g. urgent and less urgent tasks which have to run in parallel).

7 Practical considerations

The system model introduced in Sect. 3 and used throughout this paper implies ideal-
ized modeling abstractions, which demand further explanations. Therefore, this sec-
tion is dedicated to general implementation aspects and possible application scenar-
ios.

7.1 Energy source predictability

Clearly, the performance of LSA is strongly dependent on the accuracy of the pre-
dicted power PS(t) of the harvesting unit. The better the approximation, the better
the algorithm performs in terms of optimality. As illustrated by the simulation results
of the previous section, energy variability characterization curves (EVCC) are suit-
able for that purpose. Especially for small utilizations U of the sensor node, EVCCs



Real-Time Syst (2007) 37: 233–260 253

appear to converge towards the optimal, energy-clairvoyant LSA. It should be men-
tioned, that the prediction of ES(t) by EVCCs may even be improved if the sensor
node is learning the characteristics of the energy source adaptively: By observing en-
ergy values ES(Δ′) for past intervals Δ′, the prediction for future intervals Δ can
be optimized online. This extension, however, increases at the same time the com-
putational demand of the scheduler, which is one of the advantages of using simple
EVCCs.

Solar energy harvesting through photovoltaic conversion is deemed a number one
candidate for the power source PS described in our model. If we assume the sensor
node to be placed in an outdoor environment, the impinging radiation is variable with
time, but follows a diurnal as well as annual cycle. Moreover, during short time in-
tervals, the produced power PS can be regarded as constant and sudden changes of
the light intensity are improbable. Due to this specific nature of solar energy, a two-
tiered prediction methodology is self-evident: On the one hand, long-run predictions
must be made for less urgent tasks with rather late deadlines. Here, using exponen-
tial decaying factors to weight the history of recorded powers PS is one possibility.
An alternative is to combine daily and seasonal light conditions of the past with the
knowledge about a sensor’s environment and possible shadowing. One can think of a
plurality of prediction mechanisms, which are clearly out of the scope of this paper.

For urgent tasks with close deadlines within milliseconds or seconds, intelligent
prediction algorithms may not be necessary. Here, tasks like, e.g., sending a few bits
over the wireless channel may be planned assuming constant power PS(t) = PS,const
during si ≤ t ≤ di . For stationarity of the power inflow PS the calculation of the
starting time si for a task i simplifies to

si = di − min

(
EC(ai) + (di − ai)PS,const

Pmax
,

C

Pmax − PS,const

)
.

In the worst case, a sensor node is powered by an energy source with pure sto-
chastic behavior. If nothing is known about this source, the currently stored energy
ES is the only indicator for making scheduling decisions. By iteratively updating the
starting time ŝi = di − EC(t)

Pmax
(and thereby increasing the computational overhead)

starting task i too early can be avoided. However, once the device is running with
Pmax, the incoming energy ES(ŝi , di) may not be processable in the remaining inter-
val [ŝi , di]. Consequently, optimality cannot be guaranteed for this scenario since the
starting time ŝi is always earlier then the optimal starting time si .

7.2 Task processing

The task processing model presented in this paper exhibits two major assumptions:

1. We assume the power PD(t) driving a task to be continuously adjustable with
respect to its value in [0;Pmax] as well as with respect to time t . That is, at any
point in time a task can be advanced with an accurately defined amount of power.

2. We assume a linear relationship between the power PD used for executing a task
and the execution time w. We can say: the higher the power PD , the shorter the
execution time w.



254 Real-Time Syst (2007) 37: 233–260

Fig. 9 Approximated power consumption PD ≈ PS by means of duty cycling and resulting non-ideal
storage level EC(t) = C − ΔE

The first modeling assumption is only needed in situations when the energy stor-
age is full (EC(t) = C). In practice, there is no existing hardware that supports a
continuous consumption of the scavenged power PS(t) as claimed by LSA. A mi-
crocontroller, e.g., drains roughly constant power from the battery when running a
piece of program. The same holds for the radio interface. When transmitting a cer-
tain amount of data, most radios won’t operate properly with unstable power supply.
Therefore, we assume that the respective hardware attempts to approximate the power
level of the power source by continuously switching power on (PD = Pmax) and off
(PD = 0). In Fig. 9, the achieved average power P D ≈ PS is sketched.

It becomes evident that in an implementation, one will have to respect a certain
granularity. The scheduler needs to determine when the energy storage is full and
then, a task is executed for a given interval of time Δt which results in an energy
consumption of ΔE = Pmax · Δt − ES(Δt). For a microcontroller or a sensing unit,
the time intervals Δt can be considered rather short while radio communication may
require larger Δt due to packetized nature of the transmitted data. During the subse-
quent idle time, the stored energy is recovering again. In the worst case, this “duty
cycling” results in a stored energy that is reduced by

ΔEmax = Pmax · max{Δt} − εl(max{Δt})
in comparison to ideal LSA. With max{Δt} we denote the maximum period of con-
tinuous processing that can be observed for a given task. In terms of the admittance
test in Sect. 5, a task set is schedulable if it is schedulable under ideal LSA with
reduced capacity C − ΔEmax.

In the light of the considerations regarding assumption 1, also assumption 2 be-
comes plausible. Unlike common power management solution like Dynamic Voltage
Scaling DVS, the energy ei consumed by a task is the same regardless of the power



Real-Time Syst (2007) 37: 233–260 255

Fig. 10 Power and energy
characteristics of storage devices

PD used during its execution. Although attractive due to its potential to save energy,
DVS will come to its end if feature sizes of ICs get smaller. Hence, DVS or sim-
ilar techniques were not considered in our work. In contrast, time and energy are
assumed to be directly proportional—as indicated in Fig. 9—with power P D as con-
stant of proportionality. The greater the number and size of time slots allocated to a
given task, the higher the average power P D and the faster the execution.

7.3 Energy storage model

An important step for the validation of the theory presented in this paper is the dis-
cussion of the energy storage model. Looking at the various devices available on the
market, there are two principal methods to store energy in a small volume or mass
device: using an electro-chemical process or just performing physical separation of
electrical charges across a dielectric medium. The first technique is used by recharge-
able batteries and it is currently the most common and for long time it was the only
method to achieve high capacities in a small size. Nevertheless, research in the last
years has found new materials in order to increase the specific energy of capaci-
tors, producing devices that are called supercapacitor or ultra-capacitor (Kötz and
Carlen 2000). As shown in the so-called ‘Ragone plot’ in Fig. 10, supercapacitors
offer a trade-off between power- as well as energy-density, filling the gap between
batteries and capacitors. Beyond their ability to support higher power flows than bat-
teries, supercapacitors overcome many other drawbacks of batteries: They have very
long lifetimes and tolerate an almost unlimited number of charge/recharge cycles
without performance degradation. Unlike batteries, no heat is released during charg-
ing/discharging due to parasitic, chemical reactions. In the following, we will focus
on supercapacitors as possible candidates for an energy storage device.

Charge retention Self-discharging is a natural phenomena that occurs in all kind
of storage devices. It is caused by leakage currents that flow inside the device dis-
charging it. Supercapacitors exhibit leakage currents that are typically in the order of
magnitude of μA (see e.g. Maxwell technologies, Inc. 2006). Moreover, it should be
mentioned that the leakage is proportional to the energy level. In (Jiang et al. 2005),



256 Real-Time Syst (2007) 37: 233–260

the leakage behavior of different supercapacitors have been tested. From Fig. 2 in the
latter work it becomes evident, that there exist a potential to minimize the leakage of
fully charged supercapacitors by appropriate choice (manufacturer technology) and
arrangement (serial, parallel) of devices.

Apart from the intrinsic energy leakage of supercapacitors, also the idle power
consumption of the sensor node has to be considered. This “external leakage” can be
reduced by switching to a low-power mode if no tasks are executed. In case of a low
power wireless sensor node like Moteiv’s Tmote Sky (Moteiv Corporation 2006), its
ultra low power Texas Instruments MSP430 F1611 microcontroller exhibits a maxi-
mum current of 3.0 μA in low power mode (LPM3). The wakeup to active mode is
finished after 6 μs.

Altogether, it can be assumed that the energy conservation laws described in
Sect. 3.2 hold and introducing an additional term allowing for energy leakage is dis-
pensable.

Monitoring the stored energy An important feature of energy harvesting systems
is the capability to estimate the remaining energy in the storage device. Unlike bat-
teries, the energy of supercapacitors can be measured in a straightforward way: The
equations describing the physical behavior of supercapacitors are nearly the same as
the ones for ordinary capacitors, and the energy stored is hence EC ≈ 1

2CV 2.

Storage efficiency The efficiency η of a supercapacitor can be regarded as the quan-
tity that relates the power flows and energies displayed in Fig. 10. Since charging a
supercapacitor with PS and discharging it with PD can be seen as symmetrical op-
erations, let us consider the efficiency η when the supercapacitor is charged. In this
case, the increment of stored energy in time interval Δ = t2 − t1 can be written as

EC(t2) − EC(t1) =
∫ t2

t1

PS(t)dt = η

∫ t2

t1

PS,raw(t)dt,

where PS,raw denotes the power fed into the supercapacitor. In general, supercapac-
itors may suffer from low efficiencies η due to their high equivalent series resis-
tance (Barrade and Rufer 2003). This circumstance, however, does not jeopardize
our modeling assumptions as such since, as stated in Sect. 3.1, all losses are included
in the definition of PS . Actually, the more important property of the efficiency η is
its independence of the energy level EC(t) at time t , which is approximately true for
supercapacitors. Moreover, supercapacitors barely produce thermal heat which could
reinforce non-linear charging/discharging behavior.

In summary, we conclude that a linear charging/discharging behavior with con-
stant efficiency η is a reasonable abstraction for the example of a supercapacitor and
hence our modeling assumptions hold. It should be mentioned, that possible varia-
tions of the efficiency η have been disregarded in related work like (Jiang et al. 2005)
and (Kansal et al. 2004), too.



Real-Time Syst (2007) 37: 233–260 257

8 Related work

In (Kansal et al. 2004), the authors use a similar model of the power source as we do.
But instead of executing concrete tasks in a real-time fashion, they propose tuning a
node’s duty cycle dependent on the parameters of the power source. Nodes switch be-
tween active and sleep mode and try to achieve sustainable operation. This approach
only indirectly addresses real-time responsiveness: It determines the latency resulting
from the sleep duration.

The approach in (Rusu et al. 2003) is restricted to a very special offline schedul-
ing problem: Periodic tasks with certain rewards are scheduled within their dead-
lines according to a given energy budget. The overall goal is to maximize the sum
of rewards. Therefore, energy savings are achieved using Dynamic Voltage Scaling
(DVS). The energy source is assumed to be solar and comprises two simple states:
day and night. Hence the authors conclude that the capacity of the battery must be at
least equal to the cumulated energy of those tasks, that have to be executed at night.
In contrast, our work deals with a much more detailed model of the energy source.
We focus on scheduling decisions for the online case when the scheduler is indeed
energy-constraint. In doing so, we derive valuable bounds on the necessary battery
size for arbitrary energy sources and task sets.

The research presented in (Allavena and Mosse 2001) is dedicated to offline al-
gorithms for scheduling a set of periodic tasks with a common deadline. Within this
so-called “frames”, the order of task execution is not crucial for whether the task set
is schedulable or not. The power scavenged by the energy source is assumed to be
constant. Again—by using DVS—the energy consumption is minimized while still
respecting deadlines. Contrary to this work, our systems (e.g. sensor nodes) are pre-
dominantly energy constrained and the energy demand of the tasks is fixed (no DVS).
We propose algorithms that make best use of the available energy. Provided that the
average harvested power is sufficient for continuous operation, our algorithms mini-
mize the necessary battery capacity.

The primary commonality of (Prabhakar et al. 2001) and our work is the term “lazy
scheduling”. In (Prabhakar et al. 2001), lazy packet scheduling algorithms for trans-
mitting packetized information in a wireless network are discussed. The approach
is based on the observation that many channel coding schemes allow to reduce the
energy per packet if it is transmitted slower, i.e. over a longer duration. Goal of this
approach is to minimize the energy, whereas in our work the energy consumption is
fixed (given by the task set). Furthermore, their scheduling algorithms are fully work
conserving, which is not true for our algorithms.

9 Conclusions

We studied the case of an energy harvesting sensor node that has to schedule a set of
tasks with real-time constraints. The arrival times, energy demands and deadlines of
the tasks are not known to the node in advance and the problem consists of assign-
ing the right amount of power in the right order to those tasks. For this purpose, we
constructed optimal Lazy Scheduling Algorithms LSA which are energy-clairvoyant,



258 Real-Time Syst (2007) 37: 233–260

i.e., the generated energy in the future is known. Contrary to greedy scheduling al-
gorithms, LSA hesitates to power tasks until it is necessary to respect timing con-
straints. As a further result, we discuss an admittance test that decides, whether a set
of energy-driven tasks can be scheduled on a sensor node without violating dead-
lines. This admittance test simultaneously shads light on the fundamental question
of how to dimension the capacity of the energy storage: Provided that the average
harvested power is sufficient for continuous operation, we are able to determine the
minimum battery capacity necessary. Furthermore, achievable capacity savings be-
tween 20% and 45% are demonstrated in a simulative study, comparing the classical
Earliest Deadline First algorithm with a variant of LSA, which uses energy variability
characterization curves EVCC as energy predictor. Finally, practical considerations
are provided that suggest practical applicability of the theoretical results.

By starting to study a single node, we believe that extensions towards multihop
networks where end-to-end deadlines have to be respected are possible. If sensors
jointly perform a common sensing task, distributed energy management solutions are
needed. An example for the common task could be redundantly deployed sensors
with overlapping coverage regions.

Acknowledgements The work presented in this paper was partially supported by the National Compe-
tence Center in Research on Mobile Information and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation under grant number 5005-67322. In addition, this
research has been founded by the European Network of Excellence ARTIST2.

References

Allavena A, Mosse D (2001) Scheduling of frame-based embedded systems with rechargeable batteries.
In: Workshop on power management for real-time and embedded systems (in conjunction with RTAS
2001)

Ammar Y, Buhrig A, Marzencki M, Charlot B, Basrour S, Matou K, Renaudin M (2005) Wireless sensor
network node with asynchronous architecture and vibration harvesting micro power generator. In:
sOc-EUSAI ’05: Proceedings of the 2005 joint conference on smart objects and ambient intelligence.
ACM, New York, pp 287–292

Barrade P, Rufer A (2003) Current capability and power density of supercapacitors: Considerations on
energy efficiency. In: European conference on power electronics and applications (EPE), Toulouse,
France, 2–4 September 2003

Baruah SK (2003) Dynamic- and static-priority scheduling of recurring real-time tasks. Real-Time Syst
24(1):93–128

Jiang X, Polastre J, Culler DE (2005) Perpetual environmentally powered sensor networks. In: Proceedings
of the fourth international symposium on information processing in sensor networks, IPSN 2005.
UCLA, Los Angeles, 25–27 April 2005, pp 463–468

Kansal A, Potter D, Srivastava MB (2004) Performance aware tasking for environmentally powered sensor
networks. In: Proceedings of the international conference on measurements and modeling of com-
puter systems, SIGMETRICS 2004. ACM, New York, 10–14 June 2004, pp 223–234

Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. In: Electrochimica
Acta 45. Elsevier, Amsterdam, pp 2483–2498

Lin L, Shroff NB, Srikant R (2005) Asymptotically optimal power-aware routing for multihop wireless
networks with renewable energy sources. In: Proceedings of IEEE INFOCOM 2005, Miami, USA,
13–17 March 2005, pp 1262–1272

Maxwell technologies, Inc. (2006) Boostcap ultracapacitor—pc series data sheet. http://www.maxwell.
com/pdf/uc/datasheets/PC_Series.pdf

Moteiv Corporation (2006) Tmote sky—ultra low power IEEE 802.15.4 compliant wireless sensor module,
datasheet. http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf



Real-Time Syst (2007) 37: 233–260 259

Moser C, Brunelli D, Thiele L, Benini L (2006a) Lazy scheduling for energy-harvesting sensor nodes.
In: Fifth working conference on distributed and parallel embedded systems, DIPES 2006, Braga,
Portugal, 11–13 October 2006, pp 125–134

Moser C, Brunelli D, Thiele L, Benini L (2006b) Real-time scheduling with regenerative energy. In Pro-
ceedings of the 18th Euromicro conference on real-time systems (ECRTS 06), Dresden, Germany,
July 2006, pp 261–270

Prabhakar B, Uysal-Biyikoglu E, Gamal AE (2001) Energy-efficient transmission over a wireless link
via lazy packet scheduling. In: INFOCOM 2001. Twentieth annual joint conference of the IEEE
computer and communications Societies. Proceedings. IEEE, Anchorage, AK, USA, April 2001,
pp 386–394

Roundy S, Steingart D, Frechette L, Wright PK, Rabaey JM (2004) Power sources for wireless sensor net-
works. In: Wireless sensor networks, first European workshop, EWSN 2004, proceedings, Germany,
19–21 January 2004. Lecture notes in computer science. Springer, Berlin, pp 1–17

Rusu C, Melhem RG, Mosse D (2003) Multi-version scheduling in rechargeable energy-aware real-time
systems. In: 15th Euromicro conference on real-time systems, ECRTS 2003, Porto, Portugal, 2–4
July 2003, pp 95–104

Stankovic J, Abdelzaher T, Lu C, Sha L, Hou J (2003) Real-time communication and coordination in
embedded sensor networks. Proc IEEE 91(7):1002–1022

Voigt T, Ritter H, Schiller J, Dunkels A, Alonso J (2004) Solar-aware clustering in wireless sensor net-
works. In: Proceedings of the ninth IEEE symposium on computers and communications, June 2004

Wandeler E, Maxiaguine A, Thiele L (2005) Quantitative characterization of event streams in analysis of
hard real-time applications. Real-Time Syst 9(2):205–225

Clemens Moser is a Ph.D. student at the Computer Engineering and Networks
Laboratory of the Swiss Federal Institute of Technology, Zurich. His research in-
terests include design, analysis and optimization of energy harvesting sensor net-
works. He studied electrical engineering and information technology at the Tech-
nical University of Munich, where he received the B.Sc. and Dipl.Ing. degree in
2003 and 2004, respectively. For his diploma thesis in 2004, he joined DoCoMo
Euro-Labs to work on topology aspects of wireless multihop networks.

Davide Brunelli is currently pursuing the PhD degree at the University of
Bologna, Italy. He received the electrical engineering degree from the Univer-
sity of Bologna, in 2002. His research interests concern design and analysis of
wireless sensor networks for ambient intelligence and ubiquitous computing, with
particular emphasis on energy scavenging techniques.

Lothar Thiele joined ETH Zurich, Switzerland, as a full Professor of Computer
Engineering, in 1994. He is leading the Computer Engineering and Networks Lab-
oratory of ETH Zurich. His research interests include models, methods and soft-
ware tools for the design of embedded systems, embedded software and bioin-
spired optimization techniques. In 1986, he received the “Dissertation Award”
of the Technical University of Munich, in 1987, the “Outstanding Young Au-
thor Award” of the IEEE Circuits and Systems Society, in 1988, the Browder J.
Thompson Memorial Award of the IEEE, and in 2000–2001, the “IBM Faculty
Partnership Award”. In 2004, he joined the German Academy of Natural Scien-
tists Leopoldina. In 2005, he was the recipient of the Honorary Blaise Pascal Chair
of University Leiden, The Netherlands.



260 Real-Time Syst (2007) 37: 233–260

Luca Benini is an Full Professor at the University of Bologna. He also holds a
visiting faculty position at the Ecole Polytecnique Federale de Lausanne (EPFL).
Dr. Benini’s research interests are in the design of systems for ambient intelli-
gence, from multi-processor systems-on-chip/networks on chip to energy-efficient
smart sensors and sensor networks. He has published more than 350 papers in
peer-reviewed international journals and conferences, three books, several book
chapters and two patents. He has been program chair and vice-chair of Design
Automation and Test in Europe Conference. He is Associate Editor of the IEEE
Transactions on Computer-Aided Design of Circuits and Systems and of the ACM
Journal on Emerging Technologies in Computing Systems. He is a Fellow of the
IEEE.


	Real-time scheduling for energy harvesting sensor nodes
	Abstract
	Introduction
	Contributions
	System model
	Energy source
	Energy storage
	Task scheduling

	Lazy scheduling algorithms LSA
	Simplified lazy scheduling
	General lazy scheduling
	Optimality of lazy scheduling

	Admittance test
	Lazy scheduling algorithm
	Comparison to EDF

	Simulation results
	Practical considerations
	Energy source predictability
	Task processing
	Energy storage model
	Charge retention
	Monitoring the stored energy
	Storage efficiency


	Related work
	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


