7,995 research outputs found

    Deep Learning for Software Defect Prediction: An LSTM-based Approach

    Get PDF
    Software defect prediction is an important aspect of software development, as it helps developers and organizations to identify and resolve bugs in the software before they become major issues. In this paper, we explore the use of machine learning algorithms for software defect prediction. We discuss the different types of machine learning algorithms that have been used for software defect prediction and their advantages and disadvantages. We also provide a comprehensive review of recent studies that have used machine learning algorithms for software defect prediction. The paper concludes with a discussion of the challenges and opportunities in using machine learning algorithms for software defect prediction and the future directions of research in this field. This paper surveys the existing literature on software defect prediction, focusing specifically on deep learning techniques. Compared to existing surveys on the topic, this paper offers a more in-depth analysis of the strengths and weaknesses of deep learning approaches for software defect prediction. It explores the use of LSTMs for this task, which have not been extensively studied in previous surveys. Additionally, this paper provides a comprehensive review of recent research in the field, highlighting the most promising deep learning models and techniques for software defect prediction. The results of this survey demonstrate that LSTM-based deep learning models can outperform traditional machine learning approaches and achieve state-of-the-art results in software defect prediction. Furthermore, this paper provides insights into the challenges and limitations of deep learning approaches for software defect prediction, highlighting areas for future research and improvement. Overall, this paper offers a valuable resource for researchers and practitioners interested in using deep learning techniques for software defect prediction.

    Semi-supervised and Active Learning Models for Software Fault Prediction

    Get PDF
    As software continues to insinuate itself into nearly every aspect of our life, the quality of software has been an extremely important issue. Software Quality Assurance (SQA) is a process that ensures the development of high-quality software. It concerns the important problem of maintaining, monitoring, and developing quality software. Accurate detection of fault prone components in software projects is one of the most commonly practiced techniques that offer the path to high quality products without excessive assurance expenditures. This type of quality modeling requires the availability of software modules with known fault content developed in similar environment. However, collection of fault data at module level, particularly in new projects, is expensive and time-consuming. Semi-supervised learning and active learning offer solutions to this problem for learning from limited labeled data by utilizing inexpensive unlabeled data.;In this dissertation, we investigate semi-supervised learning and active learning approaches in the software fault prediction problem. The role of base learner in semi-supervised learning is discussed using several state-of-the-art supervised learners. Our results showed that semi-supervised learning with appropriate base learner leads to better performance in fault proneness prediction compared to supervised learning. In addition, incorporating pre-processing technique prior to semi-supervised learning provides a promising direction to further improving the prediction performance. Active learning, sharing the similar idea as semi-supervised learning in utilizing unlabeled data, requires human efforts for labeling fault proneness in its learning process. Empirical results showed that active learning supplemented by dimensionality reduction technique performs better than the supervised learning on release-based data sets

    Building Program Vector Representations for Deep Learning

    Full text link
    Deep learning has made significant breakthroughs in various fields of artificial intelligence. Advantages of deep learning include the ability to capture highly complicated features, weak involvement of human engineering, etc. However, it is still virtually impossible to use deep learning to analyze programs since deep architectures cannot be trained effectively with pure back propagation. In this pioneering paper, we propose the "coding criterion" to build program vector representations, which are the premise of deep learning for program analysis. Our representation learning approach directly makes deep learning a reality in this new field. We evaluate the learned vector representations both qualitatively and quantitatively. We conclude, based on the experiments, the coding criterion is successful in building program representations. To evaluate whether deep learning is beneficial for program analysis, we feed the representations to deep neural networks, and achieve higher accuracy in the program classification task than "shallow" methods, such as logistic regression and the support vector machine. This result confirms the feasibility of deep learning to analyze programs. It also gives primary evidence of its success in this new field. We believe deep learning will become an outstanding technique for program analysis in the near future.Comment: This paper was submitted to ICSE'1

    Machine Learning for Software Engineering: A Tertiary Study

    Full text link
    Machine learning (ML) techniques increase the effectiveness of software engineering (SE) lifecycle activities. We systematically collected, quality-assessed, summarized, and categorized 83 reviews in ML for SE published between 2009-2022, covering 6,117 primary studies. The SE areas most tackled with ML are software quality and testing, while human-centered areas appear more challenging for ML. We propose a number of ML for SE research challenges and actions including: conducting further empirical validation and industrial studies on ML; reconsidering deficient SE methods; documenting and automating data collection and pipeline processes; reexamining how industrial practitioners distribute their proprietary data; and implementing incremental ML approaches.Comment: 37 pages, 6 figures, 7 tables, journal articl

    Is "Better Data" Better than "Better Data Miners"? (On the Benefits of Tuning SMOTE for Defect Prediction)

    Full text link
    We report and fix an important systematic error in prior studies that ranked classifiers for software analytics. Those studies did not (a) assess classifiers on multiple criteria and they did not (b) study how variations in the data affect the results. Hence, this paper applies (a) multi-criteria tests while (b) fixing the weaker regions of the training data (using SMOTUNED, which is a self-tuning version of SMOTE). This approach leads to dramatically large increases in software defect predictions. When applied in a 5*5 cross-validation study for 3,681 JAVA classes (containing over a million lines of code) from open source systems, SMOTUNED increased AUC and recall by 60% and 20% respectively. These improvements are independent of the classifier used to predict for quality. Same kind of pattern (improvement) was observed when a comparative analysis of SMOTE and SMOTUNED was done against the most recent class imbalance technique. In conclusion, for software analytic tasks like defect prediction, (1) data pre-processing can be more important than classifier choice, (2) ranking studies are incomplete without such pre-processing, and (3) SMOTUNED is a promising candidate for pre-processing.Comment: 10 pages + 2 references. Accepted to International Conference of Software Engineering (ICSE), 201
    corecore