591 research outputs found

    Rail-to-Rail Operational in Low-Power Reconfigurable Analog Circuitry

    Get PDF
    Analog signal processing (ASP) can be used to decrease energy consumption by several orders of magnitude over completely digital applications. Low-power field programmable analog arrays (FPAA) have been previously used by analog designers to decrease energy consumption. Combining ASP with an FPAA, energy consumption of these systems can be further reduced. For ASP to be most functional, it must achieve rail-to-rail operation to maintain a high dynamic range. This work strives to further reduce power consumption in reconfigurable analog circuitry by presenting a novel data converter that utilizes ASP and rail-to-rail operation. Rail-to-Rail operation is achieved in the data converter with the use of an operational amplifier presented in this work. This efficient yet elementary data converter has been fabricated in a 0.5μ\mum standard CMOS process. Additionally, this work looks deeper into the challenges of students working remotely, how MATLAB can be used to create circuit design tools, and how these developmental tools can be used by circuit design students

    Low-voltage Low-power Bulk-driven CMOS Op-Amp Using Negative Miller Compensation for ECG

    Get PDF
    Two bulk-driven CMOS (Complementary Metal Oxide Semiconductor) operational amplifier (op-amp) designs for electrocardiogram (ECG) application are presented and compared in this paper. Both op-amps are based on two-stage amplification, where bulk-driven differential input is the first stage, while additional DC gain is the second stage. Different compensation techniques were integrated in each op-amp design. Standard Miller compensation was used for the first op-amp parallel with the second stage. The novelty of the second op-amp is that it utilizes negative Miller compensation between the bulk-driven input node and the output node of the first stag, while standard Miller compensation was used in the second stage. The purpose of this work was to compare DC gain, phase margin (PM) and unit gain frequency (UGF) obtained through different simulated compensation strategies and test results. The op-amps were simulated using 0.25 μm CMOS technology. The simulation results are presented using the standard model libraries from Tanner EDA tools, operating on a single rail +0.8V power supply

    Low-voltage Low-power Bulk-driven CMOS Op-Amp Using Negative Miller Compensation for ECG

    Get PDF
    Two bulk-driven CMOS (Complementary Metal Oxide Semiconductor) operational amplifier (op-amp) designs for electrocardiogram (ECG) application are presented and compared in this paper. Both op-amps are based on two-stage amplification, where bulk-driven differential input is the first stage, while additional DC gain is the second stage. Different compensation techniques were integrated in each op-amp design. Standard Miller compensation was used for the first op-amp parallel with the second stage. The novelty of the second op-amp is that it utilizes negative Miller compensation between the bulk-driven input node and the output node of the first stag, while standard Miller compensation was used in the second stage. The purpose of this work was to compare DC gain, phase margin (PM) and unit gain frequency (UGF) obtained through different simulated compensation strategies and test results. The op-amps were simulated using 0.25 μm CMOS technology. The simulation results are presented using the standard model libraries from Tanner EDA tools, operating on a single rail +0.8V power supply

    Ultra-fast Alternating Current Potential Drop Measurement System for Materials Characterization and Precision Impedance Analyzer for Eddy Current Measurement

    Get PDF
    The alternating current potential drop method (ACPD) with four-point probe injects alternating current into the sample under test from the two outer drive pins and measures the voltage (potential) drop between the two inner pick-pins. This method can be used to measure electrical conductivity, linear permeability, coating depth, as well as crack size. However, the measurement speed and accuracy of present ACPD system need to be dramatically improved. This work discusses the design, implementation and test of a novel ultra-fast standalone ACPD system. New and powerful hardware including high current transconductance amplifier and low noise amplifier provide a sound foundation for nearly perfect system level noise performance; new time domain to frequency domain conversion method increases the measurement speed without sacrificing noise performance. A general purpose calibration method is introduced so that the accuracy of this system is guaranteed. With the development and introduction of this new ACPD instrument, ACPD method has evolved from a laboratory NDE method to a full blown technique that is ready for real world application. The last chapter of this thesis discusses a simple but powerful lock-in amplifier based precision impedance analyzer. This impedance analyzer provides an economical solution to eddy current testing that requires highest precision

    Low Voltage Low Power Analogue Circuits Design

    Get PDF
    Disertační práce je zaměřena na výzkum nejběžnějších metod, které se využívají při návrhu analogových obvodů s využití nízkonapěťových (LV) a nízkopříkonových (LP) struktur. Tyto LV LP obvody mohou být vytvořeny díky vyspělým technologiím nebo také využitím pokročilých technik návrhu. Disertační práce se zabývá právě pokročilými technikami návrhu, především pak nekonvenčními. Mezi tyto techniky patří využití prvků s řízeným substrátem (bulk-driven - BD), s plovoucím hradlem (floating-gate - FG), s kvazi plovoucím hradlem (quasi-floating-gate - QFG), s řízeným substrátem s plovoucím hradlem (bulk-driven floating-gate - BD-FG) a s řízeným substrátem s kvazi plovoucím hradlem (quasi-floating-gate - BD-QFG). Práce je také orientována na možné způsoby implementace známých a moderních aktivních prvků pracujících v napěťovém, proudovém nebo mix-módu. Mezi tyto prvky lze začlenit zesilovače typu OTA (operational transconductance amplifier), CCII (second generation current conveyor), FB-CCII (fully-differential second generation current conveyor), FB-DDA (fully-balanced differential difference amplifier), VDTA (voltage differencing transconductance amplifier), CC-CDBA (current-controlled current differencing buffered amplifier) a CFOA (current feedback operational amplifier). Za účelem potvrzení funkčnosti a chování výše zmíněných struktur a prvků byly vytvořeny příklady aplikací, které simulují usměrňovací a induktanční vlastnosti diody, dále pak filtry dolní propusti, pásmové propusti a také univerzální filtry. Všechny aktivní prvky a příklady aplikací byly ověřeny pomocí PSpice simulací s využitím parametrů technologie 0,18 m TSMC CMOS. Pro ilustraci přesného a účinného chování struktur je v disertační práci zahrnuto velké množství simulačních výsledků.The dissertation thesis is aiming at examining the most common methods adopted by analog circuits' designers in order to achieve low voltage (LV) low power (LP) configurations. The capability of LV LP operation could be achieved either by developed technologies or by design techniques. The thesis is concentrating upon design techniques, especially the non–conventional ones which are bulk–driven (BD), floating–gate (FG), quasi–floating–gate (QFG), bulk–driven floating–gate (BD–FG) and bulk–driven quasi–floating–gate (BD–QFG) techniques. The thesis also looks at ways of implementing structures of well–known and modern active elements operating in voltage–, current–, and mixed–mode such as operational transconductance amplifier (OTA), second generation current conveyor (CCII), fully–differential second generation current conveyor (FB–CCII), fully–balanced differential difference amplifier (FB–DDA), voltage differencing transconductance amplifier (VDTA), current–controlled current differencing buffered amplifier (CC–CDBA) and current feedback operational amplifier (CFOA). In order to confirm the functionality and behavior of these configurations and elements, they have been utilized in application examples such as diode–less rectifier and inductance simulations, as well as low–pass, band–pass and universal filters. All active elements and application examples have been verified by PSpice simulator using the 0.18 m TSMC CMOS parameters. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of structures.

    A CMOS self-contained quadrature signal generator for soc impedance spectroscopy

    Get PDF
    This paper presents a low-power fully integrated quadrature signal generator for system-on-chip (SoC) impedance spectroscopy applications. It has been designed in a 0.18 µm-1.8 V CMOS technology as a self-contained oscillator, without the need for an external reference clock. The frequency can be digitally tuned from 10 to 345 kHz with 12-bit accuracy and a relative mean error below 1.7%, thus supporting a wide range of impedance sensing applications. The proposal is experimentally validated in two impedance spectrometry examples, achieving good magnitude and phase recovery results compared to the results obtained using a commercial LCR-meter. Besides the wide frequency tuning range, the proposed programmable oscillator features a total power consumption lower than 0.77 mW and an active area of 0.129 mm2, thus constituting a highly suitable choice as stimulation module for instrument-on-a-chip devices

    Ultra-Low-Voltage IC Design Methods

    Get PDF
    The emerging nanoscale technologies inherently offer transistors working with low voltage levels and are optimized for low-power operation. However, these technologies lack quality electronic components vital for reliable analog and/or mixed-signal design (e.g., resistor, capacitor, etc.) as they are predominantly used in high-performance digital designs. Moreover, the voltage headroom, ESD properties, the maximum current densities, parasitic effects, process fluctuations, aging effects, and many other parameters are superior in verified-by-time CMOS processes using planar transistors. This is the main reason, why low-voltage, low-power high-performance analog and mixed-signal circuits are still being designed in mature process nodes. In the proposed chapter, we bring an overview of main challenges and design techniques effectively applicable for ultra-low-voltage and low-power analog integrated circuits in nanoscale technologies. New design challenges and limitations linked with a low value of the supply voltage, the process fluctuation, device mismatch, and other effects are discussed. In the later part of the chapter, conventional and unconventional design techniques (bulk-driven approach, floating-gate, dynamic threshold, etc.) to design analog integrated circuits towards ultra-low-voltage systems and applications are described. Examples of ultra-low-voltage analog ICs blocks (an operational amplifier, a voltage comparator, a charge pump, etc.) designed in a standard CMOS technology using the unconventional design approach are presented
    corecore