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Abstract: The Internet of Things (IoT) and convolutional neural networks (CNN) integration is
a growing topic of interest for researchers as a technology that will contribute to transforming
agriculture. IoT will enable farmers to decide and act based on data collected from sensor nodes
regarding field conditions and not purely based on experience, thus minimizing the wastage of
supplies (seeds, water, pesticide, and fumigants). On the other hand, CNN complements monitoring
systems with tasks such as the early detection of crop diseases or predicting the number of consumable
resources and supplies (water, fertilizers) needed to increase productivity. This paper proposes SAgric-
IoT, a technology platform based on IoT and CNN for precision agriculture, to monitor environmental
and physical variables and provide early disease detection while automatically controlling the
irrigation and fertilization in greenhouses. The results show SAgric-IoT is a reliable IoT platform with
a low packet loss level that considerably reduces energy consumption and has a disease identification
detection accuracy and classification process of over 90%.

Keywords: convolutional neural networks; plant disease; precision agriculture; precision farming;
internet of things; wireless sensor networks; IEEE 802.15.4

1. Introduction

As the world population increases uncontrollably, two critical resources are becoming
a severe problem: water and food. The technical report published in [1] estimates that
the world population will reach 9.15 billion in 2050. This trend motivates a growing food
production to accommodate the large global population with the consequent limitation
in farmlands and a decreasing number of farmers as fewer people are willing to work in
farming. For example, a Virginia winery applied to hire foreign workers to pick grapes
after the company could not find American citizens who wanted the job [2].

Agriculture provides the required food but consumes most of the Earth’s available
fresh water. In Europe, the agricultural sector consumes a third of the total water supplies,
affecting the quantity and quality of open water for other uses [3]. In Mexico, 75.72% of
water is used in agriculture [4]. For example, about 240 gallons of water are required to
produce a loaf of bread, and a pound of cheese takes about 382 gallons. So, a simple cheese
sandwich takes about 56 gallons of water [5].

Several governments have made investing in the agricultural sector a priority. In
Mexico, the Federal Government defined agricultural technification as a goal of 520 thou-
sand hectares, representing 10 percent of the ground with irrigation systems [6]. In a
global world, it is critical to efficiently monitor crops to significantly increase production
and rationalize the use of consumables, materials, and supplies, as well as regulate, more
precisely, the crop needs regarding irrigation water, fertilizers, fumigants, and pesticides.
Preserving the water is an essential factor that considerably affects agriculture and requires
the development of automated mechanisms to use it efficiently. Fertilizers, fumigants, and
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pesticides help grow vital crops and produce better harvests. However, when misused,
they could be detrimental to plants and render them inedible for human consumption. The
use of technology will improve the proper use of resources applied to agriculture. The
purpose of applying technology is to improve labor and land yields while optimizing the
use of resources. However, agriculture automation is complex, as several problems must
be solved. Applying technology to automate the agricultural environment will demand
more technically savvy farmers who can manage data. That is why it is necessary to
modernize the process and train the farmer to develop his technological skills. That is why
it is necessary to generate simple mechanisms that thoroughly explain the data obtained.
However, the system must be considered an assistant adapted to the needs and knowledge
of the farmer.

Agricultural production can be affected by different circumstances, such as plant
diseases and pests, which, according to the FAO, are responsible for 20 to 40% of production
losses [7].

However, manually monitoring all supplies, soil variables, environmental conditions,
and crop health is a challenge that demands a lot of effort. An easy way to monitor and
gather ecological information over long periods is required [8]. Therefore, the development
and deployment of new technological solutions and methods to improve and automatize
water use and detect crop diseases, considering not only the experience of farmers but also
soil conditions and characteristics, types of plants, and climatic information, are needed.

Technology in agriculture evolved into the precision agriculture concept, which focuses
on ensuring that the crops and soil perform optimally. Precision agriculture provides
profitability, sustainability, and environmental protection [9] based on field information
such as temperature, humidity, wind speed and direction, and pH level, among others.
Farmers can make informed decisions about consumable resources and supplies (water,
fertilizers, and pesticides) to maximize crop yield and protect the environment and their
product consumers using precision agriculture. In [10], authors defined three essential
tasks for precision control of the production environment: (I) monitoring parameters that
influence the product yield and quality, (II) performing an in-depth analysis of collected
data for making decisions, and (III) applying the best actions and mechanisms based on
those decisions.

Several technology-based solutions for gathering and processing information (such
as [11–15]) to support agriculture, facilitate decision making, and enhance productivity
have been proposed in the literature. Moreover, recent advances in electronic technology
enabled the creation of new, smaller, and cheaper devices for gathering environmental data
to support ubiquitous computing, ad-hoc and sensor networks, cloud computing, and the
Internet of Things [10,16].

IoT helps cultivate the soil using cheap, easy-to-install devices to increase farm produc-
tions to meet the world’s food demands based on precision agriculture [17–19], intelligent
irrigation control [20–22], and greenhouse monitoring [23–25]. This technology can be
applied in open and closed spaces to optimize consumables and supplies (fertilizers, pesti-
cides, soil, and water) by setting automated alarms and threshold values for each resource.
Suppose one collected data is out of the threshold value. In that case, a warning will
be triggered, thus detecting problems affecting production and reducing the excessive
consumption of supplies shortage risk.

On the other hand, plant monitoring is imperative to detect diseases early and imple-
ment mechanisms to prevent their spread and production losses [26]. Traditional methods
focus on either I) expert visual estimation or II) laboratory studies [27]. The first method is
subjective and therefore has low accuracy. The second method identifies morphological
characteristics to detect the disease. The main problem with these methods is that they
are expensive, time consuming to process, and their detection efficiency is low. In recent
years, plant disease detection automatization has integrated technologies such as image
processing [28,29], pattern recognition [30,31], and computer vision [32,33].
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This paper presents SAgric-IoT, a technology platform based on IoT and CNN for
monitoring physical variables and plant disease detection for precision farming. The plat-
form uses communication algorithms for data monitoring and analysis for precision control
of the production environment. In addition, it uses convolutional neural networks for plant
disease identification and classification. We aim to develop a robust, low-maintenance,
and low-cost IoT platform to control and optimize crop production. The remaining paper
sections are as follows. Section 2 reviews IoT and precision agriculture. Section 3 describes
the proposed technological platform in detail. Section 4 explains the system evaluation,
describes the scenario, assessment, and results obtained from a small-scale network, and
Section 5 summarizes our work and proposes future research.

2. Related Work

IoT has had a strong impetus in the last few years. In the literature, several works pro-
pose IoT architectures and platforms suited for applications such as agriculture [19,34,35],
traffic control [36–38], smart cities [39–41], education [42–44], marine environments [45–47],
and health care [48–52].

Technology and IoT-based agricultural applications for control and automatization
of physical variables monitoring (such as soil temperature and moisture, leaf wetness) for
precision agriculture have been published in the literature [53–58]. The results obtained
in this work were the nodes’ design, the simple node interconnection architectures based
on IoT or wireless sensor networks design, and a combination to create a communication
network of nodes for crop monitoring. Other IoT-based platforms control water consump-
tion using cellular technologies and cloud services [59–61]. However, the main problem of
these works is that they only show prototype nodes that control or monitor water usage
but only evaluate their performance without showing concrete results.

In [62], the authors present a collaboration between process control and remote sensors.
However, the authors did not explain the data acquisition and delivery process from differ-
ent sources (sensors, actuators, coordinators). Most of these applications use proprietary
systems to generate and process vast amounts of data, sometimes only at the research
level [63]. The main problem with these works is that they only remain in architecture
proposals without developing prototype nodes to test in real scenarios. Authors in [64,65]
focused on minimizing production risk using wireless sensor networks for real-time mon-
itoring and studying the inter-temporal environmental variability. Their results showed
the importance of measuring and recording inter-temporal conditions that contribute to
making decisions that improve productivity in agriculture, reinforcing the rationale for how
IoT technology contributes to and facilitates the data collection process. In [66,67], authors
studied the effects of energy balance in greenhouse production and the optimization of
energy consumption in grape production to increase energy efficiency. The results show an
improvement of up to 31% in energy consumption in greenhouses compared to those that
do not use IoT technologies. In reference [68], the authors argue that cleaner crop produc-
tion procedures would improve energy efficiency in agriculture. However, authors in [69]
argued that technology is not the unique factor influencing modern agriculture. The key to
a smooth transition toward sustainable agriculture requires the collaboration of technology,
farmers, industries, financial institutions, and policy and decision-makers, among others.
This collaboration would resolve conflicts and reduce deficiencies to promote sustainable
development [70].

For disease detection, convolutional neural networks have become one of the most
widely used tools for this activity [71–74]. In [75], CNNs have been combined with learning
vector quantization (LVQ) to detect and classify tomato leaf diseases. In another work, the
authors combined four CNN models (Inception, Resnet, Inception Resnet, and Densenet)
for plant disease detection, achieving an accuracy of 87% [76]. Other authors have focused
on creating real-time models for rapidly detecting plant diseases [77–80] and evaluated
the performance of models such as LeNet, VGG16, ResNet, and Xception in plant disease
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detection, obtaining accuracy levels of around 95%. Finally, some authors have proposed
their models, getting results with accuracy levels of up to 98% [81–84].

3. SAgric-IoT Platform Description

SAgric-IoT is an easy-to-deploy, use, maintain, and upgrade platform for monitoring
and controlling IoT for agricultural production. SAgric-IoT is based on low-cost and low-
powered components which would be adapted to the farmer’s requirements. SAgric-IoT is
focused on monitoring, data gathering, data processing, and data analysis to improve the
efficiency of open and closed fields, reducing human interactions and rationalizing the use
of water and other resources.

In this section, we first describe the general scenario used in SAgric-IoT. Next, we
provide a review of the logical architecture of SAgric-IoT. Then, we explain in detail the
designed hardware for our platform. We describe the dissemination protocol used in
SAgric-IoT. Finally, we describe the convolutional neural network model implemented for
plant disease detection.

3.1. General Scenario

Figure 1 shows the IoT on-site scenario for the SAgric-IoT platform. The architecture
consists of four main nodes: the sensor nodes, the camera nodes, the gateway node, and the
processing and storage node. Sensor nodes gather data from all sensors and periodically
send it to the gateway node via other sensor nodes or directly, depending on the node’s
distance from the gateway node. They are deployed on the greenhouses and establish
a wireless network (based on 802.15.4) to communicate among themselves using radio-
frequency links. The camera nodes send the images via Wi-Fi to the gateway node, where
the trained CNN model for plant disease detection is stored. When the model identifies a
possible disease situation in the crop area, a notification indicates the camera’s location and
the detection image. A gateway node is also deployed along with the sensor nodes to enable
a connection between the SAgric-IoT platform and the Internet (cloud server). The gateway
node supports three communication interfaces: ZigBee to maintain communication with
the sensor nodes, Wi-Fi to connect to the camera nodes, and a cellular interface to transmit
data to the storage and processing node. A farmer has remote access to the gathering data
to know the greenhouse conditions and control the different sensor and actuator devices
and alert notifications when the CNN model detects a crop health problem situation. The
gateway node includes a cellular network interface to transmit all gathered data to the
cloud server. A web and mobile application were created as a cloud service to consult data
information, receive alert notifications, and decide about control systems.

Figure 1. General scenario for SAgric-IoT.
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3.2. Layered IoT Architecture

The SAgric-IoT design complies with the remote monitoring needs, contributing
to reducing human resource investment. SAgric-IoT defines a five-layered model (as
shown in Figure 2) with a transparent interconnection of all platform components and data
dissemination in the agriculture precision area. The defined architecture covers all seven
OSI model layers, as described in the following sentences. The gathering layer comprises
the data link and physical layers. The communication layer is integrated with the data link
and network layers. Finally, the processing and end-user layers are directly related to the
four upper layers (transport, session, presentation, and application). The security layer
is a transversal layer that interacts with the other layers of the architecture to obtain an
end-to-end security level.

Figure 2. SAgric-IoT five-layered architecture.

3.2.1. Gathering Layer

The gathering layer collects data relevant to physical environmental parameters from
a given area of interest from all the sources on farmland and sensor nodes on the fields
(such as air temperature and humidity, soil temperature and moisture, and pH, among
others). It also captures images through the cameras distributed in the monitoring region.

In the last decade, several efforts have developed and defined low-power D2D stan-
dards and solutions [85–87], generating many promising radio technologies for D2D con-
nectivity for local and wide area networks.

One of the key challenges is determining the best data-transmission networking
technology based on: transmission time, range, network size, and so on [88–90]. Table 1
summarizes some of the results of these past studies.

Table 1. Comparison of wireless technologies for inter-node communication.

Parameter Bluetooth ZigBee Wi-Fi Halow Ultra-Wideband

Frequency 2.4 GHz 868 MHz, 915 MHz and
2.4 GHz 900 MHz 3.1–10.6 GHz

Max. signal rate 1,2,3 Mbps 10–100 m Up to 347 Mbps 53.3–480 Mbps
Coverage 10 m 10–100 m Up to 1 km 300 m

Max. no of cell nodes 8 >65,000 Up to 6000 devices 8
Nominal TX power 0–10 dBm (−25)–0 dBm −17 dB −41.3 dBm/MHz

Security E0 encryption algorithm 128-bit AES AES
Number of R.F. channels 79 1/10; 16 26 channels 1–15

Channel bandwidth 1 MHz 0.3/0.6 MHZ; 2 MHZ 2 MHz and 16 MHz 500 MHz–7.5 GHz
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3.2.2. Communication Layer

The communication layer transmits all data collected by sensor nodes to the gateway.
This layer defines the communication protocol for data transmission. As sensors are
stationary, the network topology does not change. Additionally, data transmission requires
low latency, high reliability, and a high level of security to protect the collected data. The
gateway node is powered by both ZigBee and Wi-Fi interfaces. This layer selects the best
route to send the information by using several selection parameters, such as RSSI and the
number of hops.

3.2.3. Processing Layer

This layer processes large amounts of information using policy-based management to
trigger alarms and improve production. Additionally, government agencies use processed
results (such as SAGARPA in México) to develop production maps to help farmers define
the best crops, the best fertilizers, and the quantity of water required for each season or
production phase. Each crop type has its own value range for each physical parameter (such
as soil temperature and humidity, pH level, environmental temperature, and moisture).
These values are recorded on the platform. Table 2 shows an example of ideal physical
parameters for tomatoes. Data are evaluated in real time to detect atypical values from
the different physical parameters (values outside the defined range) that can represent
abnormal conditions. Based on the data, the system can activate other systems (such as
irrigation systems).

Table 2. Physical parameters for tomatoes [89].

Parameter Ideal Value

Day temperature 70 ◦F
Night temperature 60–64 ◦F

Day humidity 80–90%
Night humidity 65–75%

pH Near 7

The processing layer supports an extensive database that can accommodate mas-
sive amounts of data from the sensor nodes relayed through the communication layer.
The database is interfaced with data analysis algorithms and real-time scripts for data
visualization and evaluation (Figure 3).

Figure 3. Block diagram of the cloud server in SAGric-IoT.
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The gateway node also implements the processing layer, where the CNN model is
stored and processed to identify and classify diseases in the crop.

3.2.4. End User Layer

This layer is responsible for facilitating the farmer’s access to the data through a web
service and software tools using a web and mobile application.

3.2.5. Security Layer

Security in the sensor nodes’ communication is essential within the SAgric-IoT system.
The nodes provide mechanisms for devices’ access control to the network, encryption
(using symmetric key cryptography), and integrity to verify that the received frames
were not altered, following the security schemes defined in the 802.15.4 standard. The
data are encrypted before being sent (128-bit AES encryption) and then decrypted at the
receiver for use. The following parameters were configured in each Xbee node: first,
E.E. = 1: AES encryption enable, and the parameter KY: AES encryption key with a string
of 32 hexadecimal characters. Second, the camera nodes’ security with WPA2. The service
provider controls the security of the processing and storage layers. Finally, the end-user
accesses the system using a specific username and password and the secure HTTP protocol
for connection to the system.

3.3. Electronical Board

The main challenge of the design of the SAgric-IoT was to build low-cost and energy-
efficient hardware capable of monitoring, gathering, and controlling physical parameters.
The hardware board comprises four modules: microcontroller, sensors and actuators,
energy, and a wireless communication module, as shown in Figure 4.

Figure 4. Sensor node block diagram.

The microcontroller module gathers information from the attached sensors and relays
such data to the gateway node. Depending on the application, the microcontroller can
be battery-powered, solar-powered, or backup battery-powered. We used the Microchip
PIC18LF46K22 microcontroller that executes up to 16 MIPS (millions of instructions per
second); an input voltage of 3.3 V is required, and its CPU max current is 9.0 mA due to
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its specifications and low cost. The microcontroller has 64 K bytes for program memory,
3896 bytes for RAM, and 1024 bytes for EEPROM memory. An onboard 10-bit analog-to-
digital converter (ADC) with 28 analog input channels and 35 I/O pins.

Sensors and actuators are used in precision agriculture to measure different environ-
mental parameters. We use the sensor shown in Table 3.

Table 3. Used sensors in SAgric-IoT.

Sensor Model

Air temperature AM2315
Air humidity AM2315

Soil moisture sensor SHT-10
Soil temperature sensor SHT-10
Wind speed/direction SEN-08942

Case temperature AM2302
Case humidity AM2302

AM2315 is an I2C-interface temperature and humidity sensor (Figure 5a). This sensor
contains a DS18B20 temperature sensor and a capacitive humidity sensor. It has 3.5 to 5.5 V
power and I/O and uses 10 mA max current during conversion. On the other hand, the
AM2302 is a basic, low-cost digital temperature and humidity sensor (Figure 5b). It uses a
capacitive humidity sensor and a thermistor to measure the surrounding air and outpost a
digital signal on the data pin. The SHT-10 sensor includes a temperature/humidity sensor
module (Figure 5c). The casing is weatherproof and will keep water from seeping into the
sensor’s body and damaging it, but it allows air to pass through so it can measure the soil’s
humidity (moisture). Humidity and temperature have 4.5% and 0.5% precision readings,
respectively.

Figure 5. Sensors for SAgric-IoT (a) AM2315, (b) AM2302, and (c) SHT-10.

We use XBee S2C radios connected to a microcontroller through a UART (universal
asynchronous receiver-transmitter). This module operates on the 2.4 GHz ISM band, which
significantly reduces the power consumption of our design. In addition, the module has
a coverage area of up to 60 m in indoor spaces and 1200 m in outdoor locations with a
line-of-sight range. It has a transmit power output of 3.1 mW. XBee modules provide
wireless connectivity to end-point devices in ZigBee mesh networks.

The gateway nodes use Raspberry Pi 3 Model B, which has a 1.2 GHz 64-bit quad-core
ARMv8 CPU, an integrated 802.11n wireless LAN and Bluetooth 4.1, Bluetooth Low Energy
(BLE), 4 USB ports, a display interface (DSI), and a micro-SD card slot.

The camera nodes consist of an ESP32-CAM board with Wi-Fi and Bluetooth and
an OV2640 camera (Figure 6). This module contains a microSD card slot that serves as a
support for the storage of images captured with the camera.
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Figure 6. ESP32-CAM module used for plant monitoring.

3.4. Proposed Dissemination Protocol

For the design of the dissemination protocol, we considered two critical issues: energy
and reliability. Energy is the most important issue when designing dissemination protocols
for IoT, where the application demands continuous information from the network field.
For the design of the dissemination protocol: (I) we defined a static network architecture
based on clusters; (II) the gateway node has no energy constraints; (III) the gateway node is
not within the range of each sensor node, so a multi-hop transmission is needed; and (IV)
heterogeneous sensors are implemented in each node.

Our protocol defines three types of nodes: end-node, routing, and gateway. End-
node nodes gather data from the sensors but cannot retransmit data to other sensor nodes.
Routing nodes are responsible for collecting and retransmitting data from different sensor
nodes. They also maintain a routing table that allows nodes to choose the best route for data
transmission. Finally, the gateway node is the central node that receives all the gathered
data from different sensor nodes and sends it to the Internet. Figure 7 shows the state
diagram for the protocol.

Figure 7. States diagram for SAGric-IoT.

Our protocol defines data and controls messages. The protocol starts when a sensor
node switches on. Each sensor node starts in the gateway node and sends a control message
(Register.request) requesting its inclusion on the IoT network. The gateway node registers
the new node and sends it the response (Register.response), where indicated, the type of node
in the network (sensor or routing node), according to the number of hops the message takes
to reach the gateway node. If the sensor node is an end node, it gathers data from different
sensors, sends them to the gateway node, and changes its status to sleep to save energy. If
the sensor node is a routing node, the node is also responsible for retransmitting the data
from other sensors, so the sensor nodes wake up using a timer or a routing transmission
request. The sensor node changes its status from disconnected to setup status when it
receives the response. Afterward, the sensor and gateway nodes exchange messages
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(setup.request, and setup.response) to establish the gathering time for each sensor. At that
moment, a sensor node is ready to begin the data gathering, so its status changes to the
gathering status. In this status, the sensor nodes get sensor values, structure them into
frames, and send them to the gateway node. When a sensor node gathers data from the
different sensors, it sends a new message to the gateway node. SAgric-IoT uses the MAC
data frame defined by IEEE 802.15.4 to build the message (Figure 8).

Figure 8. Data message structure used in SAgric-IoT.

The message contains frame control fields, destination address fields (in our case, we
used 16-bit destination addresses), a data field where the data from the different sensors
are included, and a checksum field to check that the message is not corrupted. This frame
is sent to the gateway node through the data.transmit message. When the sensor node
finishes sending data, it changes its status to Sleeping status (Sleep.on) to save energy for an
established period. All sensors in the node and the microcontroller are off, and the node is
considered a sleep node. When the sleeping time finishes, the sensor node wakes up and
starts another data-gathering session from the sensors, or when the gateway node sends a
request for information on data from the sensors. After the node gathers data and sends it
to the gateway node, it goes to sleep again to save the battery (Sleep.on).

3.5. Convolutional Neural Network Model

The following paragraphs explain the proposed architecture for the plant leaf disease
detection and classification model. The proposed model takes color images of plant leaves
as input and displays the image with a series of labels representing the plant leaf health state
(whether it is healthy or the name of the detected disease) and the prediction percentage
value obtained by the model as output.

3.5.1. Dataset

We used the public PlantVillage dataset of 20,600 images in 10 categories, available
at [91]. Table 4 shows the categorized information contained in the dataset.

For the project, only the tomato categories were used to test the model (a total of
16,012 images) [92]. The total dataset was divided into two parts, assigning 80% of the
images for training (12,810 images) and the rest for validation (3202 images). The problem
with the models is that during the training process, overfitting can occur (i.e., the model
“memorizes” the dataset) [93]. Thus, we applied a method known as data augmentation [88]
to increase the dataset. New images were created using transformation methods (rotation,
brightness adjustment, and Gaussian noise) to complement the dataset.
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Table 4. Categories of the PlantVillage dataset.

#Number Category Number of Images

1 Pepper__bell___Bacterial_spot 997
2 Pepper__bell___healthy 1478
3 Potato___Early_blight 1000
4 Potato___Late_blight 1000
5 Potato___healthy 152
6 Tomato_Bacterial_spot 2127
7 Tomato_Early_blight 1000
8 Tomato_Late_blight 1909
9 Tomato_Leaf_Mold 952
10 Tomato_Septoria_leaf_spot 1771
11 Tomato_Spider_mites_Two_spotted_spider_mite 1676
12 Tomato__Target_Spot 1404
13 Tomato__Tomato_YellowLeaf__Curl_Virus 3209
14 Tomato__Tomato_mosaic_virus 373
15 Tomato_healthy 1591

3.5.2. Model Creation

A model based on a convolutional neural network architecture was developed for
the plant disease detection process. The model takes color 200 × 200 images normalized
to (0,1) as input for training and validation. The neural network architecture consists of
five convolutional layers using 256, 128, 64, 32, and 16 filters, respectively. The kernel size
for the 2D convolution window was 3 × 3. Rectified linear unit (ReLU) was used as the
activation model for each convolutional layer. MaxPooling layers were applied to each
convolutional layer. In addition, a global average pooling layer was applied to convert the
data to a column vector. This layer is connected to a dense layer of 10 output nodes (which
represent the categories used in the model) that uses softmax as the activation model.

3.5.3. Model Training

Table 5 shows the parameters for training the model and the Adam optimization
algorithm. The model’s loss function was categorical_cross_entropy, one of the most widely
used functions for multi-class classification. The number of epochs was 200.

Table 5. Parameters for the training of the model.

Parameter Value

Batch size 32
Number of epochs 200

Steps per epoch 16,012
Validation steps 3202

Activation function ReLU
Optimization algorithm Adam

Loss function Categorical cross-entropy

4. Results
4.1. Prototype Evaluation

We examined two scenarios to demonstrate the benefits of using SAgric-IoT. For the
first scenario, we validate the performance of the sensor node and the data gathered from
the different sensors by performing tests in a controlled environment (laboratory). Data
measurements for the environmental parameters such as temperature and humidity were
recorded every minute for three days using a set of sensor nodes separated by 10 m from
the base station and connected directly in a star topology. The idea was to determine the
node’s energy consumption and data transmission reliability in a situation of maximum
sense frequency.
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For the second scenario, sensor nodes were deployed throughout the field to evaluate
the dissemination protocol’s data-transmission performance. The environmental parameter
data measurements were collected every 5 min for three days. The set of sensor nodes
separated approximately 50 m from each other, covering an area of 200 × 200 m, as shown
in Figure 9. We defined levels to enable the multi-hop transmission model.

Figure 9. Distribution of nodes for scenario 2.

We evaluated SAgric-IoT performance by analyzing the nodes’ energy consumption
and reliability. Moreover, we examined the performance of the SAgric-IoT protocol in
comparison with an average transmission model without a sleep function into the node.

For both scenarios, nine sensor nodes designed at the INNOVA THING® company
(Colima, Mexico) and a gateway node were employed to interconnect a small-scale network.
Two sensors per node gathered data from four physical variables (air temperature and hu-
midity and soil humidity and temperature). For the cloud server, both Apache and MySQL
were running on a computer with Ubuntu 14.04. The gateway node uses a Raspberry Pi 3
Model B with a 1.2 GHz 64-bit quad-core ARMv8 CPU, an integrated 802.11n wireless LAN
and Bluetooth 4.1, Bluetooth Low Energy (BLE), 4 USB ports, a display interface (DSI), and
a micro-SD card slot. Each sensor node was set to sense each variable every five minutes.
In the test, we gathered around five thousand values from the sensors and stored them in
the cloud server database.

Scenarios Results

Figure 10a,b shows the energy consumption for scenario 1 with different nodes in
a controlled environment. Results show the battery lifetime of a system by continually
logging the measurement data. We observed that a node used in SAgric-IoT decreased
around 11% of the battery life of its maximal level. However, a node with a standard
transmission without sleep mode decreased 62% the battery life of its maximal level. These
test results showed that high measurement frequency and data transmission should be
avoided as the battery life would significantly decrease over a few days, resulting in lower
quality of measured data and frequent battery exchange. As shown, SAgric-IoT reduces the
average energy consumption by almost 44% compared to a standard transmission without
sleep mode.

Figure 10b shows the percentage of received packets per node for both types of trans-
mission. The rate of received packets obtained by both transmission models, considering a
directly connected scenario, is similar, with a percentage of successful transmissions at 99%.
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Figure 10. Results for scenario 1. (a) Energy consumption per node; (b) received packets per node.

Figure 11 shows the results obtained for the second scenario, and Figure 11a illustrates
the energy consumption for the different nodes in the field environment. The difference was
significant in the energy consumption from the various nodes. Nodes 1 and 2 consumed
only 13% of their energy; nodes 3 to 5 consumed 9%, while nodes 6 and 7 consumed 5.6%,
and nodes 8 and 9 consumed 3%. The main reason for that difference is the number of
transmissions per node. As the nodes are nearer the gateway node, more communications
are performed because they must transmit their data and data from other nodes. However,
we observed that SAgric-IoT nodes saved around 26% more energy than nodes using
transmission without our sleep mode, increasing the battery lifetime.

Figure 11. Results for scenario 2. (a) Energy consumption per node; (b) received packets per node.

The results show a significant difference between the two transmission modes, consid-
ering a multi-hop scenario. SAgric-IoT had a maximum loss of transmitted packets of 2%,
while the other model had a total loss of 9%, as shown in Figure 11.

In the initial conclusion, we can observe that the efficiency of SAgric-IoT is due to
better control of the energy consumption for the sleep mode. If the energy consumption of
the microcontroller and the sensors is regulated, the sensor nodes maximize their energetic
benefits, increasing the node’s battery lifetime.
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4.2. Model Evaluation

The model was developed in Python with TensorFlow, Keras, and other libraries such
as NumPy, Matplotlib, and TensorBoard. Accuracy, precision, recall, and f1 score were the
evaluation metrics. The following equations represent how to calculate each.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 Score = 2 × (precision × recall)
(precision + recall)

(4)

TP represents the number of optimistic predictions, TN represents the number of
negative projections, FP represents the number of false positives, and FN represents the
number of false negatives.

Results Obtained

Figure 12 shows the model’s performance for leaf disease identification and classifica-
tion during the training and validation phases. The results show an accuracy of 97.4% in
the training phase and 92% in the validation phase, which are pretty good values and are
within the range of values obtained in other published works in the literature.

Figure 12. Model’s accuracy values during the training and validation processes.

A confusion matrix was generated to analyze the results of how our supervised
algorithm works [94,95]. Figure 13 shows the confusion matrix.

Results show that the proposed model predicted half of the classes with an accuracy
equal to or greater than 98%. Only the class with the lowest number of images for training
(Tomato_mosaic_virus) obtained a 94% value.

Table 6 concentrates on the proposed model’s results in the dataset’s disease classifica-
tion process for each class. The recall metric is high in each category of the dataset, showing
that the accuracy of the proposed model is high (>90%), correctly classifying the diseases.
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Figure 13. Confusion matrix of the proposed model, (0) tomato bacterial spot, (1) tomato late blight,
(2) tomato yellow leaf curl virus, (3) tomato early blight, (4) tomato Septoria leaf spot, (5) tomato
mosaic virus, (6) tomato target spot, (7) tomato leaf mold, (8) tomato spider mites two spotted,
(9) tomato healthy.

Table 6. Class-wise performance of the proposed model.

Category Precision Recall f1-Score Support

tomato bacterial spot 0.96 0.96 0.97 100
tomato late blight 0.99 0.98 0.98 100
tomato yellow leaf curl virus 0.98 0.98 0.98 100
tomato early blight 0.96 0.97 0.97 100
tomato Septoria leaf spot 0.98 0.97 0.99 100
tomato mosaic virus 0.94 0.98 0.91 100
tomato target spot 0.98 0.98 0.98 100
tomato leaf mold 0.96 0.97 0.99 100
tomato spider mites two spotted 0.97 0.98 0.97 100
tomato healthy 0.98 0.98 0.98 100

The model was saved as a hierarchical data file and was used during the prediction
process, with some results shown in Figure 14.

Finally, a comparison was made with a work that analyzes different techniques for
disease detection in tomato plants [96]. ResNet50, Xception, MobileNet, ShuffleNet, and
DenseNet were compared with the five techniques used in this work. Our model was
trained with the dataset used in that work (Plant Village), but with 13,112 images. The
dataset was distributed 80% for training and 20% for validation. The accuracy of the
training process was compared. The results are shown in Figure 15. From these results,
we can conclude two things. The first is that the proposed model only underperforms the
VGG16 model structure with a difference of about 1.2%. The second conclusion is that our
model had a similar performance even when the training used a smaller number of images,
which shows the stability of the proposed model.
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Figure 14. Sample predicted images using the proposed model.

Figure 15. Performance comparison of the proposed model and existing models.

5. Conclusions

In this paper, we evaluated SAgric-IoT, an IoT platform, in terms of packet delivery
ratio and energy consumption in a small-scale network under a controlled environment
(laboratory) and test bed conditions in a field, including its embedded system, the commu-
nication protocol, and its algorithms. SAgric-IoT reduces the intensive human involvement
required in current agricultural information collection systems and provides information
in a faster way.

Results proved that SAgric-IoT is superior in energy saving and reliability of transmis-
sion. On the other hand, the CNN model for identifying diseases in the crop has high levels
of accuracy, with average values greater than 95%. This value has an acceptable reliability
level for detecting early disease problems affecting the yield. We conclude that SAgric-IoT
is a viable solution to improve precision agriculture because it is a wireless platform that
uses low-power algorithms for gathering data.
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Our future work focuses on the platform’s security to avoid integrity problems with
the collected data that cause a reduction in the quality or quantity of production.

Another significant challenge to solve in the next phase is to go from a model trained
with images taken in the laboratory to images generated directly in the sowing field. Due
to the lack of context and diversity in plant appearance, deep learning models trained on
individual leaf photographs may need help identifying plant diseases in full plant images.
However, several studies have shown that the use of a combination of leaf and full plant
images, and the use of deep learning techniques, can improve the accuracy of plant disease
detection.

For example, a study [97] to detect tomato plant diseases used a convolutional neural
network (CNN) trained with laboratory-taken leaf images and real-world leaf images.
The real-world leaf includes other elements, such as stems and other leaves. With this
combination of training, they achieved an accuracy rate of 99.53%. Another recent study [98]
used various images from a leaf dataset and manually taken photos, along with deep
learning techniques, to detect diseases in grapevine plants and achieved over 80% accuracy
in this mixed scenario.

In summary, a deep learning model trained only with images of a single leaf may have
difficulties recognizing diseases in plants in pictures of a whole plant. Still, the combination
of leaf and entire plant images, as well as deep learning techniques, can significantly
improve accuracy in disease detection in plants.

In future work, the model will be trained with complete plant images and implemented
in the real-time plant monitoring scenario. This way, it will be possible to check the crops’
conditions by leaf samples and directly monitor the plants from the images captured by the
camera system, fully integrating it into the SAgric-IoT platform.
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