161 research outputs found

    Depth map compression via 3D region-based representation

    Get PDF
    In 3D video, view synthesis is used to create new virtual views between encoded camera views. Errors in the coding of the depth maps introduce geometry inconsistencies in synthesized views. In this paper, a new 3D plane representation of the scene is presented which improves the performance of current standard video codecs in the view synthesis domain. Two image segmentation algorithms are proposed for generating a color and depth segmentation. Using both partitions, depth maps are segmented into regions without sharp discontinuities without having to explicitly signal all depth edges. The resulting regions are represented using a planar model in the 3D world scene. This 3D representation allows an efficient encoding while preserving the 3D characteristics of the scene. The 3D planes open up the possibility to code multiview images with a unique representation.Postprint (author's final draft

    Grounding semantics in robots for Visual Question Answering

    Get PDF
    In this thesis I describe an operational implementation of an object detection and description system that incorporates in an end-to-end Visual Question Answering system and evaluated it on two visual question answering datasets for compositional language and elementary visual reasoning

    Semantic Segmentation for Real-World Applications

    Get PDF
    En visión por computador, la comprensión de escenas tiene como objetivo extraer información útil de una escena a partir de datos de sensores. Por ejemplo, puede clasificar toda la imagen en una categoría particular o identificar elementos importantes dentro de ella. En este contexto general, la segmentación semántica proporciona una etiqueta semántica a cada elemento de los datos sin procesar, por ejemplo, a todos los píxeles de la imagen o, a todos los puntos de la nube de puntos. Esta información es esencial para muchas aplicaciones de visión por computador, como conducción, aplicaciones médicas o robóticas. Proporciona a los ordenadores una comprensión sobre el entorno que es necesaria para tomar decisiones autónomas.El estado del arte actual de la segmentación semántica está liderado por métodos de aprendizaje profundo supervisados. Sin embargo, las condiciones del mundo real presentan varias restricciones para la aplicación de estos modelos de segmentación semántica. Esta tesis aborda varios de estos desafíos: 1) la cantidad limitada de datos etiquetados disponibles para entrenar modelos de aprendizaje profundo, 2) las restricciones de tiempo y computación presentes en aplicaciones en tiempo real y/o en sistemas con poder computacional limitado, y 3) la capacidad de realizar una segmentación semántica cuando se trata de sensores distintos de la cámara RGB estándar.Las aportaciones principales en esta tesis son las siguientes:1. Un método nuevo para abordar el problema de los datos anotados limitados para entrenar modelos de segmentación semántica a partir de anotaciones dispersas. Los modelos de aprendizaje profundo totalmente supervisados lideran el estado del arte, pero mostramos cómo entrenarlos usando solo unos pocos píxeles etiquetados. Nuestro enfoque obtiene un rendimiento similar al de los modelos entrenados con imágenescompletamente etiquetadas. Demostramos la relevancia de esta técnica en escenarios de monitorización ambiental y en dominios más generales.2. También tratando con datos de entrenamiento limitados, proponemos un método nuevo para segmentación semántica semi-supervisada, es decir, cuando solo hay una pequeña cantidad de imágenes completamente etiquetadas y un gran conjunto de datos sin etiquetar. La principal novedad de nuestro método se basa en el aprendizaje por contraste. Demostramos cómo el aprendizaje por contraste se puede aplicar a la tarea de segmentación semántica y mostramos sus ventajas, especialmente cuando la disponibilidad de datos etiquetados es limitada logrando un nuevo estado del arte.3. Nuevos modelos de segmentación semántica de imágenes eficientes. Desarrollamos modelos de segmentación semántica que son eficientes tanto en tiempo de ejecución, requisitos de memoria y requisitos de cálculo. Algunos de nuestros modelos pueden ejecutarse en CPU a altas velocidades con alta precisión. Esto es muy importante para configuraciones y aplicaciones reales, ya que las GPU de gama alta nosiempre están disponibles.4. Nuevos métodos de segmentación semántica con sensores no RGB. Proponemos un método para la segmentación de nubes de puntos LiDAR que combina operaciones de aprendizaje eficientes tanto en 2D como en 3D. Logra un rendimiento de segmentación excepcional a velocidades realmente rápidas. También mostramos cómo mejorar la robustez de estos modelos al abordar el problema de sobreajuste y adaptaciónde dominio. Además, mostramos el primer trabajo de segmentación semántica con cámaras de eventos, haciendo frente a la falta de datos etiquetados.Estas contribuciones aportan avances significativos en el campo de la segmentación semántica para aplicaciones del mundo real. Para una mayor contribución a la comunidad cientfíica, hemos liberado la implementación de todas las soluciones propuestas.----------------------------------------In computer vision, scene understanding aims at extracting useful information of a scene from raw sensor data. For instance, it can classify the whole image into a particular category (i.e. kitchen or living room) or identify important elements within it (i.e., bottles, cups on a table or surfaces). In this general context, semantic segmentation provides a semantic label to every single element of the raw data, e.g., to all image pixels or to all point cloud points.This information is essential for many applications relying on computer vision, such as AR, driving, medical or robotic applications. It provides computers with understanding about the environment needed to make autonomous decisions, or detailed information to people interacting with the intelligent systems. The current state of the art for semantic segmentation is led by supervised deep learning methods.However, real-world scenarios and conditions introduce several challenges and restrictions for the application of these semantic segmentation models. This thesis tackles several of these challenges, namely, 1) the limited amount of labeled data available for training deep learning models, 2) the time and computation restrictions present in real time applications and/or in systems with limited computational power, such as a mobile phone or an IoT node, and 3) the ability to perform semantic segmentation when dealing with sensors other than the standard RGB camera.The general contributions presented in this thesis are following:A novel approach to address the problem of limited annotated data to train semantic segmentation models from sparse annotations. Fully supervised deep learning models are leading the state-of-the-art, but we show how to train them by only using a few sparsely labeled pixels in the training images. Our approach obtains similar performance than models trained with fully-labeled images. We demonstrate the relevance of this technique in environmental monitoring scenarios, where it is very common to have sparse image labels provided by human experts, as well as in more general domains. Also dealing with limited training data, we propose a novel method for semi-supervised semantic segmentation, i.e., when there is only a small number of fully labeled images and a large set of unlabeled data. We demonstrate how contrastive learning can be applied to the semantic segmentation task and show its advantages, especially when the availability of labeled data is limited. Our approach improves state-of-the-art results, showing the potential of contrastive learning in this task. Learning from unlabeled data opens great opportunities for real-world scenarios since it is an economical solution. Novel efficient image semantic segmentation models. We develop semantic segmentation models that are efficient both in execution time, memory requirements, and computation requirements. Some of our models able to run in CPU at high speed rates with high accuracy. This is very important for real set-ups and applications since high-end GPUs are not always available. Building models that consume fewer resources, memory and time, would increase the range of applications that can benefit from them. Novel methods for semantic segmentation with non-RGB sensors.We propose a novel method for LiDAR point cloud segmentation that combines efficient learning operations both in 2D and 3D. It surpasses state-of-the-art segmentation performance at really fast rates. We also show how to improve the robustness of these models tackling the overfitting and domain adaptation problem. Besides, we show the first work for semantic segmentation with event-based cameras, coping with the lack of labeled data. To increase the impact of this contributions and ease their application in real-world settings, we have made available an open-source implementation of all proposed solutions to the scientific community.<br /

    Uma abordagem de agrupamento baseada na técnica de divisão e conquista e floresta de caminhos ótimos

    Get PDF
    Orientador: Alexandre Xavier FalcãoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O agrupamento de dados é um dos principais desafios em problemas de Ciência de Dados. Apesar do seu progresso científico em quase um século de existência, algoritmos de agrupamento ainda falham na identificação de grupos (clusters) naturalmente relacionados com a semântica do problema. Ademais, os avanços das tecnologias de aquisição, comunicação, e armazenamento de dados acrescentam desafios cruciais com o aumento considerável de dados, os quais não são tratados pela maioria das técnicas. Essas questões são endereçadas neste trabalho através da proposta de uma abordagem de divisão e conquista para uma técnica de agrupamento única em encontrar um grupo por domo da função de densidade de probabilidade dos dados --- o algoritmo de agrupamento por floresta de caminhos ótimos (OPF - Optimum-Path Forest). Nesta técnica, amostras são interpretadas como nós de um grafo cujos arcos conectam os kk-vizinhos mais próximos no espaço de características. Os nós são ponderados pela sua densidade de probabilidade e um mapa de conexidade é maximizado de modo que cada máximo da função densidade de probabilidade se torna a raiz de uma árvore de caminhos ótimos (grupo). O melhor valor de kk é estimado por otimização em um intervalo de valores dependente da aplicação. O problema com este método é que um número alto de amostras torna o algoritmo inviável, devido ao espaço de memória necessário para armazenar o grafo e o tempo computacional para encontrar o melhor valor de kk. Visto que as soluções existentes levam a resultados ineficazes, este trabalho revisita o problema através da proposta de uma abordagem de divisão e conquista com dois níveis. No primeiro nível, o conjunto de dados é dividido em subconjuntos (blocos) menores e as amostras pertencentes a cada bloco são agrupadas pelo algoritmo OPF. Em seguida, as amostras representativas de cada grupo (mais especificamente as raízes da floresta de caminhos ótimos) são levadas ao segundo nível, onde elas são agrupadas novamente. Finalmente, os rótulos de grupo obtidos no segundo nível são transferidos para todas as amostras do conjunto de dados através de seus representantes do primeiro nível. Nesta abordagem, todas as amostras, ou pelo menos muitas delas, podem ser usadas no processo de aprendizado não supervisionado, sem afetar a eficácia do agrupamento e, portanto, o procedimento é menos susceptível a perda de informação relevante ao agrupamento. Os resultados mostram agrupamentos satisfatórios em dois cenários, segmentação de imagem e agrupamento de dados arbitrários, tendo como base a comparação com abordagens populares. No primeiro cenário, a abordagem proposta atinge os melhores resultados em todas as bases de imagem testadas. No segundo cenário, os resultados são similares aos obtidos por uma versão otimizada do método original de agrupamento por floresta de caminhos ótimosAbstract: Data clustering is one of the main challenges when solving Data Science problems. Despite its progress over almost one century of research, clustering algorithms still fail in identifying groups naturally related to the semantics of the problem. Moreover, the advances in data acquisition, communication, and storage technologies add crucial challenges with a considerable data increase, which are not handled by most techniques. We address these issues by proposing a divide-and-conquer approach to a clustering technique, which is unique in finding one group per dome of the probability density function of the data --- the Optimum-Path Forest (OPF) clustering algorithm. In the OPF-clustering technique, samples are taken as nodes of a graph whose arcs connect the kk-nearest neighbors in the feature space. The nodes are weighted by their probability density values and a connectivity map is maximized such that each maximum of the probability density function becomes the root of an optimum-path tree (cluster). The best value of kk is estimated by optimization within an application-specific interval of values. The problem with this method is that a high number of samples makes the algorithm prohibitive, due to the required memory space to store the graph and the computational time to obtain the clusters for the best value of kk. Since the existing solutions lead to ineffective results, we decided to revisit the problem by proposing a two-level divide-and-conquer approach. At the first level, the dataset is divided into smaller subsets (blocks) and the samples belonging to each block are grouped by the OPF algorithm. Then, the representative samples (more specifically the roots of the optimum-path forest) are taken to a second level where they are clustered again. Finally, the group labels obtained in the second level are transferred to all samples of the dataset through their representatives of the first level. With this approach, we can use all samples, or at least many samples, in the unsupervised learning process without affecting the grouping performance and, therefore, the procedure is less likely to lose relevant grouping information. We show that our proposal can obtain satisfactory results in two scenarios, image segmentation and the general data clustering problem, in comparison with some popular baselines. In the first scenario, our technique achieves better results than the others in all tested image databases. In the second scenario, it obtains outcomes similar to an optimized version of the traditional OPF-clustering algorithmMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPE

    Segmentación semántica con modelos de deep learning y etiquetados no densos

    Get PDF
    La segmentación semántica es un problema muy estudiado dentro del campo de la visión por computador que consiste en la clasificación de imágenes a nivel de píxel. Es decir, asignar una etiqueta o valor a cada uno de los píxeles de la imagen. Tiene aplicaciones muy variadas, que van desde interpretar el contenido de escenas urbanas para tareas de conducción automática hasta aplicaciones médicas que ayuden al médico a analizar la información del paciente para realizar un diagnóstico o operaciones. Como en muchos otros problemas y tareas relacionados con la visión por computador, en los últimos años se han propuesto y demostrado grandes avances en los métodos para segmentación semántica gracias, en gran parte, al reciente auge de los métodos basados en aprendizaje profundo o deep learning.\\ A pesar de que en los últimos años se están realizando mejoras constantes, los modelos de \textit{deep learning} para segmentación semántica %así como otras áreas, tienen un problema presentan un reto que dificulta su aplicabilidad a problemas de la vida real: necesitan grandes cantidades de anotaciones para entrenar los modelos. Esto es muy costoso, sobre todo porque en este caso hay que realizarlo a nivel de píxel. Muchos conjuntos de datos reales, por ejemplo datos adquiridos para tareas de monitorización del medio ambiente (grabaciones de entornos naturales, imágenes de satélite) generalmente presentan tan solo unos pocos píxeles etiquetados por imagen, que suelen venir de algunos clicks de un experto, para indicar ciertas zonas de interés en esas imágenes. Este tipo de etiquetado hace %imposible que sea muy complicado el entrenamiento de modelos densos que permitan procesar y obtener de manera automática una mayor cantidad de información de todos estos conjuntos de datos.\\ El objetivo de este trabajo es proponer nuevos métodos para resolver este problema. La idea principal es utilizar una segmentación inicial de la imagen multi-nivel de la imagen para propagar la poca información disponible. Este enfoque novedoso permite aumentar la anotación, y demostramos que pese a ser algo ruidosa, permite aprender de manera efectiva un modelo que obtenga la segmentación deseada. Este método es aplicable a cualquier tipo de dispersión de las anotaciones, siendo independiente del número de píxeles anotados. Las principales tareas desarrolladas en este proyecto son: -Estudio del estado del arte en técnicas de segmentación semántica (la mayoría basadas en técnicas de deep learning) -Propuesta y evaluación de métodos para aumentar (propagar) las etiquetas de las imágenes de entrenamiento cuando estas son dispersas y escasas -Diseño y evaluación de las arquitecturas de redes neuronales más adecuadas para resolver este problema Para validar nuestras propuestas, nos centramos en un caso de aplicación en imágenes submarinas, capturadas para monitorización de las zonas de barreras de coral. También demostramos que el método propuesto se puede aplicar a otro tipo de imágenes, como imágenes aéreas, imágenes multiespectrales y conjuntos de datos de segmentación de instancias

    3D hand tracking.

    Get PDF
    The hand is often considered as one of the most natural and intuitive interaction modalities for human-to-human interaction. In human-computer interaction (HCI), proper 3D hand tracking is the first step in developing a more intuitive HCI system which can be used in applications such as gesture recognition, virtual object manipulation and gaming. However, accurate 3D hand tracking, remains a challenging problem due to the hand’s deformation, appearance similarity, high inter-finger occlusion and complex articulated motion. Further, 3D hand tracking is also interesting from a theoretical point of view as it deals with three major areas of computer vision- segmentation (of hand), detection (of hand parts), and tracking (of hand). This thesis proposes a region-based skin color detection technique, a model-based and an appearance-based 3D hand tracking techniques to bring the human-computer interaction applications one step closer. All techniques are briefly described below. Skin color provides a powerful cue for complex computer vision applications. Although skin color detection has been an active research area for decades, the mainstream technology is based on individual pixels. This thesis presents a new region-based technique for skin color detection which outperforms the current state-of-the-art pixel-based skin color detection technique on the popular Compaq dataset (Jones & Rehg 2002). The proposed technique achieves 91.17% true positive rate with 13.12% false negative rate on the Compaq dataset tested over approximately 14,000 web images. Hand tracking is not a trivial task as it requires tracking of 27 degreesof- freedom of hand. Hand deformation, self occlusion, appearance similarity and irregular motion are major problems that make 3D hand tracking a very challenging task. This thesis proposes a model-based 3D hand tracking technique, which is improved by using proposed depth-foreground-background ii feature, palm deformation module and context cue. However, the major problem of model-based techniques is, they are computationally expensive. This can be overcome by discriminative techniques as described below. Discriminative techniques (for example random forest) are good for hand part detection, however they fail due to sensor noise and high interfinger occlusion. Additionally, these techniques have difficulties in modelling kinematic or temporal constraints. Although model-based descriptive (for example Markov Random Field) or generative (for example Hidden Markov Model) techniques utilize kinematic and temporal constraints well, they are computationally expensive and hardly recover from tracking failure. This thesis presents a unified framework for 3D hand tracking, using the best of both methodologies, which out performs the current state-of-the-art 3D hand tracking techniques. The proposed 3D hand tracking techniques in this thesis can be used to extract accurate hand movement features and enable complex human machine interaction such as gaming and virtual object manipulation
    corecore