189 research outputs found

    Can k-NN imputation improve the performance of C4.5 with small software project data sets? A comparative evaluation

    Get PDF
    Missing data is a widespread problem that can affect the ability to use data to construct effective prediction systems. We investigate a common machine learning technique that can tolerate missing values, namely C4.5, to predict cost using six real world software project databases. We analyze the predictive performance after using the k-NN missing data imputation technique to see if it is better to tolerate missing data or to try to impute missing values and then apply the C4.5 algorithm. For the investigation, we simulated three missingness mechanisms, three missing data patterns, and five missing data percentages. We found that the k-NN imputation can improve the prediction accuracy of C4.5. At the same time, both C4.5 and k-NN are little affected by the missingness mechanism, but that the missing data pattern and the missing data percentage have a strong negative impact upon prediction (or imputation) accuracy particularly if the missing data percentage exceeds 40%

    Deep Learning in Visual Computing and Signal Processing

    Get PDF

    Closed-Loop Learning of Visual Control Policies

    Full text link
    In this paper we present a general, flexible framework for learning mappings from images to actions by interacting with the environment. The basic idea is to introduce a feature-based image classifier in front of a reinforcement learning algorithm. The classifier partitions the visual space according to the presence or absence of few highly informative local descriptors that are incrementally selected in a sequence of attempts to remove perceptual aliasing. We also address the problem of fighting overfitting in such a greedy algorithm. Finally, we show how high-level visual features can be generated when the power of local descriptors is insufficient for completely disambiguating the aliased states. This is done by building a hierarchy of composite features that consist of recursive spatial combinations of visual features. We demonstrate the efficacy of our algorithms by solving three visual navigation tasks and a visual version of the classical Car on the Hill control problem

    A concept drift-tolerant case-base editing technique

    Full text link
    © 2015 Elsevier B.V. All rights reserved. The evolving nature and accumulating volume of real-world data inevitably give rise to the so-called "concept drift" issue, causing many deployed Case-Based Reasoning (CBR) systems to require additional maintenance procedures. In Case-base Maintenance (CBM), case-base editing strategies to revise the case-base have proven to be effective instance selection approaches for handling concept drift. Motivated by current issues related to CBR techniques in handling concept drift, we present a two-stage case-base editing technique. In Stage 1, we propose a Noise-Enhanced Fast Context Switch (NEFCS) algorithm, which targets the removal of noise in a dynamic environment, and in Stage 2, we develop an innovative Stepwise Redundancy Removal (SRR) algorithm, which reduces the size of the case-base by eliminating redundancies while preserving the case-base coverage. Experimental evaluations on several public real-world datasets show that our case-base editing technique significantly improves accuracy compared to other case-base editing approaches on concept drift tasks, while preserving its effectiveness on static tasks
    • 

    corecore