50 research outputs found

    Distributed algorithms for shape sculpting of lattice-arrayed modular robots via hole motion

    Get PDF
    A self-reconfigurable modular robot can change its own shape by rearranging the connectivity of the modules of which it is composed. In this paper, we focus on a two-dimensional lattice-arrayed self-reconfigurable modular robotic system. Each module can move to a neighboring lattice under certain motion constraints, communicate with its neighbors and act upon local knowledge only. A scalable shape sculpting algorithm based on the manipulation of regularly shaped voids within the lattice (“holes”) is given. We present detailed solutions to the conflict test and settlement problem encountered when applying this algorithm, and make improvement on the efficiency of shape sculpting. We believe that the algorithm can potentially generalize to 3D and scale to handle millions of modules.published_or_final_versio

    Research of the aerodynamic parameter estimation for the small unmanned aerial vehicle

    No full text
    Conference Name:2013 10th IEEE International Conference on Control and Automation, ICCA 2013. Conference Address: Hangzhou, China. Time:June 12, 2013 - June 14, 2013.Aircraft parameter estimation is an important problem in aircraft dynamics and control. As standard methods for aircraft parameter estimation, output-error method and equation-error method in the frequency domain are described and examined. The analysis was based on flight data. It was found that the output-error and equation-error method in frequency domain are in statistical agreement. By comparison, the equation-error method has excellent prediction capability similar to the output-error method. ? 2013 IEEE

    Fuzzy-PID controller for an energy efficient personal vehicle: Two-wheel electric skateboard

    Get PDF
    The two-wheeled electric skateboard (TWS) is designed for a personal vehicle. A Fuzzy-PID control strategy is designed and implemented for controlling its motion. Basically, motions control of the TWS is performed by balancing the pitch position of the TWS. Performance of the designed controller is demonstrated experimentally. The Fuzzy algorithm updates the PID gains and therefore it can handle the changing of the TWS load. Contribution of Fuzzy-PID in reducing the electric energy consumption, which is an important issue in electrical system, is also evaluated. The Fuzzy-PID successes to reduce the electric energy consumption of the TWS compared to the conventional PID

    Design criteria for Indoor Positioning Systems in hospitals using technological, organizational and individual perspectives

    Get PDF
    This dissertation considers three different studies that handle Indoor Positioning Systems (IPS) in hospitals. Study 1 uses the Reasoned Action Approach by questioning hospital visitors and employees about their intention to use IPS in hospitals. Study 2 reviews IPS in hospitals. Study 3 is based on the results of the first two studies. It handles expert interviews that were conducted with different hospitals and IPS developers to evaluate the determined propositions. Then, the insights were used to conduct and evaluate experiments by testing an ultrasound-based IPS for hospitals

    A Novel Technique for Task Re-Allocation in Distributed Computing System

    Get PDF
    A distributed computing is software system in which components are located on different attached computers can communicate and organize their actions by transferring messages. A task applied on the distributed system must be reliable and feasible. The distributed system for instance grid networks, robotics, air traffic control systems, etc. exceedingly depends on time. If not detected accurately and recovered at the proper time, a single error in real time distributed system can cause a whole system failure. Fault-tolerance is the key method which is mostly used to provide continuous reliability in these systems. There are some challenges in distributed computing system such as resource sharing, transparency, dependability, Complex mappings, concurrency, Fault tolerance etc. In this paper, we focus on fault tolerance which is responsible for the degradation of the system. A novel technique is proposed based upon reliability to overcome fault tolerance problem and re-allocate the task. DOI: 10.17762/ijritcc2321-8169.15080

    Consensus Problem of High-Order Multiagent Systems with Time Delays

    Get PDF
    In this paper, we consider the consensus problem of high-order multiagent systems on both fixed and switching interaction topologies with time delays. A neighbor-based protocol is presented, under which we prove that the state errors converge to zero asymptotically if there is a solution to a given Riccati inequality. The proof of our theorem is shown in time domain based on a Lyapunov approach. A numerical example is introduced to indicate the correctness of our analysis

    SAgric-IoT: an IoT-based platform and deep learning for greenhouse monitoring

    Get PDF
    The Internet of Things (IoT) and convolutional neural networks (CNN) integration is a growing topic of interest for researchers as a technology that will contribute to transforming agriculture. IoT will enable farmers to decide and act based on data collected from sensor nodes regarding field conditions and not purely based on experience, thus minimizing the wastage of supplies (seeds, water, pesticide, and fumigants). On the other hand, CNN complements monitoring systems with tasks such as the early detection of crop diseases or predicting the number of consumable resources and supplies (water, fertilizers) needed to increase productivity. This paper proposes SAgric-IoT, a technology platform based on IoT and CNN for precision agriculture, to monitor environmental and physical variables and provide early disease detection while automatically controlling the irrigation and fertilization in greenhouses. The results show SAgric-IoT is a reliable IoT platform with a low packet loss level that considerably reduces energy consumption and has a disease identification detection accuracy and classification process of over 90%

    Active vibration control of flexible beam incorporating recursive least square and neural network algorithms

    Get PDF
    In recent years, active vibration control (AVC) has emerged as an important area of scient ific study especially for vibrat ion suppression of flexible structures. Flexible structures offer great advantages in contrast to the conventional structures, but necessary action must be taken for cancelling the unwanted vibration. In this research, a simulation algorithm represent ing flexible beam with specific condit ions was derived from Euler Bernoulli beam theory. The proposed finite difference (FD) algorithm was developed in such way that it allows the disturbance excitat ion at various points. The predicted resonance frequencies were recorded and validated with theoretical and experimental values. Subsequent ly, flexible beam test rig was developed for collecting data to be used in system ident ificat ion (SI) and controller development. The experimental rig was also utilised for implementation and validat ion of controllers. In this research, parametric and nonparametric SI approaches were used for characterising the dynamic behaviour of a lightweight flexible beam using input - output data collected experimentally. Tradit ional recursive least square (RLS) method and several artificial neural network (ANN) architectures were utilised in emulat ing this highly nonlinear dynamic system here. Once the model of the system was obtained, it was validated through a number of validation tests and compared in terms of their performance in represent ing a real beam. Next, the development of several convent ional and intelligent control schemes with collocated and non-collocated actuator sensor configurat ion for flexible beam vibrat ion attenuation was carried out. The invest igat ion involves design of convent ional proportional-integral-derivat ive (PID) based, Inverse recursive least square active vibrat ion control (RLS-AVC), Inverse neuro active vibration control (Neuro-AVC), Inverse RLS-AVC with gain and Inverse Neuro-AVC with gain controllers. All the developed controllers were tested, verified and validated experimentally. A comprehensive comparat ive performance to highlight the advantages and drawbacks of each technique was invest igated analyt ically and experimentally. Experimental results obtained revealed the superiorit y of Inverse RLS-AVC with gain controller over convent ional method in reducing the crucial modes of vibration of flexible beam structure. Vibration attenuation achieved using proportional (P), proportional-integral (PI), Inverse RLS-AVC, Inverse Neuro- AVC, Inverse RLS-AVC with gain and Inverse Neuro-AVC with gain control strategies are 9.840 dB, 6.840 dB, 9.380 dB, 8.590 dB, 17.240 dB and 5.770 dB, respectively
    corecore