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ABSTRACT 

Recent advances in next generation sequencing have provided unprecedented 

opportunities for high-throughput genomic research, inexpensively producing millions of 

genomic sequences in a single run. Analysis of massive volumes of data results in a more 

accurate picture of the genome complexity and requires adequate bioinformatics support. We 

explore computational challenges of applying next generation sequencing to particular 

applications, focusing on the problem of reconstructing viral quasispecies spectrum from 

pyrosequencing shotgun reads and problem of inferring informative single nucleotide 



 

polymorphisms (SNPs), statistically covering genetic variation of a genome region in genome-

wide association studies. 

The genomic diversity of viral quasispecies is a subject of a great interest, particularly for 

chronic infections, since it can lead to resistance to existing therapies. High-throughput 

sequencing is a promising approach to characterizing viral diversity, but unfortunately standard 

assembly software cannot be used to simultaneously assemble and estimate the abundance of 

multiple closely related (but non-identical) quasispecies sequences.  Here, we introduce a new 

Viral Spectrum Assembler (ViSpA) for inferring quasispecies spectrum and compare it with the 

state-of-the-art ShoRAH tool on both synthetic and real 454 pyrosequencing shotgun reads from 

HCV and HIV quasispecies. While ShoRAH has an advanced error correction algorithm, ViSpA 

is better at quasispecies assembling, producing more accurate reconstruction of a viral 

population. We also foresee ViSpA application to the analysis of high-throughput sequencing 

data from bacterial metagenomic samples and ecological samples of eukaryote populations. 

Due to the large data volume in genome-wide association studies, it is desirable to find a 

small subset of SNPs (tags) that covers the genetic variation of the entire set. We explore the 

trade-off between the number of tags used per non-tagged SNP and possible overfitting and 

propose an efficient 2LR-Tagging heuristic. 
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 1       INTRODUCTION 

 

Recent advances in next generation sequencing have provided unprecedented 

opportunities for high-throughput genomic research, inexpensively producing millions of 

genomic sequences in a single run. Analysis of massive volumes of data results in a more 

accurate picture of the genome complexity by allowing researchers to explore a variety of 

underlying biological principals and mechanisms for organisms, whose genome was sequenced, 

however, requires adequate bioinformatics support. We explore computational challenges of 

applying next generation sequencing to particular applications, focusing on the problem of 

reconstructing viral quasispecies spectrum from pyrosequencing shotgun reads and problem of 

inferring informative single nucleotide polymorphisms (SNPs), statistically covering genetic 

variation of a genome region in genome-wide association studies. 

A tagging problem can be viewed as an inherited subproblem of any genomic data 

analysis since, in practice, small percentage of allele values are missing. A missing allele value 

may occur either if this locus was not initially genotyped or if the value did not pass quality 

control threshold after typing. Then the initial preprocessing of the data is either ignoring this 

data point or imputing based on the known information in the dataset. In the latter case, one 

needs to solve a tagging problem and then impute missing values based on the obtained set of tag 

SNPs and prediction rule. For instance, we use imputation tagging-based algorithm in our 

pipeline for quasispecies assembling. 

Both problems explore local genetic information to infer the global diversity of the data. 

Indeed, problem of inferring viral population searches connections between local fragments to 

restore underlying sequences, making “horizontal”-like inference. A tagging problem works in 
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“vertical” fashion by estimating genetic diversity between positions in DNA and removing those 

that at least decrease the available genomic variability in the data. 

From computer science perspective, two problems are very similar since the main 

computation challenge is to concisely represent the space of all feasible solutions. Graph-

theoretic approach usually allows not only capture all information but also effectively traverse 

plausible solutions. 

 

1.1       Reconstruction of HCV Quasispecies Haplotypes 

In epidemiology, RNA viral genomes (for instance, Hepatitis C virus (HCV), Human 

Immunodeficiency Virus (HIV)) are a subject of the great interest since the exact mechanisms of 

their persistence and evolution remain open questions. HCV is an important human pathogen that 

induces a chronic infection in 3% of the world's population. It primarily infects the liver and the 

majority of infected subjects develop progressive liver disease. As many RNA viruses, HCV 

exists as a set of closely related sequences, i.e., quasispecies. The diversity of genomic sequences 

in an infected individual can cause the failures of vaccines and virus resistance to existing 

therapies. Knowing sequences of the most virulent variants can help to design effective drugs [4, 

24] and vaccines [10, 15] targeting particular viral genome in vivo. 

Ultra-deep sequencing, provided by 454 Life Sciences system, is a promising technology 

for viral quasispecies analysis. Since existing high-throughput sequencing systems are originally 

designed for a single genome assembly, they cannot readily distinguish and simultaneously 

assemble multiple closely related sequences as well as estimate their relative abundances. Hence, 

new software tool should be developed to assemble sequenced reads into multiple closely related 

(but non-identical) sequences. 
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We propose a novel algorithm Viral Spectrum Assembler (ViSpA) for inferring viral 

quasispecies spectrum from 454 pyrosequencing shotgun reads. The method takes into account 

sequencing errors at multiple steps, including mapping-based read preprocessing, path selection 

based on maximum-bandwidth, and candidate assembly using probability-weighted consensus 

techniques. ViSpA also considers sequencing errors in its Expectation Maximization (EM) 

algorithm for frequency estimation of quasispecies sequences.  

ViSpA has been compared with the state-of-the-art ShoRAH on both synthetic and real 

454 pyrosequencing shotgun reads from HCV and HIV-1 quasispecies. Experimental results 

show that ViSpA enables more accurate inferring of viral quasispecies spectrum reconstruction 

from 454 pyrosequencing reads.  

 

1.2       Genotype Tagging with Limited Overfitting 

DNA variations, primarily single nucleotide polymorphisms (SNPs), hold many promises 

as a basis of the genome-wide association studies. Genome-wide studies are challengeable due to 

the genotyping cost and computational complexity of the analysis. Since allele values of 

neighboring SNPs are usually correlated, a smaller subset of so called informative (tag) SNPs 

can represent (cover) the entire genetic variation of the set of SNPs, thus, can be used as a basis 

of genome-association studies. Informally, the problem of tagging is selecting a minimum 

number of tag SNPs covering all SNP in the given data. 

To represent genetic variation of an untagged SNP, some tagging methods use a single 

tag (IdSelect [11] and Tagger [15]), or multiple tags (MLR [29]). If a single tag used to cover the 

genetic variation of untagged SNP, the tagging problem can be efficiently approximated and 

almost the optimum number of tag SNPs is found. If multiple tags can be used per untagged 

SNP, there is no efficient approximation for the tagging problem although a smaller subset of tag 
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SNPs is obtained. In case of MLR method, gain in number of tag SNPs leads to data overfitting 

since multiple unrelated tags can participate in covering of an untagged SNP. 

Here, we explore the trade-off between the number of tags and overfitting and considers 

the problem of finding a minimum number of tags when at most two tags can represent variation 

of an untagged SNP. We show that this problem is hard to approximate and propose an efficient 

heuristic, referred as 2LR. The experiments show that 2LR is between Tagger and MLR in the 

number of tags and in overfitting. Indeed, 2LR uses slightly more tags than MLR but the 

overfitting measured with 2-fold cross validations is practically the same as for Tagger. 

 

1.3       Roadmap 

The remainder of the dissertation is organized as follows. Chapter 2 presents the 

Quasispecies Spectrum Reconstruction problem: its motivation, formulation, our algorithmic 

approach, proposed validation methods as well as experimental results on simulated data and 454 

pyrosequencing shotgun reads from HCV and HIV samples. Chapter 3 presents the Minimum 

Tag Selection Problem, beginning with the problem motivation, formulation, exact and 

approximate solutions and experimental results on publicly available datasets. Conclusions and 

future work is described in the Chapter 4.  
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2       INFERRING VIRAL QUASISPECIES SPECTRUM  

FROM 454 PYROSEQUENCING READS 

 

RNA viruses infecting a host usually exist as a set of closely related sequences, referred 

to as quasispecies. The genomic diversity of viral quasispecies is a subject of the great interest 

since it is a plausible cause of vaccines failures and virus resistance to existing therapies. High-

throughput sequencing is a promising approach to characterize viral diversity; however, standard 

assembly software was originally designed for a single genome assembly and cannot be used to 

simultaneously assemble multiple closely related sequences and estimate their relative 

abundances, in the other words, reconstruct the quasispecies spectrum. In this chapter, we 

introduce a novel Viral Spectrum Assembler (ViSpA) method for inferring viral quasispecies 

spectrum from 454 pyrosequencing shotgun reads. 

2.1       Viral Quasispecies 

Many medically important viruses, including SARS coronavirus (SARS-CoV), influenza 

viruses, Hepatitis B virus (HBV), Hepatitis C viruses (HCV), and Human Immunodeficiency 

virus (HIV), encode their genome in RNA. Unlike DNA, RNA lacks ability to detect and repair 

mistakes during replication since RNA polymerase is unable to perform the proof reading of 

DNA polymerase associated with      exonuclease activity [21]. As a result, RNA virus 

mutation rate can be as high as 1 mutation per each 1000-100000 bases copied per replication 

cycle [20]. To ensure its survival, RNA virus exploits various mechanisms of sequence variation 

including substitution, insertion, deletion, recombination and genome segment reassortment. 

Many of the mutations are well tolerated and passed down to descendants, producing a family of 
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co-existing related (but non-identical) variants of the original viral genome referred to as 

quasispecies, a concept that originally described a mutation-selection balance [18, 41, 48].  

Short replication cycle, small size of genome, immune response of an infected patient 

additionally contribute to the evolution of the quasispecies, resulting in 10
10

 to 10
12

 new variants 

per day in a host infected with HIV-1, HBV, or HCV [19]. These quasispecies variants differ in 

their biological properties such as virulence, or ability to cause disease, ability to escape the 

immune system, resistance to antiviral therapies, and tissue tropism, or cells and tissues of a host 

supporting growth of virus. As a consequence, the best adapted variants survive different 

environmental changes and selective pressures, over time, making viral quasispecies spectrum 

different in simultaneously infected hosts.  

The diversity of viral sequences and their frequent generation in an infected individual 

can cause vaccines failures and virus resistance to existing therapies, resulting in just few RNA 

viruses being effectively controlled by vaccination or antiviral therapies [19, 31]. Indeed, it is 

extremely difficult to control chronic active viral hepatitis. For example, care therapy for HCV-1 

infected patient is effective only in 50% of cases, however, has many side effects ranging from a 

flu-like symptoms to serious adverse events such as damage of heart muscle and anemia. 

Furthermore, quasispecies nature of RNA viruses is a challenge in vaccine development because 

live viruses rapidly mutate and potentially become virulent for a host. Therefore, there is a great 

interest in reconstructing genomic diversity of viral quasispecies in an infected host. Knowing 

sequences of virulent variants and their abundance in infected patients can improve our 

understanding of viral evolutionary dynamics, mechanisms of viral persistence and drug 

resistance, and, as result, may help to design an effective drugs and treatments targeting 

particular viral genome in vivo. 
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2.2       Roche 454 Pyrosequencing Technology 

Roche 454 GS FLX Titanium is a next-generation, massively-parallel pyrosequencing 

instrument designed for DNA sequencing [1]. Unlike Sanger, ultra deep pyrosequencing detects 

mutations at extremely low levels, allowing discovery of rare drug-resistant viral quasispecies.  

Briefly, the 454 pyrosequencing system shears the source genetic material into fragments 

of approximately 300-800 bases called reads (see Fig. 2.1). Then two short adaptors are attached 

to the ends of each read, and DNA capture beads bound single-stranded reads, one DNA 

molecule per bead. At each bead, PCR amplification occurs in an emulsion with amplification 

reagents in a water-in-oil mixture, resulting in many copies of the single-stranded DNA 

fragment. Then beads are deposited into individual PicoTiterPlate wells in a fiber optic slide, and 

millions of reads are sequenced by synthesizing their complementary strands. Repeatedly, 

nucleotide reagents are flown over the read in a fixed order, one nucleotide (A, C, T, or G) at a 

Figure 2.1 Pyrosequencing using Roche 454 Life Science platform [1]. 
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time. Light is emitted when the flown nucleotide base complements the first unpaired base of the 

fragment [23, 40]. Sequence of chemiluminescent signals is recorded as flowgram by camera and 

later translated into reads sequences.  

 The well-known drawback of 454 pyrosequencing is in length resolution of a 

homopolymer, that is, sequence of identical bases (e.g., AAAAAA). During pyrosequencing, 

multiple identical nucleotides may be incorporated in a single cycle, and, ideally, light intensity 

corresponds to the number of incorporated bases. However, in reality, light intensity varies 

substantially for the same length of homopolymer, and incorrect resolution causes nucleotide 

over-calls and under-calls. The resulted insertions and deletions respectively constitute 65%-75% 

and 20%-30% of all sequencing errors [4, 9].  

Finally, the original genome is reconstructed computationally. Since the system was 

originally designed to sequence genetic material from a single species, the standard software 

assembles all reads to a single consensus genome, and cannot be used for reconstructing 

quasispecies sequences. 

The Roche 454 GS FLX Titanium can sequence around 400-600 million filter-passed 

bases and generate more than 1 million high-quality reads with average read length up to 400 

bases per a single 10-hour run [1]. In future, the average read length may be as large as 750 

bases.  

2.3       Quasispecies Spectrum Reconstruction Problem 

The goal of viral assembling software is to correctly infer (reconstruct) distribution of 

viral closely related quasispecies in the sequenced sample, or in the other words, it addresses the 

following problem.  
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Quasispecies Spectrum Reconstruction (QSR) Problem: given a collection of 454 

pyrosequencing shotgun reads generated from a viral sample, reconstruct the quasispecies 

spectrum, i.e., the set of sequences and the relative frequency of each sequence in the sample 

population. 

Major challenge in solving the QSR problem is due to the slight differences among 

quasispecies sequences and relatively high sequencing error rate in data generated by current 

technologies. Higher diversity among quasispecies sequences helps to identify more sequencing 

errors as “outliers” and easier partition reads among individual quasispecies. When a viral 

population has low diversity, sequencing errors may have the same frequency as rare mutants in 

the population, making some quasispecies sequences indistinguishable from each other. The 

amount and distribution along the genome of differences between quasispecies significantly 

varies between virus species, since different species have different mutation rates and genomic 

architectures. In particular, due to the lower mutation rate and longer conserved regions, HCV 

quasispecies are harder to reconstruct than quasispecies of HBV and HIV. Additionally, the QSR 

problem is made difficult by the limited read length. Indeed, the shorter reads are, the more 

feasible partitions are available, and larger chance to assemble in-silico (not real) sequences.  

Longer reads impose additional constraints on reads partitioning and lead to more accurate 

solutions.  

The QSR problem is related to several well-known problems, including de novo genome 

assembly (see, for example, [10, 13, 17, 32, 35, 42, 43, 50, 53, 59]), haplotype assembly (see, for 

example, [7, 14, 25, 38, 39, 45, 56]), population phasing (see, for example, [8]) and 

metagenomics  (see, for example, [ 34, 36, 44, 52]). As noted above, de novo assembly methods 

are designed to reconstruct a single genome sequence and are not well-suited for reconstructing a 
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large number of closely related quasispecies sequences. One can reduce QSR problem to de novo 

genome assembly if all quasispecies sequences are placed one-by-one in a long sequence and 

common segments are treated as repeats. Then the fragments (reads) should be assembled into 

the single genome. However, de novo genome assembly is NP-hard problem due to the presence 

of repeats, and no efficient solution is available: an assembler should either guess the correct 

genome among many alternatives or produce a fragmented assembly by restricting itself to non-

repetitive segments of the genome.  Further, QSR problem reminds the haplotype assembly that 

seeks to reconstruct two closely related haplotype sequences of the same diploid genome. 

Unfortunately, existing methods are not scalable with respect to the number of sequences which 

is also a priori unknown.  Computational methods developed for population phasing deal with 

large numbers of haplotypes, but rely on the availability of genotype data that conflates 

information about pairs of haplotypes. Finally, viral quasispecies sequencing can be viewed as 

sequencing of environmental samples, or metagenomics, when obtained reads are sequenced 

from DNA mixture of many different species. However, the differences between the genomes of 

these species are considerably larger than those of viral quasispecies. Furthermore, existing tools 

for metagenomic data analysis focus on species identification, as reconstruction of complete 

genomic sequences would require much higher sequencing depth than that typically provided by 

current metagenomic datasets. In contrast, achieving high sequencing depth for viral samples is 

very inexpensive, owing to the short length of viral genomes.  

Mapping based approaches to QSR are naturally preferred to de novo assembly since 

reference genomes are available (or easy to obtain) for viruses of interest (for instance, from 

NCBI [3]), and viral genomes do not contain repeats. Thus, it is not surprising that such 

approaches were adopted in the two pioneering works on the QSR problem [22, 54]. Both 
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approaches build a read graph, where vertices correspond to non-redundant aligned error-free 

reads, edges represent overlaps between reads, and possible quasispecies sequences are paths 

from the leftmost to the rightmost vertices in the graph.  

Eriksson et al. [22] proposed a multi-step approach consisting of sequencing error 

correction via local deterministic clustering, haplotype reconstruction via chain decomposition, 

and haplotype frequency estimation via expectation maximization (EM) method.  The proposed 

method was able to reduce sequencing error rate by factor of 30 on simulated data and infer 

(within one amino acid difference) at least 51.8% of HIV-1 population from 5,177 reads with 

average read length 105 bases. The error correction of this approach was further improved by 

Zagordi et al. [57]. The authors applied Dirichlet process mixture model for probabilistic local 

clustering and treated each base accordingly to majority rule in 3 consecutive windows. The 

method was implemented in assembling software ShoRAH and validated in HIV-1 population 

[58]. ShoRAH was able to detect haplotypes at frequencies at least 0.1%, and distances between 

reconstructed and original haplotypes were always below 1%.  

In Westbrooks et al. [54, 55], the focus was on haplotype reconstruction via transitive 

reduction, overlap probability estimation and network flows application. The method was 

validated on error-free reads simulated from 1,739bp-long fragment of E1E2 region of 44 HCV 

quasispecies. In this dissertation, we have further extended this approach to the case of real 454 

pyrosequencing reads from a viral sample.  

Recently, Prosperi et al. [46] introduced a novel greedy algorithm minimizing the number 

of reconstructed in-silico recombinants by coupling overlapping reads with similar frequencies 

across the various amplicons, overlapping regions, covering the entire genome. The 
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combinatorial algorithm was applied to simulated data and real reads from HBV quasispecies, 

showing similar to ShoRAH results. 

For simplicity of solution description, we further refer QSR problem as two following 

problems.   

Quasispecies Sequences Assembly (QSA) Problem: assemble the set of quasispecies 

sequences that is consistent with 454 pyrosequencing shotgun reads generated from a viral 

sample and the reference (consensus) sequence. 

Quasispecies Frequencies Estimation (QFE) Problem: estimate frequencies of the 

given sequences to be consistent with the 454 pyrosequencing shotgun reads. 

As noted above, we have extended the approach in [54, 55] for real 454 pyrosequencing 

reads produced from a viral sample. The contributions of the dissertation include  

 novel QSR tool called Viral Spectrum Assembler (ViSpA) consisting of 

 aligned reads preprocessing including a simple error correction, 

 efficient solution to QSA problem via maximum-bandwidth path selection and 

mutation-based clustering for haplotype assembling in weighted read graph,  

 solution to QFE problem via maximum-likelihood estimation, taking into 

account all reads in the data; 

 comparison of ViSpA with the state-of-the-art ShoRAH on HCV synthetic data both 

with and without sequencing errors; 

 statistical and experimental validation of the two methods on real 454 pyrosequencing 

reads from intra-host HCV and HIV samples. 
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The following sections describe ViSpA's approach to QSA problem (see Section 2.4.1) 

and EM-based algorithm to solve QFE problem (see Section 2.4.2). 

2.4       Viral Spectrum Assembler (ViSpA) 

Our method ViSpA assembles viral quasispecies sequences from 454 pyrosequencing 

shotgun reads by considering sequencing errors at multiple steps, selecting paths corresponding 

to the most probable quasispecies sequences, and assembling candidate sequences based on an 

expected mutation rate in a viral sample (see Section 2.4.1). Then EM-based algorithm finds 

maximum likelihood frequency estimation for each assembled sequence, based on all 454 

pyrosequencing shotgun reads (see Section 2.4.2). 

2.4.1       Assembly of Quasispecies Sequences 

ViSpA solves QSA problem as follows (see Figure 2.2). 

1. Align 454 pyrosequencing reads either versus reference or consensus constructed for 

the given sample (for details, see Section 2.4.1.1). 

2. Preprocess aligned reads to correct sequencing errors (for details, see Section 2.4.1.3). 

3. Construct a transitively reduced read graph with vertices representing reads and edges 

representing overlaps with partial agreement between overlapped reads (for details, 

see Section 2.4.1.4). 

4.  Select most probable paths per each vertex, and assemble candidate sequences for 

selected paths by weighted consensus of reads (for details, see Section 2.4.1.5). 

Below we describe each step separately. 
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Figure 2.2 ViSpA’s flow for QSA problem. Optional steps in ViSpA’s viral quasispecies 

assembling are in shapes with blue borders and include consensus construction and iterative 

realignment to consensus, preprocessing of missing values and clustering of candidate 

sequences.   

 

2.4.1.1       Read Alignment and Consensus Construction 

Viral quasispecies assembling starts with read alignment wherein starting position of 

each read is determined relatively to either a reference or constructed consensus sequences. We 

assume that a reference genome sequence of the particular viral strain is publicly available (e.g., 

from NCBI [3], HIV databases [2]). Since viral genomes do not have sizable repeats and the 
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quasispecies sequences are usually close enough to the reference sequence, in general, majority 

of reads can be uniquely aligned onto the reference genome. However, a significant number of 

reads may remain unaligned due to the differences between the reference genome and sequences 

in the viral sample. These differences are caused by high mutation rate and viral evolution 

guided by an individual response of host's immune system. In order to recover as many of these 

reads as possible, we can iteratively construct a consensus genome sequence from the already 

aligned reads. 

In particular, we first align 454 pyrosequencing shotgun reads to the reference sequence 

using the SEGEMEHL software [49]. The alignment score should satisfy two conditions. First, 

the lower score reflects the smaller number of differences between aligned read and the reference 

sequence. And secondly, the alignment score penalizes mismatches less than insertions into a 

read and deletions from a read with respect to the reference sequence. Then we extend the 

reference sequence with a placeholder I for each nucleotide inserted by at least one uniquely 

aligned read. Similarly, we add a placeholder D to a read sequence for each reference nucleotide 

missing from the aligned read. Next we perform sequential multiple alignment of the previously 

aligned reads against this extended reference sequence. Finally, the consensus sequence is 

obtained by (1) replacing each nucleotide in the extended reference with the nucleotide or 

placeholder in the majority of the aligned reads and (2) removing all I and D placeholders 

respectively corresponding to rare insertions and deletions found in a majority of the reads. 

Reads may contain a small percentage of unidentified nucleotides denoted by N's. We treat N as 

a special allele value matching to any of nucleotides A, C, T, G as well as placeholders I and D. 

Iteratively, we replace the reference with the consensus and try to align the reads, for 

which we could not find any acceptable alignment previously. Our experiments on a dataset, 
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consisting of approximately 31,000 454 pyrosequencing shotgun reads generated from 5.2kb-

long HCV fragment (see data description in Section 2.6.2), show that 85% of reads are uniquely 

aligned onto the reference sequence and an additional 9% of reads are aligned onto the final 

consensus sequences. Reads that cannot be aligned onto the final consensus are removed from 

further consideration. 

2.4.1.2       Genotyping Errors 

Although next generation sequencing techniques can generate significantly more 

sequence information at a lesser cost than Sanger sequencing, their sequencing accuracies are 

much lower of Sanger’s. For example, 454 GS FLX instrument may erroneously sequence up to 

four out of 1,000 bases due to the technology limitations [4].  

As noted above, a well-known drawback of 454 pyrosequencing is a large amount of 

erroneous indels [4, 9], i.e., insertions into reads and deletions from reads with respect to a 

reference (consensus) sequence, caused by incorrect resolution of homopolymer length.  During 

pyrosequencing, nucleotides are repeatedly added in the fixed order over the wells and light 

intensities are recorded into flowgram (see Figure 2.3). The rounded value of each light signal is 

the length of the corresponding homopolymer. For instance, flows in Figure 2.3 would be 

interpreted as TAAAGGCCG sequence. Indeed, rounded values for the flown in the first cycle 

nucleotides T, A, C and G are 1, 3, 0, and 2, respectively. The second cycle adds only two C’s 

and one G to the sequence since light intensities for T and A are under 0.5. 

Ideally, light intensity should be proportional to the correct length of a homopolymer. 

However, signal for the same length varies and sequencing error occurs when the difference  
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Figure 2.3 Example of 454 flowgram. Nucleotides are flown in the order T, A, C, G. The light 

intensity intervals on the right are the lengths of homopolymers. The sequenced read - 

TAAAGGCCG - is shown above the flowgram. 

between signal intensity and the true value exceeds 0.5. As a consequence, most of the 

sequencing errors are over-calls (65%-75% of sequencing errors are insertions), or under-calls 

(20%-30% of errors are deletions). Furthermore, the indels may lead to incorrect read alignment, 

increasing number of substitution sequencing errors (around 5% of sequencing errors). For 

example, assume sequencing TAAACGGCG fragment produces the flowgram on Figure 2.3. 

Since C nucleotide has inadequate intensities in both cycles (too low and too high light 

intensities in the first and the second cycles, respectively), sequencing platform interprets 

flowgram as TAAAGGCCG sequence. Since mismatch is penalized less than indels during 

alignment, the substring, starting at the 5
th

 nucleotide in the read (GGCCG), is incorrectly 

aligned onto CGGCG in the reference genome, failing to recognize deletion at the 5
th
 position 

and insertion at the 8
th
 position and introducing two substitution errors.   
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In case of viral quasispecies assembling, handling sequencing errors is challenging. 

Indeed, sequencing error rate makes an infrequent allele value and a sequencing error 

indistinguishable and increases chance of considering technical error as a low-frequency viral 

variant since quasispecies sequences may differ as little as one nucleotide. Nevertheless different 

statistical methods were proposed to improve quality of base calls [1, 4, 9], more than half of the 

reads would be contaminated with at least one sequencing error with average read length of 350 

bases [58].  Different strategies were proposed to decrease number of sequencing errors such as 

removing low-quality reads, that is, reads having at least one nucleotide with quality score less 

than 10, or reads that are considerably shorter than the average, or reads that result in frameshifts 

in the translation [58].  More sophisticated approaches to error detection/correction problem 

include considering less frequent bases in multiple sequence alignment as errors [58, 61, 62]; 

removing errors based on specific graph structures such as short dead-end paths, multiple paths 

between two nodes, and paths with low multiplicity in de Bruijn graph [59]; distinguishing 

between erroneous k-mers and correct k-mers based on k-mers count profile in data and applying 

the minimum number of corrections to erroneous k-mers [10, 13, 63, 64].  

In this work, we assume that every position in each quasispecies is covered by multiple 

reads. Since it is extremely unlikely to have the same sequencing error at the same position in 

two reads produced by the same quasispecies, we can disregard information that is supported 

only by a single read. Such naïve and conservative error correction removes obvious technical 

noise without removing essential information for reconstructing low-diversity viral population 

and without introducing additional noise due to correction procedure. 
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2.4.1.3       Aligned Reads Preprocessing 

Since aligned reads may contain true insertions and deletions, sequencing errors and 

missing values, we (1) use placeholders I and D to simplify position referencing among the 

reads, (2) detect and correct obvious technical noise, and, (3) optionally, impute unidentified 

values in the reads. 

First, we substitute each deletion in the aligned reads with placeholder D and use 

placeholder I for each position in the reads with a gap corresponding to the insertion in the other 

read (see Figure 2.4 (left)). All placeholders are treated as additional allele values but they are 

 

Figure 2.4 Aligned reads preprocessing. Left: example of indels preprocessing. At the top, 

multiple reads alignment is given. At the middle, I and D placeholders are added. At the bottom, 

deletions, supported by a single read, are corrected, insertions, confirmed by a single read, are 

removed. Right: example of imputing missing value N in a read. Let i be a position with a 

missing value N. Since the read has T at the position i - 1 and has no A at the position   i + 1, A 

is imputed. 
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removed from the final assembled sequences. In our initial set of experiments on HCV dataset 

(see Section 2.7.2.1), we also used to remove all insertions from the data.  

Next we apply naïve error detection/correction procedure (see Algorithm 1) to fix 

obvious sequencing errors in the read data under assumption of multiple coverage of each 

position at every quasispecies.  

Algorithm 1 Naïve error detection/correction method. 

Input 

1.          
  is the set of aligned reads sorted in ascending order of their starting positions. 

2. ref  is an extended reference (consensus) sequence of a length L. 

                 
   is the set of corrected reads (in ascending order of their starting positions). 

 profile[L+1] stores profile for each position, including   

 how many reads, covering the position, support each allele value, placeholders and missing value 

(initially, set to 0),  

 flags that determine if position should be removed or corrected (initially, set to false),   

 and if corrected, which allele value is correct,  

 to which position map after removing erroneous insertions (initially, set to -1). 

corR ←   

for each read r in R do 

for each position i covered by r do 

update corresponding count at profile[i] based on the symbol in r at the position i  

end for 

end for 

pos ← 0 



21 
 

for each position i from 1 to L do 

             total is the number of reads covering i 

if count for I or D in profile [i] is total or total -1 then 

profile[i].toRemoveFlag ← TRUE 

continue 

end if 

if count for D in profile [i] is 1 then 

profile[i].toCorrectD  ← TRUE 

profile[i].dTo is allele value for which count is total -1,  or N. 

end if 

if there is count for some allele in profile [i] equaled to total -1 then 

profile[i].toCorSub ← TRUE 

profile[i].toCor is allele value for which count is total -1  

end if 

pos ← pos+1 

 profile[i].mapTo ← pos 

end for 

update ref  by removing all positions for which profile[] has toRemoveFlag set to TRUE 

for each read r in R do 

pos ← r.beginning_position 

while pos < L+1 AND profile[i].toRemoveFlag is TRUE do 

pos ← pos +1 

end while 

if pos is L+1 then 

continue 
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end if 

seq ← empty string 

for each position i=pos to r.endingPosition do 

if profile[i].toRemoveFlag is TRUE then 

continue 

end if 

if profile[i].toCorrectD then 

seq ← seq + profile[i].dTo 

else if profile[i].toCorSub then 

seq ← seq + profile[i].toCor 

else   seq ← seq + symbol in r at the position i 

end if    

end for 

corR ←corR U {read with sequence seq, starting at position profile[pos].mapTo} 

end for  

return corR, ref 

Each deletion, supported by a single read, is replaced either with the allele value, which is 

present in all other reads, overlapping this position, or with N, signifying an unknown value, 

otherwise. All insertions, supported by a single read, are removed from further consideration. 

Finally, each allele value, supported by a single read, is replaced by the allele value, on which all 

other reads, covering this position, agree, or is left, if several allele values are introduced at the 

position by the reads.  For example (see Figure 2.4 (left)), since there is no agreement on allele 

value at the third position, deletion in the Read1 is replaced with N whereas deletion in Read2 

should be replaced by G. Obviously, insertion in the Read3 is a sequencing error whereas one-

base insertion in the Read2 may be a true insertion, thus, should be kept for further analysis.   
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In general, the runtime of Algorithm 1 is                  where    is average read 

length in the data, and L is the length of extended reference (consensus) sequence. In practice, 

runtime of Algorithm 1 can be bounded by               due to much smaller size of viral 

genomes in comparison of 454 GS FLX throughput.  

The experiments on HCV dataset show that even such conservative error correction of 

indels significantly improves the quality of assembled sequences, decreasing number of 

candidate sequences with stop codons in the coding region of the corresponding amino-acid 

sequences. Although the last step of the method – correction of substitution errors - can be 

skipped since ViSpA effectively correct most of substitution errors during assembling of 

candidate sequences. Additionally, Algorithm 1 neither introduces any additional noise due to 

incorrect error resolution nor reduces underlying diversity of the data, allowing ViSpA to 

correctly infer more viral quasispecies sequences from 454 pyrosequencing shotgun reads 

generated from low-diversity viral population than from the same reads, being corrected by 

ShoRAH, for example. If data are too noisy, one can run ViSpA after detecting and correcting 

technical errors by available software (see Section 2.4.1.2). 

At the final step, we either impute unidentified missing values or treat N as a special 

allele value that matches to any of nucleotides A, C, T, G or placeholders I and D. 

Our imputation method is based on the notion that allelic values at neighboring positions 

are usually highly correlated. Tagging methods (for more details, see Section 3) statistically 

measures the correlation between position of the interest and any of its neighbors to identify 

those that can either cover genetic variation at the current position, or allow to infer (predict) 

possible missing value based on the underlying genotype/haplotype data. The correlation of at 
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least 80% is expected for reliable inference. Hence, our imputing method can find highly 

(statistically) correlated neighbors (so called tags) for each position where missing value occurs 

and then predict it as an allele value which is either present in the most associated tag, or 

followed by a majority rule on all associated tags. For instance (see Figure 2.4 (right)), let i be a 

position with a missing value N in a given read. Based on available data, T at the position i - 1 

80% of times predicts A at the i
th

 position whereas A at the position i + 1 80% of times predicts C 

at the position i. Since our read has T at i+1 position and has no A at i+1 position, N is replaced 

with A as the allele value which is present in the most associated tag. 

In contrast to genome-wide disease association studies, calculation of correlation is not 

straightforward in the case of viral quasispecies sequences. Indeed, correlation calculation 

assumes at most two different allele values at a particular position; however, all four allele values 

can be found in a position across viral quasispecies sequences. In the later case, we suggest to 

measure correlation between two positions as ability of specific allele value in one position to 

infer particular allele value in the other with considerably high (for example, more than 80%) 

confidence. In the other words, for each pair of positions i and j, we consider all 16 haplotypes of 

the length 2 (placeholders I and D are not considered).  Let XiYj be one of these haplotypes with 

Xi and Yj being an allele values in the positions i and j, respectively (               ). Then 

SNPs at the positions i and j are binary coded as follows: 

    
   

          -            

             -            
                                                          (2.1) 

where              is any allele value in the positions i and j and    
     and        are two 

indicator functions. For instance, haplotype XiYj is AC then all A's at the position i and all C's at 
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the position j are coded as 1's and all other values at both positions are coded as 0's. Then 

correlation is calculated by the standard formula for two binary vectors (see Section 3).  

Allele Xi in a position i and allele Yj in a position j are called a tag box for the position j 

if the correlation between corresponding binary vectors are greater than 0.8. In general, existence 

of Xi Yj tag box for the position j does not imply existence of Yj Xi  tag box for the position i.  

Formally, our imputation method addresses two problems. 

Informative Tag Box Selection (ITS) Problem: given a sample of a population S of n 

haplotypes, each consisting of m alleles, and index i, i≤ m, find tag boxes for position i. 

Tagging Based Prediction (TBP) Problem: given a sample of a population S of n 

haplotypes, each consisting of m alleles, a haplotype h with unknown value at the position i, i ≤ 

m, and a set of tag boxes for i
th
 position, predict allele value at the position i of the haplotype h. 

Algorithm 2 Imputation of missing values N. 

Input 

1. R is the set of reads without N’s sorted in ascending order of their starting positions. 

2. I is the sorted set of positions at which at least one read has N. 

3.    is the set of reads with at least one N sorted in ascending order of their starting positions. 

 S[|I|] stores list of tag boxes per each position in I 

for each position i in I do 

get reads from R U    covering entire window w (by default, width of window is set to 31) 

for position k in window w do 

if k! = i then 

for each haplotype XkYi in {AA, AC, AT, AG . . . GG} do 
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 binary code positions k and i by the formula (2.1) 

if rXkYi ≥0.8 then 

add to the list of tag boxes S[i], tag box: ( k, XkYi, cor= rXkYi) 

end if 

end for 

end if 

end for 

end for 

for each position i in I do 

Ri    is the set of reads  that have N at position i 

cur[|Ri|] stores a tag box per each readk in Ri  

for each tag box T: ( j,  XjYi, cor=rXjYi ) in  S[i] do 

for each read readk in Ri do 

if readk has Xj at position j AND (cur[readk] is NULL OR T.cor >cur[readk].cor) 

then  cur[readk] ←  T 

end if 

end for 

end for 

for each read readk in Ri do 

Replace N in the readk with Xj value in cur[readk] 

if readk has no N then 

R ← R U { readk } 

Remove readk from RI 

end if 

end for 
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end for 

return R 

In the general case, ITS problem requires to traverse           tag boxes for n 

positions. Since correlation is typically decreasing with larger distance between positions, we 

solve ITS problem locally, in narrow window, for example, of width 31 bases. Then the worst-

case runtime for ITS problem is                             where |I| is the number of 

positions at which at least one read has missing value N, and w is a width of the used window. 

The worst-case runtime for TBP problem is            Thus, worst-case runtime for 

Algorithm 2 can be bound by                           since |I| cannot exceed number 

of N’s in the data. The algorithm takes approximately 10 minutes to impute around 4,000 

missing values on ~27,800 reads from HCV dataset (data description is available in the Section 

2.6.2). 

2.4.1.4       Read Graph 

We begin with the definition of the read graph, introduced in [54] and independently in 

[22], and describe the adjustments in read graph construction and edge weights to account for 

sequencing errors as well as the high mutation rate between quasispecies. 

A read graph G = (V, E) is a directed graph with vertices corresponding to reads aligned 

onto the consensus sequence. For a read u, we denote by b(u), respectively e(u), the genomic 

coordinate at which the first, respectively the last, base of u gets aligned. A directed edge (u, v) 

connects read u to read v if suffix of u overlaps with prefix of v and they coincide across the 

overlap. Two auxiliary vertices - source s and sink t - are added such that s has edges to all reads 

with zero in-degree and t has edges from all reads with zero out-degree. Then each s → t-path 
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corresponds to a possible candidate quasispecies sequence. The read graph is transitively 

reduced, i.e., each edge e = (u, v) is removed if there is a u → v-path without edge e. Note that 

certain reads can be completely contained inside other reads. Let a superread refer to a read that 

is not contained in any other read and let the rest of the reads be called subreads. Subreads are 

not used during graph construction, so any two different s → t-paths represent to two different 

candidate sequences. 

To account for sequencing errors, we adjust the construction of the read graph to allow 

for mismatches. We use three parameters: (1) n = #mismatches allowed between a subread and a 

superread, (2) m = #mismatches allowed in the overlap between two consecutive reads, and (3)   

t = #mismatches expected between a read and a random quasispecies.  

First, we use Algorithm 3 to find all superreads that are not contained in any other read if 

more than n differences are required to distinguish two sequences (see Figure 2.5).  

Algorithm 3 Finding superreads. 

Input 

1. R is the set of reads sorted in ascending order of their starting positions. 

2. n is the number of mismatches allowed between a subread and a superread. 

 S is the set of superreads sorted in ascending order of their ending positions. 

S ←   

for each read r in R do 

toAdd  ← TRUE 

for j=|S| to 1 do 

if the rightmost end of the superread  sj  is to the left of the rightmost end of read r then 
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break 

end if 

if r contains sj with no more than n differences then 

S ← S - { sj } 

end if 

if sj  contains r  with no more than n differences then 

toAdd ← FALSE 

end if 

end for 

if toAdd  is TRUE then 

S ← S U { r } 

end if 

end for 

return S 

During graph construction, we use only superreads, but, in contract to [22, 54], subreads 

are taken into account in the final assembly of candidate sequences and frequency estimation. 

Varying parameter n yields different levels of population diversity captured by a read graph since 

larger n allows to “cluster” not only reads produced from the same quasispecies sequences and 

being different just due to sequencing errors but also reads sequenced from several (negligibly) 

different quasispecies sequences. Thus, smaller n increases chances to find infrequent but 

medically relevant quasispecies sequences. Oh the other hand, too small n results in low 

connectivity in the read graph.  In our experiments, we varied n over range from 0 to 6.   

The worst-case runtime for Algorithm 3 is                          , where |R| is 

the number of reads, and    is the average read length. 
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Figure 2.5 Example of superreads (underlined by bold lines) and subreads (underlined by 

dashed lines) (n = 2). A superread and its subreads are underlined by the line of the same color. 

If a subread has a mismatch with its superread, the mismatch is colored in red.  

At the second step (see Algorithm 4), we add a directed edge between every pair of 

vertices if their corresponding reads partially (with at most m mismatches) agree in their overlap 

(see Figure 2.6). Parameter m influences the connectivity of the graph: the larger value is used, 

the more paths from sink to source exist in the read graph. Since we allow at most n mismatches 

between read and its superread, it is reasonable to accept up to n mismatches in overlap between 

consecutive superreads (lower bound) and up to 2n - 3n mismatches between their subreads. 

In the worst case, Algorithm 4 is                                   that would not 

exceed                          , where |S| and |R| respectively is the number of 
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superreads and reads,     and    are the average length of superreads and all reads, respectively. In 

practice, the larger n is, the lesser superreads are, resulting in lesser superreads coverage.  

Algorithm 4 Creating edges. 

Input 

1. S is the set of sorted superreads. 

2. m is the number of mismatches allowed in the overlap between two consecutive reads. 

 E is the set of edges in the graph G. 

E ←   

for each i=1  to |S|-1 do 

for each j=i+1  to |S| do 

if e(si) ≤ b(sj) then 

break 

end if 

if si overlaps with sj with no more than m mismatches then 

E ← E U { (si, sj) } 

end if 

end for 

end for 

return E 

Following [55], we apply transitive reduction to our read graph (see Figure 2.6 (bottom)). 

In case no mismatches are allowed (n=0, m=0), read graph before transitive reduction is 

equivalent to transitively-reduced read graph since if there are edges (u, v) and (v, w) in the graph 

and reads u and w overlap then the edge (u, w) is implied (see Figure 2.7 (left)). In our case, edge 

(u, w), strictly saying, does not follow from the overlap of reads u and w since it may be up  



32 
 

Figure 2.6 Adding edges to a read graph. Top: to illustrate differences between superreads in 

overlap, we highlight those positions where several allelic values across reads are seen. For 

example, R1 and R4 have 2 differences in the overlap. For simplicity of presentation, differences 

are marked across reads R1-R13 and R17-R28, separately. For each allelic value, we use 

different color: red (G), dark blue (A), green (C), blue (T), pink (N) and purple (D). Bottom: 

read graph for n=2, m=2 before transitive reduction (at the left) and transitively-reduced read 

graph (at the right).  
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to 2m mismatches between their sequences in the overlap, so edge (u, w) does not exist if only m 

mismatches are allowed. Thus, transitive reduction introduces some fake sequences in the 

haplotype search space (see Figure 2.7 (right)). These sequences might contain both reads u and 

w whereas, in reality, the reads come from different quasispecies sequences. Estimating their 

abundances via EM-based algorithm (see Section 2.4.2) successfully eliminates such sequences 

out the final list of candidate assemblies. In contrast to the case without mismatches, haplotype 

sequence may be represented by several s → t-paths. 

Figure 2.7 Transitive reduction in the read graph. Left: if no mismatches is allowed (n=0,       

m=0) and edges (u, v) and (v, w) exist, then the edge (u, w) should exist if u and w overlap. 

However, if mismatches are allowed (n>0, m>0), the edge (u, w) cannot be implied. Right: if 

mismatches are allowed (n>0, m>0), transitive reduction introduces false positives in search 

space. For example, if there is an overlap between vertices 5 and 13, any path with subpath 

5→9→13 represents incorrect sequence. The correct subpath is 5→9→12. 

ViSpA uses Algorithm 3 [55] to perform transitive reduction. Although the algorithm 

efficiently performs transitive reduction, it is one of the most time-consuming parts of ViSpA: 

the worst-case runtime is bounded by         (see Appendix B). 
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Since the number of different s→t-paths is exponential, we wish to generate a set of paths 

that have high probability to correspond to real quasispecies sequences. In order to estimate path 

probabilities, we independently estimate for each edge e the probability p(e) that it connects two 

reads from the same quasispecies, and then multiply estimated probabilities for all edges on the 

path. Under the assumption of independence between edges, if we assign to each edge e a cost 

equal to                
 

    
 , then the minimum-cost s →t-path will have the maximum 

probability to represent a quasispecies sequence.  

Previously [54], we estimated the probability that two reads u and v, connected by the 

edge (u, v), belong to the same quasispecies as  

       
  

  
                                                              (2.2) 

where             is the overhang (shift) between reads u and v, N is the number of reads, q 

is the number of quasispecies in a viral population and L is the number of starting positions.  

Thus, in this case the cost of an edge with overhang   can be approximated by              

 To account for sequencing errors, we re-estimate the cost of an edge as follows. First, we 

consider a simple model of uniformly distributed quasispecies. After a quasispecies sequence Q 

is randomly chosen, a beginning position is generated from the uniform distribution and read r is 

produced from quasispecies Q with j sequencing errors. Let A be an event that two reads u, v 

from the same quasispecies Q are connected with an edge (u, v) in the transitively reduced graph, 

and j mismatches between u and v occur in the overlap due to the sequencing errors. In the other 

words, the event A consists of the following independent events: (1) read u exists, starting at the 

position b(u), (2) read v exists, starting at the position             , (3) no read w from the 
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same quasispecies q satisfies b(u) < b(w) < b(v), and (4) there are j sequencing errors in the 

overlap o=          of reads u, v. Given N reads, originated from q quasispecies of a length 

L, the probability that the read u starts at a position b(u) is 
 

  
. The probability of the event     

is the probability that there is no read from quasispecies Q, starting at any position in         

                , that is 

      
 

  
 
 

     
   

  
   

Then  

         
 

  
 
 

      

Next we calculate probability of having j sequencing errors in overlap o, which is 

       
 

 
             

where   is sequencing error rate. Finally, the probability of event A is a product of probabilities 

        and        or 

       
 

  
 
 

    
   

  
  

 

 
                    

 

 
             

As in the case of error-free reads, defining the edge costs as 

        
 
 
  

                                                                     (2.3) 

ensures that s→t-paths with low cost correspond to most likely quasispecies sequences. 
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In practice, reads starting positions indeed tend to follow uniform distribution with small 

amount of outliers. However, if it is not a case for a particular shotgun data, cost formula (2.3) 

can be adjusted by taking into account the number of reads, starting at any position in 

                           . Since ViSpA constructed assembly by building a path in 

the graph when, at each step, tool chooses among edges, spanning almost the same positions, 

such adjustment is non essential for ViSpA assembling.  

The assumption of uniformly distributed quasispecies is most likely violated by real viral 

populations. Since there is no reliable way to approximate their unknown distribution, we will 

treat all identical copies of the same quasispecies sequence as different entities during 

assembling and estimate their frequencies via maximum likelihood.   

Experimental results on 454 pyrosequencing shotgun reads from HCV quasispecies show 

that if we do not take sequencing errors into the account, that is, cost of edges is defined by (2.2), 

ViSpA’s final assemblies correspond to non viable proteins, with many stop codons in the 

coding region. However, if cost is defined by formula (2.3), stop codons are disappeared in 

almost all cases. 

In graph with E edges, cost can be assigned in        , where    is the length of the 

average overlap of the reads among all edges in E. 

2.4.1.5       Candidate Sequences 

Ideally, one can find candidate sequences corresponding to all s→t-paths and then 

estimate their frequencies using maximum likelihood. Unfortunately, the number of such paths is 

exponential in the number of superreads. So we compute for each vertex in the read graph the 
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minimum cost s→t-path, passing through it, to generate a set of high-probability (low-cost) paths 

that is rich enough to explain observed reads. Finding these paths is computationally fast. Indeed, we 

only need to compute in read graph G two shortest-path trees, one that is outgoing from source s and the 

other that is incoming into sink t; and the shortest s→t-path, passing through vertex v, is the 

concatenation of the shortest s→v- and v→t-paths.  

Preliminary simulation experiments show that better candidate sets are generated when 

edge costs c defined by (2.3) is replaced by   . In fact, if we use even faster dependency on c, we 

obtain better candidate sets. The fastest growing cost effectively changes the shortest path into so 

called max-bandwidth paths, i.e., paths that minimize maximum edge cost for the entire path 

and for each subpath. So, ViSpA generates max-bandwidth path per each vertex. As shown in 

literature [65], Dijskstra’s algorithm solves the single-source max-bandwidth-paths problem if 

we (1) initialize key    for the source of a tree to inifinity, (2) set keys   for all other vertices 

into 0, and, (3) at each step, relax those edges that satisfy the condition                      

Thus, it takes order of            running time to obtain set of candidate paths. 

When no mismatches are allowed in the construction of the read graph, finding the 

candidate sequence corresponding to a s→t-path is trivial since, by definition, adjacent 

superreads coincide across their overlap. When mismatches are allowed, we first assemble a 

consensus sequence from superreads used by the s→t-path (see Algorithm 5). At each position, 

the initial candidate sequence has either allele value or placeholder (A, C, T, G, D, I), which is 

present in more than 70% of path’ superreads, covering the position, or N, otherwise. Since 

several candidate paths can result in the same initial candidate sequence, we remove duplicates; 

but in this case, N matches only N. It could be not the best choice, especially, when the coverage 
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with superreads is low
1
. Hence, we replace each initial candidate sequence with a weighted 

consensus sequence obtained on both superreads and subreads, as described below. 

For each read r, we compute the probability that it belongs to a particular initial sequence 

s as: 

         
 
    

 

 
 
   

 
 

 
 
 

                                                                     (2.4) 

where l and L denote the lengths of the read r and initial candidate sequence s, respectively, k is 

the number of mismatches between the read r and the initial candidate sequence s, and 
 

 
  is the 

expected mutation rate in a viral population. Then final candidate sequence is computed as the 

weighted consensus over all reads, where the read weight is its probability to belong to the 

sequence if quasispecies sequences mutate with rate  
 

 
 . Note that, unlike the case without 

mismatches, the same candidate sequence can be obtained from different candidate s→t-paths so 

we remove duplicates, at the end of the step. The repetition of the same candidate sequence 

serves as evidence that this sequence is from viral population rather than assembled by chance.  

Algorithm 5 Assembling final candidate sequences from the set of candidate paths. 

Input 

1. S is the set of sorted superreads. 

2. R is the set of sorted subreads. 

3. P is the set of candidate paths 

4. t/L is the expected mutation rate in a viral population. 

 I is the set of initial candidate sequences  

                                                             
1
 High coverage of the consensus does not imply high coverage of certain quasispecies sequences. 
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 C is the set of final candidate sequences  

 profile[L+1] stores counts for each position: 

 how many reads (superreads), covering the position, support A, C, T, G, D, I, N. 

C ←   

for each path p in P do 

             set to 0 all counts in profile[] for all positions 

seq ← empty string 

for each superread r in path p do 

update appropriate counts at profile[] for each position covered by  r  

end for 

for position i=1  to L do 

max←maximum count among counts for A, C, T, G, D, I, N  in profile[i]       

allele←allele or placeholder for which  count  is equaled to max in profile[i]       

total ←sum of all counts in profile[i]      

if max/total<0.7 then 

seg←seg+N 

else  

seg←seg+allele 

 end if 

end for 

if seq is not in I then 

I←I U{seq} 

end if 

end for 

for each sequence s in I do 
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             set to 0 all counts in profile[] for all positions 

seq ← empty string 

for each read r in R U S do 

calculate p(s, r) by formula (2.4) 

for each position covered by  r, update appropriate counts at profile[]  by adding  p(s,r) 

end for 

for position i=1  to L do 

allele←allele or placeholder for which  count  is maximal in profile[i]       

                           seg←seg+allele 

end for 

if seq is not in C then 

C←C U{seq} 

end if 

end for 

return C 

In the worst case, Algorithm 5 is                                                

which cannot exceed                    where |S| and |    | respectively is the number of 

superreads and reads,     and    are the average length of superreads and all reads, respectively, 

cnts is some constant, and     is the number of paths in the candidate set and can be as high as 

number of superreads if connectivity is low in the graph. Obviously, assembling final candidate 

sequenced from candidate paths is a computational bottleneck for ViSpA (see Appendix B). 

Large number of candidate sequences or low diversity among them may result in less 

accurate estimate of their frequencies. Optionally, we can reduce amount of candidate sequences 

by clustering and replacing them with the set of consensuses obtained in each cluster. Although 
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clustering lowers chances to find rare sequences, it may be useful, for example, if viral sample 

contains several populations from different patients, and we would like to partition assembled 

quasispecies among them. If the clustering option is used on viral population from one patient, 

we first estimate minimum number h of quasispecies sequences, required to explain the observed 

reads, by network flow approach [54, 55] and then cluster all candidate sequences into h clusters 

based on the Hamming distance. 

2.4.2       Frequency Estimation for Quasispecies Sequences 

Once a set of candidate sequences is obtained, their maximum-likelihood frequencies are 

calculated by EM-based algorithm. 

First, we assume that reads R with observed frequencies        
   

  where generated from a 

quasispecies population    as follows. First, a quasispecies sequence     is randomly chosen 

accordingly to its unknown frequency   . A read starting position is generated from the uniform 

distribution and then a read r is produced from quasispecies    with j sequencing errors. The 

probability of this event is calculated as  

      
 

 
             

where l is the read length, and ε is the sequencing error rate. Thus, the probability of observing a 

read r under this model is             
      Then quasispecies frequencies        

   
 are 

estimated by maximizing the log-likelihood function: 
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using an EM algorithm [66].  

After initializing frequencies        
 at random, the algorithm repeatedly performs the 

next two steps until convergence: 

 E-step: For each pair q, r, compute the expected value pq, r that read r comes from 

candidate sequence q under the assumption that frequencies         are correct by the 

following formula: 

     
       

                     

. 

 M-step: For each    , update value of fq to the portion of reads being 

originated by the candidate sequence q among all observed reads in the sample, that is: 

   
                 

      
  

Currently convergence of EM algorithm is determined at the tolerance level 0.005. 

2.5       Validation 

The validation of our method consists of assembling validation and validation of 

maximum likelihood frequencies obtained by EM algorithm. 

 

2.5.1       Quasispecies Assembling Validation 

Validation of assemblies obtained on the synthetic reads (see 2.6.1) is straightforward 

since original quasispecies sequences are available. We say that the quasispecies sequence is 

captured if one of the candidate sequences exactly matches it. If we compare sequences of 

negligibly different lengths, we trim longer sequence to the shorter length before comparison. 

The quality of assembling is measured by portion of the real quasispecies sequences being 
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captured by candidate sequences, or sensitivity = TP/(TP+FN),  and its portion among candidate 

sequences in cross-validation tests, that is, positive predictive value PPV = TP/(TP+FP). 

Clearly, we cannot use the same validation for quasispecies assembled on 454 

pyrosequencing shotgun reads (see 2.6.2). In this case, the best validation is a biological 

confirmation in lab experiments. Due to the cost of lab experiments, it may not be a viable 

solution. Hence, we suggest internal validation via bootstrapping tests to measure reproducibility 

of the top ten most frequent quasispecies. 

In bootstrapping test, a subsample of the original data (sample) is analyzed. Each 

subsample is created by randomly choosing reads from the original sample. Since reads are 

chosen number of times, equaled to the size of the original sample, and repetitions are allowed, a 

number of distinct reads in the subsample is 2/3 of the reads in the sample.  

On each subsample, we run ViSpA and find the best unique match between top ten most 

frequent candidate sequences assembled on the sample and top ten most frequent assemblies 

obtained on the current subsample. Both sets of sequences are sorted in decreasing order of their 

EM frequencies and traversed, starting from the most frequent assemblies. Then for each 

assemblies produced on the sample, we find the closest unmatched candidate sequence on the 

subsample. Two distinct candidate sequences assembled on the sample would not match the 

same assemblies obtained on the subsample. The higher EM frequency is associated with the 

candidate sequences, the closer sequence would be matched to it.  For each found match, we 

report the number of mismatches between the sequences. 

After sufficient number of bootstrapping tests, we record reproducibility of each out of 

top assemblies obtained on the sample by counting percentage of bootstrapping runs when there 

is a match(exact or with at most k mismatches) among 10 most frequent sequenced found on 
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reduced data. Higher percentage corresponds to the more robust (reproducible) assembled 

sequence. Reproducibility serves as a confidence that it is viral quasispecies sequence from 

population rather than sequence assembled by chance. 

Since removing of 1/3 of reads can significantly reduce underlying genomic diversity, we 

mostly run tests on 10%-reduced data sets. 

 

2.5.2        Validation of Frequency Distribution 

Following [22], we measure the prediction quality of frequency distribution with 

Kullback-Leibler divergence, or relative entropy in the case of the simulated data. If two 

probability distributions are given then relative entropy measures the "distance" between them, 

or, in the other words, the quality of approximation of one probability distribution by the other 

distribution. Formally, the relative entropy between true distribution P and approximation 

distribution Q is given by the formula: 

                  
    

    
 

   

 

where summation is over all reconstructed original sequences                      that is, 

over all original sequences that have a match (exact or with at most k mismatches) among 

assembled sequences. 

 

2.6       Data Sets 

2.6.1       Reads Simulated from Known HCV Quasispecies 

In order to perform cross-validation tests on the assembly method, we simulate reads data 

from 1,739-bp long fragment of E1E2 region of 44 HCV sequences [26] with sequence 

frequencies followed particular distribution. In our simulation experiments, we use uniform 

distribution, geometric distribution (when i
th

 sequence is constant factor more frequent than the 
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(i+1)
st 

sequence), and skewed distribution (when one sequence has very high frequency whereas 

the others follow a uniform distribution). For each of the distributions, we create sample 

quasispecies populations with different number of randomly selected above-mentioned 

quasispecies sequences. 

We first simulate error-free reads, e.g., reads without indels with respect to the reference 

sequence and without sequencing errors. The length of a read follows normal distribution with a 

particular mean value and variance 400 and a starting position follows the uniform distribution. 

This simplified model of reads generation has two parameters: number of the reads that varies 

from 20,000 up to 100,000, and the average read length that varies from 200 bases up to 600 

bases. 

In the second set of experiments, we simulate 454 pyrosequencing shotgun reads for 10 

random quasispecies sequences (under geometric distribution) out of 44 HCV sequences [26] 

using FlowSim [6]. We generated 39,131 reads with length varying from 50 bases up to 550 

bases and average read length equaled to 322 bases (see Figure 2.8 (left)). Each position (except  

Figure 2.8 Length histogram and position coverage for reads generated by FlowSim. Left: 

number of aligned reads with given length. Right: number of aligned reads covering extended 

reference positions. Each position is covered by at least 4000 reads, except the position at the 

very end. 
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the end) is covered by at least 4000 reads (see Figure 2.8 (right)). 

Additional Read Statistics: 99.96% of aligned reads has at least one indel with respect to 

the reference; 99.97% of deletions and 99.6% of insertions are 1bp-long. Only 1.1% of the 

aligned reads has unknown value(s). 

 

2.6.2       454 Pyrosequencing Reads from HCV Sample 

The data set Data1 has been received from Peter Balfe, HCV Research Group in Institute 

of Biomedical Research at University of Birmingham. Data1 contains 30,927 reads obtained 

from the 5.2kb-long fragment of HCV-1a strain (which is more than a half of the entire HCV 

genome). The host is an intravenous drug user being infected for less than 3 months, so the 

expected mutation rate is between 1.75% and 8%. 27,764 reads were aligned versus reference by 

SEGEMEHL software [49]. 

The aligned read length average is 292 bases but it significantly varies (see Figure 2.9) as  

Figure 2.9 Number of aligned reads with given length (HCV data). There is a single read 

1050bp long, major peak at 450bp long and 50bp long. 
 

 

well as the depth of position coverage (see Figure 2.10). The depth of reads coverage variability 

is due to a strong bias in the sequence start points, reflecting the secondary structure of the 
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template DNA or RNA used to generate the initial PCR products. As a result, shorter reads are 

produced by GC-rich sequences. 

Figure 2.10 Number of aligned reads covering extended reference positions (HCV data). 

The global minimum is 800th nucleotide covered by 310 reads. 
 
 

Additional Read Statistics. 72% of the aligned reads has at least one deletion with respect 

to the reference: 98% of deletions are 1 base long, 1.5% has length 2, and the rest 0.5% has 

length 3. 77% of the aligned reads has at least one insertion: 86% of insertions have length 

equaled to 1, and 9.8% have length equaled to 3. Only 7% of aligned reads has at least one 

unknown value. We estimate that the insertion error rate is at least 0.025% under assumption that 

only once encountered insertions is caused by sequencing errors.  

 

2.6.3       454 Pyrosequencing Reads from HIV Sample [58] 

The HIV dataset contains 63,019 reads from mixture of 10 different 1.5kb-long region of 

HIV-1 clonal fragments, including pol protease and part of the pol reverse transcriptase. 55,611 

reads were aligned versus HXB2 reference [2] by SEGEMEHL [49]. The aligned reads length 

varies from 35 bases up to 584 bases with average read length 345 bases (see Figure 2.11). In 

contrast to [58], we do not filter out low-quality reads, that is, reads with a phred score below 10 

at least at one sequenced position. 
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Figure 2.11 Length histogram and position coverage for HIV data. Left: number of aligned 

reads with given length. There is a major peak around 400bp long. Right: number of aligned 

reads covering extended reference positions. Each position is covered by at least 8000 reads, 

except positions at the very beginning and at the very end. 
 
 

Additional Read Statistics. 87% of the aligned reads has at least one deletion with respect 

to the reference: 99.97% of deletions are 1bp long. 99% of aligned reads has at least one 

insertion: 85% of insertions have length equaled to 1, 10% have length equaled to 2, and 3.5% 

have length equaled to 3. 11.6% of the aligned reads has at least one unknown value. 

 

2.7       Experimental Validation 

Below we discuss results of experiments on the simulated and real pyrosequencing 

shotgun reads. 

 

2.7.1       Simulated Data 

In our experimental validations, we compare the proposed algorithm ViSpA with the 

state-of-the-art ShoRAH [57] as well as with ViSpA on ShoRAH-corrected reads 

(ShoRAHreads+ViSpA). 

On the error-free reads, ViSpA
2
 significantly outperforms ShoRAH. Both sensitivity and 

PPV are analyzed as functions of the number of quasispecies in underlying sample population  

                                                             
2
 All experimental results for ViSpA on error-free reads are available in appendix C. 
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Figure 2.12 Left: PPV and sensitivity as a function of the number of quasispecies in the original 

population (40K reads with average read length 300, geometric distribution). Right: PPV and 

sensitivity as a function of the number of reads (10 quasispecies under geometric distribution, 

average read length is 300bp). 
 

Figure 2.13 Left: PPV and sensitivity as a function of the read average length (60K reads, 10 

quasispecies under geometric distribution). Right: the relative entropy as a function of the 

average read length (40K reads from 10 quasispecies). 
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(see Figure 2.12 (left)), as functions of the number of generated reads (see Figure 2.12 (right)) 

and as functions of average read length (see Figure 2.13 (left)). ViSpA can correctly assemble all 

sequences for 10 quasispecies if average read length is at least 300 bases and 26 sequences out of 

40 quasispecies if average read length is at least 400 bases. If the average read length is smaller 

(for example, in range from 250bp till 299bp), the method can assemble at least 8 out of 10 

sequences and 20 out of 40 sequences. ShoRAH assembles 5-6 sequences out of 10 and at most 1 

out of 20 sequences. Moreover, ViSpA gains prediction power if number of reads increases 

whereas there is no obvious tendency for ShoRAH. 

In case of ViSpA, relative entropy is decreasing with increasing of the average read 

length (see Figure 2.13 (right)). It is expected since sensitivity is increasing with increasing of 

the average read length (see Figure 2.13 (left)) and EM gives closer approximation of underlying 

distribution. Significantly poorer performance of ShoRAH on error-free reads can mean that 

ShoRAH error correction algorithm is prone to overcorrection. 

However, ShoRAH has a significant advantage over ViSpA on a read data simulated by 

FlowSim both in prediction power and in robustness of results
3
 (see Table 2.1). Indeed, ShoRAH 

correctly infers 3 out of 10 real quasispecies sequences whereas ViSpA reconstructs only 1 

sequence. Additionally, 10 most frequent assemblies inferred by ShoRAH are more robust with 

repeating up to 45% of times on 10%-reduced data versus 1% of times for ViSpA's assemblies. 

This advantage can be explained by superior read correction in ShoRAH. If ViSpA is used on 

ShoRAH-corrected reads, the results drastically improve: 5 quasispecies sequences are inferred 

and exactly 95% of times are repeated on reduced data (see Table 2.1), confirming that ViSpA is 

better in assembling sequences. 

                                                             
3 All experimental results for ViSpA, ShoRAH and ViSpA on ShoRAH-corrected data on FlowSim 

generated reads are available in appendix D. 
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Table 2.1 Comparison of three methods - ViSpA, ShoRAH, and ShoRAHreads+ViSpA - on the 

read data simulated by FlowSim. The quasispecies sequence is considered found if one of 

candidate sequences matches it exactly (k = 0) or with at most k (1 or 9) mismatches. All 

methods were run 100 times on 10% -reduced data. For the i-th (i=1,…,10) most frequent 

sequence assembled on the whole data, we record its reproducibility, i.e., percentage of runs 

where there is a match (exact or with at most k mismatches) among 10 most frequent sequences  

found on reduced data. “Reproducibility: Max” and “Reproducibility: Average” respectively 

report maximum and average of those percentages. 

 
 

2.7.2       Analysis of HCV data 

Below we analyze results of the viral quasispecies spectrum reconstruction from Data1. 

We first discuss the choice of parameters of the read graph and candidate sequence assembly 

from s → t-paths. Then we give statistical validation for obtained 10 most frequent quasispecies 

sequences. Finally, we show how to identify and fix the erroneous homopolymer indels in the 

coding region of HCV. 

 

2.7.2.1       Analysis of the Aligned Reads without Insertions 

Initially, we remove all insertions from the aligned reads and infer quasispecies spectrum 

based on the read graphs constructed with various numbers n and m (numbers of mismatches 

allowed for superreads and overlaps corresponding to edges). We sort the estimated frequencies 

in descending order and count the number of sequences which cumulative frequency is 85%, 

90%, and 95%. Figure 2.14 reports these numbers as a percent of the total number of candidate 
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Figure 2.14 Percentage of candidate sequences which cumulative frequencies are 85%, 90%, 

and 95%. The values on x-axis correspond to the number of allowed mismatches during read 

graph construction. n_m means that up to n mismatches are allowed in superreads and up to m 

mismatches are allowed in edges.   
 

sequences. There is an obvious drop in percentage for all three categories if we allow up to n = 6 

mismatches to cluster reads and up to m = 15 mismatches to create edges. In this case, the 

constructed read graph has no isolated vertices. 

Out of 940 candidate max-bandwidth paths per-vertex, there are only 156 initial 

candidate sequences, that is, sequences inferred based on superreads information. On average, 

the initial candidate sequences have up to 2.5% of missing values if missing values were imputed 

during preprocessing step or up to 2.8% of missing values if tagging method was not used. Since 

genotyping error is 0.1%, we do not distinguish sequences within 6 mismatches. Then there are 

only 58 candidate sequences. 

Based on the data, we tried to estimate the 454 sequencing error. First, we counted the 

number ierror of insertions that are confirmed only by a single read out of all reads covering the 

position. Then optimistic estimation of the insertion error rate is ierror/npos= 0.000253 where npos 
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is the number of reads, covering this position. Being on the pessimistic side, we assume that if at 

most 6 insertions are among all reads, covering the position, are counted then this estimation is 

0.001203. We use either pessimistic estimate or reported Roche/454 sequencing error in our EM-

based algorithm as value for ε (see Section 2.4.2). 

After estimating EM frequencies, we got 12 candidate sequences with frequencies at least 

0.01. The most frequent candidate sequence exactly covers 26.9% of the aligned reads and 

50.4% of the reads if one mismatch is allowed. In sum, these 12 candidate sequences exactly 

cover around 35.6% of the aligned reads and 64.5% of the reads with one mismatch. The 

neighbor-joining tree of these 12 candidate sequences (see Figure 2.15) reminds a neighbor-

joining tree for HCV quasispecies evolution. Additionally, the most frequent candidate sequence 

is 99% identical to one of the  

Figure 2.15 The neighbor-joining phylogenetic tree for 12 most frequent HCV quasispecies 

variants on a 5,205bp-long fragment. Each variant is supplied with the estimated frequency. 
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actual ORFs obtained by cloning the quasispecies. Finally, the corresponding amino-acid 

sequences contain starting coding sequence MSTNP and no stop codons in any of the 

assemblies.  

Next we explore if the choice of values for n and m impacts assembly. Since sequencing 

error rate is 0.1%, it is reasonable to allow one mismatch to cluster reads and, as a result, two 

mismatches in overlap. We find 12 most frequent assembled candidate sequences and calculate 

the Hamming distance between each of 12 obtained candidate sequences and each of 12 

candidate sequences obtained in the previous assembling (see Figure 2.16). The comparison 

shows that 11 most frequent candidate sequences in both cases are the same. We repeat such 

comparison for different values n and m (1 ≤ n ≤ 6, and 2 ≤ m ≤ 15). In each case, 10-11 most 

frequent candidate sequences are the same among runs. 

Figure 2.16 Hamming distance between each of 12 most frequent candidate sequences 

assembled with at most 6 mismatches to cluster reads and at most 15 mismatches to create an 

edge (6_15) and each of 12 most frequent candidate sequences assembled with at most one 

mismatch to cluster reads and at most two mismatches to create an edge(1_2). 
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2.7.2.2       Analysis of the Aligned Reads with Insertions 

Similarly, we infer initial candidate sequences on the read graph constructed with 

parameters n = 6 and m = 15. To refine assembled candidate sequences, we use all reads and 

parameter t varying from 80 bases till 350 bases, or, in the other words, mutation rate varying 

from 1.75% up to 8% per sequence (which is in the range observed in [47] for acute phase of 

HCV). On average, final candidate sequence is within 309 bases from initial candidate sequence 

(see Figure 2.17). 

Out of 3207 max-bandwidth paths, we obtain as much as 938 distinct sequences (t = 80) 

and as low as 755 sequences (t = 350) for different values of t in range [80, 350]. Since we 

decrease variability of the data by error correction and clustering subreads near superreads, we 

need to explore different mutation rates. 

Figure 2.17 Distance between candidate sequence assembled only on superreads and its final 

candidate sequence assembled on all reads. Average distance is 309 bp. 
 

 The neighbor-joining tree for the most frequent 10 candidate sequences (see Figure 2.18) 

obtained by ViSpA and ShoRAH reminds a neighbor-joining tree for HCV quasispecies 
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evolution.  Additionally, the most frequent candidate sequence found by ViSpA is 99% identical 

to one of the actual ORFs obtained by cloning the quasispecies.  

 

Figure 2.18 The neighbor-joining phylogenetic tree for 10 most frequent HCV quasispecies 

variants on a 5,205bp-long fragment obtained by ViSpA and ShoRAH. 
 

 Viral sequences, containing internal stop codons, are not viable since the entire HCV 

genome consists of a single coding region for a large polyprotein. So the number of 

reconstructed viable sequences can serve as an accuracy measure for quasispecies assembly. Out 

of 10 most frequent sequences reconstructed by ViSpA, only 3 sequences are not viable while 

ShoRAH is able to reconstruct only one viable sequence. This sequence has 99.94% similarity 

with the ViSpA's fourth most frequent assemblies. Both methods returned similar frequency 

estimations for this sequence: 0.017% (ShoRAH) and 0.019% (ViSpA). 
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The plot on Figure 2.19 shows validation results for 10 most frequent quasispecies 

sequences with respect to EM estimations assembled on Data1 by ShoRAH and ViSpA
4
 (n = 6, 

m = 15, and t = 120). Repeatedly, 100 times we have deleted randomly chosen 10% of reads and  

Figure 2.19 Percentage of runs when the i-th most frequent sequences is reproduced among 10 

most frequent quasispecies assembled on the 10%-reduced set of reads. The i-th point at x-axis 

corresponds to the i-th most frequent sequence assembled on the 100% of reads. No data are 

shown for the sequences that are reproduced less than 5% of runs. 
 

run both methods on each reduced read instance to reconstruct quasispecies spectrum. The plot 

reports the percentage of runs when each of 10 most frequent sequences assembled on Data1 are 

reproduce among the 10 most frequent quasispecies inferred on the reduced instances with no 

mismatches (k = 0), or with k = 1, 2, 5 mismatches. For example, for k = 0 ShoRAH repeatedly 

(35% of times) reconstructs only the 3rd most frequent sequence, while ViSpA reconstructs 7 

sequences in at least 15% times, and the most frequent sequence is reconstructed 40% times. 

This plot shows that the found sequences are pretty much reproducible for ViSpA. The third 

                                                             
4
Experimental results for ShoRAH and ViSpA on HCV data are available in appendix E. 
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most frequent sequence assembled by ShoRAH is the only sequence among most frequent 

ShoRAH's assemblies that represents a viable protein sequence. 

The plot on Figure 2.20 shows the averaged frequency among all unique matches of 10 

most frequent sequences found in bootstrapping tests on 10%-reduced Data1. 

Figure 2.20 Average frequency among frequencies of matches found in bootstrapping iterations 

for each of 10 most frequent sequences (unique match). i-th point at x-axis corresponds to the i-

th most frequent sequence assembled on the 100% of reads. 
 

The clustering (or "averaging") during assembling candidate sequences can fix random 

sporadic genotyping errors - the larger value of t erases errors but for the expense of accuracy of 

the candidate sequences. Unfortunately, the systematic errors will be prone to such method as 

well as to the method suggested in [22]. A well known drawback of 454 pyrosequencing system 

- the erroneous indels in homopolymers - may be not an obstacle for assembling a single genome 

since majority of reads are correct. But quasispecies sequences partition the reads between 

themselves and some of them may have incorrect reads as a majority. Indeed, top 9 quasispecies 

reconstructed by ShoRAH contain multiple stop codons in their corresponding amino-acid 
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sequences, indicating unfixed systematic erroneous indels introduced by 454 Life Sciences 

machines. 

We propose the following way to address homopolymer errors if they happen in the 

coding region.  

1. Find the frame with the start-codon, and align the amino-acid decoded sequence with the 

one for the reference sequence. 

2. In the region immediately preceding stop-codon, find the position X where the protein 

alignment becomes very poor. 

3. In the nucleotide quasispecies sequence the position X should correspond to a 

homopolymer which should be either extended or reduced by 1 (the correct fix will make 

the protein alignment almost perfect). 

  

Usually such errors happen just before "forks", i.e., the place where the quasispecies 

sequences start significantly deviate from each other. We were able to fix all defective sequences 

returned by ViSpA using this method. 

 

2.7.3       Analysis of HIV data. 

We also compare ViSpA and ShoRAH on HIV dataset, used in the first experiment in 

[58]. As was said above, we do not preprocess reads with respect to its 454 quality score, and it 

can explain poorer performance of ShoRAH. Indeed, ShoRAH correctly infers only 2 

quasispecies sequences with at most 4 mismatches: one assembly has 3 mismatches with real 

quasispecies sequence, and the other has 4 mismatches. 

ViSpA correctly reconstructs 5 quasispecies with at most 2 mismatches (3 of them among 

10 most frequent assemblies): two sequences are inferred without any mismatches (one is among 

10 most frequent assemblies), one assembly has 1 mismatch with real quasispecies sequence 
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(and it is among 10 most frequent assemblies), and the rest sequences have 2 mismatches (one is 

among 10 most frequent assemblies). The assemblies correspond to a viable protein sequences. 

If ViSpA is applied to ShoRAH-corrected reads, it can successfully infer three real 

quasispecies without any mismatches. 
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3       GENOTYPE TAGGING WITH LIMITED OVERFITTING 

The genetic differences among people can be explored by looking at DNA variations, 

primarily single nucleotide polymorphisms (SNPs). A SNP is a specific DNA locus at which 

several alleles are observed across at least 1% of population. In the human genome, most of the 

SNPs are bi-allelic. The major allele is considered to be the wild type whereas the minor allele is 

called a mutation.  

Although SNPs are only around 1% of the 3-billion-base human genome, they can 

influence human response to a disease, a therapy or different environmental factors, making 

SNPs valuable for the genome-wide association studies. In these studies, DNA's of infected hosts 

(cases) and healthy individuals (controls) are searched for SNPs that have significant prevalence 

among diseased individuals than among controls, determining the genetic risk factor.  

Recent advances in next generation sequencing significantly decrease the genotyping cost 

of genome-wide studies whereas considerably increase the computational complexity of the 

analysis. Since alleles of neighboring SNPs are often correlated, the genome-associated study 

can be done on a small subset of SNPs (informative (tag) SNPs) that covers the genetic variation 

of the rest of the data. Tagging saves budget since only tag SNPs are genotyped and, more 

importantly, reduces complexity of the analysis since the data of the smaller size is used.   

Statistical covering of a genetic variation of one SNP by another is usually defined in 

terms of the correlation between SNPs. It is widely accepted that a variation of a SNP is 

(statistically) covered by a variation of another SNP if their correlation r
2
 is greater than 0.8. 

The problem of tagging is selecting a minimum number of tag SNPs covering all SNP in 

the given data. Formally, the problem can be formulated as follows. 
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Minimum Tag Selection Problem (MTS Problem): given a sample of a population S of 

n genotypes, each consisting of m SNPs, find a minimum size subset of tag SNPs that statistically 

covers all other SNPs. 

In practice, a small percentage of SNPs values are missing, reducing the power of an 

association. A missing SNP value may occur either if this SNP was not initially genotyped or if 

the SNP value did not pass quality control threshold after typing. When a tag SNP missed a 

value, the genetic variation of untagged SNPs can be also lost, possibly collapsing distinct 

genotypes into one. Still correct genotypes can be recovered if several alternative ways are used 

to cover genetic variation of untagged SNPs [33]. 

Several approaches were proposed to optimize a number of chosen tags. Based on 

classification criteria, they can be described as lossy or lossless methods, and as block-based or 

block-free methods.  

Lossless methods yield larger set of tag SNPs since 100% of genetic variation should be 

captured whereas lossy methods explore trade-off between smaller amount of tags and possible 

loss of genetic information.  

The block-based tagging (e.g., HapBlock [60]) requires a priori information to define 

"haplotype blocks". A haplotype block is not well-defined, but usually neighboring SNPs are 

considered to be in one haplotype block if they are in strong linkage disequilibrium [24]. The 

block-based methods could cover an untagged SNP only by a tag from the same haplotype block, 

i.e., only within local contiguous sequence of SNPs where the diversity of haplotypes is low. The 

block-free methods pick tags across the entire chromosome. Such methods include Avi-Itzhak's 

method of entropy maximization [5], Halldorson's graphic-based algorithm [27], MLR [29], 

IdSelect [11], STAMPA [28], Tagger [15], BNTagger [37]. 
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To represent genetic variation of an untagged SNP, some tagging methods use a single 

tag, or multiple tags. The Minimum Tag Selection problem for single-tag methods (e.g., IdSelect 

[11], Tagger [15]) is equivalent to the Minimum Set Cover problem and can be efficiently 

approximated within         [51]. We showed that for the multiple-tag methods (e.g., MLR 

[29] and STAMPA [28]), the Minimum Tag Selection problem seems as hard to approximate as 

the Red-Blue Set Cover problem. Although, IdSelect [11] and Tagger [15] find close to the 

optimum number of tag SNPs, MLR [29] uses significantly less tags than Tagger since linear 

combination of tag SNPs can cover a genetic variation of an untagged SNP. However, multiple 

linear regression might suffer from overfitting since multiple unrelated tags can participate in 

covering of an untagged SNP. Additionally, the more tags is used by MLR to cover variation of 

an untagged SNP, the lower prediction accuracy is obtained (see Figure 3.1) [29]. These 

observations motivate us to explore the trade-off between the number of tags used per non-

tagged SNP and possible overfitting in the case when at most two tags can be used.  

                                        
Figure 3.1 Correlation between the number of tags being used by MLR to cover variation of an 

untagged SNP and prediction accuracy [29]. 
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3.1       Correlation for a Triple of SNPs 

The section first explains how to measure the correlation between pair of SNPs. Then 

introduce correlation coefficient for a triple of SNPs. Finally, we discuss how to adjust 

correlation coefficient to handle missing values. 

The correlation coefficient r
2
 between two bi-allelic SNPs A and B measures impact of 

genetic drift on linkage disequilibrium [30]. Let D(A, B) denote linkage disequilibrium betweens 

SNPs A and B, and  p and q be the frequencies of the major alleles in A and B, respectively. Then 

correlation between SNPs A, B is given as follows: 

        
       

            
                                                      (3.1) 

The correlation r
2
 reaches 1 only if the allele frequencies of A and B are the same, and there is an 

association in haplotypes between the most common alleles at the two SNPs [30]. 

It would be advantageous to use more than one SNP to cover variation of other SNPs. To 

the best of our knowledge, nobody proposed how to calculate correlation between one SNP and 

combination of other SNPs. So here, we introduce the approach to measure correlation between a 

bi-allelic SNP A and a pair of two other bi-allelic SNPs B and C.  

Let        
           

  and         
  be the values in SNPs A, B and C on n genotypes, 

respectively. And let 1 code a homozygote major allele, -1 code a homozygote minor allele, and 

0 code a heterozygote in each SNP. The best approximation X = αB + βC of the SNP A by SNPs 

B and C is obtained by multiple linear regression method. Geometrically, the best approximation 

X of the SNP A by SNPs B and C can be viewed as the projection of vector        
  on the span 

determined by the vectors        
  and        

  (see Figure 3.2)). 

Obviously, the obtained values of X are real numbers, so the rounded best approximation 

   is used. Let         
  be the values of a rounded best approximation     then 
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Figure 3.2 Geometrically, X =αB +βC is the projection of        

  on the span determined by the 

vectors        
  and        

   
A correlation r

2
(A |B, C) between SNP A and a pair of SNPs B and C is the correlation 

between SNP A and its rounded best approximation X = αB + βC by SNPs B and C: 

r
2
(A| B, C) = r

2
(A, X).                                                       (3.2) 

If the correlation r
2
(A| B, C)  for a triple of SNPs A, B and C is greater 0.8 then the 

genetic variation of the SNP A is covered by the SNPs B and C. In general, the correlation      

r
2
(A| B, C)  is not symmetric relation since correlation between SNP A and SNPs B and C does 

not imply, for example, correlation between SNP B and SNPs A and C, or SNP C and SNPs A 

and B. Thus, the direction of the correlation r
2
(A| B, C)  becomes important. 

Further, we assume that missing values are distributed randomly and uniformly. Let 

       
  and         

  be values of SNPs A and B on n genotypes, respectively, and let Iknown in   [1, 

..., n] be the set of indices of genotypes where values in both SNPs A and B are present. Then we 

calculate the correlation coefficient as follows: 
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where p and q are the frequencies of the major alleles of SNPs A and B on the known data for 

SNP A and known data for SNP B, respectively. This definition does not introduce additional 

noise since it is based only on available information. 

 

3.2       The Minimum Tag Selection Problem 

First, we formulate the Minimum Tag Selection problem when a single tag SNP covers a 

genetic variation of an untagged SNP. Then the problem is generalized to the case when two tag 

SNPs are allowed to cover variation of an untagged SNP. Finally, we discuss the complexity of 

the both problems. 

To represent genetic variation of an untagged SNP, a single-tag tagging methods solve 

the following problem. 

Minimum Tag Selection problem for single-tag covering (M1TS Problem): given a 

sample of a population S of n genotypes, each consisting of m SNPs, select a minimum size 

subset of tag SNPs such that genetic variation of each untagged SNP is statistically covered by 

genetic variation of one tag. 

From graph-theoretic point of view, the M1TS problem can be reformulated as the 

following problem. 

Minimum Dominating Set Problem (MDS Problem): given a graph           

    , where each vertex     corresponds to SNP i, 1 ≤ i ≤ m, and edges (i, j) connect highly 

correlated SNPs i and j (usually, r
2
(i, j) ≥0.8); find a set    of a minimum cardinality such 

that every vertex      either belongs to D, or is adjacent to vertex        
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The Minimum Dominating Set problem is known to be NP-hard, and unless P = NP, it 

cannot be approximated better than         via reduction from Set Cover problem [51]. 

When two tag SNPs are allowed to cover a variation of an untagged SNP, the M1TSP 

problem is generalized as follows. 

Minimum Tag Selection problem for two-tag covering (M2TS Problem): given a 

sample of a population S of n genotypes, each consisting of m SNPs, select a minimum size 

subset of tag SNPs such that genetic variation of each untagged SNP is statistically covered by 

genetic variation of at most two tags. 

From graph-theoretic point of view, the M2TS problem corresponds to Minimum 

Dominating Set problem on the following hypergraph                 . 

Each vertex     corresponds to SNP i, 1 ≤ i ≤ m. There are two types of hyperedges in 

hypergraph H: hyperedges connecting only two vertices (further referred as edges) and 

hyperedges connecting 3 vertices. As earlier, a bidirectional edge (i, j) connects highly correlated 

SNPs i and j (usually, r
2
(i, j) ≥0.8)   A hyperedge (i, j, k) exists if SNP i is highly correlated with 

SNPs j and k, or, in the other words, their triple correlation is higher than 80%: r
2
(i| j, k) ≥0.8. To 

reduce complexity, if at least one of the edges (i, j) or (i, k) exists, we do not add hyperedge (i, j, 

k) into the hypergraph H. Indeed, high value of the correlation between SNP i and SNPs j and k 

is due the fact that i is highly correlated with one of the other SNPs, j or k; that is, the hyperedge 

(i, j, k) does not refer to new information. Obviously, since correlation for a triple of SNPs r
2
(i| j, 

k) is not symmetric, the existence of the hyperedges (j, i, k) or (k, i, j) does not follow from the 

hyperedge (i, j, k) although it implies hyperedge (i, k, j). 
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Minimum Dominating Set problem on a hypergraph H = (V, E) asks for a subset 

   of a minimum cardinality such that every vertex     either belongs to D, or is 

connected by an edge to vertex in D, or is connected by a hyperedge to two vertices in D.  

The Minimum Dominating Set problem on a Hypergraph is NP-hard, however, an integer 

linear program gives an exact solution for instances of a smaller size. For instances of large sizes, 

the relaxed linear program returns the approximation of the exact solution (for further details, see 

Section 3.3). 

The M2TS problem cannot be efficiently approximated: it seems as hard to approximate 

as the following problem. 

Red-Blue Set Cover: given two disjoint finite sets, set R of red elements and set B of blue 

elements, let         be a family of subsets of     ; find a subfamily     that covers all 

blue elements, but covers the minimum possible number of red elements. 

Indeed, if red elements represent possible tag SNPs and blue elements represent untagged 

SNPs, the M2TS problem is equivalent to Red-Blue Set Cover. If the set of tag candidates and 

set of SNPs to cover are not intersected than this special case of M2TS problem is the special 

case of Red-Blue Set Cover where every set contains only one blue and two red elements. It was 

shown that unless P = NP this special case of the Red-Blue Set Cover cannot be approximated to 

within              where   
 

        
    

 

 
 ([16], [12]). 

 

3.3       LP Formulation for M2TS Problem 

As follows from the previous section, each instance of M2TS problem can be viewed as 

an instance of Minimum Dominating Set problem on the corresponding hypergraph. In the 

section, Boolean Linear Program (BLP) is given for the small instances of the Minimum 
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Dominating Set problem on the hypergraphs. BLP returns exact solution, but becomes slower for 

large instances. For a larger size problem, we use BLP relaxation that gives approximate 

solution. 

 

3.3.1       Boolean Linear Program (BLP) 

For a given instance of the Minimum Dominating Set problem on a hypergraph H = (V, 

E) (equivalently, instance of M2TS problem), we formulate Boolean Linear program (BLP) as 

follows. 

We associate boolean variable xi with each vertex i in the hypergraph H = (V, E) (or, 

equivalently, with each SNP i). BLP sets xi to 1 if the vertex i is in D (e.g., the corresponding 

SNP i is chosen as a tag). Otherwise, xi is set to 0. Let boolean variables wjk = xj∙xk be indicators 

for hyperedges (i, j, k) in E. The variable wjk indicates whether the hyperedge (i, j, k) is chosen by 

BLP, e.g., vertex i is covered by the hyperedge (i, j, k). Indeed, the variable wjk = 1 only if both 

SNPs j and k are chosen by BLP as tags; otherwise, it is 0. 

            

 

   

  

            

      

       

                     

         

 

     

 
                            

                                

 

The BLP's objective is to minimize the number of vertices i in D subject to the following 

constraints. First, we require every vertex i either be in D, or be connected by edge to a vertex in 
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D, or be connected by hyperedge to two vertices in D. In the other words, we require SNP i be 

either a tag SNP, or be covered by either a tag SNP or two tag SNPs. 

Secondly, BLP should set the indicator variables wjk to 1 if and only if BLP sets to 1 both 

variables xj and xk. Indeed, if xj or xk is 0 then wjk ≤ 0 and BLP sets wjk to 0. Finally, BLP should 

limit feasible solutions to the boolean variables. 

 

3.3.2       BLP relaxation 

BLP gives an exact solution to small instances of the Minimum Dominating Set problem 

on a hypergraph H. For a larger size instances, the BLP relaxation is used. 

We use several heuristics to round fractional solutions of the BLP relaxation, including 

two greedy heuristics and randomized heuristics. 

The first greedy heuristic (see Heuristic 1) chooses k variables with the highest weights 

assigned by BLP relaxation and set them to 1, meaning the corresponding SNPs are chosen as 

tag SNPs. The value of the parameter k is the smallest integer among all possible such that 

chosen tag SNPs can cover genetic variation of every untagged SNP in the sample.  

Heuristic 1 Greedy heuristics to round BLP solution. 

Input 

1.        is the set of assignments returned by BLP 

 S is the set of all SNPs 

 F is the set final assignment 

F ←   

Traverse X in decreasing order of assigned values 

Let x be the current value and i is corresponding SNP 

F←F U { x←1} 
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remove from S all SNPs for which  F can explain all genetic variation 

if S is empty then 

break 

end if 

end of traversing 

return F 

The alternative greedy approach (see Heuristic 2) is iteratively set to 1's the variable(s) xi 

with the highest weight assigned at the current run of BLP relaxation. This (these) xi is (are) 

explicitly set to 1 in linear program and BLP relaxation is run to obtain new assignments for the 

rest of variables. The iterative process terminates when all new assignments become zero. Then 

SNPs that corresponds to all non-zero xi's, are chosen as tag SNPs. The second heuristic requires 

slightly more running time than the first heuristic due to several runs of BLP relaxation.  

Heuristic 2 Greedy heuristics to round BLP solution. 

Input 

 X is the BLP assignment 

Run BLP and obtain assignment X 

while TRUE do 

if previously non-fixed variables all assigned to 0 then 

break 

end if         

Sort X in descending order of values 

Fix in X to 1 all variables with the highest weight 

Run BLP to obtain new assignment for previously non-fixed variables. 

end while 
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return X 

 

The third heuristic is based on randomized approach where each SNP is chosen as a tag 

SNP with the probability, equaled to the weight given by the BLP relaxation.  

The BLP relaxation returns an approximation of the exact solution; however, it runs 

much faster than the BLP and can be used for larger instances of M2TS problem. 

 

3.4       Experimental Results 

The section describes several data sets on which we run three tagging methods: 2LR 

method (BLP and BLP relaxation), MLR and Tagger. We report how well these tagging methods 

compact the data, measured by a number of tag SNPs. Then we describe how to estimate 

overfitting in the cross-validation tests and report overfitting for these three methods. Finally, we 

report data compression of each of three tagging methods if a small percentage of SNP values is 

missing. Direct comparison with STAMPA is complicated since STAMPA predicts untagged 

SNPs rather than cover their variation. 

 

3.4.1       Data Sets 

We compared 2LR tagging with Tagger [15] and MLR [29] on several publicly available 

data sets from HapMap. The largest data set has 156 SNPs with minor frequency allele over 

0.01%. Each data set has 90 individuals. 

Small percentage of missing SNP values was obtained by randomly removing known 

values from the given data sets. 

3.4.2       Data Compression 

In this paper, we explore trade-off between the number of tags used to cover a variation 

of an untagged SNP and possible overfitting of a tagging method. First, we compare how many 
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tag SNPs each of three tagging methods chooses in the given data sets. The experimental results 

on HapMap data sets show that 2LR Tagging (BLP and BLP relaxation) is between Tagger and 

MLR in the number of tags (see Figure 3.3(a)). The BLP usually selects almost the same number  

                      
Figure 3.3 Performance of MLR, Tagger, 2LR tagging (BLP and BLP relaxation) on HapMap 

data sets. a) For each tagging method, the number of chosen tags is reported for different 

number of SNPs in the data sets. b) For each tagging method, its runtime is plotted depending on 

the number of SNPs in data sets. Runtime is given in seconds. 

 

of tags as MLR. Slight difference in the number of tags between BLP and MLR is due to the 

limited use of multiple regression in BLP versus unlimited multiple regression in MLR. 

However, for data sets with more than 100 SNPs BLP becomes significantly slower than the 
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others methods (see Figure 3.3(b)). The BLP relaxation runs as fast as Tagger and on average 

finds fewer tags than Tagger but more tags than BLP and MLR due to approximation nature of 

the relaxation. 

 

3.4.3       Measuring Overfitting via 2-Cross Validation 

Further, we compare overfitting of these tagging methods in the cross-validation tests. 

In 2-fold cross-validation, we partition individuals in the data into two subsets of 

(approximately) equal size. We use each subset as a test set and the other subset as the 

corresponding training set. On each training set, we select tag SNPs and separately compute the 

average covering correlation on the training set and its test set if the chosen tags are used. If 

tagging method suffers from overfitting, we will see significant difference between these two 

averages. To eliminate dependence between an overfitting value and particular partitioning of the 

sample, we iteratively run 2-fold cross validations on the heavily permuted sample reasonably 

large number of times. Then the overfitting of tagging method is reported as the averaged 

difference in covering correlation among all runs. 

Experimental 2-fold cross validation results for MLR, Tagger, 2LR tagging (BLP and 

BLP relaxation) on the data set ADIPOR2-AA with 71 SNPs show that 2-LR Tagging has less 

overfitting than MLR (on average, 3.6% for 2LR (both BLP and BLP relaxation) versus 5% for 

MLR), however finds slightly more tags (on average, 19 (21) for BLP (BLP relaxation) and 14 

for MLR). On the other hand, 2LR uses less tags than Tagger (19 (or 21 in relaxation) vs. 29 tags 

on average) while keeping overfitting almost at the same rate (3.2% for Tagger and 3.6% for 

2LR (both BLP and BLP relaxation)). 

Thus, 2LR tagging finds less tag SNPs than Tagger does. However, 2LR tags have 

practically the same overfitting as Tagger tags, meaning smaller set of tags can capture the same 
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amount of a genetic variation as Tagger tags when they are used at the other data sets. The 

limited used of multiple regression in 2LR tagging rather than unbounded multiple regression in 

MLR produces slightly larger number of tag SNPs but with smaller overfitting to data. In other 

words, 2LR tagging finds tag SNPs that can capture more genetic variation than MLR tags with a 

cost of slight increase in the number of tags. 

 

3.4.4       Missing Data Results 

Finally, we explore behavior of three tagging methods on the data set with small 

percentage of missing data. MLR does not handle missing SNP values and assumes that the data 

are complete [29]. Thus, we run MLR on the data with imputed missing SNP values [33]. Our 

experiments show that BLP better tolerates missing data than Tagger (see Table 3.1). The BLP 

relaxation requires slightly more tags than the BLP to handle missing SNP values. The MLR 

requires less tag SNPs but the missing values should be imputed first. 

Table 3.1 Comparison of MLR, Tagger and 2LR Tagging (BLP and its relaxation) on ADIPOR2-

AA data set with missing SNP values. Number of tags and average correlation is given. 

 No Missing 

Data 

1% Missing 2% Missing 3% Missing 

Tagger 20 34 48 49 

0.9549 0.9421 0.925 0.94 

MLR 15 15 16 18 

0.984 0.9813 0.989 0.985 

BLP 20 24 26 34 

0.945 0.931 0.912 0.8887 

BLP relaxation 22 30 45 45 

0.9674 0.9421 0.9235 0.9345 
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4       CONCLUSIONS AND FUTURE WORK 

Next generation sequencing is revolutionizing genomics by inexpensively producing 

millions of genomic sequences in a single run. Here, we have proposed effective solutions for 

two inference problems, arisen in particular applications of next generation sequencing, namely, 

the problem of reconstructing viral quasispecies spectrum from pyrosequencing shotgun reads 

and problem of inferring informative single nucleotide polymorphisms (SNPs), statistically 

covering genetic variation of a genome region in genome-wide association studies. 

We have proposed and implemented ViSpA, a novel software tool for quasispecies 

spectrum reconstruction from high-throughput shotgun pyrosequencing reads. ViSpA includes 

(1) clustering techniques to handle random genotyping errors and rare mutations, (2) haplotype 

assembler based on maximum-bandwidth paths in weighted read graphs, (3) maximum 

likelihood estimation of quasispecies frequencies based on EM which takes in account all reads, 

and (4) separate handling of systematic genotyping errors.  

We have validated our method on synthetic and real 454 pyrosequencing shotgun reads 

from HCV sample and HIV samples. Experimental results show that ViSpA is better in 

assembling. Although ShoRAH has a superior error correction algorithm, experiments suggest 

that it is prone to overcorrection, significantly reducing diversity of viral sample.  

Additionally, we are exploring extensions of ViSpA to amplicon mode of 454/Roche and 

to paired-reads. In the latter case, the main difficulty is in selection of pair-aware candidate 

paths. We also foresee ViSpA application to the analysis of high-throughput sequencing data 

from bacterial metagenomic samples and ecological samples of eukaryote populations. 

ViSpA is available at http://alla.cs.gsu.edu/~software/VISPA/vispa.html in two 

configurations: one is expected to get values for parameters n and t whereas the other 

http://alla.cs.gsu.edu/~software/VISPA/vispa.html
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configuration automatically set these parameters (for details, see Appendix B).  Currently, we 

also work on extending candidate sets by iteratively applying ViSpA on binary weighted reads. 

The weights are assigned by EM-based algorithm: it gives 1 to the reads that are not adequately 

covered by already assembled sequences, and 0 to the reads that are explained by those 

assemblies. Then ViSpA separately finds superreads for covered and uncovered reads and 

applies additional fee to the edges that have at least one endpoint among covered reads. Hence, 

paths, connecting uncovered reads, become more preferable and different candidate set is 

obtained. Next, EM-based algorithm reassigns new weights to the reads based on the cumulative 

set of final assemblies. The preliminary results are promising, recovering additional 1-3 

sequences after several iterations.  

Although ViSpA assembles sequences at the same speed as ShoRAH, we can speed it up 

via parallelization of some steps, for example, assembling of sequences from the candidate paths.  

For the second problem, we propose 2LR heuristic and compare it to Tagger and MLR. 

Experimental results show that 2LR is between Tagger and MLR in the number of found tags 

and in overfitting and also better tolerates missing SNP values than Tagger. 

In our future research, we will explore whether overfitting of 2LR tagging can be 

decreased by adding the correlation values between pair or triple of SNPs in BLP and BLP 

relaxation. Secondly, the correlation between two SNPs does not take into account that 2-SNPs 

genotypes can be preprocessed by maximum likelihood estimate-based phasing. Finally, since 

the experiments show that the bounding of tags used for prediction can lower the overfitting, we 

will search for the optimum number of tags for predicting an untagged SNP in MLR. 
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A.1      Oral Presentations 

1. Astrovskaya, I., Westbrooks, K., Tork, B., Mangul, S., Mandoiu, I., Balfe, P.,  

Zelikovsky, A. (2011). Inferring Viral Population from Ultra-Deep Sequencing Data, 

workshop on Computational Advances for Next Generation Sequencing (CANGS 2011) 

(invited talk). 

2. Astrovskaya, I., Westbrooks, and Zelikovsky, A. (2010). Assembling Viral Quasispecies 

and Estimating Their Frequencies from Ultra-Deep Sequencing Data, Life Tech (invited 

talk). 

3. Astrovskaya, I., Westbrooks, Zelikovsky, A. (2010). Reconstruction of HCV 

Quasispecies Haplotypes from 454 Life Science Reads, ISBRA 2010 (short abstract). 

4. Astrovskaya, I., Zelikovsky, A. (2009). Genotype Tagging with Limited Overfitting. BSB 

2009. 
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A.2      Best Poster Awards 

1. Astrovskaya, I., Westbrooks, K., Tork, B., Mangul, S., Mandoiu, I., Balfe, P., 

Zelikovsky, A. (2011). ViSpA: Viral Spectrum Assembling Method, ICCABS'2011. 

2. Astrovskaya, I., Zelikovsky, A. (2009). Genotype Tagging with Limited Overfitting, 

ISBRA 2009. 

3. Astrovskaya, I., Babu, D. M., Zelikovsky, A. (2008). 2-LR Tagging: Linear Regression 

with Controlled Overfitting, MBD Day 2008. 
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APPENDIX B       VISPA DESIGN 

B.1       Parameters' Choice 

ViSpA automatically sets up the values for the following three parameters: 

(1) n =#mismatches allowed between a read and a superread,  

(2) m = #mismatches allowed in the overlap between two consecutive reads, and  

(3) t = #mismatches expected between a read and a quasispecies. 

Note that parameter m depends on the choice of n value. Indeed, since we allow at most n 

mismatches between read and its superread, it is reasonable to expect up to n mismatches in 

overlap between consecutive superreads (lower bound) and up to 2n mismatches between their 

subreads. Experiments show that better connectivity in the graph is obtained if m has slightly 

higher value, equaled to 2.5n. Since cost on the edge takes into account number of mismatches, 

edges constructed for m = n are more preferable during path construction then edges, existing 

only with more than n mismatches in overlap. So for each candidate path selected on the graph 

with parameter m = n, there is either the same path or path with better total cost obtained on the 

graph with parameter m = 2.5n. The latter may happen if path, chosen on the graph with 

parameter m = n, represents part of the quasispecies due to the loss of connectivity in the graph. 

Thus, parameter m is set to the value 2.5n
5
 in ViSpA. 

During the run, ViSpA initially set n to 0 and build a read graph. After selecting 

candidate paths, ViSpA calculates the portion of paths that represent a quasispecies, rather than 

its piece due to loss of connectivity. If the portion is no less than 95% of paths, ViSpA considers 

that value of n is found and proceeds with assembling of candidate sequences out of the chosen 

candidate paths. Otherwise, n is incremented by 1 and procedure is repeated.  

                                                             
5 In case of odd n, arithmetic rounding rules are applied. 
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Since we choose max-bandwidth paths per vertex, ViSpA does not need to transitively 

reduce a read graph, allowing to remove from implementation the second most time-consuming 

part of the method (see plot B.1).  

As soon as ViSpA finds the value for parameter n, it assembles candidate sequences from 

candidate paths via mutation-based clustering. We vary mutation rate t/L from 1.75% up to 8% 

per sequence (which is in the range observed in [47]) for acute phase of HCV. Since we decrease 

variability in the data by error correction and clustering reads around superreads, we do not know 

the diversity in the sample. ViSpA explores parsimonious principle and choose t with the 

smallest number of distinct final sequences.  

Figure B.1 ViSpA runtime
6
 for Data1. All omitted steps (for example, finding superreads) run 

less than one minute (per each). TOTAL and TOTAL_noTR show the total ViSpA runtime (in 

minute) with transitive reduction and without it. 

                                                             
6
 All experiments were run on eight 2.66GHz-CPUs with 8M cache.  
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B.2       Software Design 

 

ViSpA is a java class library that has the following features: 

 Calculate different statistics for aligned read data such as length distribution, 

position coverage, length distribution of homopolymers, length distribution of 

insertion and deletions, positions profile 

 Correct sequencing errors 

 Build read graph 

 Select candidate paths and assemble candidate sequences 

 Estimate frequency of assemblies by EM on candidate sequences and all reads 

 Validate results if viral population is known 

 Run bootstrap tests 

All classes are in the edu.gsu.cs.qsspcsassmblr package and available at 

http://alla.cs.gsu.edu/~software/VISPA/vispa.html. 

 

 

 

 

 

 

 

http://alla.cs.gsu.edu/~software/VISPA/vispa.html
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APPENDIX C       VISPA: EXPERIMENTAL RESULTS ON 

SIMULATED ERROR-FREE READS 

Table C.1 PPV, sensitivity and relative entropy. The results obtained on 10 quasispecies 

followed geometric distribution. The experiments have two parameters: number of produced 

reads, which varies from 20K up to 100K, and the average read length, which is between 200bp 

and 500 bp. 

 
 

Table C.2 PPV, sensitivity and relative entropy. The results obtained on 20 quasispecies 

followed geometric distribution. The experiments have two parameters: number of produced 

reads, which varies from 20K up to 100K, and the average read length, which is between 200bp 

and 500 bp. 

 
 

Table C.3 PPV, sensitivity and relative entropy. The results obtained on 30 quasispecies 

followed geometric distribution. The experiments have two parameters: number of produced 

reads, which varies from 20K up to 100K, and the average read length, which is between 200bp 

and 500 bp. 

 
 

 

 

 

 

 

 



92 
 

 

Table C.4 PPV, sensitivity and relative entropy. The results obtained on 10 quasispecies 

followed geometric distribution. The experiments have two parameters: number of produced 

reads, which varies from 20K up to 100K, and the average read length, which is between 200bp 

and 500 bp. 

 
 

Table C.5 PPV, sensitivity and relative entropy. The results obtained on 10 quasispecies 

followed skewed uniform distribution. The experiments have two parameters: number of 

produced reads, which varies from 20K up to 100K, and the average read length, which is 

between 200bp and 500 bp. 

 
 

Table C.6 PPV, sensitivity and relative entropy. The results obtained on 20 quasispecies 

followed skewed uniform distribution. The experiments have two parameters: number of 

produced reads, which varies from 20K up to 100K, and the average read length, which is 

between 200bp and 500 bp. 

 
 

Table C.7 PPV, sensitivity and relative entropy. The results obtained on 30 quasispecies 

followed skewed uniform distribution. The experiments have two parameters: number of 

produced reads, which varies from 20K up to 100K, and the average read length, which is 

between 200bp and 500 bp. 
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Table C.8 PPV, sensitivity and relative entropy. The results obtained on 10 quasispecies 

followed geometric distribution. The experiments have two parameters: number of produced 

reads, which varies from 20K up to 100K, and the average read length, which is between 200bp 

and 500 bp. 

 
 

Table C.9 PPV, sensitivity and relative entropy. The results obtained on 10 quasispecies 

followed geometric distribution. The experiments have two parameters: number of produced 

reads, which varies from 20K up to 100K, and the average read length, which is between 200bp 

and 500 bp. 

 
 

Table C.10 PPV, sensitivity and relative entropy. The results obtained on 20 quasispecies 

followed uniform distribution. The experiments have two parameters: number of produced reads, 

which varies from 20K up to 100K, and the average read length, which is between 200bp and 

500 bp. 

 
 

Table C.11 PPV, sensitivity and relative entropy. The results obtained on 30 quasispecies 

followed uniform distribution. The experiments have two parameters: number of produced reads, 

which varies from 20K up to 100K, and the average read length, which is between 200bp and 

500 bp. 
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Table C.12 PPV, sensitivity and relative entropy. The results obtained on 10 quasispecies 

followed skewed uniform distribution. The experiments have two parameters: number of 

produced reads, which varies from 20K up to 100K, and the average read length, which is 

between 200bp and 500 bp. 
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APPENDIX D       EXPERIMENTAL RESULTS ON FLOWSIM-GENERATED READS 

Table D.1 Number of times when each of 10 most frequent sequences are repeatedly found 

among the 10 most frequent quasispecies assembled on the 10%-reduced set of reads. Reads 

were generated by FlowSim from 10 HCV quasispecies followed geometric distribution. "N" is 

the rank of the assemblies. If two sequences have less than k mismatches, they are considered 

indistinguishable, that is, matches to each other. Match is found with repetition, that is, two 

candidate sequences from ten most frequent assemblies obtained on whole data set can match 

the same assemblies obtained on 10%-reduced data. 

 
 

Table D.2 Number of times when each of 10 most frequent sequences are repeatedly found 

among the 10 most frequent quasispecies assembled on the 10%-reduced set of reads. Reads 

were generated by FlowSim from 10 HCV quasispecies followed geometric distribution. "N" is 

the rank of the assemblies. If two sequences have less than k mismatches, they are considered 

indistinguishable, that is, matches to each other. Match is found without repetitions, that is, two 

candidate sequences from ten most frequent assemblies obtained on whole data set cannot match 

the same assemblies obtained on 10%-reduced data. 
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APPENDIX E       EXPERIMENTAL RESULTS ON 454 READS 

FROM HCV DATASET 

Table E.1 Number of times when each of 10 most frequent sequences are repeatedly found 

among the 10 most frequent quasispecies assembled on the 10%-reduced set of reads. "N" is the 

rank of the assemblies. If two sequences have less than k mismatches, they are considered 

indistinguishable, that is, matches to each other. Match is found with repetition, that is, two 

candidate sequences from ten most frequent assemblies obtained on whole data set can match 

the same assemblies obtained on 10%-reduced data. Note when we run ViSpA on ShoRAH-

corrected data, we can repeat each assemblies only 1 time out of 100 iterations. It is evidence 

that ShoRAH is prone to overcorrection. 

 
 

Table E.2 Average frequency for each out of 10 most frequent assemblies obtained on whole 

dataset among frequencies of its matches found among the 10 most frequent quasispecies 

assembled on the 10%-reduced set of reads. "N" is the rank of the assemblies."OrigFreq" is 

frequency of the assemblies on the whole data. If two sequences have less than k mismatches, 

they are considered indistinguishable, that is, matches to each other. Match is found with 

repetition, that is, two candidate sequences from ten most frequent assemblies obtained on whole 

data set can match the same assemblies obtained on 10%-reduced data. Note that table contains 

zero's average frequency. They are due to the precision: if the match was found only in one 

iteration and frequency was low, then after dividing by 100, it becomes 10
-5

 or less, and due to 

precision is shown as zero. 
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Table E.3 Number of times when each of 10 most frequent sequences are repeatedly found 

among the 10 most frequent quasispecies assembled on the 10%-reduced set of reads. "N" is the 

rank of the assemblies. If two sequences have less than k mismatches, they are considered 

indistinguishable, that is, matches to each other. Match is found without repetitions, that is, two 

candidate sequences from ten most frequent assemblies obtained on whole data set cannot match 

the same assemblies obtained on 10%-reduced data. Note when we run ViSpA on ShoRAH-

corrected data, we can repeat each assemblies only 1 time out of 100 iterations. It shows that 

ShoRAH is prone to overcorrection. 

 
 

Table E.4 Average frequency for each out of 10 most frequent assemblies obtained on whole 

dataset among frequencies of its matches found among the 10 most frequent quasispecies 

assembled on the 10%-reduced set of reads. "N" is the rank of the assemblies. "OrigFreq" is 

frequency of the assemblies on the whole data. If two sequences have less than k mismatches, 

they are considered indistinguishable, that is, matches to each other. Match is found without 

repetition, that is, two candidate sequences from ten most frequent assemblies obtained on whole 

data set cannot match the same assemblies obtained on 10%-reduced data. Note that table 

contains zero's average frequency. They are due to the precision: if the match was found only in 

one iteration and frequency was low, then after dividing by 100, it becomes 10
-5

 or less, and due 

to precision is shown as zero. 
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