185 research outputs found

    Viral Quasispecies Reconstruction Using Next Generation Sequencing Reads

    Get PDF
    The genomic diversity of viral quasispecies is a subject of great interest, especially for chronic infections. Characterization of viral diversity can be addressed by high-throughput sequencing technology (454 Life Sciences, Illumina, SOLiD, Ion Torrent, etc.). Standard assembly software was originally designed for single genome assembly and cannot be used to assemble and estimate the frequency of closely related quasispecies sequences. This work focuses on parsimonious and maximum likelihood models for assembling viral quasispecies and estimating their frequencies from 454 sequencing data. Our methods have been applied to several RNA viruses (HCV, IBV) as well as DNA viruses (HBV), genotyped using 454 Life Sciences amplicon and shotgun methods

    Inferring Genomic Sequences

    Get PDF
    Recent advances in next generation sequencing have provided unprecedented opportunities for high-throughput genomic research, inexpensively producing millions of genomic sequences in a single run. Analysis of massive volumes of data results in a more accurate picture of the genome complexity and requires adequate bioinformatics support. We explore computational challenges of applying next generation sequencing to particular applications, focusing on the problem of reconstructing viral quasispecies spectrum from pyrosequencing shotgun reads and problem of inferring informative single nucleotide polymorphisms (SNPs), statistically covering genetic variation of a genome region in genome-wide association studies. The genomic diversity of viral quasispecies is a subject of a great interest, particularly for chronic infections, since it can lead to resistance to existing therapies. High-throughput sequencing is a promising approach to characterizing viral diversity, but unfortunately standard assembly software cannot be used to simultaneously assemble and estimate the abundance of multiple closely related (but non-identical) quasispecies sequences. Here, we introduce a new Viral Spectrum Assembler (ViSpA) for inferring quasispecies spectrum and compare it with the state-of-the-art ShoRAH tool on both synthetic and real 454 pyrosequencing shotgun reads from HCV and HIV quasispecies. While ShoRAH has an advanced error correction algorithm, ViSpA is better at quasispecies assembling, producing more accurate reconstruction of a viral population. We also foresee ViSpA application to the analysis of high-throughput sequencing data from bacterial metagenomic samples and ecological samples of eukaryote populations. Due to the large data volume in genome-wide association studies, it is desirable to find a small subset of SNPs (tags) that covers the genetic variation of the entire set. We explore the trade-off between the number of tags used per non-tagged SNP and possible overfitting and propose an efficient 2LR-Tagging heuristic

    Analysis of NGS Data from Immune Response and Viral Samples

    Get PDF
    This thesis is devoted to designing and applying advanced algorithmical and statistical tools for analysis of NGS data related to cancer and infection diseases. NGS data under investigation are obtained either from host samples or viral variants. Recently, random peptide phage display libraries (RPPDL) were applied to studies of host\u27s antibody response to different diseases. We study human antibody response to breast cancer and mouse antibody response to Lyme disease by sequencing of the whole antibody repertoire profiles which are represented by RPPDL. Alternatively, instead of sequencing immune response NGS can be applied directly to a viral population within an infected host. Specifically, we analyze the following RNA viruses: the human immunodeficiency virus (HIV) and the infectious bronchitis virus (IBV). Sequencing of RNA viruses is challenging because there are many variants inside population due to high mutation rate. Our results show that NGS helps to understand RNA viruses and explore their interaction with infected hosts. NGS also helps to analyze immune response to different diseases, trace changing of immune response at different disease stages

    Algorithms for Viral Population Analysis

    Get PDF
    The genetic structure of an intra-host viral population has an effect on many clinically important phenotypic traits such as escape from vaccine induced immunity, virulence, and response to antiviral therapies. Next-generation sequencing provides read-coverage sufficient for genomic reconstruction of a heterogeneous, yet highly similar, viral population; and more specifically, for the detection of rare variants. Admittedly, while depth is less of an issue for modern sequencers, the short length of generated reads complicates viral population assembly. This task is worsened by the presence of both random and systematic sequencing errors in huge amounts of data. In this dissertation I present completed work for reconstructing a viral population given next-generation sequencing data. Several algorithms are described for solving this problem under the error-free amplicon (or sliding-window) model. In order for these methods to handle actual real-world data, an error-correction method is proposed. A formal derivation of its likelihood model along with optimization steps for an EM algorithm are presented. Although these methods perform well, they cannot take into account paired-end sequencing data. In order to address this, a new method is detailed that works under the error-free paired-end case along with maximum a-posteriori estimation of the model parameters

    Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations

    Get PDF
    Next-generation sequencing (NGS) technologies enable new insights into the diversity of virus populations within their hosts. Diversity estimation is currently restricted to single-nucleotide variants or to local fragments of no more than a few hundred nucleotides defined by the length of sequence reads. To study complex heterogeneous virus populations comprehensively, novel methods are required that allow for complete reconstruction of the individual viral haplotypes. Here, we show that assembly of whole viral genomes of ∼8600 nucleotides length is feasible from mixtures of heterogeneous HIV-1 strains derived from defined combinations of cloned virus strains and from clinical samples of an HIV-1 superinfected individual. Haplotype reconstruction was achieved using optimized experimental protocols and computational methods for amplification, sequencing and assembly. We comparatively assessed the performance of the three NGS platforms 454 Life Sciences/Roche, Illumina and Pacific Biosciences for this task. Our results prove and delineate the feasibility of NGS-based full-length viral haplotype reconstruction and provide new tools for studying evolution and pathogenesis of viruse

    Inferring viral quasispecies spectra from 454 pyrosequencing reads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA viruses infecting a host usually exist as a set of closely related sequences, referred to as quasispecies. The genomic diversity of viral quasispecies is a subject of great interest, particularly for chronic infections, since it can lead to resistance to existing therapies. High-throughput sequencing is a promising approach to characterizing viral diversity, but unfortunately standard assembly software was originally designed for single genome assembly and cannot be used to simultaneously assemble and estimate the abundance of multiple closely related quasispecies sequences.</p> <p>Results</p> <p>In this paper, we introduce a new <b>Vi</b>ral <b>Sp</b>ectrum <b>A</b>ssembler (ViSpA) method for quasispecies spectrum reconstruction and compare it with the state-of-the-art ShoRAH tool on both simulated and real 454 pyrosequencing shotgun reads from HCV and HIV quasispecies. Experimental results show that ViSpA outperforms ShoRAH on simulated error-free reads, correctly assembling 10 out of 10 quasispecies and 29 sequences out of 40 quasispecies. While ShoRAH has a significant advantage over ViSpA on reads simulated with sequencing errors due to its advanced error correction algorithm, ViSpA is better at assembling the simulated reads after they have been corrected by ShoRAH. ViSpA also outperforms ShoRAH on real 454 reads. Indeed, 7 most frequent sequences reconstructed by ViSpA from a real HCV dataset are viable (do not contain internal stop codons), and the most frequent sequence was within 1% of the actual open reading frame obtained by cloning and Sanger sequencing. In contrast, only one of the sequences reconstructed by ShoRAH is viable. On a real HIV dataset, ShoRAH correctly inferred only 2 quasispecies sequences with at most 4 mismatches whereas ViSpA correctly reconstructed 5 quasispecies with at most 2 mismatches, and 2 out of 5 sequences were inferred without any mismatches. ViSpA source code is available at <url>http://alla.cs.gsu.edu/~software/VISPA/vispa.html</url>.</p> <p>Conclusions</p> <p>ViSpA enables accurate viral quasispecies spectrum reconstruction from 454 pyrosequencing reads. We are currently exploring extensions applicable to the analysis of high-throughput sequencing data from bacterial metagenomic samples and ecological samples of eukaryote populations.</p

    ViVaMBC: estimating viral sequence variation in complex populations from illumina deep-sequencing data using model-based clustering

    Get PDF
    Background: Deep-sequencing allows for an in-depth characterization of sequence variation in complex populations. However, technology associated errors may impede a powerful assessment of low-frequency mutations. Fortunately, base calls are complemented with quality scores which are derived from a quadruplet of intensities, one channel for each nucleotide type for Illumina sequencing. The highest intensity of the four channels determines the base that is called. Mismatch bases can often be corrected by the second best base, i.e. the base with the second highest intensity in the quadruplet. A virus variant model-based clustering method, ViVaMBC, is presented that explores quality scores and second best base calls for identifying and quantifying viral variants. ViVaMBC is optimized to call variants at the codon level (nucleotide triplets) which enables immediate biological interpretation of the variants with respect to their antiviral drug responses. Results: Using mixtures of HCV plasmids we show that our method accurately estimates frequencies down to 0.5%. The estimates are unbiased when average coverages of 25,000 are reached. A comparison with the SNP-callers V-Phaser2, ShoRAH, and LoFreq shows that ViVaMBC has a superb sensitivity and specificity for variants with frequencies above 0.4%. Unlike the competitors, ViVaMBC reports a higher number of false-positive findings with frequencies below 0.4% which might partially originate from picking up artificial variants introduced by errors in the sample and library preparation step. Conclusions: ViVaMBC is the first method to call viral variants directly at the codon level. The strength of the approach lies in modeling the error probabilities based on the quality scores. Although the use of second best base calls appeared very promising in our data exploration phase, their utility was limited. They provided a slight increase in sensitivity, which however does not warrant the additional computational cost of running the offline base caller. Apparently a lot of information is already contained in the quality scores enabling the model based clustering procedure to adjust the majority of the sequencing errors. Overall the sensitivity of ViVaMBC is such that technical constraints like PCR errors start to form the bottleneck for low frequency variant detection

    Porcine circovirus 2 (PCV-2) genetic variability under natural infection scenario reveals a complex network of viral quasispecies

    Get PDF
    Porcine circovirus 2 (PCV-2) is a virus characterized by a high evolutionary rate, promoting the potential emergence of different genotypes and strains. Despite the likely relevance in the emergence of new PCV-2 variants, the subtle evolutionary patterns of PCV-2 at the individual-host level or over short transmission chains are still largely unknown. This study aimed to analyze the within-host genetic variability of PCV-2 subpopulations to unravel the forces driving PCV-2 evolution. A longitudinal weekly sampling was conducted on individual animals located in three farms after the first PCV-2 detection. The analysis of polymorphisms evaluated throughout the full PCV-2 genome demonstrated the presence of several single nucleotide polymorphisms (SNPs) especially in the genome region encoding for the capsid gene. The global haplotype reconstruction allowed inferring the virus transmission network over time, suggesting a relevant within-farm circulation. Evidences of co-infection and recombination involving multiple PCV-2 genotypes were found after mixing with pigs originating from other sources. The present study demonstrates the remarkable within-host genetic variability of PCV-2 quasispecies, suggesting the role of the natural selection induced by the host immune response in driving PCV-2 evolution. Moreover, the effect of pig management in multiple genotype coinfections occurrence and recombination likelihood was demonstrated

    Distinguishing low frequency mutations from RT-PCR and sequence errors in viral deep sequencing data

    Get PDF
    There is a high prevalence of coronary artery disease (CAD) in patients with left bundle branch block (LBBB); however there are many other causes for this electrocardiographic abnormality. Non-invasive assessment of these patients remains difficult, and all commonly used modalities exhibit several drawbacks. This often leads to these patients undergoing invasive coronary angiography which may not have been necessary. In this review, we examine the uses and limitations of commonly performed non-invasive tests for diagnosis of CAD in patients with LBBB

    Low-frequency variant detection in viral populations using massively parallel sequencing data

    Get PDF
    corecore