51 research outputs found

    When Is the Right Time to Transmit in Multi-hop White-Fi?

    Get PDF
    While Western societies are becoming increasingly connected, many developing regions lack basic Internet connectivity, primarily due to the high costs associated with infrastructure deployment and maintenance. Potential exists for the TV white-space (TVWS) wireless technology to bridge this digital divide, though efficient channel access mechanisms suited to multi-hop networks that operate in sub-gigahertz bands are yet to be developed. Using a small test bed, we demonstrate a prototype implementation of a medium access protocol that learns appropriate transmission opportunities in such settings, achieving pseudo-scheduled behaviour ex tempore and providing substantial gains over the de facto IEEE 802.11af protocol

    Deploying a containerized ns-3/LENA-based LTE mobile Network Service through the 5G-TRANSFORMER platform

    Get PDF
    This paper has been presented at: 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)This demo presents an ongoing prototype implementation of the Service Orchestrator (SO) building block of the 5G-TRANSFORMER (5GT) architecture. Within the 5GT-SO, we define the Service Manager (SM), which hosts the intelligence of the 5GT-SO and interacts with the other architectural blocks of the 5GT architecture through the defined APIs. The aim of defining the SM is to decouple the 5GT-SO implementation from the associated MANO platform, allowing the interoperability with other MANO platforms, hence increasing the scope of the 5GT solution. In this demo, we will show how the current ongoing implementation of the 5GT-SO, using the SM, is able to automate the orchestration of both computing and networking resources to deploy a virtualized mobile network service based on ns-3/LENA network simulator/emulator in minutes over an emulated environment consisting of a multi-point of presence infrastructure connected by a custom transport network.This work was supported by the 5G-TRANSFORMER project (H2020-761536), by MINECO grant TEC2017-88373-R (5G-REFINE) and Generalitat de Catalunya grant 2017 SGR 1195

    Optimal user association, backhaul routing and switching off in 5G heterogeneous networks with mesh millimeter wave backhaul links

    Get PDF
    Next generation, i.e., fifth generation (5G), cellular networks will provide a significant higher capacity per area to support the ever-increasing traffic demands. In order to achieve that, many small cells need to be deployed that are connected using a combination of optical fiber links and millimeter-wave (mmWave) backhaul architecture to forward heterogeneous traffic over mesh topologies. In this paper, we present a general optimization framework for the design of policies that optimally solve the problem of where to associate a user, over which links to route its traffic towards which mesh gateway, and which base stations and backhaul links to switch o¿ in order to minimize the energy cost for the network operator and still satisfy the user demands. We develop an optimal policy based on mixed integer linear programming (MILP) which considers different user distribution and traffic demands over multiple time periods. We develop also a fast iterative two-phase solution heuristic, which associates users and calculates backhaul routes to maximize energy savings. Our strategies optimize the backhaul network configuration at each timeslot based on the current demands and user locations. We discuss the application of our policies to backhaul management of mmWave cellular networks in light of current trend of network softwarization (Software-Defined Networking, SDN). Finally, we present extensive numerical simulations of our proposed policies, which show how the algorithms can efficiently trade-off energy consumption with required capacity, while satisfying flow demand requirements.Postprint (author's final draft

    On the use of 3D camera to accurately measure volume and weight of dairy cow feed

    Get PDF
    The paper discusses the challenges facing the dairy industry due to increased farm sizes and reduced staff-to-animal ratios, which are impacting animal welfare. The development of precision livestock farming (PLF) technologies has gained momentum to address these challenges. PLF technologies can assess animal welfare and health status by monitoring animal behavior and biological changes, and alerting farmers of any issues. However, the applicability of PLF tools in other productive phases of the dairy cattle is still limited. The article focuses on the challenges of managing unweaned dairy calves, particularly the variability in relation to when calves start consuming solid feed, and how PLF technologies can be used to monitor individual calf intake and manage weaning at the individual level. The attention is mainly focused on the advantages of using automated feeders for unweaned dairy calves, including labor savings, greater precision in measurement and control of individual intake of liquid and solid feed, and higher preweaning growth rates. In particular, a method is proposed, involving a 3D depth camera and a proper algorithm to measure the volume and weight of eaten feed. The method is preliminarily assessed in tests conducted in laboratory, which highlight a remarkable concurrence (differences as low as 2 %) with respect to nominal values

    Wireless Interface Agent for SDN mmwave multi-hop networks: design and experimental evaluation

    Get PDF
    2nd ACM Workshop on Millimeter Wave Networks and Sensing Systems (mmNets)Millimeter wave (mmwave) communications will likely be an enabler for 5G due to its multi-gigabit per second throughput capabilities. Furthermore,mmWave communications will have to be integrated in a new redesigned network required by 5G to fulfill its ambitious targets. In this paper, we present the design and implementation of a management agent for wireless devices deployed in a heterogeneous SDN wireless multi-hop research platform featuring mmwave communications for crosshauling (backhaul and fronthaul) purposes. The performance of the deployed mmwave network, based on the IEEE 802.11ad standard, is measured employing this agent. We measure the downtime in the presence of link up/down events, with obtained response times in the order of 10s-to-100s of milliseconds depending on the case. Furthermore, the TCP performance over the multi-hop 802.11ad mmwave network is also experimentally evaluated. In fact, TCP throughput up to around 800Mbps are obtained for single and multi-hop scenarios despite neighboring links using the same channel. Finally, one can also observe the impact of MTU size on TCP throughput, which may hinder the full exploitation of the mmWave link capacity when combined with other transport technologies, since the advantages of big MTUs (much bigger than the typical 1500 bytes) offered by mmwave devices may not be reaped.Thiswork was supported by MINECO grants TEC2017-88373-R (5G-REFINE), Generalitat de Catalunya grant 2017 SGR 1195, and by the 5G-TRANSFORMER project (H2020-761536)

    A Study on Sanctuary and Seclusion Issues in Internet-of-Things

    Get PDF
    Internet-of-Things (IoT) are everywhere in our daily life. They are used in our homes, in hospitals, deployed outside to control and report the changes in environment, prevent fires, and many more beneficial functionality. However, all those benefits can come of huge risks of seclusion loss and sanctuary issues. To secure the IoT devices, many research works have been con-ducted to countermeasure those problems and find a better way to eliminate those risks, or at least minimize their effects on the user�s seclusion and sanctuary requirements. The study consists of four segments. The first segment will explore the most relevant limitations of IoT devices and their solutions. The second one will present the classification of IoT attacks. The next segment will focus on the mechanisms and architectures for authentication and access control. The last segment will analyze the sanctuary issues in different layers

    WiSHFUL : enabling coordination solutions for managing heterogeneous wireless networks

    Get PDF
    The paradigm shift toward the Internet of Things results in an increasing number of wireless applications being deployed. Since many of these applications contend for the same physical medium (i.e., the unlicensed ISM bands), there is a clear need for beyond-state-of-the-art solutions that coordinate medium access across heterogeneous wireless networks. Such solutions demand fine-grained control of each device and technology, which currently requires a substantial amount of effort given that the control APIs are different on each hardware platform, technology, and operating system. In this article an open architecture is proposed that overcomes this hurdle by providing unified programming interfaces (UPIs) for monitoring and controlling heterogeneous devices and wireless networks. The UPIs enable creation and testing of advanced coordination solutions while minimizing the complexity and implementation overhead. The availability of such interfaces is also crucial for the realization of emerging software-defined networking approaches for heterogeneous wireless networks. To illustrate the use of UPIs, a showcase is presented that simultaneously changes the MAC behavior of multiple wireless technologies in order to mitigate cross-technology interference taking advantage of the enhanced monitoring and control functionality. An open source implementation of the UPIs is available for wireless researchers and developers. It currently supports multiple widely used technologies (IEEE 802.11, IEEE 802.15.4, LTE), operating systems (Linux, Windows, Contiki), and radio platforms (Atheros, Broadcom, CC2520, Xylink Zynq,), as well as advanced reconfigurable radio systems (IRIS, GNURadio, WMP, TAISC)
    • …
    corecore