
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Adán Echemendía Montero

A Divide-and-Conquer Clustering Approach based on
Optimum-Path Forest

Uma Abordagem de Agrupamento baseada na Técnica
de Divisão e Conquista e Floresta de Caminhos Ótimos

CAMPINAS
2018

Adán Echemendía Montero

A Divide-and-Conquer Clustering Approach based on
Optimum-Path Forest

Uma Abordagem de Agrupamento baseada na Técnica de
Divisão e Conquista e Floresta de Caminhos Ótimos

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Alexandre Xavier Falcão

Este exemplar corresponde à versão final da
Dissertação defendida por Adán
Echemendía Montero e orientada pelo Prof.
Dr. Alexandre Xavier Falcão.

CAMPINAS
2018

Agência(s) de fomento e nº(s) de processo(s): CAPES

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Echemendía Montero, Adán, 1988-
 Ec43d EchA divide-and-conquer clustering approach based on optimum-path forest /

Adán Echemendía Montero. – Campinas, SP : [s.n.], 2018.

 EchOrientador: Alexandre Xavier Falcão.
 EchDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Ech1. Reconhecimento de padrões. 2. Segmentação de imagens. 3. Floresta

de caminhos ótimos. I. Falcão, Alexandre Xavier, 1966-. II. Universidade
Estadual de Campinas. Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Uma abordagem de agrupamento baseada na técnica de divisão e
conquista e floresta de caminhos ótimos
Palavras-chave em inglês:
Pattern recognition
Image segmentation
Optimum-path forest
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Alexandre Xavier Falcão [Orientador]
João Paulo Papa
Luciano Silva
Data de defesa: 25-05-2018
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Adán Echemendía Montero

A Divide-and-Conquer Clustering Approach based on
Optimum-Path Forest

Uma Abordagem de Agrupamento baseada na Técnica de
Divisão e Conquista e Floresta de Caminhos Ótimos

Banca Examinadora:

• Prof. Dr. Alexandre Xavier Falcão
UNICAMP

• Prof. Dr. Luciano Silva
UFPR

• Prof. Dr. Joao Paulo Papa
UNESP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 25 de maio de 2018

Acknowledgements

I would like first to thank my wife, my parents, my grandmother, and my parents-in-law
for providing me with unfailing support and continuous encouragement during this period
of my life. This accomplishment would not have been possible without them.

I would like to thank my thesis advisor Prof. Alexandre Xavier Falcão for his attention,
patience, guidance, and support whenever I ran into troubles or had questions about my
research or writing.

I would like to acknowledge the laboratory fellows of both the LIV and the LIDS
for the assistance provided in these years, with special thanks to Alan Peixinho, Samuel
Martins, and Anderson Carlos.

I would also like to thank the rest of my friends, who in some way contributed to the
person I am today. I would like to acknowledge Jose Carlos Urra and Camila Gonzalez,
who helped me with the review of this text.

Finally, I must express my very profound gratitude to Brazil, Unicamp, and CAPES/CNPq
agencies which gave me this opportunity and made this work possible.

Resumo

O agrupamento de dados é um dos principais desafios em problemas de Ciência de Da-
dos. Apesar do seu progresso científico em quase um século de existência, algoritmos de
agrupamento ainda falham na identificação de grupos (clusters) naturalmente relaciona-
dos com a semântica do problema. Ademais, os avanços das tecnologias de aquisição,
comunicação, e armazenamento de dados acrescentam desafios cruciais com o aumento
considerável de dados, os quais não são tratados pela maioria das técnicas. Essas ques-
tões são endereçadas neste trabalho através da proposta de uma abordagem de divisão
e conquista para uma técnica de agrupamento única em encontrar um grupo por domo
da função de densidade de probabilidade dos dados — o algoritmo de agrupamento por
floresta de caminhos ótimos (OPF - Optimum-Path Forest). Nesta técnica, amostras são
interpretadas como nós de um grafo cujos arcos conectam os k-vizinhos mais próximos no
espaço de características. Os nós são ponderados pela sua densidade de probabilidade e
um mapa de conexidade é maximizado de modo que cada máximo da função densidade de
probabilidade se torna a raiz de uma árvore de caminhos ótimos (grupo). O melhor valor
de k é estimado por otimização em um intervalo de valores dependente da aplicação. O
problema com este método é que um número alto de amostras torna o algoritmo inviável,
devido ao espaço de memória necessário para armazenar o grafo e o tempo computacional
para encontrar o melhor valor de k. Visto que as soluções existentes levam a resultados
ineficazes, este trabalho revisita o problema através da proposta de uma abordagem de
divisão e conquista com dois níveis. No primeiro nível, o conjunto de dados é dividido
em subconjuntos (blocos) menores e as amostras pertencentes a cada bloco são agrupadas
pelo algoritmo OPF. Em seguida, as amostras representativas de cada grupo (mais espe-
cificamente as raízes da floresta de caminhos ótimos) são levadas ao segundo nível, onde
elas são agrupadas novamente. Finalmente, os rótulos de grupo obtidos no segundo nível
são transferidos para todas as amostras do conjunto de dados através de seus representan-
tes do primeiro nível. Nesta abordagem, todas as amostras, ou pelo menos muitas delas,
podem ser usadas no processo de aprendizado não supervisionado, sem afetar a eficácia
do agrupamento e, portanto, o procedimento é menos susceptível a perda de informação
relevante ao agrupamento. Os resultados mostram agrupamentos satisfatórios em dois
cenários, segmentação de imagem e agrupamento de dados arbitrários, tendo como base
a comparação com abordagens populares. No primeiro cenário, a abordagem proposta
atinge os melhores resultados em todas as bases de imagem testadas. No segundo cená-
rio, os resultados são similares aos obtidos por uma versão otimizada do método original
de agrupamento por floresta de caminhos ótimos.

Palavras-chave: agrupamento, floresta de caminhos ótimos, segmentação de ima-
gem, transformada imagem-floresta, paradigma de divisão e conquista, aprendizado de
máquina.

Abstract

Data clustering is one of the main challenges when solving Data Science problems. Despite
its progress over almost one century of research, clustering algorithms still fail in identify-
ing groups naturally related to the semantics of the problem. Moreover, the advances in
data acquisition, communication, and storage technologies add crucial challenges with a
considerable data increase, which are not handled by most techniques. We address these
issues by proposing a divide-and-conquer approach to a clustering technique, which is
unique in finding one group per dome of the probability density function of the data —
the Optimum-Path Forest (OPF) clustering algorithm. In the OPF-clustering technique,
samples are taken as nodes of a graph whose arcs connect the k-nearest neighbors in the
feature space. The nodes are weighted by their probability density values and a con-
nectivity map is maximized such that each maximum of the probability density function
becomes the root of an optimum-path tree (cluster). The best value of k is estimated
by optimization within an application-specific interval of values. The problem with this
method is that a high number of samples makes the algorithm prohibitive, due to the
required memory space to store the graph and the computational time to obtain the
clusters for the best value of k. Since the existing solutions lead to ineffective results,
we decided to revisit the problem by proposing a two-level divide-and-conquer approach.
At the first level, the dataset is divided into smaller subsets (blocks) and the samples
belonging to each block are grouped by the OPF algorithm. Then, the representative
samples (more specifically the roots of the optimum-path forest) are taken to a second
level where they are clustered again. Finally, the group labels obtained in the second
level are transferred to all samples of the dataset through their representatives of the first
level. With this approach, we can use all samples, or at least many samples, in the unsu-
pervised learning process without affecting the grouping performance and, therefore, the
procedure is less likely to lose relevant grouping information. We show that our proposal
can obtain satisfactory results in two scenarios, image segmentation and the general data
clustering problem, in comparison with some popular baselines. In the first scenario, our
technique achieves better results than the others in all tested image databases. In the
second scenario, it obtains outcomes similar to an optimized version of the traditional
OPF-clustering algorithm.

Keywords: clustering, optimum-path forest, image segmentation, image foresting
transform, divide-and-conquer paradigm, machine learning.

List of Figures

1.1 (a) A two-dimensional space where the samples are represented by points.
(b) The density value of each sample is displayed as a 3D surface. (c) The
groups are defined by the maxima of the PDF, whose influence areas are
illustrated on the 2D projection by regions of different colors. (d) Samples
receive the label of their most strongly connected maximum. 19

1.2 Clustering a toy dataset with the proposed divide-and-conquer algorithm.
(a) Some unlabeled data. (b) The data is divided into blocks with random
sampling (each color indicates a different block) and each block is clustered
with the OPF algorithm (each shape of the same color indicates a different
cluster in the same block, e.g., the block marked with the blue color is
partitioned into four groups: heart, oval, diamond, and wave). The proto-
types of the groups are indicated with larger shapes. (c) The prototypes of
the clusters in the first level are promoted to the second level (summarized
dataset). (d) The samples in the second level are also clustered with the
OPF algorithm (each group is distinguished by a different color and shape).
(e) The group labels obtained in the second level are propagated to all data
(first level) by means of their prototypes. (f) The dataset is partitioned
into four groups. 21

2.1 A representation of the variety of possible groups in the same dataset.
(a) Some unlabeled data. (b) Seven different groups (marked by different
colors) differ in density, shape, and size. It is very likely that almost none
or none of the available clustering algorithms can detect all these clusters
in the same input data. However, these patterns can be easily discovered
by a human without much effort. This figure was obtained from [59]. . . . 24

2.2 Some common stages in clustering. 25
2.3 A taxonomy of the clustering techniques. 27
2.4 Dendrogram as a result of a hierarchical clustering of five labeled points:

A, B, C, D, and E. 29
2.5 Clustering result of DBSCAN in a toy dataset. Larger circles indicate

core samples and smaller ones indicate density-reachable samples. The
outliers are indicated by black points. This figure was taken from http:
//scikit-learn.org/stable/modules/clustering.html. 31

3.1 (a) The user draws yellow markers inside the object and black markers in
the background. (b) Segmentation result from the hard constraints pro-
vided by the user. 37

http://scikit-learn.org/stable/modules/clustering.html
http://scikit-learn.org/stable/modules/clustering.html

3.2 Image segmentation by SLIC [1] — with 64, 256, and 1,024 superpixels
(approximately). This figure was obtained from http://ivrl.epfl.ch/
research/superpixels. 38

3.3 Examples of spatial adjacency relations. (a) 4-neighborhood in 2D image.
(b) 6-neighborhood in 3D image. (c) 8-neighborhood in 2D image. (d) A1

with r =
√

5 in 2D image. 40
3.4 Execution of Algorithm 1 in a simple graph. (a) A 3-nearest neighbor graph

whose nodes are weighted by their PDF values. There are two prototypes
with values 3 and 5, as indicated by the larger dots, which are discovered
later by the procedure. (b) Trivial path values after execution of Line 3
for δ = 1. (c) Predecessor map (red arrows), path values (red numbers),
and labels (red triangle) after the execution of the internal loop for the
first node removed from Q. There is identified a prototype (largest red
triangle) with PDF value equal to 5 that conquer three nodes. (d) In the
next two iterations of the external loop, the non-prototype samples conquer
two other nodes to be part of the cluster represented by the red triangle.
(e) The optimum-path forest P , the root map R, and the connectivity
map V resulting at the end of Algorithm 1. The procedure finds the other
prototype of the forest (largest blue square), which in turn conquer the
three remaining nodes to form a new cluster (blue square). The optimum
path P ∗(t) (dashed line) can be recovered by following the predecessors
P (t) up to the root R(t) for every node t. 46

4.1 Workflow of the OPF-clustering technique as proposed by Rocha et al. [102]. 51
4.2 2D projections of a toy dataset by the t-SNE algorithm. The number of

groups reduces as the scale k increases. Higher values of k produce (a) a
single group and smaller values of k produce (b) four and (c) five groups,
for instance. 52

4.3 Normalized cut function (Equation 3.8) evaluated on the results produced
by OPF-Large-Data in an image of the GrabCut database, when varying
k ∈ [1, kmax] for kmax = 150. In this case, both the exhaustive and heuristic
searches detect the same optimum value k = 129, but the latter takes 127
iterations less than the former. 52

4.4 Image segmentation by OPF-Blocks-1 with four blocks. (a) After cluster-
ing the pixels by OPF-Large-Data in each block. Adjacent superpixels from
neighboring blocks are marked by yellow arrows. (b) After adjaceny super-
pixel merging by the post-processing, the block boundaries are removed,
making the segmentation more natural. 54

http://ivrl.epfl.ch/research/superpixels
http://ivrl.epfl.ch/research/superpixels

4.5 Pipeline of OPF-Blocks-2 for image segmentation. (a) Input image. (b)
The image is divided into 9 blocks. (c) There is selected a training set
(blue points) by grid sampling in each block. (d) The PDF values of the
samples are estimated separately in each block. Brighter values indicate
samples with higher values of the PDF. Afterward, each block is clustered
with OPF-Large-Data, the prototypes of the groups are promoted to the
second level where they are clustered with the OPF algorithm. The roots
of the final forest are indicated with red points. (e) The group labels ob-
tained in the second level are propagated to all samples of the image. Each
color indicates a different group. (f) Resulting superpixels after relabelling,
smoothing, and filtering operations. 55

5.1 Examples of images in the GrabCut database. 57
5.2 Examples of images in the Parasites/Impurities database. 57
5.3 Examples of images in the Liver database. 57
5.4 2D projections of different descriptors for a natural image of the GrabCut

database with the t-SNE technique. 61
5.5 Comparisons between the segmentation results of OPF-Large-Data, in the

Grabcut database, when different strategies to form the training set of the
method are used. 62

5.6 Segmentation results of OPF-Large-Data with 1500 training samples in
one image of the GrabCut database. In (a) the training samples are chosen
by random sampling, and in (b) the training samples are chosen by grid
sampling. 63

5.7 Comparisons between the segmentation results obtained by OPF-Large-
Data, in the GrabCut database, when training sets of different sizes are
used. 64

5.8 Comparisons between the segmentation results of OPF-Large-Data, in the
Grabcut database, when different strategies to find the adjacency parame-
ter k are used. 65

5.9 Comparisons between the segmentation results of OPF-Blocks-1, in the
GrabCut database, when a different number of blocks for the first level is
established. 65

5.10 Comparisons between the segmentation results of OPF-Blocks-2, in the
GrabCut database, when a different number of blocks for the base level is
established. 66

5.11 Comparison between the segmentation results of the methods, according
to the boundary recall metric, in the GrabCut database. 67

5.12 Comparison between the segmentation results of the methods, according
to the under-segmentation error, in the GrabCut database. 67

5.13 Comparison between the methods according to the execution time in the
GrabCut database. 68

5.14 Segmentation results of the compared methods in the 2nd image of the
GrabCut database. 69

5.15 Segmentation results of the compared methods in the 4th image of the
GrabCut database. 69

5.16 Segmentation results of the compared methods in the 10th image of the
GrabCut database. 69

5.17 Segmentation results of the compared methods in the 25th image of the
GrabCut database. 70

5.18 Segmentation results of the compared methods in the 34th image of the
GrabCut database. 70

5.19 Segmentation results of the compared methods in the 17th image of the
GrabCut database. 70

5.20 Segmentation results of the compared methods in the 29th image of the
GrabCut database. 71

5.21 Comparison between the segmentation results of the methods after true
label propagation from the cluster prototypes, according to the accuracy,
in the GrabCut database. 72

5.22 Comparison between the segmentation results of the methods after true
label propagation from the cluster prototypes, according to the Dice coef-
ficient, in the GrabCut database. 72

5.23 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 6th image of the GrabCut database. 73

5.24 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 10th image of the GrabCut database. 73

5.25 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 15th image of the GrabCut database. 73

5.26 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 17th image of the GrabCut database. 73

5.27 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 19th image of the GrabCut database. 74

5.28 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 21st image of the GrabCut database. 74

5.29 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 26th image of the GrabCut database. 74

5.30 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 45th image of the GrabCut database. 74

5.31 Comparison between the segmentation results of the methods, according
to the boundary recall metric, in the Parasites/Impurities database. 75

5.32 Comparison between the segmentation results of the methods, according
to the under-segmentation error, in the Parasites/Impurities database. . . . 75

5.33 Segmentation results of the compared methods in the 8th image of the
Parasites/Impurities database. 76

5.34 Segmentation results of the compared methods in the 15th image of the
Parasites/Impurities database. 76

5.35 Segmentation results of the compared methods in the 17th image of the
Parasites/Impurities database. 77

5.36 Segmentation results of the compared methods in the 18th image of the
Parasites/Impurities database. 77

5.37 Segmentation results of the compared methods in the 19th image of the
Parasites/Impurities database. 78

5.38 Segmentation results of the compared methods in the 22nd image of the
Parasites/Impurities database. 78

5.39 Segmentation results of the compared methods in the 24th image of the
Parasites/Impurities database. 79

5.40 Comparison between the segmentation results of the methods after true
label propagation from the cluster prototypes, according to the accuracy,
in the Parasites/Impurities database. 80

5.41 Comparison between the segmentation results of the methods after true
label propagation from the cluster prototypes, according to the Dice coef-
ficient, in the Parasites/Impurities database. 80

5.42 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 1st image of the Parasites/Impurities database. 81

5.43 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 3rd image of the Parasites/Impurities database. 81

5.44 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 8th image of the Parasites/Impurities database. 81

5.45 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 9th image of the Parasites/Impurities database. 81

5.46 Resulting mask of the compared methods, after true label propagation
from the cluster prototypes, in the 13th image of the Parasites/Impurities
database. 82

5.47 Resulting mask of the compared methods, after true label propagation
from the cluster prototypes, in the 18th image of the Parasites/Impurities
database. 82

5.48 Resulting mask of the compared methods, after true label propagation
from the cluster prototypes, in the 24th image of the Parasites/Impurities
database. 82

5.49 Comparison between the segmentation results of the methods, according
to the boundary recall metric, in the Liver database. 83

5.50 Comparison between the segmentation results of the methods, according
to the under-segmentation error, in the Liver database. 83

5.51 Segmentation results of the tested methods in the 1st image of the Liver
database. 84

5.52 Segmentation results of the tested methods in the 6th image of the Liver
database. 84

5.53 Segmentation results of the tested methods in the 15th image of the Liver
database. 84

5.54 Segmentation results of the tested methods in the 17th image of the Liver
database. 85

5.55 Segmentation results of the tested methods in the 21st image of the Liver
database. 85

5.56 Segmentation results of the tested methods in the 23rd image of the Liver
database. 85

5.57 Segmentation results of the tested methods in the 28th image of the Liver
database. 86

5.58 Comparison of the segmentation results of the methods after true label
propagation from the cluster prototypes, according to the accuracy, in the
Liver database. 87

5.59 Comparison of the segmentation results of the methods after true label
propagation from the clluster prototypes, according to the Dice coefficient,
in the Liver database. 87

5.60 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 5th image of the Liver database. 88

5.61 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 6th image of the Liver database. 88

5.62 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 13th image of the Liver database. 88

5.63 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 16th image of the Liver database. 88

5.64 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 20th image of the Liver database. 88

5.65 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 24th image of the Liver database. 89

5.66 Resulting mask of the compared methods, after true label propagation from
the cluster prototypes, in the 26th image of the Liver database. 89

5.67 Some examples of the most common protozoan species. (a) Entamoeba
histolytica/E. dispar, (b) Giardia duodenalis, (c) Entamoeba coli, (d) En-
dolimax nana, (e) Iodameba bütschlii, and (f) Blastocystis hominis. 89

5.68 Some examples of the most common helminth species. (a) Enterobius ver-
micularis, (b) Trichuris trichiura, (c) Hymenolepis nana, (d) Taenia spp.,
(e) Ascaris lubmricoides, (f) Ancylostomatidae, (g) Hymenolepis diminuta,
(h) Schistosoma mansoni. 89

5.69 A portion of the aerial image of Rome with the corresponding superpixels. 90

List of Tables

5.1 Experimental results in the PenDigits dataset. 90
5.2 Experimental results in the Protozoans dataset. 91
5.3 Experimental results in the Eggs dataset. 92
5.4 Experimental results in the RomeSuperpixels dataset. 93
5.5 Experimental results in the SkinSegmentation dataset. 93
5.6 Experimental results in the LetterRecognition dataset. 94

Contents

1 Introduction 17
1.1 Motivation . 18
1.2 Objectives . 19
1.3 Main contributions . 20
1.4 Organization of the text . 22

2 Clustering Overview 23
2.1 Cluster analysis . 23
2.2 Representative-based clustering . 26
2.3 Hierarchical clustering . 28
2.4 Density-based and grid-based clustering . 30
2.5 Spectral and graph clustering . 32
2.6 Clustering of large datasets . 34

3 Related Concepts and Methods 36
3.1 Digital images . 36
3.2 Image segmentation . 36
3.3 Superpixels . 37
3.4 Datasets . 39
3.5 Adjacency relations and datasets as graphs 40
3.6 Optimum-Path Forest framework . 41
3.7 Data clustering by Optimum-Path Forest 43

3.7.1 Extension to large datasets . 45

4 Divide-and-Conquer OPF Clustering 48
4.1 General algorithm . 48
4.2 Improving the estimation of the k-nn graph 50
4.3 Algorithm for image segmentation . 51

5 Experimental Results 56
5.1 Image segmentation . 56

5.1.1 Image databases . 56
5.1.2 Compared methods . 57
5.1.3 Evaluation metrics . 59
5.1.4 Defining a simple and effective descriptor for the samples in the

evaluated images . 60
5.1.5 Experimental methodology . 60
5.1.6 Results . 61

5.2 Clustering arbitrary datasets . 77

5.2.1 Datasets . 78
5.2.2 Experimental methodology . 83
5.2.3 Results . 87

5.3 Discussion . 94

6 Conclusions 96

Bibliography 99

17

Chapter 1

Introduction

A dataset may consist of samples from a given problem mathematically represented by
a set of measures per sample, usually referred to as feature vector or point in some
n-dimensional feature space. For instance, samples may be images or image elements,
such as pixels, regions, and objects, whose representation can be based on color, texture,
and shape measures depending on the case. The dissimilarity between samples can be
measured by a distance function between their feature vectors.

Data Clustering is the problem of finding meaningful groups of similar samples ac-
cording to the distance function and mathematical representation. It is a well-known
problem with large numbers of contributions and applications [59, 4]. According to [4],
the clustering problem can be thought of as either an exploratory (descriptive) task or a
pre-processing step. In the former, the objectives are discovery and exploitation of hidden
patterns in the data. In the latter, it aims to facilitate another data mining or machine
learning task.

The samples are very often drawn from a set of possible categories (classes) related
to the problem. In this case, the clustering algorithm should be able to learn a grouping
model that can minimize the number of samples from distinct classes in the same cluster,
while keeping the number of groups as small as possible (since the trivial solution is to
consider each sample a distinct group). Given that the design of such grouping model
must be done with no category information about the samples, the problem is referred to
as unsupervised learning. The model should also be able to propagate group labels to new
samples with a minimum mixture of classes per group. Note, however, this is an ill-posed
problem since there is no guarantee that the labeling obtained by a clustering algorithm
is the same as the true-class labeling — i.e., samples from multiple classes may fall in
the same group, or many groups can be associated with the same class. Additional class
information is then required, at least the classes of the representative samples, such that
the remaining samples from the same group can be classified in the same class.

This MSc thesis focus on clustering algorithms based on the Optimum-Path Forest
(OPF) framework [94, 102]. This framework interprets the training set of a dataset as a
graph, whose nodes are the samples and arcs are defined by an adjacency relation between
samples. The intention is to explore the “strength of connectedness” between samples in
the feature space, as defined by a connectivity function (path-value function), for data
clustering and pattern classification. This idea stems from a previous framework, named

18

Image Foresting Transform (IFT) [44], for the design of image processing and analysis
operators based on connectivity between image elements, such as pixels, regions, and
pixel vertices. OPF essentially uses the same algorithm to extend the IFT operators
for clustering and classification. In OPF, a grouping model or a pattern classifier is an
optimum-path forest in the input graph. The group/class label assignment to new samples
is performed by finding the root of the forest which would offer an optimum path to the
new sample, as though that sample were part of the training set, and assigning the label
of that root.

The OPF-clustering method [102] can identify natural groups as domes of a probability
density function (PDF) estimated from the training samples (see Figure 1.1). The graph
nodes are these samples and their k-nearest neighbors in the feature space form the arcs.
Such domes of the PDF represent high concentrations of samples at some scale of the
problem. For instance, by assuming an observer at a very far distance, any training set
becomes a single group of points in the feature space. A distinction among groups of
samples appears as the observer gets closer to the training set. The choice of such scale
is obtained by optimization within a finite search space as defined by the degree of the
nodes in the graph (i.e., the value of k). The OPF algorithm finds one representative
sample per maximum of the PDF and outputs an optimum-path forest rooted at those
representatives, such that each cluster is an optimum-path tree. That is, each root defines
a cluster by conquering the “most strongly connected” samples according to the given
path-value function. In this way, the training forest becomes a classifier that can assign
to any new sample the label of its most strongly connected root. This method can handle
plateaus of maximum (by electing a single root per maximum), some overlapping among
clusters, and groups with arbitrary shapes.

1.1 Motivation

The OPF-clustering method can be very effective when using all data to construct the
forest, but it becomes prohibitive (in required memory space and processing time) as
samples and features per sample increase in number. Given that the sizes of the datasets
have grown large very rapidly, due to new technologies, it is crucial to maintain the OPF-
clustering method viable with no loss in effectiveness. For example, imaging devices, such
as digital cameras and tomographic scanners, can acquire images with millions of pixels
for classification (segmentation).

For large datasets, the authors in [102] suggest the use of a small training set composed
of randomly selected samples. Such an unsupervised training set allows a fast construction
of the weighted k-nearest neighbor graph followed by an efficient procedure of group
label propagation to the remaining samples in the dataset. This technique has already
succeeded with training sets of about 400 voxels when classifying gray matter, white
matter, and cerebral spinal fluid in magnetic resonance images of the brain (images with
about 1.5 million voxels) [23]. However, the result of the grouping may be compromised in
some cases where relevant information is lost in the sampling process (when the training
set is formed). In this thesis, we name OPF-Large-Data this variant of the OPF-clustering

19

(a) (b)

(c) (d)

Figure 1.1: (a) A two-dimensional space where the samples are represented by points. (b) The
density value of each sample is displayed as a 3D surface. (c) The groups are defined by the
maxima of the PDF, whose influence areas are illustrated on the 2D projection by regions of
different colors. (d) Samples receive the label of their most strongly connected maximum.

method to facilitate its reference in the text. The authors in [102] have also proposed to
constrain the k-nearest neighbors within a spatial adjacency of each pixel for the purpose
of image segmentation. However, this approach over-segments the image making difficult
to control the number of clusters.

In view of that, we address the limitations of the OPF-clustering method and its
variants for large datasets.

1.2 Objectives

There are two important questions to be answered in this MSc thesis:

1. Can the divide-and-conquer paradigm be used to maintain the high effectiveness of
the OPF-clustering method, making it viable for large datasets?

2. How can we exploit the divide-and-conquer paradigm to find natural groups by OPF
clustering in large, structured (such as images) and unstructured, datasets?

20

The challenge in the first question is to maintain effectiveness when dividing the
dataset into parts, applying OPF clustering in each part, and combining the groups from
each part into a final clustering result. For the second question, structured data such as
images allow exploiting spatial pixel information, which may lead to different solutions
for image segmentation. We wish to use spatial information without over-segmenting the
image. We are also interested in further improving and exploiting the OPF-Large-Data
approach.

Image segmentation is one of the most fundamental and challenging problems in Image
Processing and Computer Vision. Clustering pixels into relevant objects and background
is extremely hard without the user input (interactive segmentation) or a well-controlled
situation with specific information about the application (automatic segmentation). We
intend to evaluate the proposed approach in this context, separating a given object from
the background in images of different application domains (natural, biological, and med-
ical). In our case, we count with the ground-truth segmentation of those images, so we
can easily validate the results obtained by our technique when comparing them with the
desired outputs. A strategy is to measure the ability of the method to represent the
object as the union of its internal clusters when trying to reduce as much as possible the
number of clusters. We also assess the methods for arbitrary data clustering from other
applications.

1.3 Main contributions

This work proposes a two-level divide-and-conquer OPF-clustering approach suitable for
large datasets. The pipeline of the technique is explained in Figure 1.2. At the first
level, the data (Figure 1.2a) is divided into blocks and the samples of each block are
clustered separately using the OPF algorithm (Figure 1.2b). Then, the representative
samples (one per cluster and, more specifically, the root of each optimum-path tree) are
taken to the second level (Figure 1.2c) to be clustered again using the OPF algorithm
(Figure 1.2d). Finally, the group labels obtained in the second level are transferred to all
samples (the samples that form the first level) through their representatives in the first
level (Figure 1.2e) resulting in the final partition (Figure 1.2f). We name this technique
OPF-Blocks-2 because of its two levels.

The size of the blocks in the first level and the number of samples in the second level
must be neither too large nor too small. As long as each block has a sufficient number
of samples to represent the problem, this should not compromise the performance of the
method. However, we noticed that in the case of 2D and 3D images, or other very large
datasets, a small number of bigger blocks is preferred as long as a suitable sampling
strategy is applied to select one training set per block for clustering followed by group
label propagation — i.e., the optimum-path forest of each training set is extended to the
remaining samples of the block. At this point, our solution for each block is similar to the
OPF-Large-Data approach. The difference is that we use a more effective grid sampling
technique, in the case of image segmentation, to compose the training sets in each block
of the image. We have also improved efficiency in the estimation of the parameter k

21

(a) (b)

First Level

Second Level

(c)

First Level

Second Level

(d)

Second Level

First Level

(e) (f)

Figure 1.2: Clustering a toy dataset with the proposed divide-and-conquer algorithm. (a) Some
unlabeled data. (b) The data is divided into blocks with random sampling (each color indicates
a different block) and each block is clustered with the OPF algorithm (each shape of the same
color indicates a different cluster in the same block, e.g., the block marked with the blue color is
partitioned into four groups: heart, oval, diamond, and wave). The prototypes of the groups are
indicated with larger shapes. (c) The prototypes of the clusters in the first level are promoted
to the second level (summarized dataset). (d) The samples in the second level are also clustered
with the OPF algorithm (each group is distinguished by a different color and shape). (e) The
group labels obtained in the second level are propagated to all data (first level) by means of their
prototypes. (f) The dataset is partitioned into four groups.

22

without losing effectiveness. By dividing the image into blocks, we are actually using
a considerably higher number of training samples (the union of the training sets of each
block) than OPF-Large-Data, which avoids loss of relevant data information for clustering.

1.4 Organization of the text

This MSc thesis is organized as follows. Chapter 2 summarizes the main concepts and
techniques related to the clustering task. Chapter 3 presents essential information to
understand the methods in this work, including the image segmentation process and the
OPF-clustering technique. Chapter 4 details the proposed approach, highlighting how
it works in the two tested scenarios, image segmentation and arbitrary data clustering.
Chapter 5 describes the experiments and discusses the obtained results. Finally, Chapter 6
presents the conclusions and provides directions for future work.

23

Chapter 2

Clustering Overview

Recall that the main objectives in this master thesis are to extend the OPF-based clus-
tering technique [102] through a divide-and-conquer strategy and to evaluate this new
approach in different scenarios. In this chapter, we introduce the basic notions related to
the clustering task, some common applications of the grouping methods, and a taxonomy
of the clustering algorithms referring to some classical and cutting-edge approaches.

2.1 Cluster analysis

Cluster analysis is the organization of a collection of patterns (samples), usually repre-
sented as a vector of measurements or a point in a d-dimensional space <d, into clusters
based on similarity. Intuitively, samples within a valid cluster are more similar to each
other than to those that belong to a different cluster. Figure 2.1 shows an example of the
variety of possible groups in the same dataset. The goal is to develop an automatic algo-
rithm to discover the natural grouping (Figure 2.1b) in the unlabeled data (Figure 2.1a).
Figure 2.1 conveys the idea that clusters can differ in terms of their shape, size, and den-
sity. Furthermore, the detection of natural groups can be even more difficult if the data
contains noise. An ideal cluster can be defined as a set of samples that is compact and
isolated. Actually, a cluster is a subjective entity whose significance and interpretation
requires domain knowledge.

It is important to understand the differences between clustering (unsupervised learn-
ing) and classification (supervised learning) in the context of Pattern Recognition. In
supervised classification, the data is a collection of labeled samples and the problem is
to label a newly encountered, yet unlabeled, sample. With these techniques, the labeled
samples (training samples) can be used to learn a representation and a decision model
for the existing classes, which in turn are used to label a new sample. In the case of
clustering, there is no such pre-annotated data and the problem can be to find the rep-
resentation and group a given collection of unlabeled samples into meaningful clusters.
In this thesis, we assume the sample representation is chosen a priori and focus on the
grouping problem only. The clusters are subjective entities that make sense to a specific
application. In some way, the group labels are associated with classes also, but the group
labels are data-driven — i.e., they are obtained solely from the data. Therefore, one class

24

(a) Input data (b) Desired clustering

Figure 2.1: A representation of the variety of possible groups in the same dataset. (a) Some
unlabeled data. (b) Seven different groups (marked by different colors) differ in density, shape,
and size. It is very likely that almost none or none of the available clustering algorithms can
detect all these clusters in the same input data. However, these patterns can be easily discovered
by a human without much effort. This figure was obtained from [59].

may be represented by one or multiple groups.
Many fields of the Sciences and Engineering employ clustering techniques. Image

segmentation, an important problem in Image Processing and Computer Vision, can be
formulated as a clustering problem [111]. Clustering of documents is a common practice
to generate hierarchies of topics for effective information access [104] and retrieval [19].
These unsupervised techniques are also useful to divide customers into different categories
for efficient marketing [11], to study genome data [14], to address the problems of face
recognition and identification [137, 55], to summarize video [88], among other applications.
Summing up, the techniques of data clustering have been used for the following three main
purposes [59].

• Understanding the underlying data structure: to get information about the
data, generate hypotheses, detect anomalies, and identify key features.

• Natural classification: to identify the degree of similarity among different kinds
of documents, objects, and patterns in general. Examples are the determination of
similar snippets of music and similar photographs.

• Compression: to organize the data and summarize it through cluster prototypes.
Data summarization can be helpful in creating compact data representations, which
are easier to process and interpret in a wide variety of applications.

Traditional clustering activity involves the following steps [60]: (1) feature engineering,
(2) definition of a similarity measure between samples, (3) grouping, (4) data abstraction
(if needed), and (5) evaluation of the output (if needed). Figure 2.2 displays the sequence

25

of the first three steps, considering a feedback path where the clustering outcome can act
on the feature descriptor and the similarity calculations.

Feature
Engineering

Pattern
Representations

Data Definition of the
Similarity
Measure

Grouping Clusters

feedback loop

Figure 2.2: Some common stages in clustering.

Feature engineering is the process of determining the most effective descriptor (rep-
resentation) for the data according to the problem to be solved. Although this process
usually makes use of domain knowledge incorporated by specialists, it is often helped by
visualization methods, feature selection procedures, and dimensionality reduction tech-
niques as well. Dimensionality reduction methods are used to remove irrelevant and re-
dundant attributes by projecting the original features on to a new space with lower di-
mensionality. Some examples of these techniques include Principle Component Analysis
(PCA) and Singular Value Decomposition (SVD). t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [75] is a non-linear dimensionality reduction algorithm that is well-suited
for visualizing high dimensional data into a two or three-dimensional space. In this case,
the projection coordinates present no mathematical relation to the original feature space.
This technique tries to keep both, the original local and global structure of the samples,
in the lower space, which makes it very useful when evaluating sample descriptors for
a learning problem. Feature selection approaches target to find a subset of attributes
that minimize redundancy and maximize relevance to the learning objective. Information
Gain, Lasso, and Relief are some popular feature selection techniques. Recently, there is a
tendency to use automatic feature engineering techniques (e.g., deep learning techniques)
which have been shown to be more effective than knowledge-based approaches in many
problems [81].

Pattern proximity is a fundamental concept to define groups in the data. Since it
may exist a variety of feature types and scales in the representations of the samples, this
measure should be chosen carefully. A common way to calculate the dissimilarity between
two samples is using a distance metric on the feature space. The most popular metric
for continuous features is the Euclidean distance, which is a special case (p = 2) of the
Minkowski metric

dp(xi, xj) = (
d∑

k=1

|xi,k − xj,k|p)1/p = ||xi − xj||p (2.1)

where (xi,1, ..., xi,d) is the descriptor (or feature vector) of the sample xi. Some other
known metrics are the cosine similarity, the Mahalanobis distance, and the Gaussian
distance.

The operation of extracting a simple and compact representation from a dataset is

26

known as data abstraction or data summarization. In many cases, this summarized rep-
resentation is very helpful for subsequent automatic analysis by a machine, or an inter-
pretation by a data analyst. In the clustering context, data abstraction refers to derive a
summarized description of each cluster, in terms of cluster prototypes or representatives
— e.g., the centroids of the clusters.

There are many ways in which a clustering result can be evaluated. The analysis
can be done through external knowledge-based supervision, interactive visualization by
a specialist, comparison and combination of multiple solutions to evaluate different pos-
sibilities, among other options. Cluster validation embraces three main tasks [134]:
clustering effectiveness (it assesses the goodness of the clustering according to the needs
of the application), clustering stability (it assesses the sensitivity of the clustering results
to parameter variations, e.g., the number of clusters), and clustering tendency (it assesses
the convenience of applying a clustering solution to a problem, e.g., if the data has any in-
herent grouping structure). Most existing metrics to address these tasks can be classified
into:

External: External validation metrics use some expert-specified knowledge about
the clusters that are not inherent to the data — e.g., the real partition of the data.
Such external information is not available in many real-world applications; however, these
metrics allow to validate grouping methods in some synthetic and classification datasets.

Internal: Internal validation metrics use criteria derived from the data itself. They
utilize notions of intra-cluster similarity (compactness) contrasted with notions of inter-
cluster separation, that usually results in a trade-off between maximizing these two goals.

Relative: Relative validation metrics are used to compare different outcomes of the
same clustering algorithm by different parameter settings — e.g., varying the number of
desired clusters k.

Different approaches to data grouping can be described with the help of the hierarchy
displayed in Figure 2.3, although other taxonomic representations are also possible. This
representation is mainly based on the book [134]. Some clustering techniques can be
associated with more than one category as we shall see. We add a special category
called “Large Datasets” in reference to the methods designed with the main objective of
clustering large datasets. At the top level of the taxonomy, there is a distinction among
the clustering approaches with respect to their strategy (based on cluster representatives,
hierarchy, density, graph, and for large datasets). The next sections explain some relevant
concepts about each category alluding to some widely used algorithms.

2.2 Representative-based clustering

Given a dataset N = {x1, ..., xn} with n samples in a d-dimensional space, the goal of any
clustering technique is to discover the natural grouping C = {C1, C2, ..., Ck} such that
x ∈ Ci, ∀x ∈ N and i ∈ [1, k], ∩ki=1Ci = ∅, and ∪ki=1Ci = N . In representative-based
clustering methods, it is necessary to have a representative (prototype) sample for each
cluster Ci that summarizes the group. A common choice for this prototype is the mean

27

Clustering
Approaches

Representative-based

k-Means EM

Hierarchical

Agglomerative Divisive

Single-Linkage DIANA

Density &
Grid-based

DBSCAN CLIQUE

Spectral
& Graph

NCut OPF

Large
Datasets

Map-Reduce
Framework BIRCH

Figure 2.3: A taxonomy of the clustering techniques.

(also called the centroid) of all samples in the cluster

µi =
1

ni

∑
x∈Ci

x (2.2)

where ni = |Ci| is the number of samples in cluster Ci.
k-Means is the best-known representative-based clustering algorithm. It starts by

choosing k random samples as the initial centroids. Then, each sample is associated
with the closest centroid based on a particular proximity measure. Once the groups
are formed, the centroids of each cluster are updated according to Equation 2.2. The
algorithm iteratively repeats these two steps until the centroids do not move significantly
or any other relaxed convergence criterion is met. k-Means is essentially an optimization
problem, with the goal of minimizing the Sum of Squared Errors (SSE) objective function,
that converges to a local minimum [4]. The SSE is given by

SEE(C) =
k∑
i=1

∑
x∈Ci

‖ x− µi ‖2 (2.3)

where µi is the centroid of the cluster Ci (see Equation 2.2).
A wide range of similarity measures can be used with k-Means, however, the Euclidean

distance is the most popular choice. The parameter k specifies the desired number of
groups to be returned by the technique. A problem is that in many cases this value is
unknown.

Many optimizations have been proposed to address the two major factors that impact
the performance of k-Means: choosing the initial centroids and estimating the number
of clusters k. To try to solve the second issue, [15] suggests an extension of k-Means,
called ISODATA, that merges and divides groups dynamically after an initial clustering.
In ISODATA, groups are merged if their distance is less than a threshold or if they have
fewer than a certain number of samples. In the same way, a cluster is split if its standard
deviation surpasses an user-defined threshold.

28

The k-Means procedure is an example of a hard assignment clustering technique, where
each sample can belong only to one group. There are other approaches, such as Fuzzy C-
Means [18], that extend this idea to consider a soft assignment result — i.e., each sample
has a degree of membership with each discovered cluster.

Mixture Models [78] have been addressed in many ways to support clustering problems.
The underlying assumption is that the samples are drawn from one of several components
and the problem is how to estimate the parameters of each component that best fit the
data. Recognizing which component generates each sample produces a clustering of the
data. Gaussian Mixture Model (GMM) is the most well-known mixture model, where
each component is a Gaussian distribution. This model has been widely used for cluster-
ing in many applications, such as speaker identification and verification [99, 100], image
segmentation [97], and object tracking [114]. One efficient way of discovering the number
of components in a GMM is using the Bayesian Information Criterion (BIC) [108]. In the-
ory, assuming that data are abundant and actually generated from a mixture of Gaussian
distributions, this criterion recovers the true number of components. The biggest problem
in learning Gaussian Mixture Models from unlabeled data is finding which samples come
from which component. Expectation-Maximization (EM) [32] is a well-founded statistical
algorithm that gets around this difficulty by an iterative process. First, it initializes the
model with random components (or with another heuristic initialization) and computes
the probability that each sample is generated by each of these components. Then, it
tweaks the parameters of the model to maximize the likelihood of the data given those
assignments. Repeating this process, EM always converges to a local optimum.

Representative-based clustering algorithms usually try to discover the natural grouping
in the data by optimizing a specific objective function and gradually improving the result
in an iterative process [4]. They are effective to detect compact spherical-shaped clusters
but can fail with other structures. These methods generally require some user information
as the number of desired groups. A problem is that this information is mostly unknown
and must be estimated.

2.3 Hierarchical clustering

Hierarchical clustering algorithms overcome some of the disadvantages associated with
the representative-based methods. These techniques create a hierarchy of clusters (clus-
ter dendrogram) organizing the data into different levels of granularity. With them, a
specialist can tune up the clustering result by splitting up the dendrogram into different
levels without re-running the algorithm. Figure 2.4 shows an example of a hierarchical
clustering of five labeled points.

Hierarchical clustering can be done in either bottom-up (agglomerative) way or top-
down (divisive) way.

Agglomerative: These clustering techniques start by taking singleton clusters (clus-
ters containing only one sample) at the bottom level and continue merging “the two more
similar clusters” at a time to build a bottom-up hierarchy. A variety of choices are possible
in terms of how to measure this similarity. Some options are single-linkage (nearest neigh-

29

Figure 2.4: Dendrogram as a result of a hierarchical clustering of five labeled points: A, B, C,
D, and E.

bor), complete-linkage (diameter), all-pairs linkage (average linkage), centroid-linkage,
and Ward’s criterion (minimum variance). In single-linkage [79], the two clusters with
the shortest distance between any pair of corresponding samples are combined. Because
of its local behavior, single-linkage is capable of effectively perceive groups of samples
with non-elliptical and elongated forms. However, it is sensitive to noise and outliers in
the data. For the complete-linkage [67], the distance to consider between two clusters is
the maximum of all pairwise distances between their samples (the distance between the
most dissimilar samples). As this method takes the cluster structure into consideration,
it generally recovers compact shaped clusters. However, this technique is also sensitive to
outliers as single-linkage. In all-pairs linkage, the dissimilarity between two groups is the
average distance over all pairs of the corresponding samples, whereas, in centroid-linkage,
it is the distance between the two centroids. Ward’s criterion [127] uses the SSE (see
Equation 2.3) to determine the distance between groups, and its objective is to merge the
two clusters that minimize the total within-cluster variance — i.e., the two clusters that
together have the smallest value of SSE.

Divisive: These grouping methods, on the other hand, start from all the samples
in a huge macro-cluster and continuously split a cluster into two, generating a top-down
hierarchy of groups. They can be considered global approaches since they have the com-
plete information before splitting the data. These techniques have the advantage of being
more efficient as compared to the agglomerative ones since there is no need to generate
the entire hierarchy. Divisive partitioning allows greater flexibility in terms of both the
hierarchical structure and balancing level of the different clusters. For example, if the
objective is to maintain a balanced tree at each level of the clustering, then the largest
cluster can be chosen preferably for the division. METIS [64] uses this last idea in order
to create well-balanced clusters in large social networks, where the problem of cluster
imbalance is particularly severe. DIANA [66] is a divisive clustering algorithm, where the
group with the largest diameter is divided at each step. To split the selected cluster, the
algorithm looks first for the most dissimilar sample — i.e., the sample with the greatest

30

average dissimilarity with the other samples of the same group —, then creates a new
group with this sample, and finally reassigns the samples that are closer to the new group
than to the old group.

The hierarchical clustering methods are very effective in capturing convexly shaped
groups. The main advantage of having a cluster dendrogram is the possibility of cutting
the hierarchical tree at any level to obtain the corresponding clusters. This peculiarity
allows to execute these techniques without knowing the true number of groups in the data
and even try many solutions easily. Also, this kind of clustering can help to visualize and
summarize the data. Despite their benefits, these methods are not recommended for large
datasets because of their quadratic complexity (k-Means is better in this case), and in
general, they are not flexible in the sense that they cannot undo the mergers or divisions
once they are made. Agglomerative methods, especially single-linkage, tend to suffer
from the chaining problem1 and are ineffective at capturing arbitrarily shaped clusters.
To address the last drawback, techniques such as CURE [53] and CHAMELEON [63] have
been proposed in the literature.

2.4 Density-based and grid-based clustering

The representative-based and hierarchical clustering methods are suitable for finding
ellipsoid-shaped and other convexly shaped clusters. However, these methods have diffi-
culties to discover non-convex clusters, such as those shown in Figure 2.1, because two
samples from different clusters may be closer than two samples in the same cluster. The
density-based methods, on the other hand, are capable of extracting such clusters and are
good at eliminating noise and detecting outliers. They can be considered non-parametric
techniques because they do not make any assumptions about the number of clusters or
their distribution. Density-based groups are dense areas in the data space divided from
each other by sparser areas. Due to their local nature, dense areas in the data can have
an arbitrary shape.

DBSCAN [40] is one of the most popular density-based clustering methods. It esti-
mates the density by counting the number of samples within a fixed-radius ε-neighborhood
and considers two samples as connected if they lie within each other’s neighborhood. The
central idea of the method is the classification of the samples as core samples, density-
reachable samples, and outliers. A sample is called a core sample if its neighborhood of
radius ε contains at least a minimum number of samples min_samp— i.e., a core sample
is in an area of high density. A sample q is directly density-reachable from a core sample
p if q is within the ε-neighborhood of p. Density-reachability is given by the transitive
closure of direct density-reachability. Two samples p and q are called density-connected
if there is a third sample o from which both p and q are density-reachable. A cluster
is a set of nearby core samples and a set of non-core samples that are density-reachable
from a core sample. Any sample that is not a core sample nor a density-reachable sample
from a core sample is considered an outlier by the algorithm. Higher values of min_samp

1The chaining effect is caused by a small number of noisy data joining sets of samples that should
form separate groups.

31

or lower values of ε indicate a higher density needed to form a cluster. A cluster can
be detected by recursively taking a core sample, finding all of its neighbors, and so on.
The worst-case complexity of DBSCAN is O(|N |2) when the dimensionality of the data is
high. Figure 2.5 displays the clustering result of DBSCAN in a toy dataset highlighting
the different types of samples (core samples, density-reachable samples, and outliers) in
the data.

Figure 2.5: Clustering result of DBSCAN in a toy dataset. Larger circles indicate core samples
and smaller ones indicate density-reachable samples. The outliers are indicated by black points.
This figure was taken from http://scikit-learn.org/stable/modules/clustering.html.

DENCLUE [56] generalizes the notion of groups based on density in another way. It
is based on the concept of influence functions that mathematically model the effect of a
sample in its neighborhood — i.e., the density of each sample is estimated by the sum
of the influences of all data samples —, and the clusters are determined by identifying
density-attractors (local maxima of the estimated density function). Typical examples
of influence functions are square wave functions and Gaussian functions. The OPTICS
algorithm [10], unlike DBSCAN, can discover groups of different densities in a dataset,
but it only visualizes the cluster structure without actually determining the groups. In
[39], the authors propose a procedure based on shared nearest neighbors (SNN) to detect
groups of different densities.

Mean-Shift [25] is a popular non-parametric clustering technique which has been used
in many areas of Pattern Recognition and Computer Vision. The primary goal of this
algorithm is to determine the local maxima (modes) present in the data distribution.
Inspired by the kernel density estimation via the Parzen-window, each sample performs
a gradient ascent procedure until convergence. As the mean-shift vector always points
toward the direction of maximum increase in the density, it can define a path ending in
a stationary point (local maxima) of the estimated density. In this way, each maximum

http://scikit-learn.org/stable/modules/clustering.html

32

(mode) defines an influence zone (cluster) formed by the samples that reach it. Mean-Shift
does not assume any shape on the data clusters and automatically finds the number of
groups. The algorithm only depends on a single parameter called bandwidth (or window
size) which dictates the size of the search region to compute the density. However, the
selection of the window size is not a trivial operation and inappropriate values can produce
unexpected results. Another problem with Mean-Shift is that it can fragment a cluster if
a maximum is represented by some neighboring points with the same density value. And
the reason is that the method does not force a single representative per maximum — i.e.,
two samples, that should be grouped together, can reach two different points in the same
maximum.

Grid-based methods are a specific class of density-based methods designed for mining
large multidimensional datasets. These techniques divide the data space into a finite num-
ber of cells (creating a grid structure) and then try to discover clusters from dense regions
in the cells. Grids were initially proposed in [128], but they only gained popularity after
the methods STING and CLIQUE were introduced. The main advantage of grid-based
clustering is a significant reduction in execution time because the grouping complexity of
these algorithms depends on the pre-defined number of grid cells and not on the number of
samples in the data. Therefore, the greatest challenge of these algorithms is to determine
the best strategy for constructing the grid structure.

STING [126] is a statistical and grid-based index structure that efficiently processes
region queries on databases. It creates a tree structure dividing the data space into
regular cells at different levels of resolution, where each cell points to some cells of the
next lower level. Some statistical information is computed and stored for each cell. A
query is processed from the root until the leaves of the tree according to the likelihood
of their relevance. Only children of relevant cells are recursively explored and the search
ends when the lowest level of the index structure has been searched. The time complexity
of a region query is O(l), where l is the number of leaves of the tree. CLIQUE [5] finds
dense regions (clusters) in lower-dimensional subspaces of numerical datasets as cliques
in a graph.

2.5 Spectral and graph clustering

The history of spectral clustering (or graph clustering) dates back to [37] where the authors
suggested that the underlying partitions in a dataset could be determined with the help
of the eigenvectors of the adjacency matrix. Same as the density-based methods, these
techniques do not make assumptions on the shapes of the clusters allowing them to detect
non-convex clusters, such as spirals or other complex shapes. They have been successfully
applied to image segmentation [111], text mining [33], speech processing [13], and general
purpose methods for data analysis [34, 36].

The spectral clustering techniques represent the samples of a dataset N as nodes
in a graph. The edges connecting the nodes are weighted by their pairwise similarity.
According to [4], the operating mode of these methods can be generalized by the following
three-step algorithm.

33

• First step: construct a similarity graph for all the data samples. Three common
similarity graphs are k-nearest neighbor graph, ε-neighborhood graph, and fully
connected graph.

• Second step: compute some graph Laplacian matrices and use their eigenvectors
to embed the samples in a lower-dimensional space, where the underlying partitions
are more evident. The main distinction here is whether to use a normalized or
unnormalized graph Laplacian representation.

• Third step: partition the embedding space with a clustering algorithm such as
k-Means.

These methods can also be explained from a simpler perspective, from the viewpoint
of a graph cut. A k-way cut in a graph is the partitioning of the vertex set N into
C = C1, ..., Ck, such that Ci 6= ∅ for all i, Ci ∩Cj = ∅ for all i, j, and N =

⋃
iCi. The cut

weight is defined as the sum of the weights of the edges across all partitions

weight(C) =
∑

∀(s,t)|s∈Ci,t∈Cj

w(s, t) (2.4)

where w(s, t) is the arc weight between the nodes s and t.
Partitioning by graph cuts usually aims to assign weights with high values for arcs

within the partitions (assuming that the nodes within clusters have high similarity) and
weights with lower values in their interface (assuming that nodes from different clusters
have low similarity). The classic idea is to partition the nodes into two subsets such that
the cut weight is minimized [130]. A problem is that this strategy often results in clusters
of imbalanced sizes. Normalized Cut (NCut) is an efficient technique, with cluster size
constraints, first proposed by [111]. [115] suggests the multi-class version of Normalized
Cut. In [80], a Markov Random Walk view of spectral clustering is presented and the
Modified Normalized Cut (MNCut) technique is proposed to handle an arbitrary number
of groups.

Graph clustering is related to divisive hierarchical clustering as many methods par-
tition the set of nodes using their pairwise similarity matrix to obtain the final groups.
In [133], Zahn introduces an approach that computes a Minimum Spanning Tree (MST)
in a graph and removes successively the edge with the highest inconsistency measure.
One inconsistent edge is one whose weight is much higher than the average weight of the
edges in its neighborhood. The authors in [16] formulate the pairwise clustering problem
by relating clusters to maximal dominant sets, which are a continuous generalization of
cliques in a graph.

The Optimum-Path Forest (OPF) framework (see Section 3.6) defines a graph topology
among the samples to exploit their optimum connectivity in the feature space. In [101],
the authors suggest a data clustering technique2 based on this framework and the Mean-
Shift algorithm (see Section 3.7) which has been successfully tested in some real-world

2This clustering technique can be seen as graph-based, density-based, and representative-based. In
the last case, the representatives are the roots of a forest and the distances are optimum-path values.

34

applications [102, 23, 107]. This method is closely related to the present master thesis
because our main goal is to extend it to support large datasets (see Chapter 4).

2.6 Clustering of large datasets

With advances in software and hardware technology, data collection has become easier in
a wide variety of scenarios. A large number of clustering techniques have been developed
to efficiently handle such large-size datasets. According to [59], most of them can be
classified into the following five categories.

• Efficient nearest neighbor search: Sometimes deciding the cluster membership
of each sample requires a nearest neighbor search in high-dimensional feature spaces.
Algorithms that efficiently handle this type of search are either tree-based (e.g., kd-
tree [85]) or random projection based (e.g., Locality Sensitive Hash [21]).

• Data summarization: To improve the grouping performance, these methods first
summarize a large dataset into a relatively smaller one and then partition the re-
duced data. The samples of the original dataset receive the cluster labels that their
corresponding representatives acquired after the partitioning phase. BIRCH [135]
compresses a large dataset into a smaller one via a clustering feature tree (CF-tree).
The nodes of this tree hold all necessary information for clustering, preventing the
need to keep all data in memory. METIS [64] is a multilevel partitioning algorithm
composed by three steps: the coarsening phase (the vertices are successively col-
lapsed until the graph is small enough), the partitioning phase (the small graph is
partitioned into clusters), and the uncoarsening phase (the partitioning from the
second step is projected back to the original graph). In [52], the authors present
a divide-and-conquer technique designed to cluster large datasets under the data
stream model.

• Distributed computing: These methods split a clustering algorithm into a num-
ber of procedures that can be executed independently by a set of machines. Dhillon
et al. [35] suggests a parallel implementation of k-Means based on a message passing
model to cluster large datasets. Google’s Map-Reduce framework [31] provides an
effective method to analyze large amounts of data, especially when computing linear
functions over the elements of the data streams. This framework takes care of parti-
tioning the input data, scheduling the procedure’s execution across a set of machines,
handling failures, and managing all communication among the machines. In [136],
the authors present a k-Means clustering algorithm on the Map-Reduce platform.
BoW [49] is a distributed subspace clustering algorithm that addresses the two ma-
jor bottlenecks of using serial and hard clustering techniques with the Map-Reduce
framework: disk delay and network delay. DBDC [62] and ParMETIS[65] are ex-
amples of a density-based distributed algorithm and a parallel graph partitioning
algorithm, respectively.

• Incremental clustering: These techniques, in contrast to most clustering algo-
rithms, only allow a single pass over the data stream. In [50], Fisher proposes

35

a hierarchical clustering algorithm, denominated COWEB, that does a single pass
through the data and arranges them into a classification tree incrementally. Bradley
et al. [20] present a scalable clustering framework based on identifying regions of the
data that are compressible (data that must be maintained in memory) from regions
that are discardable. The streaming scenario is closely related with incremental
clustering when real-time analysis and properly accounted changing patterns are
required. In order to accomplish these goals, almost all streaming methods use a
summarization technique to create intermediate representations of the data. In [3],
the authors suggest a micro-clustering approach that divides the clustering process
into an online component, which periodically stores detailed summary statistics,
and an offline component, which operates only in these summary statistics. These
components are combined with a pyramidal time frame to capture the evolving as-
pects of the underlying data stream. The STREAM framework, which is based on
the k-Medians clustering algorithm, is presented in [89].

• Sampling-based methods: Techniques like CURE [53] perform a clustering over
a reduced sample set of a large dataset and the result is transferred to the original
data. CURE is a hierarchical clustering algorithm that finds groups of non-spherical
shape by using more than one representative sample per cluster. CLARA [66] and
CLARANS [87] are two classic large-scale clustering algorithms based on k-Medoids
that rely on a sampling process to reduce the search space of the data. CLARA first
takes a sample of all data to find the k medoids, and after that, all non-sampled
data are assigned to one of the already discovered k clusters. CLARANS works with
all data, but in each iteration, it checks only a subset of the cluster members to find
the new medoids. Rocha et al. [102] propose a sampling-based clustering extension
of the OPF algorithm to deal with large datasets that we call OPF −Large−Data
(see Section 3.7.1).

.
The divide-and-conquer clustering approach proposed in this work falls into the cate-

gory of data summarization. The idea is (1) to divide a large dataset into smaller blocks,
(2) cluster each block with the OPF algorithm to obtain the corresponding representative
samples (a compressed set of the samples in the block), (3) create a new dataset with
the representative samples of all the blocks, (4) cluster this reduced dataset also with
the OPF algorithm, and finally, (5) propagate the cluster labels obtained in the previous
step to all samples of the original dataset by means of the representative samples. This
method is explained in detail in Chapter 4. However, we recommend reading the next
chapter first, which presents crucial content to comprehend this thesis.

36

Chapter 3

Related Concepts and Methods

This chapter introduces the related concepts and methods for this thesis, including the
main approach — the Optimum-Path Forest (OPF) clustering.

3.1 Digital images

A multi-dimensional and multi-parametric image I is a pair (D, ~I), where D ⊂ Zn is
the image domain and ~I(t) = {I1(t), I2(t), ..., Im(t)} is a vectorial function that assigns m
scalars (image properties) to each pixel t ∈ D. For example, {I1(t), I2(t), I3(t)} may be
the red, green, and blue values of t in a color image I.

This thesis is mostly concerned with algorithms that partition an image into “relevant
regions”, called image segmentation techniques.

3.2 Image segmentation

Image segmentation can be defined as the process of identifying and separating “relevant
regions” in an image. This problem represents one of the greatest challenges in Image
Processing and Computer Vision, especially when the relevant regions represent objects
from the real world. In this case, the problem asks for effective and efficient solutions
for object recognition and object delineation. Recognition determines the approximated
object location in the image, while delineation is concerned with precisely defining the
spatial extent of that object. Free of fatigue, humans can outperform computers in object
recognition, but the other way around is true for delineation [47]. The notion of a rele-
vant region is highly dependent on the context and automatic segmentation often fails,
except under well-controlled conditions. This explains why interactive (semi-automatic)
segmentation methods usually combine the superior abilities of humans for recognition
with a more precise object delineation by a computer. Figure 3.1 shows an example of
interactive image segmentation. The user draws colored markers inside and outside of an
object to solve recognition, while the computer delineates the object by optimal marker
competition — i.e., the image is interpreted as a graph, optimum paths are computed from
each marker, each pixel is conquered by the marker that offers to it the minimum-cost
path, and the object is defined by the union of optimum paths from the interior marker.

37

(a) (b)

Figure 3.1: (a) The user draws yellow markers inside the object and black markers in the back-
ground. (b) Segmentation result from the hard constraints provided by the user.

The aforementioned example refers to semantic segmentation. Relevant regions, how-
ever, may be represented by small sets of “similar” and connected pixels, named super-
pixels, which can be delineated by clustering techniques. The main challenge here is to
preserve the object borders such that each object of interest can be composed by the
union of superpixels.

3.3 Superpixels

Superpixel segmentation is a convenient way to considerably reduce the number of image
elements from many pixels to some regions for a more efficient image analysis. Semantic
segmentation, in this case, requires the identification of the superpixels that together
compose the object. Pixel similarity for superpixel definition can be measured in numerous
ways, by using differences in intensity, color, texture, and even distances between pixels.

Superpixels have been successfully used in many applications: medical image segmen-
tation [129], sky segmentation [68], motion segmentation [12], multi-class object segmen-
tation [51, 132], object detection [112], spatio-temporal saliency detection [71], target
tracking [131], and depth estimation [138]. Figure 3.2 illustrates a couple of superpixel
segmentation results as obtained by a popular approach called SLIC (Simple Linear Itera-
tive Clustering) [1]. According to [121], the desirable superpixel properties are as follows.

1. Adherence to object boundaries: This is a crucial property to define an object
as the union of its superpixels.

2. Connectedness and hard segmentation: Superpixels should be connected re-
gions without overlapping — for hard segmentation, each pixel should be assigned
to a single superpixel.

3. Compactness: Superpixels should be constrained to have uniform size and shape.

38

4. Regularity: Regular superpixels are desirable from a topological standpoint. There-
fore, the number of adjacent superpixels and the size of the boundary with each
adjacent superpixel should be as uniform as possible.

Figure 3.2: Image segmentation by SLIC [1] — with 64, 256, and 1,024 superpixels (approxi-
mately). This figure was obtained from http://ivrl.epfl.ch/research/superpixels.

Clearly, boundary adherence is the most important property in superpixel segmen-
tation. In [1], the authors point out that a regular lattice, like in [111], is desirable
when superpixels are used as nodes of a graph. Connectedness and hard segmentation
are common properties in superpixel methods, even though methods based on clustering
techniques commonly require post-processing to ensure connected regions. In addition to
the above properties, superpixel segmentation methods should be fast, memory efficient,
and simple to use.

Most superpixel segmentation approaches adopt a clustering algorithm and/or a graph-
based algorithm to address the problem in one or multiple iterations of seed estimation.
Several of these methods cannot guarantee connected superpixels: SLIC (Simple Linear
Interactive Clustering) [1], LSC (Linear Spectral Clustering) [24], VCells (Edge-Weighted
Centroidal Voronoi Tessellations) [124], LRW (Lazy Random Walks) [109], ERS (Entropy
Rate Superpixels) [70], and DBSCAN (Density-based Spatial Clustering of Applications
with Noise) [110]. Connected superpixels in these methods are usually obtained by merg-
ing regions, as a post-processing step, which can reduce the number of desired superpixels.

Representative graph-based algorithms include Normalized Cuts [111], an approach
based on minimum spanning tree [48], a method using optimal path via graph cuts [84],
an energy minimization framework [123], and the watershed transform [17, 74]. Normal-
ized Cuts can generate more compact and more regular superpixels; however, as shown
in [1], it performs below average in boundary adherence with respect to other methods.
The problem with the algorithm in [48] is exactly the opposite, the resulting superpixels

http://ivrl.epfl.ch/research/superpixels

39

can conform to object boundaries, but they are very irregular in size and shape. The per-
formance of the method described in [84] depends on the pre-computed boundary maps
which are not guaranteed to be the best in all cases. The watershed approaches [17, 73]
can easily generate irregular superpixels with reasonably good boundary recall. More
recently, our group has presented a graph-based framework, named Iterative Spanning
Forest, for superpixel segmentation, which can generate the desired number of connected
superpixels with high boundary adherence [6].

Among the clustering-based algorithms, it is worth mentioning Mean-Shift [29], Quick-
Shift [122], TurboPixels [69], SLIC [1], geometric flow [125], LSC [24], and DBSCAN [110].
The Mean-Shift method produces irregular and loose superpixels whereas the Quick-Shift
algorithm does not allow to set the number of desired superpixels. Turbopixel-based
approaches are slow and fail to provide good boundary recall for complex images. SLIC
is the most commonly used superpixel method, and it was shown to perform better than
many other methods [1]. It relies on a regular grid for seed sampling. Once it is chosen, the
seeds are transferred to the lowest gradient position within a small neighborhood. Finally,
a modified k-Means algorithm is used to cluster the remaining pixels. The k-Means
algorithm searches for pixels within a 2S×2S window around each seed, where S is the grid
interval. For a non-regular seed distribution, some pixels may not be reached by any seed.
Indeed, this might happen from the second iteration on and this labeling inconsistency
problem is only solved by post-processing. In [125], Wang et al. propose a geometric-flow-
based method of superpixel generation. The method has high computational complexity
as it involves computation of the geodesic distance and several iterations. LSC [24] and
DBSCAN [110] are among the most recent approaches. LSC models the segmentation
problem using Normalized Cuts, but it applies an efficient approximate solution using
a weighted k-Means algorithm to generate superpixels. DBSCAN performs fast pixel
grouping based on color similarity with geometric restrictions and then merges small
clusters to ensure connected superpixels.

In this work, we study clustering-based algorithms which are also graph-based ap-
proaches. They can interpret image elements (pixels and superpixels) as graph nodes,
build an adjacency relation between them to form the arcs of the graph and partition
the image into clusters (regions that put together pixels/superpixels). The set of image
pixels/superpixels for clustering is called dataset.

3.4 Datasets

A dataset N is a collection of samples (pixels, superpixels, or other arbitrary entities)
from some specific application. Each sample s ∈ N is represented by a feature vector
~v(s) ∈ <m (e.g., a vector ~v(s) = ~I(s) of image properties where s is a pixel/superpixel).
The distance (dissimilarity) between the samples s and t in the feature space <m is given
by a function d(s, t) (e.g., d(s, t) = ‖~v(t)− ~v(s)‖).

New data acquisition technologies can provide large datasets from multiple fields,
such as medical imaging, remote sensing, multimedia analysis, among others. Data has
grown large at a very fast pace to support research, education, entertainment, and several

40

other activities. Big data is a fashionable concept involving large and complex datasets
that cannot be handled by traditional data processing techniques. Attempts to develop
effective and efficient ways of handling and analyzing big data are becoming increasingly
widespread (see Section 2.6), yet they face a number of practical challenges like data
storage, data analysis, and data visualization.

The graph-based techniques studied in this work are meant to deal with large datasets
and they can be easily applied to find clusters in any type of dataset given some adjacency
relation between samples.

3.5 Adjacency relations and datasets as graphs

An adjacency relation A is a binary relation in N ×N based on sample properties. When
samples are pixels, N ⊆ D, the properties can be color, local texture, and pixel position.
When samples are superpixels, they are usually represented by some seed pixel and the
properties can be the mean color of the superpixel, seed position, color histogram of the
superpixel, etc. We use t ∈ A(s) or (s, t) ∈ A to indicate that t is adjacent to s. Once
A is established, the dataset can be interpreted as a graph (N,A) whose nodes are the
samples, and arcs are the pairs (s, t) ∈ A. Examples of irreflexive adjacency relations are

A1 : {(s, t) ∈ N ×N |s 6= t, d(s, t) ≤ r > 0}, (3.1)

A2 : {(s, t) ∈ N ×N |s 6= t, t is a k-nearest neighbor of s in <m, k ≥ 1}, (3.2)

A3 : {(s, t) ∈ N ×N |s 6= t, ‖~v(t)− ~v(s)‖ ≤ r1 > 0, ‖t− s‖ ≤ r2 > 0}. (3.3)

If N = D (i.e., s and t are pixels), d(s, t) = ‖t − s‖, and r = 1, then A1 is a 4-
neighborhood relation and (N,A1) is a grid graph of the image. Similarly, for r =

√
2,

A1 is an 8-neighborhood relation. Figure 3.3 illustrates a few examples of such spatial
adjacency relations in 2D and 3D images.

(a) (b) (c) (d)

Figure 3.3: Examples of spatial adjacency relations. (a) 4-neighborhood in 2D image. (b)
6-neighborhood in 3D image. (c) 8-neighborhood in 2D image. (d) A1 with r =

√
5 in 2D image.

When d(s, t) is defined as a function of ~v(s) and ~v(t), the adjacency relation connects
samples in the corresponding feature space <m (e.g., A2 in Equation 3.2). In this case, if

41

s and t are pixels/superpixels, then the adjacency relation does not impose a spatial con-
straint. However, one can also combine image domain and feature space in the definition
of an adjacency relation (e.g., A3 in Equation 3.3). The use of A3 for pixel clustering tends
to considerably increase the number of groups as compared to A2, but it makes possible to
process the entire image domain as a dataset. The use of A2, on the other hand, asks for a
subset of samples from the image domain, called training set. Once clusters are computed
in this training set, the cluster labels can be propagated to the remaining samples of the
image domain (named in this case, test set). In any case, we interpret datasets as graphs
and use the Optimum-Path Forest framework to design clustering algorithms.

3.6 Optimum-Path Forest framework

Optimum-Path Forest (OPF) is a graph-based framework that has gained considerable
attention in the last years, mainly because of the promising results obtained by OPF
classifiers [94, 102]. In this framework, once a dataset (training set) is interpreted as
a graph (N,A), a connectivity function f must be provided to compute an optimum
connectivity map V : N → <. The connectivity function assigns a value f(πt) to any
sequence of nodes πt = 〈s1, s2, . . . , sn = t〉 with terminus t, such that si+1 ∈ A(si),
i = 1, 2, . . . , n − 1, including the trivial case n = 1. The connectivity map V may result
from the maximization (minimization)

V (t) = max
∀πt∈Πt

{f(πt)}, (3.4)

where Πt is the set of all possible paths with terminus t in the graph. The connectiv-
ity function must be defined such that prototypes (key samples) are identified from the
maxima (minima) of a trivial connectivity map V0 defined by V0(t) = f(〈t〉). The OPF
algorithm starts from V ← V0 and, at each iteration, a node s, whose value V (s) is
optimum, offers the path extension πs · 〈s, t〉 to its adjacent nodes t ∈ A(s). Whenever
f(πs · 〈s, t〉) > f(πt), in maximization, the algorithm substitutes πt by the extended path
πs ·〈s, t〉, and so V (t)← f(πs ·〈s, t〉). At the end, the final connectivity map V is optimum
and the graph is partitioned into an optimum-path forest P — i.e., an acyclic map that
assigns to each node t ∈ N its predecessor P (t) ∈ N in the optimum path with terminus
t or a marker nil 6∈ N , when t ∈ S is a root of the map. Therefore, the final optimum
path πt = P ∗(t) can be obtained from P . The root set S consists of the prototypes that
represent classes/clusters depending on the machine learning process: supervised, semi-
supervised, or unsupervised. The prototypes may be forced by definition of f or may
derive from some local property of the nodes. Examples of connectivity functions are

f1(〈t〉) =

{
0 for t ∈ S,
+∞ otherwise,

f1(πs · 〈s, t〉) = max{f1(πs), d(s, t)}, (3.5)

f2(〈t〉) = ρ(t)− δ
f2(πs · 〈s, t〉) = min{f2(πs), ρ(t)}, (3.6)

42

where δ > 0, ρ is a probability density function (PDF), and S is a set of seed nodes (pro-
totypes). In Equation 3.5, S can be chosen from the closest samples between categories
on a complete graph for supervised learning and the OPF algorithm must minimize a
path-cost map V (t) = min∀πt∈Πt{f1(πt)} [94]. In Equation 3.6, the root set S will be de-
rived from the maxima of ρ where ρ(s) can be estimated based on the distances between s
and its k-nearest neighbors t ∈ A2(s). In this case, the OPF algorithm must maximize a
connectivity map V (t) = max∀πt∈Πt{f2(πt)} [102]. In [102], however, the authors propose
changes in the definition of A2 and f2 for unsupervised learning, such that a single root
(i.e., cluster or optimum-path tree) will be identified for each maximum (see next Sec-
tion). As presented in Equation 3.6, all nodes from a same maximum will become roots
in S, over segmenting the dataset (training set).

The presented training process is accomplished by propagating the label L(s) ←
λ(R(s)) for all s ∈ N , where λ(R(s)) is the class (true label) of the root node R(s)

in supervised learning or the cluster label of the root in unsupervised learning. The clas-
sification (class/cluster label) of a new node t /∈ N is performed by extending paths in
P , as P ∗(s) · 〈s, t〉, for all s ∈ N , and propagating the label L(t) ← L(R(s)) of its most
closest (strongest) connected root R(s) ∈ S. Consequently, class/cluster assignment is
based on optimum connectivity with respect to a set S of prototypes rather than based on
local distance decisions, such as in k-Means clustering, k-Nearest Neighbor classification,
and several other techniques. One can derive different pattern classifiers by adapting the
learning technique, the adjacency relation, the way of identifying prototypes, and the
connectivity function.

Essentially, the OPF framework extends a previous approach, the Image Foresting
Transform (IFT), from the image domain to the feature space. The IFT is a general tool
for the design, implementation, and evaluation of image processing operators based on
connectivity functions [44]. The IFT reduces image processing problems to compute an
optimum-path forest in a graph derived from the image. The cost of a path in this graph
is determined by an application-specific function, which usually depends on local image
properties along the path (such as color, gradient, and pixel position). The IFT unifies
and expands many image analysis techniques, that although based on similar underlying
concepts (ordered propagation, graph search, flooding, geodesic dilatation, dynamic pro-
gramming, region growing, among others), are usually presented as independent methods.
Those techniques can all be reduced to a partition of the image into influence zones linked
to a given seed set. The influence region of each seed comprises the pixels that are “more
strongly connected” to that seed than to any other, in some appropriate sense. These
influence zones are the trees of the forest and each seed is the root of its corresponding
tree. This idea has been used to define watershed transforms [74, 73] and to create in-
teractive segmentation methods [98, 41, 113]. The IFT also provides a mathematically
sound framework for many image processing operations that are not obviously related to
image partition, such as morphological reconstruction [42], distance transforms [72], mul-
tiscale skeletons [43], multiscale fractal dimension [118], and shape saliences [119, 9, 117].
Furthermore, the IFT framework has been well succeeded in the development of image
segmentation techniques based on regions [41, 74, 77, 83, 6], borders [47, 46, 45, 82], and
both strategies [113, 27]. For the cases of samples as pixels and superpixels, one can say

43

that the OPF classifiers are IFT-based operators.
The OPF classifiers have shown advantages in some scenarios over k-Nearest Neigh-

bors (kNN), Artificial Neural Networks (ANN), and Support Vector Machines (SVM) for
supervised learning [93, 90, 94, 91, 96], and over k-Means, Mean-Shift, and Expectation
Maximization (EM) for unsupervised learning [102]. They have been successfully used in
several applications: rainfall occurrence estimation [95], spoken emotion recognition [58],
vowel recognition [95], brain image segmentation [23, 22], active learning [105, 106], face
recognition [92], petroleum well drilling monitoring [54], diagnosis of parasites [116, 107],
infrared face recognition [26], background segmentation of natural images [76], among
others. The OPF framework has also been extended to semi-supervised learning with
classifiers outperforming many state of the art methods [8, 7]. In this work, we are mostly
concerned with OPF-based data clustering.

3.7 Data clustering by Optimum-Path Forest

As proposed in [102], for a given k-nearest neighbor and arc-weighted graph (N,A2) (see
Equation 3.2 for A2), we wish to estimate the probability density function (PDF) ρ of
the samples s ∈ N from the distances between s and its adjacent nodes t ∈ A2(s). The
clustering we seek must be obtained by the optimum-path trees rooted at the prototype
set S, derived from the maxima of ρ. Indeed, the PDF ρ is a manifold in <m+1 that
represents the density of the random field x = ~v(s) as created when random choices of s
lead to observations ~v(s) of the underlying problem. The clusters are the domes of that
manifold. Therefore, one can assign ρ(s)← ρ(x) to all samples s that are mapped to the
position x in <m. This also allows to simplify the estimation of ρ(s) as follows,

ρ(s) =
1√

2πσ2|A2(s)|

∑
∀t∈A2(s)

exp

(
−d2(s, t)

2σ2

)
, (3.7)

where |A2(s)| = k and σ = max∀(s,t)∈A2 d(s, t)/3 1. It can be seen that Equation 3.7
defines a Gaussian kernel guaranteeing that only the k-nearest samples of s are used
to compute the PDF value. The traditional method to estimate a PDF is by Parzen
window [38]. Equation 3.7 can provide a Parzen-window estimation when using A1 in
the feature space (see Equation 3.1). Nevertheless, this choice presents problems with
differences in scale and sample concentration. Solutions to this problem lead to adaptive
choices of σ depending on the region of the feature space [28]. By taking into account only
the k-nearest neighbors of a sample, different concentrations are handled and the scale
problem is reduced to the one of finding the best value of k within the interval [1, kmax],
for 1 ≤ kmax << |N |. In [102], the solution considers the value of k that minimizes the
normalized graph cut function

C(k) =
c∑
i=1

W ′
i

Wi +W ′
i

, (3.8)

1This choice for σ guarantees that all adjacent samples of s in the graph are used for density compu-
tation.

44

Wi =
∑

∀(s,t)∈A2|L(s)=L(t)=i

1

d(s, t)
,

W ′
i =

∑
∀(s,t)∈A2|L(s)=i,L(t)66=i

1

d(s, t)
,

where L(t) is the label of sample t, as assigned by clustering as the label of R(t), W ′
i

considers all arc weights between cluster i and other clusters, and Wi considers all arc
weights within cluster i for i = 1, 2, ..., c. Indeed, the problem of finding the best PDF
is the one of finding the best value of k, and the solution requires the execution of the
OPF algorithm as many times as needed, within the interval k ∈ [1, kmax], to create a
candidate clustering in L and compute its normalized graph cut C(k). Once the best k
is found, the graph can be thought of as being node-weighted (N,A2, ρ) (see Figure 1.1).

Adjacency A2 (see Equation 3.2) is asymmetric and so it cannot guarantee connectivity
between any pair of samples that falls on a same maximum of the PDF. In [102], the
authors solve this problem by redefining the adjacency relation after PDF computation,
for each evaluated value of k, in order to obtain a clustering (separation of the domes of
the PDF at the valleys among them) with a single optimum-path tree (cluster) rooted at
each selected maximum of the PDF. Therefore, the adjacency relation A4 used to execute
the OPF algorithm redefines A2 as follows.

For all s, t ∈ N, s 6= t, do

if t ∈ A2(s) and

s /∈ A2(t) and

ρ(s) = ρ(t), then

A4(t)← A2(t) ∪ {s}

(3.9)

Adjacency A4 guarantees that any node selected on a maximum of the PDF will be
able to reach the remaining nodes of the same maximum by an optimum path. In order
to elect a single root in S per maximum of the PDF, the connectivity function must be
updated as follows.

f3(〈t〉) =

{
ρ(t), if t ∈ S

ρ(t)− δ, otherwise

}
(3.10)

f3(〈πs· 〈s, t〉〉) = min {f3(πs), ρ(t)}

for δ = min∀(s,t)∈A4‖ρ(t) 6=ρ(s)‖ρ(t)− ρ(s)‖. This choice of δ preserves all maxima of the
PDF. Higher values of δ work as a filter, removing clusters formed by small domes. In
fact, the root set S will be represented by one node from each maximum of the optimum
map V . The OPF algorithm starts by setting the trivial map V (t) = V0(t)← ρ(t)− δ to
all nodes. During execution, each node t ∈ N that has not been conquered by any other
path than 〈t〉 (i.e., P (t) = nil) is the first node at a maximum of the PDF. It is then
elected to be in S. The algorithm changes its trivial path value to ρ(t), which makes the
node to conquer the remaining ones on the same maximum and the others on the same

45

dome of the PDF.
Algorithm 1 presents the OPF procedure for f3 on the graph (N,A4, ρ). Essentially, it

selects a prototype at each maximum of the PDF and then computes a path to each node
t whose minimum density value along the path is maximum, among all possible paths
with the same terminus t. The result is a maximum connectivity map V , a predecessor
map P with one optimum-path tree (cluster) rooted at each maximum of the PDF, a
root map R, and a map L with the cluster labels representing the domes of the PDF. It
also creates a list O with the nodes of N ordered in a non-increasing way by the resulting
connectivity values. This list is used to propagate the cluster labels to new samples.
Figure 3.4 illustrates the execution of Algorithm 1 in a simple graph.

Algorithm 1 – Algorithm for Clustering by Optimum-Path Forest.

Input: Graph (N,A4, ρ).
Output: Label map L, connectivity map V , predecessor map P , root map R, and list of

nodes O.
Auxiliary: Priority queue Q, variables tmp and l.

1. Set l← 1 and compute δ as described above.
2. For each s ∈ N do
3. Set P (s)← nil, V (s)← ρ(s)− δ, R(s)← nil, insert s in Q.
4. While Q is not empty do
5. Remove from Q a sample s such that V (s) = arg max∀t∈Q{V (t)}.
6. Insert s in O.
7. If P (s) = nil then
8. Set L(s)← l, R(s)← s, V (s)← ρ(s), and l← l + 1.
9. For each t ∈ A4(s) and V (t) < V (s) do
10. Set tmp← min{V (s), ρ(t)}.
11. If tmp > V (t) then
12. Set L(t)← L(s), R(t)← R(s), P (t)← s, V (t)← tmp.
13. Update position of t in Q.

As discussed in [102], Algorithm 1 is more robust than Mean-Shift [25] because it does
not depend on PDF gradients, it is supported by a k-nearest neighbor graph to handle
different concentrations of samples, and it guarantees a single label per maximum of the
PDF. On the other hand, it requires an explicit graph representation which limits the size
of N and the value of k. This leads to the discussion about its extension to large datasets.

3.7.1 Extension to large datasets

Algorithm 1 takes O(k|N | + |N |log|N |) operations when Q is a binary heap. The es-
timation of the best k requires its computation several times — e.g., if an exhaustive
search is done within the interval [1, kmax], Algorithm 1 is executed kmax times. This
method can become unfeasible for a large number of samples like a 2D/3D image with
thousands/millions of pixels/voxels.

46

5

5 5
4

11
1

3

3

3

(a)

4

4 4
3

00
0

2

2

2

(b)

5

5 5
4

00
0

2

2

2

(c)

5

5 5
4

11
0

2

2

2

(d)

5

5
54

1
1

1

3

3

3

t

P(t)

R(t)

P*(t)

(e)

Figure 3.4: Execution of Algorithm 1 in a simple graph. (a) A 3-nearest neighbor graph whose
nodes are weighted by their PDF values. There are two prototypes with values 3 and 5, as
indicated by the larger dots, which are discovered later by the procedure. (b) Trivial path values
after execution of Line 3 for δ = 1. (c) Predecessor map (red arrows), path values (red numbers),
and labels (red triangle) after the execution of the internal loop for the first node removed from
Q. There is identified a prototype (largest red triangle) with PDF value equal to 5 that conquer
three nodes. (d) In the next two iterations of the external loop, the non-prototype samples
conquer two other nodes to be part of the cluster represented by the red triangle. (e) The
optimum-path forest P , the root map R, and the connectivity map V resulting at the end of
Algorithm 1. The procedure finds the other prototype of the forest (largest blue square), which
in turn conquer the three remaining nodes to form a new cluster (blue square). The optimum
path P ∗(t) (dashed line) can be recovered by following the predecessors P (t) up to the root R(t)
for every node t.

One extension suggested in [102], with image segmentation task in mind, reduces
the number of arcs in the graph by adding some spatial constraints to the adjacency
computation (see A3 in Equation 3.3). In this way, Algorithm 1 can be directly executed
on the entire domain of the image/volume (N = D). Smaller values of r2 in Equation 3.3
increase efficiency, but they also increase the number of clusters. Then, the choice of δ
(see Equation 3.10) is very important to reduce the number of irrelevant clusters. The
parameter r1 in Equation 3.3 can be estimated as the maximum arc weight used to
compute ρ (see Equation 3.7) on an uniformly sampled subset N ′, where N ′ ⊂ N [102].
N ′ may consist of the resulting pixels/voxels from a 1:4, 1:8, 1:16, or other reduction
factors of the image/volume resolution.

Another extension that we call OPF − Large − Data, also described in [102], is to
execute Algorithm 1 in a randomly sampled subset N ′′ from the original dataset N . In
this manner, N ′′ is known as the training set of the dataset N . The idea is to discover
natural groups in N ′′, and after that, associate (or classify) each non-training sample
t ∈ N \N ′′ with one of the already discovered partitions. This technique falls within the
category of sampling-based clustering algorithms when dealing with large datasets (see
Section 2.6). In [102], the authors link each non-training sample t with the prototype
that would have offered it the optimum path, if t had been part of the training forest.
By considering the k-nearest neighbors of t in N ′′, Equation 3.7 can be used to compute
ρ(t), evaluate extended paths πs· 〈s, t〉 by f3 (see Equation 3.10), and select the one that

47

maximizes the connectivity map V (t) (see Equation 3.4). Let the node s′′ ∈ N ′′ be the
one that maximizes V (t). Then, the classification step simply puts t in the same cluster
of s′′ (L(t) ← L(s′′)). The expensive part of this process is the computation of ρ(t) for
all t ∈ N \N ′′, which also requires the computation of the k-nearest neighbors of t in N ′′.
Cappabianco et al. [23] considerably speeded up this classification phase (or propagation
phase) by avoiding the computation of ρ(t) for all non-training samples t. Essentially,
their proposition is to give t the cluster label of the node with the highest path value
that would have had t as a neighbor, if t had been part of the training set. Formally, [23]
chooses the node s′′ that satisfies

V (s′′) = max∀s∈O,d(s,t)≤w(s){V (s)} (3.11)

where O is the list of the graph nodes (N ′′) sorted in a non-increasing way by the computed
path values (V), and w(s) is the maximum distance between s and its k-nearest neighbors
in the graph (N ′′, A4, ρ). Therefore, this approach favors the nodes with the highest path
values — i.e., the samples with the highest PDF values — that would have t as a k-nearest
neighbor if t were in N ′′. This process is fast because it only needs to go through the list
O until it finds the first node s′′ such that d(s′′, t) ≤ w(s′′).

In spite of both extensions achieved good results in some applications, they have their
limitations. The first one is used in [102] to guide the user’s actions in the interactive
segmentation of natural scenes. A problem is that this extension is restricted to image
segmentation. Also, this technique poses a compromise between the choice of r2 (see
Equation 3.3) and the choice of δ in f3(〈t〉) (see Equation 3.10) to control the number of
clusters. The second extension has already been proven successful for large datasets (with
about 1.5 million of voxels) when classifying gray matter, white matter, and cerebral spinal
in magnetic resonance images of the brain [23]. However, in datasets with a significant
imbalance among classes or datasets with many classes, the clustering result may be
compromised if relevant information is lost after the sampling process that chooses the
training set N ′′.

In this master thesis, we intend to address some of the shortcomings of these OPF-
based extensions that deal with large datasets by proposing a divide-and-conquer ap-
proach. The next chapter explains in details our proposal.

48

Chapter 4

Divide-and-Conquer OPF Clustering

In this chapter, we present an OPF-clustering method based on the divide-and-conquer
design paradigm for large datasets. The proposed method divides a dataset into parts and
uses the OPF-clustering algorithm (or its variant for large datasets, OPF -Large-Data) to
group samples in each part as well as to combine the clustering results from each part.
This divide-and-conquer approach is demonstrated for two scenarios of interest: arbitrary
data clustering and image segmentation. In the first scenario, it handles large datasets
from arbitrary applications of data clustering and, in the second scenario, it becomes a
superpixel segmentation method. We also propose improvements in the OPF-clustering
algorithm.

4.1 General algorithm

Let a dataset N with |N | samples, such that |N | >> 10, 000, may be considered a
large dataset irrespective of the number of features. The direct application of the OPF-
clustering algorithm on N is prohibitive in processing time as well as in memory space,
which is required to store a k-nearest neighbor graph with possibly k = 500 (see Sec-
tion 3.7). Our strategy is to divide N into smaller subsets, find groups in these subsets,
and combine the groups from all subsets to obtain the final partition. We are not the first
to suggest this model for data clustering. Indeed, Jain et al [61] propose it as a possible
variant when the entire dataset cannot be accommodated in the main memory.

Algorithm 2 describes our technique. We call it OPF-Blocks-2 in reference to the fact
that it only has two clustering levels. At the first level, the large number of samples in
N is divided into b disjoint blocks (Line 1), so that each segment of the data (block)
consists of approximately N/b samples. This number must be reasonable and sufficient
to represent the natural groups in N . Otherwise, this choice will affect the performance
of the method. This data division can be random or based on some application-specific
strategy. Then, Algorithm 1 is used to group the samples in each block. This phase is
easy to parallelize because the blocks are clustered separately. Let us assume that block
i produces ci clusters, for i = 1, 2, . . . , b, or what is the same, block i can be summarized
by ci prototypes (cluster representatives) 1. Subsequently, all the

∑b
i=1 ci prototypes

1Remember that in OPF clustering the roots of the forest summarize their corresponding trees (clus-

49

are taken as samples of a new dataset M (Line 5) to be grouped in the second level
also by Algorithm 1 (Line 6). It is expected that this last result will reveal the natural
number c of groups in the original dataset. Our assumption is that the samples in M

summarize the original data, therefore, a clustering over these samples will represent a
good approximation of the underlying partition of the dataset N . Finally, the group labels
acquired inM are transferred to the original dataset N as follows. Line 8 copies the group
labels of the samples in M to the same samples in N — i.e., the roots of optimum-path
trees in the first level — and then to the samples of their optimum-path trees (Lines 11
and 12). Algorithm 2 returns the label map L, the root map R, and the predecessor map
P (optimum-path forest) from N (Lines 8 and 12).

Algorithm 2 – OPF-Blocks-2

Input: Large dataset N , adjacency relation A4, probability density function ρ, and
number of parts b.

Output: Label map L, predecessor map P , and root map R.

1. Divide N into b disjoint sets N1,...,Nb.
2. Create empty set M .
3. For each i ∈ (1..b) do
4. (Li, Pi, Ri)← Execute Algorithm 1 in (Ni, A4, ρ).
5. Add the representative samples of Ni to M .
6. (Lm, Pm, Rm)← Execute Algorithm 1 in (M,A4, ρ).
7. For each s ∈M do
8. Set L(s)← Lm(s), R(s)← Rm(s), and P (s)← Pm(s).
9. For each i ∈ (1..b) do
10. For each s ∈ Ni \M do
11. Set u← Ri(s).
12. Set L(s)← L(u), R(s)← R(u), P (s)← Pi(s).

The time complexity of Algorithm 1 is O(k|N |+ |N | log |N |), as previously mentioned.
By assuming k � log |N | and Algorithm 1 is executed kmax times to discover the best
value of k, we may conclude that the OPF-clustering technique runs in O(kmax ∗ k ∗ |N |).
Algorithm 2 depends on Algorithm 1 to group samples in each subset of N as well as
to find groups in M . Assuming that M has a similar number of samples to that of the
blocks in the first level (i.e., |N |/b samples), we may conclude that Algorithm 2 executes
in O((b + 1) ∗ k′max ∗ k′ ∗ |N |/b) = O(k′max ∗ k′ ∗ |N |) for k′max < kmax and k′ < k. This
makes the proposed method not only viable for large datasets but also more efficient than
Algorithm 1, especially for smaller values of k′max and k′, which are obtained as b increases.

Algorithm 2 can be easily extended to a higher number of levels than two, but we
found two levels enough for the datasets used in this work. When the number of samples
in a dataset is considered very large (for instance in an image, where |N | >> 200, 000),
we prefer to partition the data into a smaller number of blocks and use the variant OPF-
Large-Data to cluster each block rather than partition them into a larger number of

ters).

50

blocks. In this case, Algorithm 1 is executed in reduced training sets and the resulting
cluster labels are propagated to the remaining samples of the corresponding blocks (see
Section 3.7.1). By that, our algorithm makes possible to use the method of Rocha et
al. [102] with considerably larger training sets. For instance, if OPF-Large-Data can
cluster a very large dataset within a reasonable time by using x training samples, we can
affirm that our technique can cluster the same dataset in comparable time by using xb
training samples, where b is the number of blocks. This flexibility is important for some
large datasets, where reduced numbers of training samples can compromise the clustering
results due to the lack of data information.

We can use Algorithm 2 to cluster any large set of arbitrary data. The dataset needs
to be divided by random sampling in the absence of domain information on the samples.
Ideally, each block should have a good representation of the underlying partition, but
not an excessive number of samples that can compromise the efficiency of the technique.
In fact, this number also depends on the dimensionality of the data. The summarized
dataset in the second level must also have a balanced size. If this dataset is formed by
many samples, it means that the samples were not sufficiently grouped in the first level and
the results of the proposed technique will be quite similar to those of the Algorithm 1 —
i.e., the second level of the proposed method would constitute the only level of Algorithm
1. On the contrary, if this number is small, important grouping information may be lost
and the result may be poor. It is valid to clarify that these are mostly assumptions.
There is no one truth when it comes to obtaining the best parameters (number of blocks,
number of samples per block, size of the summarized dataset) and the technique must be
rigorously tested on each dataset in which it is used. Algorithm 2 is depicted in Figure
1.2 when clustering a toy dataset.

In the next section, we propose improvements in the original OPF-clustering technique,
especially in the processing time to estimate the best value of k.

4.2 Improving the estimation of the k-nn graph

Figure 4.1 illustrates the pipeline of the original OPF-clustering method, which includes
several executions of the OPF algorithm (Algorithm 1) to estimate the best value of k (i.e.,
the most suitable k-nn graph for the problem). For a given value of kmax � |N |, the best
value of k must be estimated within [1, kmax]. In order to avoid the computation of kmax k-
nn graphs, which takes O(|N |2) each, the traditional approach starts by building a kmax-nn
graph with the kmax nearest neighbors (adjacent nodes) of each node sorted, such that the
kmax-nn graph actually includes every k-nn graph for k ∈ [1, kmax]. First, we parallelized
the construction of the kmax-nn graph. The identification of the k-nearest neighbors could
also be based on a k-d tree or other specialized structures, whose complexity time is
O(|N | log |N |), but its difficulty for parallelization is considerably higher.

The authors in [102] find the best value of k by exhaustive search within [1, kmax]. The
normalized cut in the k-nn graph is used as the criterion for minimization, as computed
from the group labels propagated by the OPF algorithm. As drawback, for each candidate
k, the technique must compute the PDF of all nodes (light green component), execute

51

Data
Estimation
of the best k

Density
Computation

Competition
Process

Select k Density
Computation

Competition
Process

k ⃪k+1

Creation of
the Graph

Evaluation

Groups

Figure 4.1: Workflow of the OPF-clustering technique as proposed by Rocha et al. [102].

Algorithm 1 (light blue component), and evaluate the normalized cut (see Equation 3.8)
produced by the group labels on the graph (green component). We have parallelized
the PDF computation and the clustering evaluation. However, the parallelization of
Algorithm 1 is more difficult due to its priority queue. We then propose here a heuristic
to reduce the number of iterations of this pipeline (rose pipeline).

The parameter k represents the observation scale of the data in the feature space.
Depending on its value, Algorithm 1 can output more or less groups (see Figure 4.2).
Basically, higher values of k may produce a single cluster while lower values of k separate
the samples in more groups. A problem with this technique is that it cannot partition
the data into a specified number of clusters without playing with the parameter kmax.
In [2], the authors solve the issue by performing the clustering at different levels of ab-
stractions (scales) to be as close as possible to the number of clusters required by the
application. In our case, we are not interested in establishing the resulting number of
groups to the method, but in reducing the computational time of the search of k within
[1, kmax]. Therefore, our idea is to start the search at k = kmax and stop it whenever the
first local minimum of the normalized cut function is found (see Figure 4.3). By that, we
are choosing fewer clusters but better estimating the PDF based on higher values of k.
It turns out that this heuristic usually produces good results with earlier search termina-
tion. In Section 5.1.6, we compare the results obtained by OPF-Large-Data based on the
exhaustive search and our heuristic search. Of course, higher is kmax more likely is that
the exhaustive and heuristic searches will choose different values of k, being the chosen
value in the former lower than the value selected by the latter. However, one can always
reduce the upper limit kmax in order to make them equivalent again. Another possible
solution to speed up the estimation of k is through meta-heuristic optimization [30].

The next section discusses the application of the proposed technique to image segmen-
tation.

4.3 Algorithm for image segmentation

When a dataset consists of image pixels, the expected clustering result is a partition of
the image into regions, called superpixels, such that the image objects can be represented
by the union of their superpixels. We have addressed this problem by divide-and-conquer

52

(a) (b) (c)

Figure 4.2: 2D projections of a toy dataset by the t-SNE algorithm. The number of groups
reduces as the scale k increases. Higher values of k produce (a) a single group and smaller values
of k produce (b) four and (c) five groups, for instance.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
K (ADJACENCY PARAMETER)

0

5

10

15

20

25

30

CU
T
FU

NC
TI
ON

 V
AL

UE

Accepted Value (K=129)

Comparison in the GRABCUT Database (K/CUT FUNC. VAL.)

Figure 4.3: Normalized cut function (Equation 3.8) evaluated on the results produced by OPF-
Large-Data in an image of the GrabCut database, when varying k ∈ [1, kmax] for kmax = 150. In
this case, both the exhaustive and heuristic searches detect the same optimum value k = 129,
but the latter takes 127 iterations less than the former.

OPF clustering as follows.
We first divide the image into a grid of blocks in order to take advantage of their spatial

information. One question is how to choose the training samples in each block. The num-
ber of blocks and their corresponding training set sizes are also important issues. These
three subjects are addressed in Section 5.1.6. Many blocks or larger training sets seems
to allow for better results because of the usage of more training samples; however, these
decisions slow down the run-time of the technique and may be unnecessary. Therefore, as
we will see in the next chapter, it is enough to work with few blocks and reduced training

53

sets per block, as obtained by grid sampling in each block. Algorithm 1 is then applied to
the reduced training set of each block and the cluster labels are subsequently propagated
to the remaining samples in the block— i.e., we preferred to use the variant named OPF-
Large-Data. We parallelized this label propagation operation. Afterward, it is possible to
merge adjacent clusters from neighboring blocks by means of a post-processing, a variant
of the algorithm named OPF-Blocks-1, or to continue the process by clustering the roots
from each block in a second level and then propagating the cluster labels through them
to all image pixels (OPF-Blocks-2). Algorithm 3 shows this two-level version for image
segmentation.

Algorithm 3 – Image segmentation by OPF-Blocks-2

Input: Dataset corresponding to an imageN , adjacency relation A4, probability density
function ρ, and number of blocks b.

Output: Label map L, predecessor map P , and root map R.

1. Divide N into b disjoint and compact blocks N1,...,Nb.
2. Create empty set M .
3. For each i ∈ (1..b) do
4. Select a reduced training set Ti from Ni by grid sampling.
5. (Li, Pi, Ri)← Execute Algorithm 1 in (Ti, A4, ρ).
6. For each s ∈ Ni \ Ti do
7. Set u← the node returned by Equation 3.11.
8. Set Li(s)← Li(u), Ri(s)← Ri(u), and Pi(s)← u.
9. Add the representative samples of Ti to M .
10. (Lm, Pm, Rm)← Execute Algorithm 1 in (M,A4, ρ).
11. For each s ∈M do
12. Set L(s)← Lm(s), R(s)← Rm(s), and P (s)← Pm(s).
13. For each i ∈ (1..b) do
14. For each s ∈ Ni \M do
15. Set u← Ri(s).
16. Set L(s)← L(u), R(s)← R(u), P (s)← Pi(s).

While OPF-Blocks-1 is limited to merge adjacent clusters from neighboring blocks,
OPF-Blocks-2 can merge clusters from blocks in any part of the image. The merging
procedure in OPF-Blocks-1 consists of computing a color histogram for the superpixels
and join adjacent pairs whose the Bhattacharyya coefficient between them is close to 1.
The Bhattacharyya coefficient (BC) is defined as

BC =
∑
x∈X

√
p(x)q(x) (4.1)

where p and q are discrete probability distributions over the same domain X. Figure 4.4
depicts this procedure.

To produce the final segmentation, we need to apply a relabelling on the clustering
result of the methods because the obtained clusters are not restricted to be compacted
while the superpixels are. In fact, this is not the only post-processing that we recommend.

54

(a) (b)

Figure 4.4: Image segmentation by OPF-Blocks-1 with four blocks. (a) After clustering the
pixels by OPF-Large-Data in each block. Adjacent superpixels from neighboring blocks are
marked by yellow arrows. (b) After adjaceny superpixel merging by the post-processing, the
block boundaries are removed, making the segmentation more natural.

We also propose to apply a smoothing to the resulting superpixels and a filtering to remove
noise (small sets of pixels). Both operations are implemented using the Image Foresting
Transform framework (see Section 3.6). Figure 4.5 depicts all the pipeline of OPF-Blocks-2
for image segmentation.

In this chapter, we discussed in detail our divide-and-conquer proposal and how it fits
when clustering large arbitrary datasets and segmenting images. In the next chapter, we
evaluate and compare this technique with other relevant methods in the two scenarios of
interest.

55

(a) (b)

1

4 5 6

7 8 9

2 3

(c)

(d)(e)(f)

Figure 4.5: Pipeline of OPF-Blocks-2 for image segmentation. (a) Input image. (b) The image
is divided into 9 blocks. (c) There is selected a training set (blue points) by grid sampling in
each block. (d) The PDF values of the samples are estimated separately in each block. Brighter
values indicate samples with higher values of the PDF. Afterward, each block is clustered with
OPF-Large-Data, the prototypes of the groups are promoted to the second level where they are
clustered with the OPF algorithm. The roots of the final forest are indicated with red points.
(e) The group labels obtained in the second level are propagated to all samples of the image.
Each color indicates a different group. (f) Resulting superpixels after relabelling, smoothing, and
filtering operations.

56

Chapter 5

Experimental Results

This chapter describes the experiments and results of the proposed algorithms for two
scenarios: image segmentation and arbitrary data clustering. For image segmentation,
the samples are the pixels of a given image (dataset) as represented by their color and
spatial location. For data clustering, the datasets have different numbers of features,
classes, and samples per class, representing distinct applications. For each scenario, we
use common datasets to compare methods according to popular metrics of effectiveness.
A discussion about the experimental results is presented at the end of the chapter.

5.1 Image segmentation

Traditional clustering techniques, or methods based on clustering, have been used to group
pixels based on their color similarity and difference in location on the image. Next, we
compare two clustering techniques derived from our proposal, OPF-Blocks-1 and OPF-
Blocks-2, against some popular superpixel generation methods and other clustering algo-
rithms. To evaluate the methods across different application domains, we select databases
involving natural, biological, and medical images.

5.1.1 Image databases

We use three databases of 2D images with their corresponding ground-truth segmentation
to measure the effectiveness of the methods to adhere to the boundaries of a given object
of interest.

The first database corresponds to 50 natural and colorful images from the GrabCut
database [103]. The image size varies from 339.1 kB (113,032 pixels) to 921.6 kB (307,200
pixels). Some examples of images are shown in Figure 5.1.

The second database is formed by 36 color images of different parasites where some are
connected to impurities. The goal in these images is to isolate the pixels that represent
the parasites. However, impurities may overlap the parasites and/or present similar sizes,
shapes, colors, and textures. The image size varies from 391.9 kB (97,280 pixels) to
2.1 MB (698,880 pixels). Some examples of images of this database can be observed in
Figure 5.2.

57

Figure 5.1: Examples of images in the GrabCut database.

Figure 5.2: Examples of images in the Parasites/Impurities database.

The third database contains 29 images obtained from slices of 10 thoracic computed
tomography (CT) studies. The object of interest is the liver in each slice. The images
are gray-scale and their sizes vary from 762 kB to 805.4 kB, all having 262,144 pixels.
Figure 5.3 exhibits some images of this database.

Figure 5.3: Examples of images in the Liver database.

5.1.2 Compared methods

OPF-Blocks-1 and OPF-Blocks-2 are compared to two state-of-the-art superpixel gener-
ation methods (SLIC and Quick-Shift), one method based on the watershed transform,
and two generic clustering algorithms (OPF-Large-Data and k-Means). In particular,
the comparison between OPF-Large-Data (see Section 3.7.1) and the divide-and-conquer
methods is interesting. Currently, OPF-Large-Data is the principal option when trying
to cluster large datasets with the OPF framework, and in this work, we are assuming
that our technique improves or at least obtains similar results to the previously developed
OPF-based extensions. OPF-Large-Data is always executed with 1500 training samples

58

when clustering each image or block in the divide-and-conquer extensions. OPF-Blocks-1
and OPF-Blocks-2 divide the images into 4, 9, or 16 blocks at the first level, so in turn
they are using a training set with size between 4 * 1500 and 16 * 1500 samples.

Some superpixel generation methods require a post-processing to ensure that the gen-
erated superpixels are connected, for others, the algorithm itself ensures this connectiv-
ity. SLIC, k-Means, and the OPF-based extensions all require this procedure, while the
watershed-based method does not require it. This is not the only post-processing that
we apply in the experiments. We also remove small superpixels (noise) from the result of
each compared method, and in some cases, we apply image smoothing based on diffusion
filtering 1. We define the descriptor for these databases as explained in Section 5.1.4.
Below we give a brief description of each compared method.

SLIC: SLIC is a linear (in the number of pixels) algorithm, and it is by far the most
commonly used superpixel method. In Section 3.3, there is a short description of this
technique. SLIC allows to specify the number of desired superpixels and to regulate
the compacity of them. The superpixels for our experiments are generated using the
implementation provided in the authors’ webpage2.

Quick-Shift: Quick-shift uses a mode-seeking segmentation scheme [122]. It ini-
tializes the segmentation using a medoid-shift procedure. Then, it moves each point in
the feature space to the nearest neighbor that increases the Parzen density estimate.
Quick-shift is a rather slow algorithm, with a O(dN2) complexity where d is a small con-
stant [122]. Also, it does not provide user control over the size or number of superpixels.
Previous works have used Quick-Shift for object localization [51] and motion segmen-
tation [12]. The superpixels for our experiments are generated using publicly available
source code3.

Watershed: The watershed-based approaches perform a gradient ascent starting from
local minima to produce watershed lines that separate catchment basins. The resulting
superpixels are often highly irregular in size and shape and do not exhibit good boundary
adherence for small numbers of superpixels. We use the algorithm explained in [74] to
generate the superpixels.

k-Means: We utilize a basic implementation of k-Means to cluster the pixels of the
images. The complexity of this algorithm is O(KNI) where K is the desired number of
groups and I the maximum number of iterations until convergence. The initial cluster
centers are chosen with grid sampling.

OPF-Large-Data: We use the OPF clustering technique applied to image segmen-
tation as described in the last extension of Section 3.7.1. The training samples for each
dataset (image) are chosen with grid sampling.

OPF-Blocks-1: This is the approach described in Algorithm 3 but with only one
level. The training set in each block is formed with grid sampling. It uses the suggested
local search to find the adjacency parameter k (see Section 4.2) when clustering each block
and the merging post-processing explained in Section 4.3.

OPF-Blocks-2: This is the proposed technique, described in Algorithm 3, with the
1The diffusion filtering is maintained only if it improves the segmentation result.
2http://ivrl.epfl.ch/supplementary_material/RK_SLICSuperpixels/
3http://www.vlfeat.org/download.html

http://ivrl.epfl.ch/supplementary_material/RK_SLICSuperpixels/
http://www.vlfeat.org/download.html

59

two levels. As in OPF-Blocks-1, for each block, the training samples are chosen with grid
sampling and the suggested local search is used to find the adjacency parameter k.

5.1.3 Evaluation metrics

We employ two widely used boundary adherence measures for evaluating the quality of
superpixels. The first one is the boundary recall (BR) which measures the fraction of the
ground-truth boundaries overlapping the segmentation boundaries in an image within a
certain tolerance distance d of pixels. We use d = 2 for our experiments4. The second used
metric is the under-segmentation error (UE) which does not penalize over-segmentation
and indicates how well the superpixels adhere to the object boundaries. There are different
definitions for this metric [1, 86], so we utilize the free parameter definition presented
in [86]. Every ground-truth segment Gi having an overlap with a superpixel Sj divides
it in in and out parts, denoted by Sinj and Soutj , respectively. The first part represents
the set of pixels in Sj ∩ Gi, and the last one comprises the set of pixels in Sj that lies
outside Sj ∩Gi. UE represents the smallest error introduced by either adding Soutj to the
segment or by omitting Sinj . LetM be the number of ground-truth regions, Is a superpixel
segmentation, and N the number of pixels in the image. UE is defined as

UE(Is) =
1

N

(
M∑
i=1

(∑
Sj |Sj∪Gi 6=∅

min(|Sinj |, |Soutj |)

))
(5.1)

where |.| denotes the size of a set of pixels.
In addition to computing the boundary recall and the under-segmentation error, we

also measure the mixture between background and object (the object of interest) in the re-
sulting clusters. In OPF-based methods, it is assumed that all samples from an optimum-
path tree have the same label of their root. Therefore, we assign the correct label to
each root of the forest and propagate them to the remaining samples of the corresponding
optimum-path trees. In this way, the purity or accuracy of the clustering is defined as the
percentage of correct classifications obtained by the previous procedure. For the other
methods which are not based on the optimum-path forest but have a clear representative
for each cluster — e.g., in k-Means the representatives are the closest samples to the
centers of the clusters —, we use the same idea to compute the accuracy of the clustering.
We assign the true label to each cluster representative and propagate it to the rest of the
group. We also calculate the F1 score or Dice similarity coefficient (DSC) from the label
propagation result. The Dice coefficient is defined as

DSC =
2 ∗ TP

2 ∗ TP + FP + FN
(5.2)

where TP is the number of true positive samples, FP the number of false positive samples,
and FN the number of false negative samples. In the images, we assume that the positive
samples are the samples in the object of interest and the negative ones are the samples

4This tolerance value is usually adopted to cope with human errors when generating ground-truth
segmentations.

60

in the background.
We carry out the label propagation experiments in all three databases for SLIC, k-

Means, and the OPF-based extensions. To compute the Dice metric, we do some post-
processing to the images resulting from the label propagation phase. We apply morpho-
logical open and close operations to reduce noise, and we only remain with the largest
object component because we know that the evaluated images have a single object of
interest.

5.1.4 Defining a simple and effective descriptor for the samples
in the evaluated images

To find a simple and good enough descriptor for the samples in the tested databases, we
help ourselves with the t-Distributed Stochastic Neighbor Embedding (t-SNE) data visu-
alization technique [75]. It is clear that we need the color information for pixel clustering,
but it is not so obvious if we also need the spatial information or color information from
a neighborhood close to the pixel. We choose the CIELAB color space to encode color
information because of its common use in superpixel methods.

Figure 5.4 shows a natural image of the GrabCut database and the 2D projections of
different feature vectors (descriptors) with the t-SNE technique. It is easy to realize that
the spatial information is important for superpixel segmentation (Figure 5.4c) because
pixels of background and object can have similar color in the same image (Figure 5.4a).
Not by choice SLIC [1] defines a distance involving both color and spatial differences.
Also, we can see from Figure 5.4d that adding the color data from a pixel’s neighborhood,
without adding together its spatial information, decreases the spatial information rele-
vance and worsens the separability between object and background in the feature space.
Therefore, we define the descriptor for the samples of colorful images with both, the color
and spatial information of the pixel5.

For the gray-scale images, corresponding to the thoracic computed tomography slices,
we determine a feature vector formed by the brightness value and the spatial information
of the pixel, in addition to the brightness data of the pixels in the 8-neighborhood. This
descriptor results in a clear separation between liver and not liver samples in the t-SNE
projection.

5.1.5 Experimental methodology

All experiments are executed on a server with a processor Intel Core i7-3770K CPU @
3.50GHz x 8 and a memory RAM of 32GB. We randomly divide each database into two
sets: a training set and a test set. The images in the training set are used to tune up
the hyper-parameters of the compared methods6. The best hyper-parameters are found
by grid search. All the results shown below correspond to the execution of the methods

5We could also have tried more complex features as texture descriptors, but the idea was to create a
simple feature vector.

6Do not confuse the training set for a database of images (it is formed by images to tweak the
hyper-parameters of the compared methods) with the training set of a large dataset according to the
OPF-Large-Data clustering technique (it is formed by samples or pixels in this case).

61

(a) A natural image from the GrabCut
database.

(b) 2D projection of the descriptor formed
by only the CIELAB color information of the
pixel.

(c) 2D projection of the descriptor formed by
both the CIELAB color and spatial informa-
tion of the pixel.

(d) 2D projection of the descriptor formed by
both the CIELAB color and spatial informa-
tion of the pixel, in addition to the CIELAB
color data of the pixels in the 4-neighborhood.

Figure 5.4: 2D projections of different descriptors for a natural image of the GrabCut database
with the t-SNE technique.

exclusively on the images of the test set. We average the metrics obtained in these images
to create the comparative graphics. The test set is greater than the training set in the
three databases. The databases are divided as follows:

• GrabCut database: 15 images for training and 35 images for testing.

• Parasites/Impurites database: 12 images for training and 24 images for testing.

• Liver database: 11 images for training and 18 images for testing.

5.1.6 Results

In this section, we show the results of the experiments performed. First, we answer some
questions related to the OPF-clustering technique and our proposal that are presented in
Section 4.2, and finally, we compare our technique with the other methods in the selected
image databases.

62

Is there any difference between random sampling and grid sampling when
forming the training set of OPF-Large-Data?

Figure 5.5 compares the segmentation results of OPF-Large-Data, according to two differ-
ent strategies used when creating a training set of 1500 samples, in the GrabCut database.
It can be observed that creating the training set with grid sampling is a little better than
forming it with random sampling. This result is easy to understand. A randomly formed
training set with not enough number of samples can omit some components of the image.
With grid sampling, lose relevant information is harder because the training samples are
uniformly distributed in the data space. For example, it can be seen in Figure 5.6a how
some borders of the object are lost (marked with yellow arrows) after clustering the image
by OPF-Large-Data using a training set formed with random sampling. We cannot say
the same for a training set created with grid sampling according to Figure 5.6b.

50 100 150 200 250
NB. SUPERPIXELS

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

BO
UN

DA
RY

 R
EC

AL
L

Comparison in the GRABCUT Database (NB. SUPERPIXELS/BR)

OPF-Large-Data (grid sampling)
OPF-Large-Data (random sampling)

(a) Comparison according to the boundary re-
call metric.

50 100 150 200 250
NB. SUPERPIXELS

0.03

0.04

0.05

0.06

0.07

0.08
UN

DE
R-
SE
GM

EN
TA
TI
ON

 E
RR

OR
Comparison in the GRABCUT Database (NB. SUPERPIXELS/UE)

OPF-Large-Data (grid sampling)
OPF-Large-Data (random sampling)

(b) Comparison according to the under-
segmentation error.

Figure 5.5: Comparisons between the segmentation results of OPF-Large-Data, in the Grabcut
database, when different strategies to form the training set of the method are used.

In all the image segmentation experiments shown from now on, the compared tech-
niques that need to do a sampling — e.g., when selecting the k initial centers in k-Means,
when forming the training set in OPF-Large-Data, and when selecting the training sam-
ples in the blocks of OPF-Blocks1 and OPF-Blocks-2 —, perform a grid sampling and
not a random sampling.

Does a larger number of training samples in OPF-Large-Data imply better
results?

Figure 5.7 shows comparisons between the segmentation results obtained by OPF-Large-
Data in the images of the Grabcut database when different training set sizes are used.
It is clear that a small training set with 500 samples has difficulties to capture all the
information of a natural image, so we get poor results with this setting, particularly in
the Dice metric. The results achieved with training sets of 1500 and 3000 samples are not

63

(a) Random sampling (b) Grid sampling

Figure 5.6: Segmentation results of OPF-Large-Data with 1500 training samples in one image of
the GrabCut database. In (a) the training samples are chosen by random sampling, and in (b)
the training samples are chosen by grid sampling.

so divergent, only a difference is appreciated according to the under-segmentation error
in Figure 5.7b. The run-time experiment behaves as expected, an increase of the number
of samples in the training set results in a clear increase of the execution time.

Is there a significant difference between the Exhaustive Search and the Local
Search when looking for the adjacency parameter k in the OPF-based meth-
ods?

Figure 5.8 compares the segmentation results of OPF-Large-Data, in the GrabCut database,
when using the exhaustive search and the local search to find the adjacency parameter
k7. We execute both versions of OPF-Large-Data, with the same value of kmax for many
values of kmax.

It can be observed that the results are almost identical, both in boundary recall and
under-segmentation error. This means that in most cases, both searches found the same
value (or at least not so distant values) of k. Therefore, it seems a good idea to use
this local search, instead of the exhaustive search, in the divide-and-conquer extensions
(OPF-Blocks-1 and OPF-Blocks-2) to improve their performance, and so we do.

How many blocks are needed in the first level of the divide-and-conquer ex-
tensions?

Figures 5.9 and 5.10 compare the segmentation results of OPF-Blocks-1 and OPF-Blocks-
2 in the GrabCut database considering different numbers of blocks for the first level

7Remember that the local search remains with the local minimum when evaluating the normalized cut
function C(k) (see Equation 3.8) within the interval [1, kmax] starting with kmax. Instead, the exhaustive
search test all values of k ∈ [1, kmax] and remains with the value that minimizes C(k). For more details,
see Section 4.2

64

50 100 150 200 250
NB. SUPERPIXELS

0.70

0.75

0.80

0.85

0.90

BO
UN

DA
RY

 R
EC

AL
L

Comparison in the GRABCUT Database (NB. SUPERPIXELS/BR)

OPF-Large-Data (500 t.s.)
OPF-Large-Data (1500 t.s.)
OPF-Large-Data (3000 t.s.)

(a) Comparison according to the boundary re-
call metric.

50 100 150 200 250
NB. SUPERPIXELS

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

UN
DE
R-
SE
GM

EN
TA
TI
ON

 E
RR
OR

Comparison in the GRABCUT Database (NB. SUPERPIXELS/UE)
OPF-Large-Data (500 t.s.)
OPF-Large-Data (1500 t.s.)
OPF-Large-Data (3000 t.s.)

(b) Comparison according to the under-
segmentation error.

20 40 60 80 100 120 140 160 180
NB. GROUPS

0.84

0.86

0.88

0.90

0.92

0.94

DI
CE

 C
OE

FF
IC
IE
NT

Comparison in the GRABCUT Database (NB. GROUPS/DSC)

OPF-Large-Data (500 t.s.)
OPF-Large-Data (1500 t.s.)
OPF-Large-Data (3000 t.s.)

(c) Comparison according to the Dice coeffi-
cient.

50 100 150 200 250
NB. SUPERPIXELS

0.5

1.0

1.5

2.0

2.5

3.0

TI
M
E
(S
)

Comparison in the GRABCUT Database (NB. SUPERPIXELS/TIME)
OPF-Large-Data (500 t.s.)
OPF-Large-Data (1500 t.s.)
OPF-Large-Data (3000 t.s.)

(d) Comparison according to the run-time
performance.

Figure 5.7: Comparisons between the segmentation results obtained by OPF-Large-Data, in the
GrabCut database, when training sets of different sizes are used.

(base level), respectively. In these experiments, each block is clustered with 1500 training
samples chosen by grid sampling, therefore, more blocks imply a greater amount of training
samples.

According to Figure 5.9, it does not seem a good idea to run OPF-Blocks-1 with many
blocks unless our objective is to get a lot of superpixels. The more blocks we have, more
superpixels we usually get. As clusters produced in different blocks cannot be merged
directly because of the absence of a second level of clustering, the final result has a great
dependence on the post-processing that tries to merge adjacent superpixels by comparing
their histograms (see Section 4.3). Figure 5.9b shows that the under-segmentation error
up to 130 superpixels is greater for 16 blocks than for both 4 and 9 blocks.

Unlike OPF-Blocks-1, OPF-Blocks-2 allows merging clusters formed in different blocks
because it has two levels. According to Figure 5.10, the more blocks in the first level,
the better the chance of improving the segmentation result. However, a large number

65

50 100 150 200 250
NB. SUPERPIXELS

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

BO
UN

DA
RY

 R
EC

AL
L

Comparison in the GRABCUT Database (NB. SUPERPIXELS/BR)

OPF-Large-Data (exhaustive search)
OPF-Large-Data (local search)

(a) Comparison according to the boundary re-
call metric.

50 100 150 200 250
NB. SUPERPIXELS

0.03

0.04

0.05

0.06

0.07

0.08

UN
DE

R-
SE
GM

EN
TA
TI
ON

 E
RR

OR

Comparison in the GRABCUT Database (NB. SUPERPIXELS/UE)
OPF-Large-Data (exhaustive search)
OPF-Large-Data (local search)

(b) Comparison according to the under-
segmentation error.

Figure 5.8: Comparisons between the segmentation results of OPF-Large-Data, in the Grabcut
database, when different strategies to find the adjacency parameter k are used.

50 100 150 200 250 300
NB. SUPERPIXELS

0.70

0.75

0.80

0.85

0.90

BO
UN

DA
RY
 R
EC
AL
L

Comparison in the GRABCUT Database (NB. SUPERP./BR)

OPF-Blocks-1 (4 blocks)
OPF-Blocks-1 (9 blocks)
OPF-Blocks-1 (16 blocks)

(a) Comparison according to the boundary re-
call metric.

50 100 150 200 250 300
NB. SUPERPIXELS

0.02

0.03

0.04

0.05

0.06

0.07

0.08

UN
DE
R-
SE
GM

EN
TA
TI
ON

 E
RR
OR

Comparison in the GRABCUT Database (NB. SUPERP./UE)
OPF-Blocks-1 (4 blocks)
OPF-Blocks-1 (9 blocks)
OPF-Blocks-1 (16 blocks)

(b) Comparison according to the under-
segmentation error.

Figure 5.9: Comparisons between the segmentation results of OPF-Blocks-1, in the GrabCut
database, when a different number of blocks for the first level is established.

of blocks in the first level may be unnecessary depending on the size and entropy of the
image. In addition, many blocks usually involve a degradation in the execution time of
the technique.

Comparing the proposed technique with the baseline methods in the GrabCut
database

Figures 5.11, 5.12, and 5.13 compare the segmentation results of the baseline methods
and the two divide-and-conquer extensions in the images of the GrabCut database. It
can be seen that OPF-Blocks-2 significantly outperforms the others techniques, according

66

50 100 150 200 250 300
NB. SUPERPIXELS

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

BO
UN

DA
RY
 R
EC
AL
L

Comparison in the GRABCUT Database (NB. SUPERP./BR)

OPF-Blocks-2 (4 blocks)
OPF-Blocks-2 (9 blocks)
OPF-Blocks-2 (16 blocks)

(a) Comparison according to the boundary re-
call metric.

50 100 150 200 250 300
NB. SUPERPIXELS

0.02

0.03

0.04

0.05

0.06

0.07

0.08

UN
DE
R-
SE
GM

EN
TA
TI
ON

 E
RR
OR

Comparison in the GRABCUT Database (NB. SUPERP./UE)
OPF-Blocks-2 (4 blocks)
OPF-Blocks-2 (9 blocks)
OPF-Blocks-2 (16 blocks)

(b) Comparison according to the under-
segmentation error.

Figure 5.10: Comparisons between the segmentation results of OPF-Blocks-2, in the GrabCut
database, when a different number of blocks for the base level is established.

to the boundary recall and the under-segmentation error. OPF-Blocks-1 has the second
best performance, only surpassed by OPF-Large-Data up to 50 superpixels. OPF-Large-
Data overcomes SLIC, k-Means, Quick-Shift, and Watershed in boundary recall, but
it is surpassed by these methods according to the under-segmentation error from 150
superpixels. Quick-shift has the worst performance up to 80 superpixels but from there, its
result improves. Watershed is the least effective method, especially from 100 superpixels
according to the boundary recall. Considering the run-time efficiency, Watershed and
SLIC are superior to the others. The two methods never reach a second, regardless
of the number of superpixels generated. OPF-Large-Data and the divide-and-conquer
extensions have a similar performance, taking approximately 1.5 seconds to cluster each
image. The performance of k-Means deteriorates as the amount of superpixels increases,
reaching almost 10 seconds to produce about 300 superpixels per image. Instead, the
performance of Quick-Shift improves as the number of superpixels augments (this is due
to the decrease of the search space to estimate the PDF of the samples). These results
(results corresponding to the execution time of the techniques) are equivalent in the three
databases evaluated.

Figures 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, and 5.20 exhibit segmentation results (with
approximately 100 superpixels) of the compared methods in some images of the GrabCut
database. The yellow arrows indicate leaks between the object and background. It can be
seen that the superpixels generated by k-Means and SLIC are more regular and compact
than those produced by the other methods. Quick-Shift, Watershed, and the OPF-based
extensions create rather irregular superpixels in both size and shape. k-Means and Wa-
tershed are the procedures with worst boundary adherence in the images shown. SLIC,
OPF-Large-Data, and Quick-Shift recover most boundaries of the objects; however, the
divide-and-conquer extensions identify almost all. It can be seen that some superpixels
produced by OPF-Blocks-1 and OPF-Blocks-2 have straight edges. This is a consequence

67

50 100 150 200 250 300
NB. SUPERPIXELS

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

BO
UN

DA
RY

 R
EC

AL
L

Comparison in the GRABCUT Database (NB. SUPERP./BR)

SLIC
k-Means
Quick-Shift
Watershed
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (4 blocks)
OPF-Blocks-2 (16 blocks)

Figure 5.11: Comparison between the segmentation results of the methods, according to the
boundary recall metric, in the GrabCut database.

50 100 150 200 250 300
NB. SUPERPIXELS

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

UN
DE

R-
SE

GM
EN

TA
TI
ON

 E
RR

OR

Comparison in the GRABCUT Database (NB. SUPERP./UE)
SLIC
k-Means
Quick-Shift
Watershed
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (4 blocks)
OPF-Blocks-2 (16 blocks)

Figure 5.12: Comparison between the segmentation results of the methods, according to the
under-segmentation error, in the GrabCut database.

of two adjacent clusters, discovered in different blocks of the first level, that do not come
together afterward.

Figures 5.21 and 5.22 reveal comparisons between the clustering methods, according to
the accuracy and Dice metrics, after true label propagation by each cluster representative.
It can be observed that OPF-Large-Data has the best results up to 50 groups, while the
divide-and-conquer extensions exceed all others techniques in both metrics from 60 groups.
SLIC has the lowest performance in the Dice metric; however, it reaches the divide-and-

68

50 100 150 200 250 300
NB. SUPERPIXELS

0

2

4

6

8

10

12

14

16

TI
M
E
(S
)

Comparison in the GRABCUT Database (NB. SUPERP./TIME)
SLIC
k-Means
Quick-Shift
Watershed
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (4 blocks)
OPF-Blocks-2 (16 blocks)

Figure 5.13: Comparison between the methods according to the execution time in the GrabCut
database.

conquer extensions in accuracy from 150 groups.
Figures 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, and 5.30 present some label propaga-

tion results, for about 100 clusters, after reducing noise by morphological operations and
remaining with the largest object component. It can be seen that the divide-and-conquer
extensions, especially OPF-Blocks-2, recover an object quite similar to the ground-truth
object in all shown images. The other techniques have some problems to identify the
object in at least two images. k-Means has problems in Figures 5.23, 5.26, 5.27, 5.28,
and 5.29; SLIC gets trouble in Figures 5.24, 5.29, and 5.30; and OPF-Large-Data presents
difficulties in Figures 5.26 and 5.30.

Comparing the proposed technique with the baseline methods in the Para-
sites/Impurities database

Figures 5.31 and 5.32 reveal comparisons between the segmentation results of the tested
methods in the Parasites/Impurities database. It can be observed that OPF-Blocks-2 has
the best performance both in boundary recall and the under-segmentation error. k-Means
and OPF-Blocks-1 also obtain very good results, being the first capable of overcoming
OPF-Blocks-2 in boundary recall from 180 superpixels. OPF-Large-Data and SLIC have
similar behavior in both measures. Watershed is the technique with the worst performance
and only beats Quick-Shift up to 60 superpixels.

Figures 5.33, 5.34, 5.35, 5.36, 5.37, 5.38, and 5.39 present some segmentation results
of the compared methods with approximately 50 superpixels. In these images, the good
boundary adherence of OPF-Blocks-2 to the parasites’ boundaries can be verified. The
other techniques fail in some cases to separate the parasites from the impurities.

Figures 5.40 and 5.41 show comparisons between the clustering methods according to

69

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.14: Segmentation results of the compared methods in the 2nd image of the GrabCut
database.

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.15: Segmentation results of the compared methods in the 4th image of the GrabCut
database.

(a) k-Means (b) SLIC (c) Water-
shed

(d) Quick-
Shift

(e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.16: Segmentation results of the compared methods in the 10th image of the GrabCut
database.

the accuracy and Dice metric after true label propagation from the cluster prototypes.
It can be seen that OPF-Large-Data obtains the worst results in both metrics. OPF-
Blocks-1 and SLIC have a similar performance from 120 groups, but up to this number of

70

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.17: Segmentation results of the compared methods in the 25th image of the GrabCut
database.

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.18: Segmentation results of the compared methods in the 34th image of the GrabCut
database.

(a) k-Means (b) SLIC (c) Water-
shed

(d) Quick-
Shift

(e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.19: Segmentation results of the compared methods in the 17th image of the GrabCut
database.

71

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.20: Segmentation results of the compared methods in the 29th image of the GrabCut
database.

groups, the first surpasses the second in accuracy and the opposite happens in the Dice
metric. OPF-Blocks-2 and k-Means get the best results, however, the second exceeds the
first one up to 60 groups.

Figures 5.42, 5.43, 5.44, 5.45, 5.46, 5.47, and 5.48 exhibit some results of the meth-
ods after true label propagation from the cluster representatives, for approximately 20
groups. For such small number of clusters, it is normal that the compared techniques
cannot recover the entire parasite in some cases. Therefore, k-Means has problems in
Figures 5.43, 5.45, and 5.46; SLIC gets trouble in Figures 5.45 and 5.47; OPF-Large-Data
has difficulties in Figures 5.42 and 5.45; OPF-Blocks-1 has problems in Figure 5.44; and
OPF-Blocks-2 presents complications in Figures 5.45 and 5.46.

Comparing the proposed technique with the baseline methods in the Liver
database

The graphics from Figures 5.49 and 5.50 compare the effectiveness of the methods, ac-
cording to superpixel quality metrics, when segmenting the images of the Liver database.
In these experiments, we discard all the dark pixels because we know they are part of
the background. It can be observed that Quick-Shift has the worst performance by far in
both metrics. OPF-Blocks-1, OPF-Blocks-2, and Watershed exceed all other techniques
in under-segmentation error, while OPF-Large-Data, SLIC, and k-Means get similar re-
sults according to this metric. The results corresponding to the boundary recall metric
are different. Watershed has the second-worst performance while the divide-and-conquer

72

25 50 75 100 125 150 175
NB. GROUPS

0.94

0.95

0.96

0.97

0.98

AC
CU

RA
CY

Comparison in the GRABCUT Database (NB. GROUPS/ACC.)

SLIC
k-Means
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (9 blocks)
OPF-Blocks-2 (9 blocks)

Figure 5.21: Comparison between the segmentation results of the methods after true label prop-
agation from the cluster prototypes, according to the accuracy, in the GrabCut database.

25 50 75 100 125 150 175
NB. GROUPS

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

DI
CE

 C
OE

FF
IC
IE
NT

Comparison in the GRABCUT Database (NB. GROUPS/DSC)

SLIC
k-Means
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (9 blocks)
OPF-Blocks-2 (9 blocks)

Figure 5.22: Comparison between the segmentation results of the methods after true label prop-
agation from the cluster prototypes, according to the Dice coefficient, in the GrabCut database.

extensions surpass SLIC and OPF, but are exceeded by k-Means from 100 superpixels.
Figures 5.51, 5.52, 5.53, 5.54, 5.55, 5.56, and 5.57 show some segmentation results

(with approximately 30 superpixels) of the compared techniques. It can be seen that the
superpixels generated by Quick-Shift do not respect the boundaries of the liver and the
other organs. k-Means, SLIC, and OPF-Large-Data generate superpixels quite irregular
in both size and shape. In addition, these methods cannot segment the liver in most of the
images. Instead, Watershed, OPF-Blocks-1, and OPF-Blocks-2 generate regular super-

73

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.23: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 6th image of the GrabCut database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.24: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 10th image of the GrabCut database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.25: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 15th image of the GrabCut database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.26: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 17th image of the GrabCut database.

pixels according to the body components of the computed tomography slices. However,
Watershed also has problems to delineate the liver boundaries. The superpixels generated
by OPF-Blocks-1 and OPF-Blocks-2 allow separating the liver from the other organs in

74

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.27: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 19th image of the GrabCut database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.28: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 21st image of the GrabCut database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.29: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 26th image of the GrabCut database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.30: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 45th image of the GrabCut database.

an almost perfect way.
Figures 5.58 and 5.59 present comparisons of the segmentation results of the meth-

ods, after true label propagation from the cluster prototypes, in the images of the same
database. It can be observed that OPF-Blocks-2 has the best performance in both the
Dice coefficient and the accuracy, especially in the first metric. OPF-Blocks-1 has the
second best effectiveness from 50 groups. The results of SLIC are not among the best;
however, this technique is able to overcome the divide-and-conquer extensions in the ac-
curacy metric from 120 superpixels. OPF-Large-Data gets the worst outputs from 75
groups.

75

50 100 150 200 250
NB. SUPERPIXELS

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

BO
UN

DA
RY
 R
EC
AL
L

Comparison in the PARASITES/IMPURITIES Database (NB. SUPERP./BR)

SLIC
k-Means
Quick-Shift
Watershed
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (9 blocks)
OPF-Blocks-2 (9 blocks)

Figure 5.31: Comparison between the segmentation results of the methods, according to the
boundary recall metric, in the Parasites/Impurities database.

50 100 150 200 250
NB. SUPERPIXELS

0.02

0.04

0.06

0.08

UN
DE

R-
SE

GM
EN

TA
TI
ON

 E
RR

OR

Comparison in the PARASITES/IMPURITIES Database (NB. SUPERP./UE)
SLIC
k-Means
Quick-Shift
Watershed
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (9 blocks)
OPF-Blocks-2 (9 blocks)

Figure 5.32: Comparison between the segmentation results of the methods, according to the
under-segmentation error, in the Parasites/Impurities database.

Some label propagation results, from 50 to 60 groups, are shown in Figures 5.60, 5.61,
5.62, 5.63, 5.64, 5.65, and 5.66. In these images, it can be observed that k-Means and
SLIC have problems to segment the liver in most cases. The results of OPF-Large-Data
are not so bad, but the method has problems recovering the liver in Figures 5.60, 5.62,
and 5.64. Instead, OPF-Blocks-1 and OPF-Blocks-2 get a good segmentation of the liver
in all the images.

76

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.33: Segmentation results of the compared methods in the 8th image of the Para-
sites/Impurities database.

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.34: Segmentation results of the compared methods in the 15th image of the Para-
sites/Impurities database.

77

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.35: Segmentation results of the compared methods in the 17th image of the Para-
sites/Impurities database.

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.36: Segmentation results of the compared methods in the 18th image of the Para-
sites/Impurities database.

5.2 Clustering arbitrary datasets

In this section, we compare OPF-Blocks-2 against the original OPF clustering technique8,
OPF-Large-Data, and k-Means in six real-world datasets. Four of these datasets are

8We mean to the technique where Algorithm 1 is executed in the graph formed by all samples of the
dataset. In this case, the training set is the entire dataset.

78

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.37: Segmentation results of the compared methods in the 19th image of the Para-
sites/Impurities database.

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.38: Segmentation results of the compared methods in the 22nd image of the Para-
sites/Impurities database.

publicly available for research and the other two are private.

5.2.1 Datasets

Here we give a brief description of each tested dataset.

• Pen-Based Recognition of Handwritten Digits Dataset (PenDigits): A
digit dataset that collects 250 examples from 44 writers. This dataset has 10,992
instances, 16 attributes per instance, and 10 classes representing the 10 digits in the

79

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.39: Segmentation results of the compared methods in the 24th image of the Para-
sites/Impurities database.

decimal numeral system. The number of instances by class is rather similar. All
classes have more than 1000 samples. For a more detailed description, it is avail-
able at https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+
of+Handwritten+Digits.

• Protozoans Dataset (Protozoans): A private dataset collecting 14,000 instances
from the six most common protozoan species (intestinal parasites) in Brazil. The
descriptor of the samples has 260 attributes, and it is based on the color, shape, and
texture of the parasites9. The classes are not evenly distributed in the data. The
species have 1576, 1320, 4855, 3558, 2858, and 89 samples, respectively. Figure 5.67
displays some examples of the protozoan species.

• Eggs Dataset (Eggs): A private dataset containing 3,578 instances from the
eight most common species of human helminth eggs (intestinal parasites) in Brazil.
The descriptor is the same as that of the Protozoans dataset. The classes are not
uniformly distributed in the data. The species have 470, 144, 411, 114, 1191, 538,
242, and 468 samples, respectively. Some examples of the egg species can be seen
in Figure 5.68.

• Rome Superpixels Dataset (RomeSuperpixels): This dataset is formed by
24,968 superpixels from a high resolution (VHR) image acquired in the Vatican
City, in April 2004. A portion of the VHR image can be observed in Figure 5.69.

9For more information about this descriptor, it is described in [116].

https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits

80

25 50 75 100 125 150 175
NB. GROUPS

0.980

0.982

0.984

0.986

0.988

0.990

0.992

0.994

AC
CU

RA
CY

Comparison in the PARASITES/IMPURITIES Database (NB. GROUPS/ACC.)

SLIC
k-Means
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (4 blocks)
OPF-Blocks-2 (9 blocks)

Figure 5.40: Comparison between the segmentation results of the methods after true label
propagation from the cluster prototypes, according to the accuracy, in the Parasites/Impurities
database.

25 50 75 100 125 150 175
NB. GROUPS

0.94

0.95

0.96

0.97

0.98

DI
CE

 C
OE

FF
IC
IE
NT

Comparison in the PARASITES/IMPURITIES Database (NB. GROUPS/DSC)

SLIC
k-Means
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (4 blocks)
OPF-Blocks-2 (9 blocks)

Figure 5.41: Comparison between the segmentation results of the methods after true label prop-
agation from the cluster prototypes, according to the Dice coefficient, in the Parasites/Impurities
database.

This image is labeled with seven classes of interest: road (2,048 samples), tree (2,936
samples), shadow (4,702 samples), water (843 samples), building (13,082 samples),
grass (1,021 samples), and bare soil (336 samples). The feature vector used to de-
scribe the superpixels has 1795 attributes and is a combination of four descriptors:
mean color, color histogram, local binary patterns (LBP), and border/interior clas-

81

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.42: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 1st image of the Parasites/Impurities database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.43: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 3rd image of the Parasites/Impurities database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.44: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 8th image of the Parasites/Impurities database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.45: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 9th image of the Parasites/Impurities database.

sification (BIC). For a more detailed description, this dataset is described in [120].

• Skin Segmentation Dataset (SkinSegmentation): This dataset is built over
the RGB color space from face images of various age groups (young, middle, and
old), race groups (white, black, and Asian), and genders. It has 245,057 instances

82

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.46: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 13th image of the Parasites/Impurities database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.47: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 18th image of the Parasites/Impurities database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.48: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 24th image of the Parasites/Impurities database.

where 50,859 are skin samples (skin pixels) and 194,198 are non-skin samples (non-
skin pixels). For a more detailed description, it is available at https://archive.
ics.uci.edu/ml/datasets/skin+segmentation.

• Letter Recognition Dataset (LetterRecognition): A dataset consisting of
20,000 black-and-white rectangular images, each corresponding to one of the 26
capital letters of the English alphabet. The descriptor has 16 attributes and the
classes (capital letters) are fairly evenly distributed in the data. For a more de-
tailed description, it is available at https://archive.ics.uci.edu/ml/datasets/
letter+recognition.

https://archive.ics.uci.edu/ml/datasets/skin+segmentation
https://archive.ics.uci.edu/ml/datasets/skin+segmentation
https://archive.ics.uci.edu/ml/datasets/letter+recognition
https://archive.ics.uci.edu/ml/datasets/letter+recognition

83

50 100 150 200
NB. SUPERPIXELS

0.4

0.5

0.6

0.7

0.8

0.9

BO
UN

DA
RY

 R
EC

AL
L

Comparison in the LIVER Database (NB. SUPERP./BR)

SLIC
k-Means
Quick-Shift
Watershed
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (9 blocks)
OPF-Blocks-2 (9 blocks)

Figure 5.49: Comparison between the segmentation results of the methods, according to the
boundary recall metric, in the Liver database.

50 100 150 200
NB. SUPERPIXELS

0.02

0.04

0.06

0.08

0.10

0.12

UN
DE

R-
SE
GM

EN
TA
TI
ON

 E
RR

OR

Comparison in the LIVER Database (NB. SUPERP./UE)
SLIC
k-Means
Quick-Shift
Watershed
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (9 blocks)
OPF-Blocks-2 (9 blocks)

Figure 5.50: Comparison between the segmentation results of the methods, according to the
under-segmentation error, in the Liver database.

5.2.2 Experimental methodology

OPF-based methods find natural groups in a dataset, but they do not guarantee a desired
number of clusters. With these techniques, the number of clusters is dependent on the
observation scale or kmax parameter. Other clustering methods, such as k-Means, can
produce a specific number of groups. A problem is that, usually, the number of natural
groups in a dataset is unknown.

84

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.51: Segmentation results of the tested methods in the 1st image of the Liver database.

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.52: Segmentation results of the tested methods in the 6th image of the Liver database.

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.53: Segmentation results of the tested methods in the 15th image of the Liver database.

85

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.54: Segmentation results of the tested methods in the 17th image of the Liver database.

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.55: Segmentation results of the tested methods in the 21st image of the Liver database.

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.56: Segmentation results of the tested methods in the 23rd image of the Liver database.

86

(a) k-Means (b) SLIC (c) Watershed (d) Quick-Shift

(e) OPF-Large-Data (f) OPF-Blocks-1 (g) OPF-Blocks-2

Figure 5.57: Segmentation results of the tested methods in the 28th image of the Liver database.

OPF-Blocks-2 allows many configurations when clustering data. It can divide all the
samples into many or few blocks, or it can have a large or a small number of samples in the
second level. It can also divide the dataset into big partitions and cluster each one by the
OPF-Large-Data technique. However, the idea is to always use a configuration that does
not compromise the efficiency (execution time) of the method. Following this suggestion
in the experiments, we split up each dataset (except the SkinSegmentation dataset) in a
way that all blocks, including the block formed by the samples of the second level, have
about the same number of samples. This number cannot be very large, so it is chosen to
be no greater than the number of training samples of OPF-Large-Data for each compared
dataset — i.e., in a hypothetical experiment, we would compare OPF-Large-Data with
2000 training samples against OPF-Blocks-2 with no more than 2000 samples in each
block. For the SkinSegmentation dataset, we divide the data into big partitions in the
first level and cluster each one by OPF-Large-Data.

To compare the clustering techniques we reuse the idea of true label propagation from
the cluster prototypes explained in Section 5.1.3. In this way, the accuracy is computed
by fixed numbers of groups in each dataset. These predetermined numbers of clusters
have a direct relationship to the number of classes in the datasets (e.g., twice the number
of classes, three times, etc). In addition, we verify if the methods lose some classes after
the true label propagation phase. A class is lost if none of the cluster prototypes has
that class as true label. Ideally, an effective method must obtain high accuracy without
losing classes. We also do the experiments backward. Given an established accuracy, we
compute the number of clusters each method would need to reach it without losing any
class. The smaller the number of groups, the better is the method. We also compare the
methods according to their efficiency (time execution) in each dataset.

In each dataset, OPF-Large-Data, k-Means, and OPF-Blocks-2 are executed 50 times.
The results of the experiments show the mean and the standard deviation of the accuracy
for all iterations. OPF is only executed once in each dataset because its outcome is
deterministic. Furthermore, for most datasets, there are shown the outcomes of OPF
when the suggested local search to find the adjacency parameter k is used.

87

25 50 75 100 125 150 175
NB. GROUPS

0.92

0.93

0.94

0.95

0.96

0.97

AC
CU

RA
CY

Comparison in the LIVER Database (NB. GROUPS/ACC.)

SLIC
k-Means
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (4 blocks)
OPF-Blocks-2 (9 blocks)

Figure 5.58: Comparison of the segmentation results of the methods after true label propagation
from the cluster prototypes, according to the accuracy, in the Liver database.

25 50 75 100 125 150 175
NB. GROUPS

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

DI
CE

 C
OE

FF
IC
IE
NT

Comparison in the LIVER Database (NB. GROUPS/DSC)

SLIC
k-Means
OPF-Large-Data (1500 t.s.)
OPF-Blocks-1 (4 blocks)
OPF-Blocks-2 (9 blocks)

Figure 5.59: Comparison of the segmentation results of the methods after true label propagation
from the clluster prototypes, according to the Dice coefficient, in the Liver database.

5.2.3 Results

Below, we present the results of the compared techniques in the tested datasets.

Comparisons in the PenDigits dataset

Table 5.1 shows the experimental results in the PenDigits dataset. As the dataset has 10
classes, we measure the accuracy of the methods for 20 and 30 groups — i.e., considering

88

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.60: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 5th image of the Liver database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.61: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 6th image of the Liver database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.62: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 13th image of the Liver database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.63: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 16th image of the Liver database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.64: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 20th image of the Liver database.

2 and 3 groups per class. The OPF method achieves the best accuracy for both group
numbers. OPF-Large-Data (with 2000 training samples) and OPF-Blocks-2 (with 6 blocks

89

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.65: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 24th image of the Liver database.

(a) Image (b) Ground-
Truth

(c) k-Means (d) SLIC (e) OPF-
Large-Data

(f) OPF-
Blocks-1

(g) OPF-
Blocks-2

Figure 5.66: Resulting mask of the compared methods, after true label propagation from the
cluster prototypes, in the 26th image of the Liver database.

Figure 5.67: Some examples of the most common protozoan species. (a) Entamoeba histolyt-
ica/E. dispar, (b) Giardia duodenalis, (c) Entamoeba coli, (d) Endolimax nana, (e) Iodameba
bütschlii, and (f) Blastocystis hominis.

Figure 5.68: Some examples of the most common helminth species. (a) Enterobius vermicularis,
(b) Trichuris trichiura, (c) Hymenolepis nana, (d) Taenia spp., (e) Ascaris lubmricoides, (f)
Ancylostomatidae, (g) Hymenolepis diminuta, (h) Schistosoma mansoni.

in the first level) obtain similar results, although the latter gets a lower standard deviation.
k-Means is the method with the lowest accuracy; however, it is the fastest. It can be seen
that the use of the local heuristic to find the adjacency parameter k allows reducing the
execution time of OPF from 4.7 to 1.3 seconds when generating 20 groups. We also
compute the number of clusters that each method would need to reach an accuracy value
of 0.90. Again, OPF is the best method just needing 22 groups to achieve the goal, while

90

Figure 5.69: A portion of the aerial image of Rome with the corresponding superpixels.

k-Means is the worst needing 36 groups.

Table 5.1: Experimental results in the PenDigits dataset.

Method Accuracy/Time
(20 Groups)

Accuracy/Time
(30 Groups)

Nb.Groups/
Time

(0.90 Acc.)

OPF 0.885/4.7s 0.916/2.2s 22/3.63s

OPF using the local
search to find k 0.885/1.3s 0.916/0.8s 22/1.1s

OPF-Large-Data (2000
training samples) 0.873± 0.023/0.17s 0.892± 0.017/0.13s 32/0.2s

k-Means 0.844± 0.025/0.15s 0.877± 0.009/0.12s 36/0.13s

OPF-Blocks-2
(6 blocks) 0.87± 0.008/0.23s 0.892± 0.016/0.2s 33/0.23s

Comparisons in the Protozoans dataset

The experimental results obtained in the Protozoans dataset are shown in Table 5.2. This
dataset has 6 classes, so we calculate the accuracy of the clustering methods for 12 and 18
groups — i.e., two and three clusters per protozoa species. OPF is the method with the
highest accuracy by far; however, it is also the slowest. k-Means gets the second highest
accuracy and is the fastest method for both group quantities. Again, OPF-Large-Data
(with 2000 training samples) and OPF-Blocks-2 (with 8 blocks in the first level) get a

91

similar performance being the first faster. All methods lose class 6 after the true label
propagation phase for 12 groups. There are only 89 instances of this class in the data,
so finding it is not an easy task. k-Means sometimes loses class 4, too. Only OPF is
able to find class 6 for 18 groups. In addition, we compute the number of clusters that
each method needs to get an accuracy equal to or greater than 0.87 without losing any
class. Again, OPF is the best method only needing 17 clusters, while k-Means is the
worst needing 380 groups. OPF-Blocks-2 requires 15 groups less than OPF-Large-Data
to achieve the accuracy value mentioned above.

Table 5.2: Experimental results in the Protozoans dataset.

Method Accuracy/Time
(12 Groups)

Accuracy/Time
(18 Groups)

Nb.Groups/
Time

(0.87 Acc.)

OPF 0.8741/23.8s 0.876/17.3s 17/16.9s

OPF using the local
search to find k 0.8741/14.6s 0.876/12.3s 17/12.3s

OPF-Large-Data (2000
training samples) 0.829± 0.0321/0.9s 0.835± 0.0271/0.88s 113/1.03s

k-Means 0.841± 0.022/0.48s 0.849±0.0081/0.76s 380/8.33s

OPF-Blocks-2
(8 blocks) 0.826± 0.031/2.1s 0.837± 0.0281/2.07s 98/2.08s

1 The method loses class 6.
2 The method loses class 6 and sometimes class 4.

Comparisons in the Eggs dataset

Table 5.3 reveals the experimental outcomes in the Eggs dataset. We determine the
accuracy of the compared techniques for 9 and 16 groups, assuming almost a cluster per
class and two clusters per class, respectively. Once again, OPF gets the best results and
remains as the slowest method. OPF loses class 4 for 9 groups, while the others fail to
discover classes 2 and 4. Corresponding to 16 groups, only k-Means presents problems to
find all egg species (specifically, class 4). k-Means is the fastest method, but it gets the
lowest accuracy values by a large margin. OPF-Blocks-2 (with 6 blocks in the first level)
and OPF-Large-Data (with 1500 training samples) gets similar results in the experiments.
OPF only needs 17 groups to reach an accuracy value of 0.98 without losing any class,
while k-Means requires 53 groups. The suggested local search, to find the adjacency
parameter k, allows to bring down the OPF execution time from 3.3 to 0.8 seconds for 9
groups.

92

Table 5.3: Experimental results in the Eggs dataset.

Method Accuracy/Time
(9 Groups)

Accuracy/Time
(16 Groups)

Nb.Groups/
Time

(0.98 Acc.)

OPF 0.951/3.3s 0.978/1.1s 17/1.06s

OPF using the local
search to find k 0.951/0.8s 0.978/0.8s 17/0.9s

OPF-Large-Data (1500
training samples) 0.935± 0.022/0.42s 0.97± 0.007/0.27s 31/0.25s

k-Means 0.887±0.0142/0.05s 0.943±0.011/0.078s 53/0.56s

OPF-Blocks-2
(6 blocks) 0.929± 0.022/0.47s 0.967± 0.008/0.48s 31/0.438s

1 The method loses class 4.
2 The method loses classes 2 and 4.

Comparisons in the RomeSuperpixels dataset

Table 5.4 exhibits the experimental results of the compared clustering methods in the
RomeSuperpixels dataset. We evaluate the accuracy of all the techniques for 21 groups,
assuming 3 groups per class. We compute the number of groups each method needs
to reach an accuracy value of 0.73 without losing any class, too. The OPF technique
requires only 31 clusters to reach the accuracy value mentioned above, however, it takes
273 seconds. OPF-Blocks-2 (with 16 blocks in the first level) achieves the best accuracy
for 21 groups, but it has some problems finding classes 1 and 6. In addition, the proposed
method only requires 60 clusters to avoid losing any class and exceed the accuracy value
of 0.73, obtaining the second best result (OPF-Large-Data needs 239 groups for the same
objective). OPF-Large-Data (with 2000 training samples) is the fastest method, but it
gets the worst accuracy for 21 groups, losing classes 6 and 7 in many iterations. k-Means
needs 350 groups and 147 seconds to find all the classes in the data.

Comparisons in the SkinSegmentation dataset

The experimental results obtained in the SkinSegmentation dataset are displayed in Ta-
ble 5.5. We quantify the accuracy of the compared techniques for 6 groups, assuming 3
groups for class. The original OPF clustering method that executes Algorithm 1 in all
data is not feasible for this very large dataset (the dataset has 245,057 samples), so we
ignore it in the comparisons. As there are a lot of instances in this dataset, we have
two options to run OPF-Blocks-2. The first is to divide the data into approximately 100
blocks and cluster each one by Algorithm 1; and the second one is to divide all the sam-
ples into a smaller number of blocks and cluster each one by OPF-Large-Data. As the
last option is the fastest, we decide on it. We execute OPF-Blocks-2 with 16 blocks in

93

Table 5.4: Experimental results in the RomeSuperpixels dataset.

Method Accuracy/Time
(21 Groups)

Nb.Groups/
Time

(0.73 Acc.)

OPF 0.722/295.6s 31/273.3s

OPF using the local
search to find k 0.722/244.9s 31/240.5s

OPF-Large-Data (2000
training samples) 0.712± 0.052/7.8s 239/11.6s

k-Means 0.731± 0.0212/16.1s 350/147.9s

OPF-Blocks-2
(16 blocks) 0.735±0.0151/20.5s 60/19.76s

1 The method loses class 6 and sometimes class 1.
2 The method loses classes 6 and 7.

the first level and cluster each one by OPF-Large-Data with 2000 training samples. All
methods achieve a similar accuracy value for 6 groups; however, k-Means is the fastest.
k-Means only needs 12 groups to achieve an accuracy value of 0.95, while OPF-Blocks-2
requires 33. The execution time of OPF-Large-Data is reduced from 3.04 to 1.3 seconds,
for 6 groups, when the local search is used to find the adjacency parameter k.

Table 5.5: Experimental results in the SkinSegmentation dataset.

Method Accuracy/Time
(6 Groups)

Nb.Groups/
Time

(0.95 Acc.)

OPF-Large-Data (2000
training samples) 0.936± 0.005/3.04s 25/1.19s

OPF-Large-Data using
the local search to find k
(2000 training samples)

0.936± 0.004/1.3s 25/0.9s

k-Means 0.938±0.009/0.15s 12/0.24s

OPF-Blocks-2
(16 blocks with 2000
training samples each)

0.932± 0.009/2.69s 33/1.55s

94

Comparisons in the LetterRecognition dataset

Table 5.6 presents the experimental outcomes of the compared methods in the Letter-
Recognition dataset. Once again, OPF is the best method obtaining an accuracy of 0.692
for 156 groups (considering 6 groups for each capital letter). All other methods achieve
similar accuracy values for the number of groups mentioned above, although OPF-Large-
Data and k-Means lose class 8 (letter ’H’) in some iterations. OPF-Large-Data is the
fastest method among all. OPF only needs 164 groups to reach an accuracy value of 0.70,
while OPF-Blocks-2 requires 468 for the same goal.

Table 5.6: Experimental results in the LetterRecognition dataset.

Method Accuracy/Time
(156 Groups)

Nb.Groups/
Time

(0.70 Acc.)

OPF 0.692/2.7s 164/2.53s

OPF using the local
search to find k 0.692/2.15s 164/2.08s

OPF-Large-Data (2500
training samples) 0.575± 0.012/0.28s 408/0.26s

k-Means 0.58± 0.0081/0.75s 309/1.2s

OPF-Blocks-2
(8 blocks) 0.582± 0.012/0.39s 468/0.57s

1 The method loses class 8 twice in 50 iterations.
2 The method loses class 8 four times in 50 iterations.

5.3 Discussion

In this chapter, we evaluate the proposed technique against some baseline methods in
two scenarios: image segmentation and the general data clustering problem. Regarding
the image segmentation scenario, we compare OPF-Blocks-1 and OPF-Blocks-2 against
SLIC, Quick-Shift, a watershed-based method, OPF-Large-Data, and k-Means in three
databases of images: GrabCut, Parasites/Impurities, and Liver. In the three databases,
the divide-and-conquer extensions get outstanding results. OPF-Blocks-2 outperforms
the other methods in all experiments performed in accordance with the superpixel quality
metrics used: boundary recall and under-segmentation error. Only k-Means is able to
overcome OPF-Blocks-2 in one experiment, according to the boundary recall metric from
100 superpixels in the Liver database. The results of OPF-Blocks-1 are slightly worse
than those of OPF-Blocks-2; however, they always exceed the outcomes of OPF-Large-
Data, Watershed, Quickshift, SLIC, and many times those of k-Means. Corresponding to
the metrics evaluated (accuracy and Dice coefficient) after true label propagation from

95

the cluster representatives, the divide-and-conquer extensions also get remarkable results.
OPF-Blocks-2 is only surpassed by OPF-Large-Data up to 45 clusters in the GrabCut
database and by k-Means up to 50 clusters in the Parasites/Impurities database.

We check that grid sampling is a better strategy than random sampling when a reduced
pixel sample of the image is needed. We also confirm the need to form a training set with
a sufficient number of samples when clustering a large dataset with OPF-Large-Data and
that the proposed local search is a good alternative to the exhaustive search when finding
the adjacency parameter k. We verify that the number of blocks to divide an image in
OPF-Blocks-1 and OPF-Blocks-2 must take into consideration the entropy and size of
the image, the consequent execution time of the technique, and the number of desired
superpixels in the final segmentation.

We can say that Watershed and SLIC are the fastest techniques, although the OPF-
based methods also cluster the images in a reasonable time. Indeed, SLIC, Watershed,
OPF-Large-Data, OPF-Blocks-1, and OPF-Blocks-2 are stable methods according to their
execution time — i.e., their performance is not influenced by the number of superpixels
generated. In contrast, the performance of k-Means and Quick-shift depends on this
number.

We present some superpixel segmentations and some binary masks (binary images
generated after the true label propagation from the cluster representatives) produced by
the compared techniques in the tested databases, highlighting the results of the divide-
and-conquer extensions. In most of the images shown, OPF-Blocks-1 and OPF-Blocks-2
(especially, the last) get a good adherence to the objects’ boundaries and recover object
masks similar to the ground-truth masks.

With regard to the arbitrary data clustering problem, we confirm the superiority of
OPF10 over k-Means in all the tested datasets. The main drawback of OPF is its poor
performance (run-time performance) when trying to cluster a large amount of data. The
two OPF extensions that deal with this issue (OPF-Large-Data and OPF-Blocks-2) obtain
similar results in most of the experiments carried out; however, with OPF-Blocks-2 is more
difficult to lose classes in the resulting groups. This must be a consequence of using all
the samples, or at least more samples, to train the technique. There is only one dataset
in which the experimental results obtained by OPF-Large-Data and OPF-Blocks-2 differ
significantly. In the RomeSuperpixels dataset, OPF-Blocks-2 gets an accuracy of 0.735
and needs 60 groups to reach the accuracy value of 0.73 without losing classes, while the
corresponding results of OPF-Large-Data are 0.712 and 239 groups, respectively.

10We refer here to the technique that executes Algorithm 1 on all samples of the dataset.

96

Chapter 6

Conclusions

Advances in data acquisition and storage technologies have provided large datasets to sup-
port research, technological development, entertainment, medical diagnosis, among others.
Due to this huge amount of data, automatic labeling has become an indispensable step in
many of these applications. One of the most popular data labeling procedure is cluster-
ing where the samples are organized into “similar” groups, usually without any domain
knowledge. Numerous classes of clustering methods have been proposed in the literature,
such as representative-based methods, hierarchical methods, density-based methods, and
graph-based methods. However, many of them cannot address large datasets.

In this master thesis, the Optimum-Path Forest framework for the development of
pattern recognition techniques is considered. Given an adjacency relation, a path-cost
function, and a procedure to estimate prototypes, the OPF algorithm partitions the fea-
ture space into an optimum-path forest rooted at those prototypes. Different choices of
these parameters lead to clustering and classification approaches, such that a class may
be represented by multiple trees and a cluster is represented by a single tree. A sample
that belongs to a given tree is said more strongly connected to the root of that tree than
to any other root. Therefore, each root propagates its class/cluster label to the samples
of its tree.

In order to address the large dataset problem, we presented an extension of the OPF-
clustering technique that exploits a divide-and-conquer model with two levels. At the first
level, the data is divided into blocks. The samples belonging to each block are clustered
separately by the OPF algorithm. Then, the root of each cluster is promoted to the
second level. Next, the samples in the second level are clustered with the OPF algorithm
again. Finally, the data samples receive the group label of the roots in the second level
through their representatives in the first level. We named this method OPF-Blocks-2.

When the blocks in OPF-Blocks-2 contain too many samples, we use a previous variant
for large datasets inside each block, the OPF-Large-Data algorithm. OPF-Large-Data first
finds groups in a given training set and then propagates the root labels to the remaining
samples by identifying which root would offer an optimum path to it, if the sample were
part of the training set. For improvements, we proposed a heuristic search to find the best
adjacency parameter k within the interval [1, kmax] which does not affect effectiveness. In
the case of image segmentation, we also demonstrated that a reduced training set contains
more relevant samples when it is built by grid sampling rather than random sampling.

97

Our approach, OPF-Blocks-2, was evaluated in the image segmentation scenario for
different application domains and it outperformed the compared baselines in all experi-
ments. We also assessed OPF-Blocks-1, a method that only makes use of the first level to
group the pixels and needs a post-processing to merge superpixels generated in different
blocks. The merging procedure consists of comparing the color histograms of adjacent
superpixels by the Bhattacharyya coefficient. OPF-Blocks-1 obtained excellent results,
but it is not competitive with OPF-Blocks-2.

OPF-Block-2 was also evaluated for arbitrary data grouping. It outperformed OPF-
Large-Data in the RomeSuperpixels dataset and obtained equivalent results in the re-
maining datasets. It is important to highlight that OPF-Blocks-2 can retain clusters that
represent real classes much better than OPF-Large-Data. This must be a consequence of
using all samples or at least many samples for training.

Despite the good results achieved by our divide-and-conquer model when clustering
large datasets, this proposal has challenges. As can be seen in the last experiments,
OPF-Blocks-2 could not imitate the results of the original OPF-clustering technique that
creates the optimal forest with all the samples of the dataset, so there is still much room
for improvement. The first issue is the partition of the dataset into blocks in the first level.
Each block should contain enough information to produce a valuable partial clustering.
In practice, different choices of block size may lead to better results in each dataset. It
is also important to explore spatial information when the dataset is an image. A second
problem is that the number of clusters in the first level affects the number of samples for
grouping in the second level. Different choices for kmax in each block may lead to better
results. However, we maintained it fix as though the data entropy in each block were the
same.

Therefore, as future work, an upper limit kmax per block, the block sizes and, in the
case of images, their spatial locations, should take into account the data entropy inside
the blocks in the first level, in order to preserve all natural clusters when grouping samples
in the second level. Higher entropy may require lower values of kmax and reduced block
sizes. The technique can also be explored in several contexts. In [107], for instance,
the authors use OPF-Large-Data for active learning. Initially, the user annotates the
classes of the cluster roots (which should represent all classes in the dataset). Then, a
pattern classifier is trained along the subsequent iterations to select the most informative
samples from each cluster for user supervision. First, the use of OPF-Blocks-2 in this
active learning approach may already lead to improvements, especially when the dataset
is represented by pixels or superpixels. Second, there are many possible variants of this
active learning method. For example, at each iteration, the method selects the same
number of samples per group for user supervision. In our case, we have two levels of
groups for the selection process and groups with a higher number of classes, according
to the classifier, could provide more samples for user supervision. Another application
is visual saliency detection [57]. In [76], OPF-Large-Data was used to group background
pixels near the borders of the image such that the costs of the optimum paths from
the cluster roots to the remaining pixels were explored to segment the foreground as a
visual saliency. OPF-Blocks-2 could be used in the place of OPF-Large-Data for the
same objective. Similarly, we can use our method in the case of brain tissue segmentation

98

from magnetic resonance images [23]. Note that, the proposed clustering method can also
be extended to more than two levels and this may be important in some of the above
applications.

99

Bibliography

[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and
Sabine Süsstrunk. Slic superpixels compared to state-of-the-art superpixel methods.
IEEE transactions on pattern analysis and machine intelligence, 34(11):2274–2282,
2012.

[2] Luis Afonso, Alexandre Vidal, Michelle Kuroda, Alexandre Xavier Falcão, and
João P Papa. Learning to classify seismic images with deep optimum-path forest.
In Graphics, Patterns and Images (SIBGRAPI), 2016 29th SIBGRAPI Conference
on, pages 401–407. IEEE, 2016.

[3] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A framework for
clustering evolving data streams. In Proceedings of the 29th international conference
on Very large data bases-Volume 29, pages 81–92. VLDB Endowment, 2003.

[4] Charu C Aggarwal and Chandan K Reddy. Data clustering: algorithms and appli-
cations. CRC press, 2013.

[5] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan.
Automatic subspace clustering of high dimensional data for data mining applications,
volume 27. ACM, 1998.

[6] Eduardo Barreto Alexandre, Ananda Shankar Chowdhury, Alexandre Xavier Fal-
cão, and Paulo A Vechiatto Miranda. Ift-slic: A general framework for superpixel
generation based on simple linear iterative clustering and image foresting transform.
In Graphics, Patterns and Images (SIBGRAPI), 2015 28th SIBGRAPI Conference
on, pages 337–344. IEEE, 2015.

[7] Willian P Amorim, Alexandre X Falcão, João P Papa, and Marcelo H Carvalho.
Improving semi-supervised learning through optimum connectivity. Pattern Recog-
nition, 60:72–85, 2016.

[8] Willian Paraguassu Amorim, Alexandre Xavier Falcão, and Marcelo Henriques
de Carvalho. Semi-supervised pattern classification using optimum-path forest. In
Graphics, Patterns and Images (SIBGRAPI), 2014 27th SIBGRAPI Conference on,
pages 111–118. IEEE, 2014.

[9] Fernanda A Andaló, Paulo AV Miranda, R da S Torres, and Alexandre X Falcão.
Shape feature extraction and description based on tensor scale. Pattern Recognition,
43(1):26–36, 2010.

100

[10] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Op-
tics: ordering points to identify the clustering structure. In ACM Sigmod record,
volume 28, pages 49–60. ACM, 1999.

[11] Phipps Arabie. Cluster analysis in marketing research. Advanced methods in mar-
keting research, pages 160–189, 1994.

[12] Alper Ayvaci and Stefano Soatto. Motion segmentation with occlusions on the
superpixel graph. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE
12th International Conference on, pages 727–734. IEEE, 2009.

[13] Francis R Bach and Michael I Jordan. Learning spectral clustering, with application
to speech separation. Journal of Machine Learning Research, 7(Oct):1963–2001,
2006.

[14] Pierre Baldi and G Wesley Hatfield. DNA microarrays and gene expression: from
experiments to data analysis and modeling. Cambridge university press, 2002.

[15] Geoffrey H Ball and David J Hall. Isodata, a novel method of data analysis and
pattern classification. Technical report, Stanford research inst Menlo Park CA,
1965.

[16] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for
embedding and clustering. In Advances in neural information processing systems,
pages 585–591, 2002.

[17] Serge Beucher and Fernand Meyer. The morphological approach to segmenta-
tion: the watershed transformation. Optical Engineering-New York-Marcel Dekker
Incorporated-, 34:433–433, 1992.

[18] James C Bezdek. Pattern recognition with fuzzy objective function algorithms.
Springer Science & Business Media, 2013.

[19] Sanjiv K Bhatia and Jitender S Deogun. Conceptual clustering in information
retrieval. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-
netics), 28(3):427–436, 1998.

[20] Paul S Bradley, Usama M Fayyad, Cory Reina, et al. Scaling clustering algorithms
to large databases. In KDD, pages 9–15, 1998.

[21] Jeremy Buhler. Efficient large-scale sequence comparison by locality-sensitive hash-
ing. Bioinformatics, 17(5):419–428, 2001.

[22] Fabio AM Cappabianco, Alexandre X Falcão, and Leonardo M Rocha. Clustering
by optimum path forest and its application to automatic gm/wm classification in
mr-t1 images of the brain. In Biomedical Imaging: From Nano to Macro, 2008.
ISBI 2008. 5th IEEE International Symposium on, pages 428–431. IEEE, 2008.

101

[23] Fábio AM Cappabianco, Alexandre X Falcão, Clarissa L Yasuda, and Jayaram K
Udupa. Brain tissue mr-image segmentation via optimum-path forest clustering.
Computer Vision and Image Understanding, 116(10):1047–1059, 2012.

[24] Jiansheng Chen, Zhengqin Li, and Bo Huang. Linear spectral clustering superpixel.
IEEE Transactions on Image Processing, 26(7):3317–3330, 2017.

[25] Yizong Cheng. Mean shift, mode seeking, and clustering. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 17(8):790–799, 1995.

[26] Giovani Chiachia, Aparecido N Marana, João P Papa, and Alexandre X Falcão.
Infrared face recognition by optimum-path forest. In Systems, Signals and Image
Processing, 2009. IWSSIP 2009. 16th International Conference on, pages 1–4. IEEE,
2009.

[27] Krzysztof Chris Ciesielski, Paulo AV Miranda, Alexandre X Falcão, and Jayaram K
Udupa. Joint graph cut and relative fuzzy connectedness image segmentation algo-
rithm. Medical image analysis, 17(8):1046–1057, 2013.

[28] Dorin Comaniciu. An algorithm for data-driven bandwidth selection. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, 25(2):281–288, 2003.

[29] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on pattern analysis and machine intelligence,
24(5):603–619, 2002.

[30] Kelton AP Costa, Luis AM Pereira, Rodrigo YM Nakamura, Clayton R Pereira,
João P Papa, and Alexandre Xavier Falcão. A nature-inspired approach to speed
up optimum-path forest clustering and its application to intrusion detection in com-
puter networks. Information Sciences, 294:95–108, 2015.

[31] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool.
Communications of the ACM, 53(1):72–77, 2010.

[32] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society. Series
B (methodological), pages 1–38, 1977.

[33] Inderjit S Dhillon. Co-clustering documents and words using bipartite spectral graph
partitioning. In Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 269–274. ACM, 2001.

[34] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clus-
tering and normalized cuts. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 551–556. ACM, 2004.

[35] Inderjit S Dhillon and Dharmendra S Modha. A data-clustering algorithm on dis-
tributed memory multiprocessors. In Large-scale parallel data mining, pages 245–
260. Springer, 2002.

102

[36] Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of nonnega-
tive matrix factorization and spectral clustering. In Proceedings of the 2005 SIAM
International Conference on Data Mining, pages 606–610. SIAM, 2005.

[37] William E Donath and Alan J Hoffman. Lower bounds for the partitioning of graphs.
IBM Journal of Research and Development, 17(5):420–425, 1973.

[38] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. 2nd.
Edition. New York, 2001.

[39] Levent Ertöz, Michael Steinbach, and Vipin Kumar. Finding clusters of different
sizes, shapes, and densities in noisy, high dimensional data. In Proceedings of the
2003 SIAM International Conference on Data Mining, pages 47–58. SIAM, 2003.

[40] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd,
volume 96, pages 226–231, 1996.

[41] Alexandre X Falcão and Felipe PG Bergo. Interactive volume segmentation with
differential image foresting transforms. IEEE Transactions on Medical Imaging,
23(9):1100–1108, 2004.

[42] Alexandre X Falcão, Bruno S Cunha, and Roberto A Lotufo. Design of connected
operators using the image foresting transform. In Medical Imaging 2001, pages
468–479. International Society for Optics and Photonics, 2001.

[43] Alexandre X Falcão, Luciano da Fontoura Costa, and BS Da Cunha. Multiscale
skeletons by image foresting transform and its application to neuromorphometry.
Pattern recognition, 35(7):1571–1582, 2002.

[44] Alexandre X Falcão, Jorge Stolfi, and Roberto de Alencar Lotufo. The image forest-
ing transform: Theory, algorithms, and applications. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 26(1):19–29, 2004.

[45] Alexandre X Falcão and Jayaram K Udupa. A 3d generalization of user-steered
live-wire segmentation. Medical Image Analysis, 4(4):389–402, 2000.

[46] Alexandre X Falcão, Jayaram K Udupa, and Flávio K Miyazawa. An ultra-fast
user-steered image segmentation paradigm: live wire on the fly. Medical Imaging,
IEEE Transactions on, 19(1):55–62, 2000.

[47] Alexandre X Falcão, Jayaram K Udupa, Supun Samarasekera, Shoba Sharma,
Bruce Elliot Hirsch, and Roberto de A Lotufo. User-steered image segmenta-
tion paradigms: Live wire and live lane. Graphical models and image processing,
60(4):233–260, 1998.

[48] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image
segmentation. International journal of computer vision, 59(2):167–181, 2004.

103

[49] Robson Leonardo Ferreira Cordeiro, Caetano Traina Junior, Agma Juci
Machado Traina, Julio López, U Kang, and Christos Faloutsos. Clustering very
large multi-dimensional datasets with mapreduce. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
690–698. ACM, 2011.

[50] Douglas H Fisher. Knowledge acquisition via incremental conceptual clustering.
Machine learning, 2(2):139–172, 1987.

[51] Brian Fulkerson, Andrea Vedaldi, and Stefano Soatto. Class segmentation and
object localization with superpixel neighborhoods. In Computer Vision, 2009 IEEE
12th International Conference on, pages 670–677. IEEE, 2009.

[52] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering
data streams. In Foundations of computer science, 2000. proceedings. 41st annual
symposium on, pages 359–366. IEEE, 2000.

[53] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: an efficient clustering
algorithm for large databases. In ACM Sigmod Record, volume 27, pages 73–84.
ACM, 1998.

[54] Ivan R Guilherme, Aparecido N Marana, João P Papa, Giovani Chiachia, Luis CS
Afonso, Kazuo Miura, Marcus VD Ferreira, and Francisco Torres. Petroleum well
drilling monitoring through cutting image analysis and artificial intelligence tech-
niques. Engineering Applications of Artificial Intelligence, 24(1):201–207, 2011.

[55] Matthieu Guillaumin, Jakob Verbeek, and Cordelia Schmid. Is that you? metric
learning approaches for face identification. In Computer Vision, 2009 IEEE 12th
international conference on, pages 498–505. IEEE, 2009.

[56] Alexander Hinneburg, Daniel A Keim, et al. An efficient approach to clustering in
large multimedia databases with noise. In KDD, volume 98, pages 58–65, 1998.

[57] Xiaodi Hou and Liqing Zhang. Saliency detection: A spectral residual approach. In
Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on,
pages 1–8. IEEE, 2007.

[58] Alexander I Iliev, Michael S Scordilis, João P Papa, and Alexandre X Falcão. Spo-
ken emotion recognition through optimum-path forest classification using glottal
features. Computer Speech & Language, 24(3):445–460, 2010.

[59] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters,
31(8):651–666, 2010.

[60] Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall,
Inc., 1988.

104

[61] Anil K. Jain, Robert P W Duin, and Jianchang Mao. Statistical pattern recogni-
tion: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(1):4–37, 2000.

[62] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. Dbdc: Density based dis-
tributed clustering. Advances in Database Technology-EDBT 2004, pages 529–530,
2004.

[63] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: Hierarchical clus-
tering using dynamic modeling. Computer, 32(8):68–75, 1999.

[64] George Karypis and Vipin Kumar. Multilevelk-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed computing, 48(1):96–129, 1998.

[65] George Karypis and Vipin Kumar. Parallel multilevel series k-way partitioning
scheme for irregular graphs. Siam Review, 41(2):278–300, 1999.

[66] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction
to cluster analysis, volume 344. John Wiley & Sons, 1990.

[67] Benjamin King. Step-wise clustering procedures. Journal of the American Statistical
Association, 62(317):86–101, 1967.

[68] Juraj Kostolansky. Sky segmentation using slic superpixels. 2016.

[69] Alex Levinshtein, Adrian Stere, Kiriakos N Kutulakos, David J Fleet, Sven J Dick-
inson, and Kaleem Siddiqi. Turbopixels: Fast superpixels using geometric flows.
IEEE transactions on pattern analysis and machine intelligence, 31(12):2290–2297,
2009.

[70] Ming-Yu Liu, Oncel Tuzel, Srikumar Ramalingam, and Rama Chellappa. En-
tropy rate superpixel segmentation. In Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pages 2097–2104. IEEE, 2011.

[71] Zhi Liu, Xiang Zhang, Shuhua Luo, and Olivier Le Meur. Superpixel-based spa-
tiotemporal saliency detection. IEEE transactions on circuits and systems for video
technology, 24(9):1522–1540, 2014.

[72] Roberto Lotufo, Alexandrae Falcão, and Franciscao Z Ampirolli. Fast euclidean
distance transform using a graph-search algorithm. In Computer Graphics and
Image Processing, 2000. Proceedings XIII Brazilian Symposium on, pages 269–275.
IEEE, 2000.

[73] Roberto Lotufo and Alexandre Falcão. The ordered queue and the optimality of the
watershed approaches. In Mathematical Morphology and its Applications to Image
and Signal Processing, pages 341–350. Springer, 2002.

[74] Roberto A Lotufo, Alexandre X Falcão, and Francisco A Zampirolli. Ift-watershed
from gray-scale marker. In Computer Graphics and Image Processing, 2002. Pro-
ceedings. XV Brazilian Symposium on, pages 146–152. IEEE, 2002.

105

[75] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(Nov):2579–2605, 2008.

[76] Maira Saboia da Silva. Clustering of pixels by image foresting transform and its ap-
plication in background segmentation of natural images. Master’s thesis, Unicamp,
2011.

[77] Lucy AC Mansilla and Paulo AV Miranda. Image segmentation by oriented image
foresting transform with geodesic star convexity. In International Conference on
Computer Analysis of Images and Patterns, pages 572–579. Springer, 2013.

[78] Geoffrey J McLachlan and Kaye E Basford. Mixture models: Inference and appli-
cations to clustering, volume 84. Marcel Dekker, 1988.

[79] Louis L McQuitty. Elementary linkage analysis for isolating orthogonal and oblique
types and typal relevancies. Educational and Psychological Measurement, 17(2):207–
229, 1957.

[80] Marina Meila and Jianbo Shi. A random walks view of spectral segmentation. 2001.

[81] David Menotti, Giovani Chiachia, Allan Pinto, William Robson Schwartz, Helio
Pedrini, Alexandre Xavier Falcão, and Anderson Rocha. Deep representations for
iris, face, and fingerprint spoofing detection. IEEE Transactions on Information
Forensics and Security, 10(4):864–879, 2015.

[82] Paulo AV Miranda, Alexandre Xavier Falcão, and Thiago V Spina. Riverbed: A
novel user-steered image segmentation method based on optimum boundary track-
ing. IEEE Transactions on Image Processing, 21(6):3042–3052, 2012.

[83] Paulo AV Miranda and Lucy AC Mansilla. Oriented image foresting transform seg-
mentation by seed competition. IEEE Transactions on Image Processing, 23(1):389–
398, 2014.

[84] Alastair P Moore, Simon JD Prince, Jonathan Warrell, Umar Mohammed, and
Graham Jones. Superpixel lattices. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[85] Marius Muja and David G Lowe. Fast approximate nearest neighbors with auto-
matic algorithm configuration. VISAPP (1), 2(331-340):2, 2009.

[86] Peer Neubert and Peter Protzel. Superpixel benchmark and comparison. In Proc.
Forum Bildverarbeitung, pages 1–12, 2012.

[87] Raymond T. Ng and Jiawei Han. Clarans: A method for clustering objects for spatial
data mining. IEEE transactions on knowledge and data engineering, 14(5):1003–
1016, 2002.

[88] Chong-Wah Ngo, Yu-Fei Ma, and Hong-Jiang Zhang. Video summarization and
scene detection by graph modeling. IEEE Transactions on Circuits and Systems for
Video Technology, 15(2):296–305, 2005.

106

[89] Liadan O’callaghan, Nina Mishra, Adam Meyerson, Sudipto Guha, and Rajeev Mot-
wani. Streaming-data algorithms for high-quality clustering. In Data Engineering,
2002. Proceedings. 18th International Conference on, pages 685–694. IEEE, 2002.

[90] João Papa, Alexandre Falcão, Celso Suzuki, and Nelson Mascarenhas. A discrete
approach for supervised pattern recognition. Combinatorial Image Analysis, pages
136–147, 2008.

[91] João P Papa, Alexandre X Falcão, Victor Hugo C De Albuquerque, and João
Manuel RS Tavares. Efficient supervised optimum-path forest classification for large
datasets. Pattern Recognition, 45(1):512–520, 2012.

[92] João P Papa, Alexandre X Falcão, Alexandre LM Levada, Débora C Corrêa, De-
nis HP Salvadeo, and Nelson DA Mascarenhas. Fast and accurate holistic face
recognition using optimum-path forest. In Digital Signal Processing, 2009 16th In-
ternational Conference on, pages 1–6. IEEE, 2009.

[93] João P Papa, Alexandre X Falcão, Paulo AV Miranda, Celso TN Suzuki, and Nel-
son DA Mascarenhas. Design of robust pattern classifiers based on optimum-path
forests. Mathematical Morphology and its Applications to Signal and Image Pro-
cessing (ISMM), pages 337–348, 2007.

[94] João P Papa, Alexandre X Falcão, and Celso TN Suzuki. Supervised pattern clas-
sification based on optimum-path forest. International Journal of Imaging Systems
and Technology, 19(2):120–131, 2009.

[95] João Paulo Papa, Alexandre Xavier Falcão, Greice Martins de Freitas, and Ana
Maria Heuminski de Avila. Robust pruning of training patterns for optimum-path
forest classification applied to satellite-based rainfall occurrence estimation. IEEE
Geoscience and Remote Sensing Letters, 7(2):396–400, 2010.

[96] João Paulo Papa, Silas Evandro Nachif Fernandes, and Alexandre Xavier Falcão.
Optimum-path forest based on k-connectivity: Theory and applications. Pattern
Recognition Letters, 87:117–126, 2017.

[97] Haim Permuter, Joseph Francos, and Ian Jermyn. A study of gaussian mixture mod-
els of color and texture features for image classification and segmentation. Pattern
Recognition, 39(4):695–706, 2006.

[98] Paulo E Rauber, Alexandre X Falcão, Thiago V Spina, and Pedro J de Rezende.
Interactive segmentation by image foresting transform on superpixel graphs. In
Graphics, Patterns and Images (SIBGRAPI), 2013 26th SIBGRAPI-Conference
on, pages 131–138. IEEE, 2013.

[99] Douglas A Reynolds, Thomas F Quatieri, and Robert B Dunn. Speaker verification
using adapted gaussian mixture models. Digital signal processing, 10(1-3):19–41,
2000.

107

[100] Douglas A Reynolds and Richard C Rose. Robust text-independent speaker identi-
fication using gaussian mixture speaker models. IEEE transactions on Speech and
Audio Processing, 3(1):72–83, 1995.

[101] Leonardo M Rocha, Alexandre X Falcão, and Luis Geraldo P Meloni. A robust
extension of the mean shift algorithm. In IWCIA Special Track on Applications,
pages 29–38, 2008.

[102] Leonardo Marques Rocha, Fábio AM Cappabianco, and Alexandre Xavier Falcão.
Data clustering as an optimum-path forest problem with applications in image anal-
ysis. International Journal of Imaging Systems and Technology, 19(2):50–68, 2009.

[103] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Interactive
foreground extraction using iterated graph cuts. In ACM transactions on graphics
(TOG), volume 23, pages 309–314. ACM, 2004.

[104] Mehran Sahami and Daphne Koller. Using machine learning to improve information
access. PhD thesis, Stanford University, Department of Computer Science, 1998.

[105] Priscila Saito, Pedro J de Rezende, Alexandre X Falcão, Celso TN Suzuki, and
Jancarlo F Gomes. A data reduction and organization approach for efficient image
annotation. In Proceedings of the 28th annual ACM symposium on applied comput-
ing, pages 53–57. ACM, 2013.

[106] Priscila TM Saito, Pedro J de Rezende, Alexandre X Falcão, Celso TN Suzuki, and
Jancarlo F Gomes. An active learning paradigm based on a priori data reduction
and organization. Expert Systems with Applications, 41(14):6086–6097, 2014.

[107] Priscila TM Saito, Celso TN Suzuki, Jancarlo F Gomes, Pedro J de Rezende, and
Alexandre X Falcão. Robust active learning for the diagnosis of parasites. Pattern
Recognition, 48(11):3572–3583, 2015.

[108] Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics,
6(2):461–464, 1978.

[109] Jianbing Shen, Yunfan Du, Wenguan Wang, and Xuelong Li. Lazy random walks for
superpixel segmentation. IEEE Transactions on Image Processing, 23(4):1451–1462,
2014.

[110] Jianbing Shen, Xiaopeng Hao, Zhiyuan Liang, Yu Liu, Wenguan Wang, and Ling
Shao. Real-time superpixel segmentation by dbscan clustering algorithm. IEEE
Transactions on Image Processing, 25(12):5933–5942, 2016.

[111] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000.

[112] Guang Shu, Afshin Dehghan, and Mubarak Shah. Improving an object detector
and extracting regions using superpixels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3721–3727, 2013.

108

[113] Thiago Vallin Spina, Paulo AV de Miranda, and Alexandre Xavier Falcão. Hybrid
approaches for interactive image segmentation using the live markers paradigm.
IEEE Transactions on Image Processing, 23(12):5756–5769, 2014.

[114] Chris Stauffer andW Eric L Grimson. Adaptive background mixture models for real-
time tracking. In Computer Vision and Pattern Recognition, 1999. IEEE Computer
Society Conference on., volume 2, pages 246–252. IEEE, 1999.

[115] X Yu Stella and Jianbo Shi. Multiclass spectral clustering. In null, page 313. IEEE,
2003.

[116] Celso TN Suzuki, Jancarlo F Gomes, Alexandre X Falcão, João P Papa, and Sumie
Hoshino-Shimizu. Automatic segmentation and classification of human intestinal
parasites from microscopy images. IEEE Transactions on Biomedical Engineering,
60(3):803–812, 2013.

[117] R da S Torres and Alexandre X Falcão. Contour salience descriptors for effective
image retrieval and analysis. Image and Vision Computing, 25(1):3–13, 2007.

[118] R da S Torres, Alexandre X Falcão, and L da F Costa. A graph-based approach for
multiscale shape analysis. Pattern Recognition, 37(6):1163–1174, 2004.

[119] R da S Torres, AX Falcão, and L da F Costa. Shape description by image foresting
transform. In Digital Signal Processing, 2002. DSP 2002. 2002 14th International
Conference on, volume 2, pages 1089–1092. IEEE, 2002.

[120] John E Vargas, Priscila TM Saito, Alexandre X Falcão, Pedro J de Rezende, and
Jefersson A dos Santos. Superpixel-based interactive classification of very high
resolution images. In Graphics, Patterns and Images (SIBGRAPI), 2014 27th SIB-
GRAPI Conference on, pages 173–179. IEEE, 2014.

[121] John Edgar Vargas Muñoz et al. An iterative spanning forest framework for super-
pixel segmentation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2017.

[122] Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode
seeking. Computer vision–ECCV 2008, pages 705–718, 2008.

[123] Olga Veksler, Yuri Boykov, and Paria Mehrani. Superpixels and supervoxels in
an energy optimization framework. Computer Vision–ECCV 2010, pages 211–224,
2010.

[124] Jie Wang and Xiaoqiang Wang. Vcells: Simple and efficient superpixels using edge-
weighted centroidal voronoi tessellations. IEEE Transactions on pattern analysis
and machine intelligence, 34(6):1241–1247, 2012.

[125] Peng Wang, Gang Zeng, Rui Gan, Jingdong Wang, and Hongbin Zha. Structure-
sensitive superpixels via geodesic distance. International journal of computer vision,
103(1):1–21, 2013.

109

[126] Wei Wang, Jiong Yang, Richard Muntz, et al. Sting: A statistical information grid
approach to spatial data mining. In VLDB, volume 97, pages 186–195, 1997.

[127] Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal
of the American statistical association, 58(301):236–244, 1963.

[128] CS Warnekar and G Krishna. A heuristic clustering algorithm using union of over-
lapping pattern-cells. Pattern Recognition, 11(2):85–93, 1979.

[129] Wei Wu, Albert YC Chen, Liang Zhao, and Jason J Corso. Brain tumor detection
and segmentation in a crf (conditional random fields) framework with pixel-pairwise
affinity and superpixel-level features. International journal of computer assisted
radiology and surgery, 9(2):241–253, 2014.

[130] Zhenyu Wu and Richard Leahy. An optimal graph theoretic approach to data
clustering: Theory and its application to image segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 15(11):1101–1113, 1993.

[131] Fan Yang, Huchuan Lu, and Ming-Hsuan Yang. Robust superpixel tracking. IEEE
Transactions on Image Processing, 23(4):1639–1651, 2014.

[132] Yi Yang, Sam Hallman, Deva Ramanan, and Charless C Fowlkes. Layered ob-
ject models for image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(9):1731–1743, 2012.

[133] Charles T Zahn. Graph-theoretical methods for detecting and describing gestalt
clusters. IEEE Transactions on computers, 100(1):68–86, 1971.

[134] Mohammed J Zaki, Wagner Meira Jr, and Wagner Meira. Data mining and analysis:
fundamental concepts and algorithms. Cambridge University Press, 2014.

[135] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data
clustering method for very large databases. In ACM Sigmod Record, volume 25,
pages 103–114. ACM, 1996.

[136] Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering based on
mapreduce. In IEEE International Conference on Cloud Computing, pages 674–679.
Springer, 2009.

[137] Chunhui Zhu, Fang Wen, and Jian Sun. A rank-order distance based clustering
algorithm for face tagging. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 481–488. IEEE, 2011.

[138] C Lawrence Zitnick and Sing Bing Kang. Stereo for image-based rendering using
image over-segmentation. International Journal of Computer Vision, 75(1):49–65,
2007.

	Introduction
	Motivation
	Objectives
	Main contributions
	Organization of the text

	Clustering Overview
	Cluster analysis
	Representative-based clustering
	Hierarchical clustering
	Density-based and grid-based clustering
	Spectral and graph clustering
	Clustering of large datasets

	Related Concepts and Methods
	Digital images
	Image segmentation
	Superpixels
	Datasets
	Adjacency relations and datasets as graphs
	Optimum-Path Forest framework
	Data clustering by Optimum-Path Forest
	Extension to large datasets

	Divide-and-Conquer OPF Clustering
	General algorithm
	Improving the estimation of the k-nn graph
	Algorithm for image segmentation

	Experimental Results
	Image segmentation
	Image databases
	Compared methods
	Evaluation metrics
	Defining a simple and effective descriptor for the samples in the evaluated images
	Experimental methodology
	Results

	Clustering arbitrary datasets
	Datasets
	Experimental methodology
	Results

	Discussion

	Conclusions
	Bibliography

