727 research outputs found

    Sex Differential in 15-Hydroxyprostaglandin Dehydrogenase Levels in the Lumen of Human Intracranial Aneurysms.

    Get PDF
    BACKGROUND: Aspirin is a promising medical therapy for the prevention of intracranial aneurysm (IA) rupture. Recently, we found that men have a better response to aspirin than women. The purpose of this study was to determine whether a sex differential exists in the level of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in the lumen of human IAs. METHODS AND RESULTS: Consecutive patients undergoing coiling or stent-assisted coiling for a saccular IA at our institution were enrolled. Two samples (A and B) were collected from IA lumens, and the plasma level of 15-PGDH was measured using an ELISA-based method. The study included 38 patients, with 20 women and 18 men. Women and men were comparable on baseline characteristics. The mean plasma concentration of 15-PGDH did not differ statistically between sample A (62.8Ā±16.2 ng/mL) and sample B (61.8Ā±17.9 ng/mL; 95% confidence interval -6.6 to 9.4). The mean plasma concentration of 15-PGDH in IA lumens of samples A and B was significantly higher in men (73.8Ā±13.5 ng/mL) than women (49.6Ā±7.8 ng/mL; P\u3c0.0001). CONCLUSIONS: Higher enzyme levels of 15-PGDH exist in the lumen of IAs of men compared with women. This observation could explain why aspirin confers better protection against IA rupture in men than in women. The susceptibility of an individual to aspirin may differ according to the level of 15-PGDH

    Compositions and Methods of Modulating 15-PGDH Activity

    Get PDF
    Compounds and methods of modulating 15-PGDH activity, modulating tissue prostaglandin levels, treating disease, diseases disorders, or conditions in which it is desired to modulate 15-PGDH activity and/or prostaglandin levels include 15-PGDH inhibitors and 15-PGDH activators described herein

    Curcumin induces expression of 15-hydroxyprostaglandin dehydrogenase in gastric mucosal cells and mouse stomach in vivo: AP-1 as a potential target

    Get PDF
    15-Hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the conversion of oncogenic prostaglandin E-2 to non-tumerigenic 15-keto prostaglandin E-2. In the present study, we found that curcumin, a yellow coloring agent present in the rhizome of Curcuma Tonga Linn (Zingiberaceae), induced expression of 15-PGDH at the both transcriptional and translational levels in normal rat gastric mucosal cells. By using deletion constructs of 15-PGDH promoter, we were able to demonstrate that activator protein-1 (AP-1) is the principal transcription factor responsible for regulating curcumin-induced 15-PGDH expression. Curcumin enhanced the expression of c-jun and cFos that are functional subunits of AP-1, in the nuclear fraction of cells. Silencing of c-jun suppressed curcumin-induced expression of 15-PGDH. Moreover, the chromatin immunoprecipitation assay revealed curcumin-induced binding of c-Jun to the AP-1 consensus sequence present in the 15-PGDH promoter. Curaimin increased phosphorylation of ERK1/2 and JNK. and pharmacologic inhibition of these kinases abrogated the curcumin-induced phosphorylation of clun and 15-PGDH expression. In contrast, tetrahydrocurcumin which lacks the alpha,beta-unsaturated carbonyl group failed to induce 15-PGDH expression, suggesting that the electrophilic carbonyl group of curcumin is essential for its induction of 15-PGDH expression. Curcumin restored the expression of 15-PGDH which is down-regulated by Helicobater pylori through suppression of DNA methyltransferase 1. In addition, oral administration of curcumin increased the expression of 15-PGDH and its regulators such as p-ERK1/2, p-JNK and c-Jun in the mouse stomach. Taken together, these findings suggest that curcumin-induced upregulation of 15-PGDH may contribute to chemopreventive effects of this phytochemical on inflammation-associated gastric carcinogenesis. (C) 2020 Elsevier Inc. All rights reserved.

    Compositions and Methods of Modulating 15-PGDH Activity

    Get PDF
    Compounds and methods of modulating 15-PGDH activity, modulating tissue prostaglandin levels, treating disease, diseases disorders, or conditions in which it is desired to modulate 15-PGDH activity and/or prostaglandin levels include 15-PGDH inhibitors and 15-PGDH activators described herein

    Regional differences in prostaglandin Eā‚‚ metabolism in human colorectal cancer liver metastases

    Get PDF
    Background: Prostaglandin (PG) Eā‚‚ plays a critical role in colorectal cancer (CRC) progression, including epithelial-mesenchymal transition (EMT). Activity of the rate-limiting enzyme for PGEā‚‚ catabolism (15-hydroxyprostaglandin dehydrogenase [15-PGDH]) is dependent on availability of NAD+. We tested the hypothesis that there is intra-tumoral variability in PGEā‚‚ content, as well as in levels and activity of 15-PGDH, in human CRC liver metastases (CRCLM). To understand possible underlying mechanisms, we investigated the relationship between hypoxia, 15-PGDH and PGEā‚‚ in human CRC cells in vitro. Methods: Tissue from the periphery and centre of 20 human CRCLM was analysed for PGEā‚‚ levels, 15-PGDH and cyclooxygenase (COX)-2 expression, 15-PGDH activity, and NAD+/NADH levels. EMT of LIM1863 human CRC cells was induced by transforming growth factor (TGF) Ī². Results: PGEā‚‚ levels were significantly higher in the centre of CRCLM compared with peripheral tissue (P = 0.04). There were increased levels of 15-PGDH protein in the centre of CRCLM associated with reduced 15-PGDH activity and low NAD+/NADH levels. There was no significant heterogeneity in COX-2 protein expression. NAD+ availability controlled 15-PGDH activity in human CRC cells in vitro. Hypoxia induced 15-PGDH expression in human CRC cells and promoted EMT, in a similar manner to PGEā‚‚. Combined 15-PGDH expression and loss of membranous E-cadherin (EMT biomarker) were present in the centre of human CRCLM in vivo.Conclusions: There is significant intra-tumoral heterogeneity in PGEā‚‚ content, 15-PGDH activity and NAD+ availability in human CRCLM. Tumour micro-environment (including hypoxia)-driven differences in PGEā‚‚ metabolism should be targeted for novel treatment of advanced CRC

    Small Molecule Inhibitors of 15-PGDH Exploit a Physiologic Induced-Fit Closing System

    Get PDF
    15-prostaglandin dehydrogenase (15-PGDH) is a negative regulator of tissue stem cells that acts via enzymatic activity of oxidizing and degrading PGE2, and related eicosanoids, that support stem cells during tissue repair. Indeed, inhibiting 15-PGDH markedly accelerates tissue repair in multiple organs. Here we have used cryo-electron microscopy to solve the solution structure of native 15-PGDH and of 15-PGDH individually complexed with two distinct chemical inhibitors. These structures identify key 15-PGDH residues that mediate binding to both classes of inhibitors. Moreover, we identify a dynamic 15-PGDH lid domain that closes around the inhibitors, and that is likely fundamental to the physiologic 15-PGDH enzymatic mechanism. We furthermore identify two key residues, F185 and Y217, that act as hinges to regulate lid closing, and which both inhibitors exploit to capture the lid in the closed conformation, thus explaining their sub-nanomolar binding affinities. These findings provide the basis for further development of 15-PGDH targeted drugs as therapeutics for regenerative medicine

    miR-21-mediated regulation of 15-hydroxyprostaglandin dehydrogenase in colon cancer

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Elevated prostaglandin E2 (PGE2) levels are observed in colorectal cancer (CRC) patients, and this increase is associated with poor prognosis. Increased synthesis of PGE2 in CRC has been shown to occur through COX-2-dependent mechanisms; however, loss of the PGE2-catabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (15-PGDH, HPGD), in colonic tumors contributes to increased prostaglandin levels and poor patient survival. While loss of 15-PGDH can occur through transcriptional mechanisms, we demonstrate that 15-PGDH can be additionally regulated by a miRNA-mediated mechanism. We show that 15-PGDH and miR-21 are inversely correlated in CRC patients, with increased miR-21 levels associating with low 15-PGDH expression. 15-PGDH can be directly regulated by miR-21 through distinct sites in its 3ā€² untranslated region (3ā€²UTR), and miR-21 expression in CRC cells attenuates 15-PGDH and promotes increased PGE2 levels. Additionally, epithelial growth factor (EGF) signaling suppresses 15-PGDH expression while simultaneously enhancing miR-21 levels. miR-21 inhibition represses CRC cell proliferation, which is enhanced with EGF receptor (EGFR) inhibition. These findings present a novel regulatory mechanism of 15-PGDH by miR-21, and how dysregulated expression of miR-21 may contribute to loss of 15-PGDH expression and promote CRC progression via increased accumulation of PGE2.NIH R01 CA134609NIH R01 AR069044NIH/NCI Cancer Center Support Grant (P30 CA168524)New Jersey Commission on Cancer ResearchAmerican Heart Association (15GRNT23240019

    Decreased Expression of 15-hydroxyprostaglandin Dehydrogenase in Gastric Carcinomas

    Get PDF
    prostaglandin E2 (PGE2) when compared to non-neoplastic mucosa, and cyclooxygenase-2 (COX-2), which is the ratelimiting enzyme in prostaglandin (PG) biosynthesis, is often overexpressed in gastric carcinomas and during gastric carcinogenesis. However, little is known about the expression of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), the key enzyme responsible for the biological inactivation of PG, in gastric carcinomas. Materials and Methods: We investigated the expression of 15-PGDH in 28 cases of advanced gastric carcinomas by Western blot analysis and also the relation between its expression and the gene promoter methylation. Results: 15-PGDH expression was significantly decreased in gastric carcinomas compared to corresponding non-neoplastic tissues and inversely correlated with the expression of proliferating cell nuclear antigen in gastric carcinomas. However, there was no correlation between 15-PGDH expression and pathological findings such as nodal metastasis and vascular invasion. Promoter hypermethylation of 15-PGDH gene was not detected in carcinomas, with only a negligible expression of the enzyme. Conclusion: Our results suggested that 15-PGDH has tumor suppressor activity in gastric carcinomas. Key Words: 15-hydroxyprostaglandin dehydrogenase, gastric carcinoma, methylatio

    Expression and cellular localization of 15-hydroxy-prostaglandin-dehydrogenase in abdominal aortic aneurysm

    Get PDF
    PGE2 has been implicated in abdominal aortic aneurysm (AAA) associated hypervascularization. PGE2-metabolism involves 15-hydroxyprostaglandin-dehydrogenase (15-PGDH) the expression of which in AAA is unknown. The aim of this study was to examine the expression and cell distribution of 15-PGDH in AAA. Here, we show that 15-PGDH mRNA levels were significantly higher in aorta samples from patients undergoing AAA repair than in those from healthy multiorgan donors. Consequently, the ratio of metabolized PGE2 secreted by aortic samples was significantly higher in AAA. AAA production of total PGE2 and PGE2 metabolites correlated positively with PGI2 production, while the percentage of metabolized PGE2 correlated negatively with the total amount of PGE2 and with PGI2. Transcript levels of 15-PGDH were statistically associated with leukocyte markers but did not correlate with microvascular endothelial cell markers. Immunohistochemistry revealed 15-PGDH in the areas of leukocyte infiltration in AAA samples, mainly associated with CD45-positive cells, but not in normal aorta samples. We provide new data concerning 15-PGDH expression in human AAA, showing that 15-PGDH is upregulated in AAA and mainly expressed in infiltrating leukocytes. Our data suggest that microvasculature was not involved in PGE2 catabolism, reinforcing the potential role of microvasculature derived PGE2 in AAA-associated hypervascularization.This work was supported by grants SAF2010-21392 (LV), SAF2013-46707-R (LV, MC), SAF2012-40127 (JM-G) from the Spanish Ministry of Economy and Competiveness, PI12/01952 (CR) and Red de InvestigaciĆ³n Cardiovascular RD12/0042/0051 (LV) and RD12/0042/0053 (JM-G) from the Instituto de Salud Carlos III. The study was cofunded by Fondo Europeo de Desarrollo Regional (FEDER), a way to make Europe. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer Reviewe

    Synthetic Triterpenoid Induces 15-PGDH Expression and Suppresses Inflammation-Driven Colon Carcinogenesis

    Get PDF
    Colitis-associated colon cancer (CAC) develops as a result of inflammation-induced epithelial transformation, which occurs in response to inflammatory cytokine-dependent downregulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and subsequent suppression of prostaglandin metabolism. Agents that both enhance 15-PGDH expression and suppress cyclooxygenase-2 (COX-2) production may more effectively prevent CAC. Synthetic triterpenoids are a class of small molecules that suppress COX-2 as well as inflammatory cytokine signaling. Here, we found that administration of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-C28-methyl ester (CDDO-Me) suppresses CAC in mice. In a spontaneous, inflammation-driven intestinal neoplasia model, deletion of Smad4 specifically in T cells led to progressive production of inflammatory cytokines, including TNF-Ī±, IFN-Ī³, iNOS, IL-6, IL-1Ī²; as well as activation of STAT1 and STAT3; along with suppression of 15-PGDH expression. Oral administration of CDDO-Me to mice with SMAD4-deficient T cells increased survival and suppressed intestinal epithelial neoplasia by decreasing production of inflammatory mediators and increasing expression of 15-PGDH. Induction of 15-PGDH by CDDO-Me was dose dependent in epithelial cells and was abrogated following treatment with TGF-Ī² signaling inhibitors in vitro. Furthermore, CDDO-Meā€“dependent 15-PGDH induction was not observed in Smad3ā€“/ā€“ mice. Similarly, CDDO-Me suppressed azoxymethane plus dextran sodium sulfateā€“induced carcinogenesis in wild-type animals, highlighting the potential of small molecules of the triterpenoid family as effective agents for the chemoprevention of CAC in humans
    • ā€¦
    corecore