2,607 research outputs found

    高速ビジョンを用いたリアルタイムビデオモザイキングと安定化に関する研究

    Get PDF
    広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora

    Space telescope phase B definition study. Volume 2A: Science instruments, f24 field camera

    Get PDF
    The analysis and design of the F/24 field camera for the space telescope are discussed. The camera was designed for application to the radial bay of the optical telescope assembly and has an on axis field of view of 3 arc-minutes by 3 arc-minutes

    A high speed Tri-Vision system for automotive applications

    Get PDF
    Purpose: Cameras are excellent ways of non-invasively monitoring the interior and exterior of vehicles. In particular, high speed stereovision and multivision systems are important for transport applications such as driver eye tracking or collision avoidance. This paper addresses the synchronisation problem which arises when multivision camera systems are used to capture the high speed motion common in such applications. Methods: An experimental, high-speed tri-vision camera system intended for real-time driver eye-blink and saccade measurement was designed, developed, implemented and tested using prototype, ultra-high dynamic range, automotive-grade image sensors specifically developed by E2V (formerly Atmel) Grenoble SA as part of the European FP6 project – sensation (advanced sensor development for attention stress, vigilance and sleep/wakefulness monitoring). Results : The developed system can sustain frame rates of 59.8 Hz at the full stereovision resolution of 1280 × 480 but this can reach 750 Hz when a 10 k pixel Region of Interest (ROI) is used, with a maximum global shutter speed of 1/48000 s and a shutter efficiency of 99.7%. The data can be reliably transmitted uncompressed over standard copper Camera-Link® cables over 5 metres. The synchronisation error between the left and right stereo images is less than 100 ps and this has been verified both electrically and optically. Synchronisation is automatically established at boot-up and maintained during resolution changes. A third camera in the set can be configured independently. The dynamic range of the 10bit sensors exceeds 123 dB with a spectral sensitivity extending well into the infra-red range. Conclusion: The system was subjected to a comprehensive testing protocol, which confirms that the salient requirements for the driver monitoring application are adequately met and in some respects, exceeded. The synchronisation technique presented may also benefit several other automotive stereovision applications including near and far-field obstacle detection and collision avoidance, road condition monitoring and others.Partially funded by the EU FP6 through the IST-507231 SENSATION project.peer-reviewe

    Method for targetless tracking subpixel in-plane movements

    Get PDF
    We present a targetless motion tracking method for detecting planar movements with subpixel accuracy. This method is based on the computation and tracking of the intersection of two nonparallel straight-line segments in the image of a moving object in a scene. The method is simple and easy to implement because no complex structures have to be detected. It has been tested and validated using a lab experiment consisting of a vibrating object that was recorded with a high-speed camera working at 1000 fps. We managed to track displacements with an accuracy of hundredths of pixel or even of thousandths of pixel in the case of tracking harmonic vibrations. The method is widely applicable because it can be used for distance measuring amplitude and frequency of vibrations with a vision system.Generalitat Valenciana (Regional Government of Valencia) (PROMETEO/2011/021); Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness) (BIA2011-22704); Universidad de Alicante (GRE13-10)

    高速ビジョンを用いた振動源定位に関する研究

    Get PDF
    広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora

    Target-free vision-based technique for vibration measurements of structures subjected to out-of-plane movements

    Get PDF
    Vibration measurements have been widely used for structural health monitoring (SHM). Usually, wired sensors are required to attach on the testing structure, which may be arduous, costly and sometimes impossible to install those sensors on the remote and inaccessible part of the structure to be monitored. To overcome the limitations of contact sensors based vibration measurement methods, computer vision and digital image processing based methods have been proposed recently to measure the dynamic displacement of structures. Real-life structure subjected to bi-directional dynamic forces is susceptible to significant out-of-plane movement. Measuring the vibrations of structures under the out-of-plane movements using target-free vision-based methods have not been well studied. This paper proposes a target-free vision-based approach to obtain the vibration displacement and acceleration of structures subjected to out-of-plane movements from minor level excitations. The proposed approach consists of the selection of a region of interest (ROI), key-feature detection and feature extraction, tracking and matching of the features along the entire video, while there is no artificial target attached on the structure. The accuracy of the proposed approach is verified by conducting a number of experimental tests on a reinforced concrete structural column subjected to bi-directional ground motions with peak ground accelerations (PGA) ranging from 0.01 g to 1.0 g. The results obtained by the proposed approach are compared with those measured by using the conventional accelerometer and laser displacement sensor (LDS). It is found that the proposed approach accurately measures the displacement and acceleration time histories of the tested structure. Modal identification is conducted using the measured vibration responses, and natural frequencies can be identified accurately. The results demonstrate that the proposed approach is reliable and accurate to measure the dynamic responses and perform the system modal identification for structural health monitoring
    corecore