5,179 research outputs found

    An IoT-based solution for monitoring a fleet of educational buildings focusing on energy efficiency

    Get PDF
    Raising awareness among young people and changing their behaviour and habits concerning energy usage iskey to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examinesways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both theusers (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizenś behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies andservices in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer newapp-based solutions that can be used either for educational purposes or for managing the energy efficiency ofthebuilding. The system is replicable and adaptable to settings that may be different than the scenarios envisionedhere (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity

    Management and monitoring of public buildings through ICT based systems: Control rules for energy saving with lighting and HVAC services

    Get PDF
    Abstract The presented work addresses the topic of energy savings in existing public buildings, when no significant retrofits on building envelope or plants can be done and savings can be achieved by designing intelligent ICT-based service to monitor and control environmental conditions, energy loads and plants operation. At the end of 2010 the European Commission, within the Seventh Framework Program, has founded a project entitled "Smart Energy Efficient Middleware for Public Spaces" (SEEMPubS). To achieve this goal the project will implement, in a set of demonstrator buildings, an interoperable web-based software and hardware solution for real-time monitoring and control of lighting, heating, ventilation and air conditioning services, through both wired and wireless sensor networks. In this paper the first phase of the project, concerning the selection of the environments to be used as demonstrator and the definition of the control and monitoring strategies to reduce energy consumptions for lighting and air conditioning, are presented

    Building Information Modeling and Building Performance Simulation-Based Decision Support Systems for Improved Built Heritage Operation

    Get PDF
    Adapting outdated building stocks’ operations to meet current environmental and economic demands poses significant challenges that, to be faced, require a shift toward digitalization in the architecture, engineering, construction, and operation sectors. Digital tools capable of acquiring, structuring, sharing, processing, and visualizing built assets’ data in the form of knowledge need to be conceptualized and developed to inform asset managers in decision-making and strategic planning. This paper explores how building information modeling and building performance simulation technologies can be integrated into digital decision support systems (DSS) to make building data accessible and usable by non-digital expert operators through user-friendly services. The method followed to develop the digital DSS is illustrated and then demonstrated with a simulation-based application conducted on the heritage case study of the Faculty of Engineering in Bologna, Italy. The analysis allows insights into the building’s energy performance at the space and hour scale and explores its relationship with the planned occupancy through a data visualization approach. In addition, the conceptualization of the DSS within a digital twin vision lays the foundations for future extensions to other technologies and data, including, for example, live sensor measurements, occupant feedback, and forecasting algorithms

    An AI-based Ventilation KPI using embedded IoT devices

    Get PDF
    The air ventilation of enclosed premises has a direct impact on the occupants well-being. If not properly regulated, the air ventilation can originate a multitude of diseases and pathologies. The present study proposes a new KPI (ventilation KPI) adapted to Smart Cities. It is especially designed for academic environments (Smart Universities) in which community members spend a long time gathered in classrooms, seminars, laboratories, etc. The ventilation KPI (or KPIv) was designed to support decision-making and is based on the estimation of the number of occupants of an enclosed space and the accumulation of existing CO2. Two AI techniques are proposed to perform these estimations, specifically, two regressive neural networks. The resulting models, together with the KPI were implemented through the development of value-added services for the University of Alicantes Smart University platform. The network models were designed to be embedded within the built IoT device prototypes. These prototypes are small and inexpensive. They act as intelligent sensors and are connected via a low consumption and emission network (LoRa). The case study showed that it is possible to take advantage of the pre-existing services and resources of these platforms, and to validate the KPIv

    “No powers, man!”: A student perspective on designing university smart building interactions

    Get PDF
    Smart buildings offer an opportunity for better performance and enhanced experience by contextualising services and interactions to the needs and practices of occupants. Yet, this vision is limited by established approaches to building management, delivered top-down through professional facilities management teams, opening up an interaction-gap between occupants and the spaces they inhabit. To address the challenge of how smart buildings might be more inclusively managed, we present the results of a qualitative study with student occupants of a smart building, with design workshops including building walks and speculative futuring. We develop new understandings of how student occupants conceptualise and evaluate spaces as they experience them, and of how building management practices might evolve with new sociotechnical systems that better leverage occupant agency. Our findings point to important directions for HCI research in this nascent area, including the need for HBI (Human-Building Interaction) design to challenge entrenched roles in building management

    Risk Exposure to Particles – including Legionella pneumophila – emitted during Showering with Water-Saving Showers

    Get PDF
    The increase in legionellosis incidence in the general population in recent years calls for a better characterization of the sources of infection, such as showering. Water-efficient shower systems that use water atomization technology may emit slightly more inhalable bacteria-sized particles than traditional systems, which may increase the risk of users inhaling contaminants associated with these water droplets. To evaluate the risk, the number and mass of inhalable water droplets emitted by twelve showerheads—eight using water-atomization technology and four using continuous-flow technology— were monitored in a shower stall. The water-atomizing showers tested not only had lower flow rates, but also larger spray angles, less nozzles, and larger nozzle diameters than those of the continuous-flow showerheads. A difference in the behavior of inhalable water droplets between the two technologies was observed, both unobstructed or in the presence of a mannequin. The evaporation of inhalable water droplets emitted by the water-atomization showers favored a homogenous distribution in the shower stall. In the presence of the mannequin, the number and mass of inhalable droplets increased for the continuous-flow showerheads and decreased for the water-atomization showerheads. The water-atomization showerheads emitted less inhalable water mass than the continuous-flow showerheads did per unit of time; however, they generally emitted a slightly higher number of inhalable droplets—only one model performed as well as the continuous-flow showerheads in this regard. To specifically assess the aerosolisation rate of bacteria, in particular of the opportunistic water pathogen Legionella pneumophila, during showering controlled experiments were run with one atomization showerhead and one continuous-flow, first inside a glove box, second inside a shower stall. The bioaerosols were sampled with a Coriolis® air sampler and the total number of viable (cultivable and noncultivable) bacteria was determined by flow cytometry and culture. We found that the rate of viable and cultivable Legionella aerosolized from the water jet was similar between the two showerheads: the viable fraction represents 0.02% of the overall bacteria present in water, while the cultivable fraction corresponds to only 0.0005%. The two showerhead models emitted a similar ratio of airborne Legionella viable and cultivable per volume of water used. Similar results were obtained with naturally contaminated hoses tested in shower stall. Therefore, the risk of exposure to Legionella is not expected to increase significantly with the new generation of water-efficient showerheads
    corecore