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Distributed Algorithms for Shape Sculpting of Lattice-Arrayed Modular
Robots via Hole Motion

Jingwei Zhu1, Michael Z. Q. Chen1 and Housheng Su2

Abstract— A self-reconfigurable modular robot can change
its own shape by rearranging the connectivity of the modules
of which it is composed. In this paper, we focus on a two-
dimensional lattice-arrayed self-reconfigurable modular robotic
system. Each module can move to a neighboring lattice under
certain motion constraints, communicate with its neighbors
and act upon local knowledge only. A scalable shape sculpting
algorithm based on the manipulation of regularly shaped
voids within the lattice (“holes”) is given. We present detailed
solutions to the conflict test and settlement problem encountered
when applying this algorithm, and make improvement on the
efficiency of shape sculpting. We believe that the algorithm can
potentially generalize to 3D and scale to handle millions of
modules.

I. INTRODUCTION

Multi-agent systems have attracted much attention in re-
cent years [1], [2]. Recently, interest in self-reconfigurable
modular robots has been growing. A self-reconfigurable
modular robot is believed to be versatile since it can change
its own shape or structure by rearranging the connectivity
of a large number of modules it is built from to adapt to
new environments and tasks. Similar idea can be found in
programmable matter [3], which refers to matter that has the
ability to change its physical properties such as its shape in
a programmable fashion. In such an application, the matter
comprises fine-grained computing elements, fabricated by
advanced semiconductor technology and nanoscale technol-
ogy and usually used in extremely large quantity in one
ensemble. Mass production of modules further cuts down
the manufacturing costs of robots and makes quality control
easier. Despite all the benefits, there are tough challenges
in the mechanical design and distributed control algorithm
design of such robotic systems.

Two different approaches have been developed to the
mechanical design of a self-reconfigurable robotic system. In
the first approach, modules are packed in some spatial crystal
patterns to achieve desired shape. Modules in such a network
can be compared to atoms in a crystal. They can move to
neighboring lattices conforming to certain constraints, thus
changing the connectivity of modules. As a result, the shape
or structure of the robot is altered. Chirikjian [4] and Murata
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Fig. 1. Motion Constraints (“Catom”): B’s movement to position D requires
a module in position C to pivot about and empty space in positions A and
D to move through.

et al. [5] provided initial ideas and mechanical designs of
such lattice-arrayed robotic systems. This kind of system
shows great potential in self-assembly and self-repair, but is
not suitable for realizing locomotion of the whole robot. The
second approach was first proposed by Yim [6]. Modules are
connected to form a chain and are able to reach any point in
space. This chain architecture makes locomotion of the robot
easier to be accomplished compared to the lattice architec-
ture, while the self-reconfiguration step requires much more
accuracy. Also there are hybrid architectures that combine
and take advantages of the previous two architectures. Here,
we focus on a lattice-arrayed modular robotic system.

Motion planning to enable self-reconfiguration process is
one of the most fundamental and challenging problems in
the field of algorithm design for modular robotic systems.
In a lattice-arrayed system, a module can move to one of its
unfilled neighboring lattices under motion constraints (Figure
1) specified by the mechanical design. Motion constraints
existing in almost all realizable module designs make the
planning problem intractably difficult. And many previous
algorithms tend to be trapped in local minima, for instance,
[11], [15]. Methods to ease these problems can be broadly
categorized into the metamodule-based method in [7], [8],
[9] and the hole motion method in [10].

A metamodule is a group of modules that can be regarded
as a unit during the planning process. It can easily absorb
or recreate another metamodule without violating motion
constraints. Through the absorb/recreate behavior at the
perimeter, the contour of the robot is increased/reduced. And
modules can be transferred from deletion regions to growth
regions in the same way (Figure 2).

De Rosa et al. [10] use the randomized motion of reg-
ularly shaped voids (that is, holes) in a lattice as primitive
operations for a two-dimensional shape formation. A hole
is created by enclosing empty space at the perimeter in the
growth region and moves through the mass like the molecules
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Fig. 2. Motion Plan in A Metamodule System: A metamodule has the
ability to absorb/recreate other metamodules to reconfigure without violating
motion constraints. This motion plan only relies on one neighboring
metamodule.

of an ideal gas until it reaches the perimeter in the deletion
region, where it creates “craters” and the contour is reduced.
By treating a hole as an entity and solving the motion
planning problem of holes, the motion constraints can be
avoided. And because of the randomized motion of holes, the
algorithm is not susceptible to entrapment in local minima. It
is believed that this planner can be potentially generalized to
3D and be able to handle millions of modules. In this paper
we mainly focus on distributed control algorithms based on
the Hole Motion Planner.

II. PROBLEM FORMULATION AND
PRELIMINARIES

Our work is based on the hardware design of “catoms”
[16] (Figure 3). Modules are compactly arranged in the
hexagonal array and each module has six neighboring lattices
and up to six neighbors. The set of modules containing a
module k, its neighbors, and their neighbors is defined as
the 2-hop radius of module k. A hole is defined as the
logical entity formed by the absence of a module and its six
neighbors. There are six possible directions for the motion
of a hole. The 12 modules around a hole are defined as the
shepherd group. These concepts are illustrated in Figure 4.

In the Hole Motion Planner, the two-dimensional coor-
dinate space containing the modules is initially filled with
equilateral triangles with a specific size. This size determines
the resolution of contour that the robot can achieve. The
initial and goal shapes are both properly decomposed into a
group of triangles in the coordinate system. Triangles that do
not change their state of occupation during the transformation
from initial to goal shape are removed, while the rest become
growth regions or deletion regions based on whether they
overlap regions within the goal shape. Then the position
information of these tri-regions in the shared coordinate
system is transmitted to each module, provided that modules
always have knowledge of their relative positions. After that
no broadcast is needed.

If a module detects that it is on the perimeter of the mass
(that is, it has at least one unfilled neighboring site and it does
not belong to any shepherd groups) and is inside a tri-region
(growth region/deletion region), it becomes a growth/deletion
node. Before a growth node moves on to create a hole, it has
to check whether the following conditions hold:
• There are no holes or shepherd groups within the node’s

2-hop radius. Also there are no other growth nodes
that are about to create holes which have conflict with
the node (that is, the shepherd group of a hole should

Fig. 3. Three magnetic 45mm planar catoms from [16].

Fig. 4. Basic Layout: a) hole, b) shepherd group, c) six possible motion
directions.

never overlap another shepherd group. If there is such
an overlap, the overlapping shepherd groups can be
regarded as “in conflict”).

• There are exactly 11 other modules within the 2-hop
radius of the growth node.

We develop a distributed control algorithm to test whether
such a conflict exists and resolve the conflict if there is any.

If the above conditions are satisfied, the growth node
starts to create a shepherd group with the help of neighbors
within its 2-hop radius and a hole is generated on the
perimeter. After creation, at each timestep a hole makes
decision on direction of motion and shifts the three modules
at the leading edge of the shepherd group (determined by
the direction of motion) to the trailing edge, thus moving
one step along the direction of motion (Figure 5). In De
Rosa et al. [10]’s work, a hole’s direction of motion in the
ensemble is randomized. We introduce a “temperature field”
inspired by the heat-based method in [11] to guide the motion
of holes before they reach deletion nodes and create “craters”
on the contour. The efficiency of shape sculpting can be
greatly improved under the guidance of this field and when
it is stabilized no basin (If the value of any module within a
domain is smaller than that of any module on the boundary
of that domain, the set of modules within that domain is
defined as a basin.) inside the perimeter that might trap the
holes would be created by the introduction of the field.

If a hole finally reaches deletion region and activates a
deletion node, the deletion node destroys the hole and the
contour of the robot is lowered, thus completing the life
circle of a hole (Figure 6).
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Fig. 5. Hole Creation and Hole Movement: The growth node a creates
a hole on the perimeter. The three modules b, c, d at the leading edge
(determined by the direction of motion) of the shepherd group are shifted
to the trailing edge, thus shifting the hole one module in the direction of
motion.

Fig. 6. Hole Deletion.

III. MAIN RESULTS

A. Algorithm for Conflict Test and Settlement

This algorithm is actually to deal with leader election prob-
lems among groups of modules. Difficulties of the design
of this algorithm lie in that all the modules are identical,
act upon the same local algorithm, but to finish the task of
conflict test and settlement they have to play different roles
and also cooperate with other modules in different roles.

The creation of a hole is started by a newly activated
growth node. Modules (excluding the growth node) within
the 2-hop radius of a growth node are categorized into the
second layer and the third layer. The second layer modules
are neighbors of the growth node. The third layer modules
are the rest of the modules within the 2-hop radius. First, the
growth node has to make sure that all the modules within its
2-hop radius can be recruited by itself to create a hole. Once
recruited, modules can no longer be recruited by other growth
nodes until they are released from the shepherd group.
The growth node sets up connections with its neighbors
by recognizing them as its branches. If a module mx is
recognized as a branch by another module my , mx would
also recognize my as its source. Likewise, these branches set
up connections with their neighbors within the 2-hop radius
of the growth node according to the rules shown in Figs. 7(c)
and 7(d), and finally a spanning tree within the 2-hop radius
is formed. The root of each spanning tree is always a growth
node. If every module within the 2-hop radius of a growth
node is a node of the same spanning tree, these modules
would be recruited by the growth node and move on to create
a hole without any conflict. Otherwise, negotiation to resolve
the conflict has to be started. After negotiation, some of the
growth nodes and their spanning trees would be sacrificed
(that is, deactivated) while others survive and create holes
when there is no conflict.

During the process of building spanning tree within the
2-hop radius, it is very possible that when a module mx

attempts to recognize a neighbor my as its branch, mx finds
out that my has already been a branch of another module
(Fig. 7(e)). There are two possibilities for such a situation:

Fig. 7. Spanning Tree within The 2-hop Radius: a) A growth node selects
a random identity n from a finite domain (each module has 6 interfaces
for connection and communication). b) A growth node recognizes one of
its neighbors as its branch and that neighbor gets the same identity. c) A
branch in the second layer establishes new branches only in the third layer.
d) Branches in the third layer establish new branches only in the third layer.
e) Modules’ attempts to establish branches can be frustrated by branches of
other modules in the same spanning tree or in another spanning tree.

• my shares the same root as mx (that is, they are in the
same spanning tree).

• The root of the spanning tree my is different from the
root of mx.

However, in most cases mx as a module cannot tell the dif-
ference between the two possibilities. We propose a solution
where the growth node stores position information of all the
modules within its 2-hop radius while other modules do not
have to save that kind of information. For each module except
the growth node, if its attempt to establish a branch fails, it
records that event in a “report” and send the report back to
its source later. That report will be passed on and finally
reach the growth node since the root of spanning tree is
always a growth node. Then, based on these conflict reports
and the position information, the growth node may conclude
whether the conflicts are internal or external. If the conflict
is internal (that is, a module attempts to recognize another
module which is in the same spanning tree as its branch),
it will simply be neglected. Otherwise negotiation should be
started to resolve the conflicts.

The so-called negotiation is basically a leader election
among groups. One of the candidates survives and is elected
as the leader while others are sacrificed. Since there exists
no terminating algorithm for electing a leader in an asyn-
chronous anonymous network, a Las Vegas algorithm is a
good option.

The size of the state space of a module in the Hole Motion
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Fig. 8. Report formats in different locations within the 2-hop radius. (Note
that a in (a, b) is actually the number of modules in a continuous branch
“chain” in the third layer.)

Planner is 7:

• State 1: Passive state. A module in State 1 serves as
a conductor to propagate “heat” to their neighbors.
They are the key components to form the “temperature
field”, which will be discussed in detail in next section.
Initially all the modules are in State 1.

• State 2: Growth node.
• State 3: The second layer. A module in the second layer

is one of the neighbors of a growth node.
• State 4: The third layer. A module in the third layer is

in the neighboring lattice (excluding the second layer
and the growth node) of the second layer.

• State 5: Transient state. A module in transient state
is truly recruited by a growth node and is ready for
operations of hole creation (that is, the conflict test and
settlement steps are finished).

• State 6: Shepherd group.
• State 7: Deletion node.

After being activated, each growth node selects a random
identity from a finite domain. If the growth nodes try to
set up connections with their neighbors, invitation messages
containing the selected identity and its own state are sent.
Initially, each growth node sends invitation messages through
all the interfaces that are connected with other modules.
Modules in State 1 or State 7 are free to become branches.
Once recognized as a branch, a module sets its own identity
to the one contained in the invitation message, changes
its state according to the state of the sender, and it also
sends out invitation messages containing its own identity to
set up new connections with others (rules of establishing

Fig. 9. Steps taken by the growth node after processing the reports.

new branches are illustrated in Figure 7). Thus, modules
belonging to the same spanning tree share the same identity.
Note that the invitation message sent by branch also contains
information about the state of sender so that the receiver
could learn which layer it should be in and they change
their state accordingly. Additional information is needed in
the invitations sent by modules in State 3 to modules in
the third layer so that, if recognized as branches, they can
learn whether they are aligned with the growth node and their
source. This determines the format of reports these third layer
modules produce, which will be discussed in detail later.

If a module mx sends an invitation to a neighbor my

which is already a branch of another module, my sends back
a message containing its own identity after receiving that
invitation. mx calculates the results of negotiation based on
the identity contained in the reply. If the received identity is
larger than its own, mx loses the negotiation; If the received
identity is equal to its own, mx takes a draw; If the received
identity is smaller, mx wins. Note that if the invitation is sent
to a module in State 5 or State 6, it will be rejected and the
negotiation result for the sender of invitation is always a loss.
The negotiation results are saved in the memory of mx. After
sending invitations, each new branch waits for feedbacks and
prepares for a report which will be sent back to its source.
That report might contain results of negotiation or reports
from branches. Branches in different locations within the 2-
hop radius would produce reports in different formats. There
are three cases in the report format as shown in Figure 8.

When finishing collecting the feedbacks from all the
invitation receivers, each branch sends back the report to their
source. Finally, a growth node gets the necessary information
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about every node of its spanning tree. Based on the received
reports and map of its 2-hop radius, a growth node can know
whether a module within its 2-hop radius is in its spanning
tree or not. As mentioned above, some of the invitations
would be rejected by modules in the same spanning tree,
and these negotiation results (should always be a draw)
are neglected by the growth node. And if there exist some
modules within the 2-hop radius belonging to other spanning
trees, the negotiation results are learnt from the reports and
recorded by the growth node. After processing the reports,
a growth node behaves according to one of the steps shown
in Figure 9.

For a module which has already been a branch, if it
receives a new invitation from its source, it would update its
identity, send out new invitation containing the new identity
and collect feedbacks for the report. When the report is
completed, it is sent back to the source.

Such a loop will continue in each spanning tree until all
the conflicts are finally settled.

Remark. The algorithm is implemented in a Python-based
simulator and it works well in most cases. However there
is one exception. In some situations, some of the modules
do not have a path to the growth node within the 2-hop
radius. Our algorithm cannot work here since conflict test
and settlement all rely on the spanning tree within the 2-
hop radius. Future work could be improving our algorithm
to solve such a problem or finding methods to prevent such
a situation from occurring.

B. Algorithm For Forming Temperature Field

In this section, we present a distributed algorithm for
forming “temperature field” among the modules, which is
inspired by the heat-based method in [11]. The whole robot
is a conductor and each module can be approximated as
a differential element which yields to the heat equation.
Modules in the shepherd group are heat sources whose
temperature is constant. Deletion nodes are heat sinks and
its temperature is also constant but lower than that of heat
sources. Heat exchange takes place between two neighboring
modules at each timestep and the exchanged quantity of heat
is proportional to the temperature difference. Let Ti(t) be the
temperature of a module i whose state = 1 at time t, Ni

be the set of module i’s neighbors whose state ∈ {1, 6, 7},
and cij be the thermal conductivity between two modules
(cij > 0):

Ti(t+ 1) = Ti(t) + ε
∑
j∈Ni

cij(Tj(t)− Ti(t)), (1)

where 0 < ε < 1/∆ and ∆ is the maximum degree of the
network.

After the initial turbulence, the temperature field is stabi-
lized in several timesteps and can be used to guide holes.
The states (temperature value) of all the modules converge
to a unique and constant vector. Each time a hole is created
or makes a move, new turbulence is introduced into the field
and it takes time to stabilize. Therefore, the decision making

Fig. 10. Relevant Modules for Navigation through Temperature Field: a)
module at the vertices of the hexagonal shepherd group, b) the direction of
motion module a represents and if module a is elected as the leading module
the hole would move one step in this direction, c) and d) five lattices in the
direction of motion to be checked by module a, d) If there is no deletion
node in the five lattices but these lattices are all filled by modules in State
1, the temperature value of d is saved by a for future comparison.

and travel frequency of a hole should be much lower than
the temperature updating frequency of passive state modules.

With this algorithm, basins of the temperature field can
only be found on the perimeter when the field is stabilized.
Since no deletion nodes (heat sink) exist within the perimeter,
if there are basins inside the perimeter when the temperature
field is stabilized, these basins cannot contain any deletion
nodes. As the thermal flux into the basins is positive,
temperature of modules in the basins can not get stabilized
without a deletion node. On the other hand, those basins
on the perimeter are exactly what we use to lead holes to
deletion nodes.

If one of the six modules at the vertices of the hexagonal
shepherd group is chosen to be the leading module, it means
that the hole would move towards that module (that is, the
three modules including the leading module at the leading
edge of the shepherd group would be shifted to the trailing
edge). For the six modules at the vertices, if there is at
least one deletion node in the five corresponding lattices
in the direction of motion (Figs. 10(c) and 10(d)), they
save the temperature value of the deletion node for later
comparison and decision making and become a candidate
for leading module; otherwise, if there is no deletion node
in the five lattices but these lattices are all filled by modules
in State 1, they save the temperature value of one of their
neighbors which is in the direction of motion they represent
(Fig. 10(d)) and also become a candidate; if neither of the
two conditions is satisfied, they cannot be chosen as the
leading module. When all the six modules get ready (that
is, finish the checking steps mentioned above), the module
which gets the lowest temperature value would be chosen
as the leading module. (It is possible that some of the
modules would get exactly the same lowest value, and a
random leading module would be chosen from them.) A
probabilistic leader election algorithm for breaking symmetry
in anonymous rings developed by [13] can be applied here
perfectly to find the module with lowest value and break
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(a)

(b)

(c)

Fig. 11. Simulation of Temperature Field Formation: a) and b) Initially all
the modules are in State 1 and their temperature value is set to 0. Perimeter
of the ensemble is marked with red color. After holes or deletion nodes are
created on the perimeter, turbulence propagates through the robot body. c)
The temperature field can be stabilized in several timesteps. There are no
basins of the field existing inside the perimeter when the field gets stabilized.
Deletion nodes are global minima on the perimeter.

symmetry if necessary.
With such a strategy, when two holes get close, the region

between them would be heated, which prevents the two
holes from moving closer. Similarly, in most cases a hole
rebounds back before reaching the perimeter. Since deletion
nodes (heat sinks) are always global minima in terms of
temperature value, holes are attracted to deletion nodes.
Obviously path planning with temperature field is much more
efficient than merely depending on random motion of holes.
Although all the communication and calculation are local
and distributed, a hole can find an optimal path leading to
the deletion nodes and take evasive action just like it has
global information of the ensemble.

We implemented the algorithm in a Python-based simu-
lator. We set the thermal conductivity to 0.1, set ε to 0.5,
set the temperature of shepherd group to 99999 and the
temperature of deletion node to 0. The relation between
the 8-bit RGB color of modules and their temperature T is
RGB color = [0, 255T

99999 , 130]. Shepherd groups are denoted
by brown color and deletion nodes are denoted by purple.
The process of forming the temperature field is shown in
Figure 11.

IV. CONCLUSION

We have presented the design of some important dis-
tributed algorithms for shape-sculpting of lattice-arrayed
modular robots via hole motion. We also introduced a
temperature field to guide the holes so that the efficiency
of shape-sculpting is improved compared to the randomized
motion of holes. However, there still exist limitations in our
algorithms and further simplification could be made. Our
work is an initial attempt to creating a fully distributed and
scalable algorithm for self-reconfigurable modular robotic
system and we hope it could provide inspiration for later
work in the algorithm design for modular robots or other
distributed control systems.
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