292 research outputs found

    Graph multicoloring reduction methods and application to McDiarmid-Reed's Conjecture

    Full text link
    A (a,b)(a,b)-coloring of a graph GG associates to each vertex a set of bb colors from a set of aa colors in such a way that the color-sets of adjacent vertices are disjoints. We define general reduction tools for (a,b)(a,b)-coloring of graphs for 2≤a/b≤32\le a/b\le 3. In particular, we prove necessary and sufficient conditions for the existence of a (a,b)(a,b)-coloring of a path with prescribed color-sets on its end-vertices. Other more complex (a,b)(a,b)-colorability reductions are presented. The utility of these tools is exemplified on finite triangle-free induced subgraphs of the triangular lattice. Computations on millions of such graphs generated randomly show that our tools allow to find (in linear time) a (9,4)(9,4)-coloring for each of them. Although there remain few graphs for which our tools are not sufficient for finding a (9,4)(9,4)-coloring, we believe that pursuing our method can lead to a solution of the conjecture of McDiarmid-Reed.Comment: 27 page

    A characterization of b-chromatic and partial Grundy numbers by induced subgraphs

    Full text link
    Gy{\'a}rf{\'a}s et al. and Zaker have proven that the Grundy number of a graph GG satisfies Γ(G)≥t\Gamma(G)\ge t if and only if GG contains an induced subgraph called a tt-atom.The family of tt-atoms has bounded order and contains a finite number of graphs.In this article, we introduce equivalents of tt-atoms for b-coloring and partial Grundy coloring.This concept is used to prove that determining if φ(G)≥t\varphi(G)\ge t and ∂Γ(G)≥t\partial\Gamma(G)\ge t (under conditions for the b-coloring), for a graph GG, is in XP with parameter tt.We illustrate the utility of the concept of tt-atoms by giving results on b-critical vertices and edges, on b-perfect graphs and on graphs of girth at least 77

    b-coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs

    Get PDF
    A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by \chi_b(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = \chi(G),\ldots,\chi_b(G), and b-monotonic if \chi_b(H_1) \geq \chi_b(H_2) for every induced subgraph H_1 of G, and every induced subgraph H_2 of H_1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: - We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. - We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at most a given threshold. - We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. - Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic

    B-Coloring of Regular Graphs

    Get PDF
    • …
    corecore