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ABSTRACT 

 

Semi‐Supervised and Active Learning Models  

for Software Fault Prediction 
 

Huihua Lu 
 

 
As software continues to insinuate itself into nearly every aspect of our life, the quality of software 
has been an extremely important issue. Software Quality Assurance (SQA) is a process that ensures 
the development of high-quality software. It concerns the important problem of maintaining, 
monitoring, and developing quality software. Accurate detection of fault prone components in 
software projects is one of the most commonly practiced techniques that offer the path to high quality 
products without excessive assurance expenditures. This type of quality modeling requires the 
availability of software modules with known fault content developed in similar environment. 
However, collection of fault data at module level, particularly in new projects, is expensive and time-
consuming. Semi-supervised learning and active learning offer solutions to this problem for learning 
from limited labeled data by utilizing inexpensive unlabeled data. 
 
In this dissertation, we investigate semi-supervised learning and active learning approaches in the 
software fault prediction problem. The role of base learner in semi-supervised learning is discussed 
using several state-of-the-art supervised learners. Our results showed that semi-supervised learning 
with appropriate base learner leads to better performance in fault proneness prediction compared to 
supervised learning. In addition, incorporating pre-processing technique prior to semi-supervised 
learning provides a promising direction to further improving the prediction performance. Active 
learning, sharing the similar idea as semi-supervised learning in utilizing unlabeled data, requires 
human efforts for labeling fault proneness in its learning process. Empirical results showed that active 
learning supplemented by dimensionality reduction technique performs better than the supervised 
learning on release-based data sets. 
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Chapter 1

Introduction

1.1 Software Fault Prediction Problem

As software continues to insinuate itself into nearly every aspect of our life, the qual-

ity of software has been an extremely important issue. Software Quality Assurance

(SQA) consists of activities that ensure the development of high-quality software. It

encompasses the development and implementation of methods and processes for quality

software, regardless of the underlying software development model being used.

To ensure high quality products, software engineers need undertake significant efforts to

ensure that software functions are intended while inspecting the risks of vulnerabilities

that could bring harm to the end user. Software quality inspection and improvement

can be detecting faulty software modules and reducing the number of faults occurring

during system operations. A software fault usually refers to a defect or a flaw in an

executable product that can cause system failures during operation. Faults in software

systems are major problem that need to be resolved. Software module is the lowest level

of software for which we have data, for example, java method or class.

It is critical to detecting where fault hides, as it allows verification and validation ex-

perts to concentrate their time, efforts, and resources on the potentially problematic

modules under development, thus enables Verification and Validation (V&V) activities

more effective [3–6]. On the other hand, learning the pattern how faults hide in code

helps software engineering improve their design or development in the future project or

release. Software fault prediction can identify faults in the current code base, but also

warns about future fault-prone areas.

1
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Over the past years, software fault prediction problem has been an important area of

research [7–11]. Given the shorter development and release life cycles, accurate detec-

tion of software fault relies increasingly on automated techniques. Machine learning

approaches are nature solutions to this type of problem. In a classic machine learning

procedure, a predictive model can be trained to form a set of learning rules or patterned

structures using training data set, such as historical software modules from previous

releases where fault contents are known. The trained model can be then used to esti-

mate the fault content of modules currently developed, for example, modules in a newly

developed subsystem or in an upcoming project release. Depending on the learning

problem, machine learning can be narrowed down into two categories, regression based

methods and classification based methods. Target variable refers to ‘response’ variable

in statistical language, or ‘label’ in machine learning literature. For regression problem,

the target variable can be the number of faults associated with each software module.

For classification problem, the target variable is a binary variable, fault proneness (fp) or

non-fault proneness (nfp). Predicting the exact amount of faults is too risky, especially

in the early development stage when only little information is available. Classifying

software into fp or nfp can be more general and reliable. Throughout this dissertation,

we focus on the binary classification problem in software fault prediction.

Besides the target variable, an important element in software fault prediction problem is

the software metrics, or so-called features in machine learning. Most widely used software

metrics includes static code metrics, Object-Oriented (OO) metrics, development process

metrics, complexity metrics of modules, network based metrics and many others. The

basic idea behind using software metrics is that, for example, more complex the code

is more likely to have faults, or a software component is likely to be fault prone if it

is similar to other faulty components in code structure or code complexity. Software

metrics, for example the static code metrics, can be obtained using automated data

collection tools. Typically, software metrics together with their fault contents form the

basis of software fault prediction learning data, or training data.

For binary classification problem, software fault prediction models can be assessed using

confusion matrix based criteria. The most widely used are accuracy, recall, precision,

F-measure, G-mean, or the more recently used AUC measure. In addition, other criteria

are also important when deploying fault prediction models in a development environ-

ment, including ease of use, computational efficiency, or model comprehensibility.
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1.2 Machine Learning in Software Fault Prediction

Software fault prediction models have been studied since 1990s until now. There have

been numerous efforts of applying various types of approaches in software fault prediction

problem. Many of them aim to propose approaches to allocate limited SQA resources

in a cost effective manner by utilizing machine learning approaches [12–14].

Machine learning practitioners have used unsupervised learning approaches and super-

vised learning approaches to estimate the fault contents of software modules, depending

on whether labels are available or not in training data. Learning approaches with given

labels in the training data set refers to supervised learning. Learning with no labels

in the training data set refers to unsupervised learning. Both are important learning

branches in machine learning and have been widely employed in software fault predic-

tion problem. Intuitively, unsupervised learning approaches are good choices for new

developed system which has no previous subsystem or release[15, 16], while supervised

learning approaches are preferred when the previous subsystem or releases are tested

and the corresponding fault contents are obtained[17–20].

In unsupervised learning setting, fault prediction models are built based on the natural

structure and distribution of the data points. K-mean and hierarchical clustering are

popular unsupervised learning approaches to software fault prediction practitioners. The

underlying assumption is that software modules are likely to be labeled the same if they

are closely connected to each other or highly grouped together. After the clustering

analysis, software experts can label the clusters as either fp or nfp without inspecting the

modules one at a time. This eases the labeling task and also saves budget consumed on

labeling for each module. This could be significantly important in software development,

especially when the software delivery date is urgent and the budgets are very limited.

The challenge for unsupervised learning approaches is that the performance of the fault

prediction is highly affected by the violation of the density (clustering) assumption,

especially, for the situation when the data is strongly imbalanced or the clusters of

minority class and majority class are significantly overlapped.

In supervised learning setting, software modules together with their fault contents form

the training data set and the trained models can be used to predict fault contents of

software modules currently under development. Logistic regression, Naive Bayes, tree-

based methods, k-nearest neighbors and support vector machines are commonly used

supervised learning approaches. The assumption for supervised learning approaches is

that modules in training set and test set are from the same data space. Usually, super-

vised learning can provide relatively better performance in fault prediction comparing

to unsupervised learning as it fits model with given fault contents. They thus are more
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preferred in practice. However, to ensure high accurate in prediction supervised learning

requires a reasonably large set of labeled modules (training set). The more fault contents

in the training set the more accurate the trained model. A small set of fault contents

will probably mislead the training and bias may arise. This requirement could be hard

to meet the development schedule is tight or the budget is limited.

1.3 Practical Problems in Software Fault Prediction

Despite years of researches, the study of software fault prediction seems to have reached

a plateau. According to recent studies, the probability of detection (PD) (71%) of fault

prediction models may be higher than PD of software reviews (60%) if a robust model

is built [21]. In this section, we discuss the practical problem or limits that causes such

plateau.

1.3.0.1 Limited Fault Data

To build a desirable predictive model, it requires the training data set, i.e., software

fault data as large as possible. Most of the past studies in literature assume that there

are enough fault data to build the prediction models. Literature in the field indicates

that researchers typically utilize at least 50% of software modules for training[1, 22].

However, sometimes we cannot have enough fault data to build accurate models. For

example, a new project may have no previous release. On the other hand, labeling

large amount of modules consumes time and human resources, which leads to a higher

developing budget. This is problematic for most learning approaches, but particularly

weighs in on supervised learning approaches.

1.3.0.2 Imbalance in classes

One characteristic of software fault data is that the amount of faulty modules is usually

smaller than that of non-faulty modules. Sometimes, such imbalance can be significant.

Part of experimental data used in our study are software projects from PROMISE repos-

itory, which are very typical examples reflecting the imbalance problem of software fault

data (Table 3.1). Like most imbalance data prediction problem, the interest of study is

on the “rare” class - the fault proneness class. Unfortunately, most commonly used clas-

sification approaches are designed to minimize the overall error rate rather than paying

particular attention on the “rare” class[23]. Thus they may not work well for imbalance
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data prediction problem. As a consequence, the effectiveness of predictive approaches

can be vague if invalid performance measures are used.

1.3.0.3 Low quality in software data

Data Quality is another important issue for software fault prediction problem. Data

may be low quality for the following reasons. First, a module may be contaminated

by noise, that is, either the complexity metrics or the labels associated to modules are

inaccurate. Second, a module may be an outlier in the class it belongs to, which is

a typical observation or case. An outlier may or may not be contaminated by noise.

The third, software data may be considered low quality if it contains missing values.

Although several of imputation methods are available, additional bias or noise may be

introduced into the data by missing data imputation. Finally, some other quality issues

related to predictors could be constant predictors or inconsistent instances [24, 25]. As

by now, very few studies report any data-processing scheme prior to fault prediction

process.

The goal of our study is to innovate effective predictive approaches to address the limits

in traditional predictive methods. Lacking of labeled data such as the limited fault data

problem can be referred to as the |L| << |U | case where the labeled size is significantly

smaller than the unlabeled size, where L denotes the set of labeled data and U de-

notes the set of unlabeled data. Intuitively, the knowledge stored in unlabeled modules

provides information that can achieve better performance for fault prediction. Thus,

semi-supervised learning or active learning is an ideal solution to solve such problem

due to their ability of incorporating information from unlabeled data.

1.4 Semi-supervised learning in Software Fault Prediction

problem

Semi-supervised learning has received considerable attention in the machine learning

literature due to its potentials in reducing the need for expensive labeled data software

fault contents. It has proven successful in image recognition, speech recognition, text

categorization, protein structure prediction, and many other domains. Semi-supervised

learning falls somewhere between supervised learning and unsupervised learning. In

fact, most semi-supervised learning approaches are based on the extension of either

supervised learning or unsupervised learning approaches. In a semi-supervised learning

setting, both labeled and unlabeled data are used as training data set. With the help

of unlabeled data the amount of labeled data could be reduced which in turn reduces
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the cost of labeling for training data [26, 27]. The underlying hypothesis for semi-

supervised learning is that knowledge stored in unlabeled modules aids in improving the

overall performance of classification.

In this section we will give a brief review on the history of semi-supervised learning.

There has been a whole spectrum of interesting ideas on how to learn from both labeled

and unlabeled data. It should be noted that semi-supervised learning is a rapidly evolv-

ing field, and the review is necessary incomplete. According to our knowledge, traditional

semi-supervised learning algorithms can be roughly classfied into four categories:

1. Generative algorithms (such as EM algorithm [28]);

2. Iterative algorithms (such as self-training and co-training [29, 30]);

3. Density based algorithms (such as transductive-SVM [26]);

4. Graph based algorithm [26, 27].

The generative algorithms require the assumption of data distribution prior to learning.

It is common to assume that the data is from multivariate normal distribution, so that

the prediction of labels turns out to be the problem of estimating the missed parameters

of a normal distribution (µ and Σ). The early work of generative algorithm in semi-

supervised learning assumes that the complete data comes from a mixture Gaussian

distribution. Let a full generative model be p(D|θ) = p(X,Y |θ), thus the generative

model for semi-supervised learning is:

P (D|θ) = P (Xl, Yl, Xu|θ) =
∑

Yu

p(Xl, Yl, Xu, Yu|θ) (1.1)

where θ = {w, µ,Σ} with Gaussian model p(x, y|θ) = p(y|θ)p(x|y, θ) = wyN(x;µy,Σy.

The goal is to find θ to maximize P (D|θ). The θ can be solved using maximum likelihood

estimation (MLE). For simplicity, consider binary classification problem using MLE, the

labeled data has: logp(Xl, Yl|θ) =
l∑
i

logp(yi|θ)p(xi|yi, θ). For labeled and unlabeled

data, it becomes:

logp(Xl, Yl, Xi|θ) =

l∑

i=1

logp(yi|θ)p(xi|ui, θ) +

l+u∑

i=l+1

log(

2∑

y=1

p(y|θ)p(xi|y, θ)) (1.2)

The Expectation-Maximization(EM) algorithm is a nature solution to find the optimum.

Typically, EM algorithm contains two steps - E-step and M-step. The algorithm starts



Chapter 1. Introduction 7

from MLE θ by calculating θ = {w, µ,Σ}on(Xl, Yl). At E-step, the algorithm computes

the expected label p(y|x, θ) = p(x,y|θ)∑

j

p(x,yj |θ)
for all x ∈ Xu. At the M-step, the algorithm

updates MLE θ with (now labeled) Xu. This procedure repeats the E and M steps until

it converges to a local maximum of θ. Generative semi-supervised learning approaches

are in a clear and well-studied probabilistic framework. It can be extremely effective if

the model is close to correct. Unfortunately, it is often difficult to verify the correctness

of the model assumption. The classification performance may be bad if generative model

is wrong.

Unlike generative models, iterative semi-supervised learning algorithms, also called boot-

strapping algorithms, do not reply on the knowledge of data distribution. They are ba-

sically wrapper methods that apply to existing classifiers. Self-training and co-training

are two representatives in this category. The earliest self-training algorithm is called

Yarowsky algorithm, which becomes widely known in computational linguistics. Later

versions of self-training algorithms are about variants of the Yarowsky algorithm. The

Yarowsky algorithm contains two loop. The inner loop is a supervised learning algorithm

and called as base learner, consisting of a list of decision rules - If instance x contains

feature f , then predict label j. The base learner selects those rules whose precision on

the training data is highest. The Outer loop of self-training is given a seed set of rules to

start with. In each iteration, it uses the current set of rules to assign labels to unlabeled

data. Then, it selects those instances on which the base learners predictions are most

confident. It then calls the inner loop to construct a new classifier and the cycle repeats.

Abney has introduced a modified Yarowskey algorithm which differs to the original one

in two points: 1) once an unlabeled example gets labeled it stays labeled; 2)the labeling

threshold is fixed to be 1/L. In his study, he showed that the original Yarowsky algorithm

aims to minimize an objective function. They proposed several variants of Yarowsky

algorithm based the difference of objective function. The object function is the cross

entropy between the prediction distribution of the model and the labeling distribution

over all instances. For labeled instances the entropy of the labeling distribution is zero.

Minimizing the objective function forces unlabeled data to be labeled, and forces the

model to maximize the likelihood of the (old and newly) labeled data.

In contrast to self-training which iteratively trains a single base learner, co-training

requires data attributes to be naturally separated into two views that are conditionally

independent given the target label. It is showed that the classifier trained on one view

has low generalization error if it agrees on unlabeled data with the classifier trained on

the other view. There are also studies to extend two views into multi-views.
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The main assumption for self-training and co-training is that the confidence prediction

by base learner(s) is correct. That says both algorithms heavily rely on the base learner.

This also implies that early mistake in iterative semi-supervised learning could reinforce

themselves.

Next category of semi-supervised learning is density-based algorithm. The assumption

regarding density-based algorithms is that the data can be naturally grouped into clus-

ters according to the classes they belong to. Given the clustering assumption of the

density-based algorithms, the semi-supervised learning problem can be viewed as the

maximizing margin problem, i.e., the optimizing marginal technique based algorithms.

With the rising popularity of support vector machine, transductive SVMs emerge as

an extension of standard SVMs to semi-supervised learning. Transductive SVMs, also

called as semi-supervised SVMs or S3VMs, is a method to improve the generalization

accuracy of SVMs by using unlabeled data. S3TMs, like SVMs, learn a large marginal

hyper-plane classifier using labeled training data, but simultaneously force this hyper-

plane to be far away from the unlabeled data. More specifically, it aims to find a decision

boundary that lies in the region of low density in terms of both labeled and unlabeled

data. Therefore, it assumes that the underlying distribution of two classes is such that

there is a low-density region between them.

The original S3VMs is based on an iterative algorithm. At the initial iteration, the

standard SVMs is used to obtain an initial separating hyper-plane based on the labeled

data. Then, pseudo labels are given to the unlabeled samples, which are thus called semi-

labeled data. After that, transductive samples chosen from the semi-labeled patterns

according to a given criterion are used to define a hybrid training set made up of these

semi-samples together with original training samples. The resulting hybrid training set

is used at the following iterations to find a more reliable discriminant hyper-plane. This

hyper-plane can be derived as follows:

min
w,ξl,ξu

{
1

2
wTw + C

n∑

l=1

ξl + C∗
d∑

u=1

ξu},

s.t.yl[w
Tφ(xl) + b] ≥ 1− ξl, ξl > 0,

yu[w
Tφ(xu) + b] ≥ 1− ξu, ξu > 0

(1.3)

where C is the penalty term for misclassification vector ξl, and C∗ is the penalty term

for misclassification vector ξu. φ(.) is any mapping function. yu or ŷu is the prediction

from previous iteration.
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In order to handle non-separable training and transductive data, similarly to the SVMs,

the slack variables ξl and ξu, and the associated penalty value C and C∗ of both the

training and transductive instances are introduced. d(d < m) is the number of selected

unlabeled samples for transductive learning. S3VMs provides a clear mathematical

framework and applicable wherever SVMs are applicable. However, S3VMs has difficulty

of optimization and can be trapped in bad local optima. On the other hand, it has more

modest assumption than generative model or graph-based approaches.

For graph-based semi-supervised learning, the data are represented by a graph, where

the edges are labeled with the pairwise similarities. All graph algorithms aim to compute

a soft assignment of labels to the nodes of a graph G = (V,E,W ), where V is the set

of nodes, E is the set of edges, and W is an edge weight matrix. If edge (u; v) /∈ E,

Wuv = 0. The assumption of the graph-based semi-supervised algorithms is that the

points connected in a high-density region should belong to the same class.

1.5 Active learning for Software Fault Prediction problem

An alternative to semi-supervised learning to address the limited labeled data problem is

active learning. The idea of active learning is to improve fault prediction performance by

augmenting the training data set with intelligently sampled unlabeled data set. Active

learning has many overlaps with iterative semi-supervised learning. For example, active

learning requires a base learner iteratively pick the instances from the pool of unlabeled

data set in the same way in semi-supervised learning. The key difference between the

two learning schemes is that active learning requires the true labels by interacting with

an outer oracle, who has expertise to provide ground truth of labels[31]. The general as-

sumption behind active learning is that good prediction performance can be achieved by

using only “essential data. This characteristic of active learning is desirable in situations

where the availability of labeled data is limited.

Active learning approaches vary from different sampling mechanism. There is a class of

strategies to sample the data from which to learn. The most popular ones are uncertainty

sampling, query-by-committee (QBC), expected error reduction, and density weighted

methods [32]. Of these, uncertainty sampling is the most widely used one in machine

learning literature. The motivation behind uncertainty sampling is finding unlabeled

instances that contain most uncertainty, and use them to clarify the decision boundary.

One simplest strategy is to query the instances about which it is least confident how to

label. This approach is straightforward for probabilistic learning models. For example,

when using a probabilistic model for a binary classification problem, the instances with
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most uncertainty are those with posterior probability closest to 0.5 typical decision

cutoff for binary classification with balanced class sizes.

For multi-class problem this least confident criterion only considers information about

the most probable label. It “throws away” information about the remaining label distri-

bution. To correct for this shortcoming, a more general uncertainty sampling strategy is

to use entropy as an uncertainty measure. In this case, one can consider it as selecting

instances that maximize the Shannon entropy:

H(y|x) = argmax
x

−
∑

i

P (yi|x)logP (yi|x), (1.4)

where H(x) is the uncertainty measurement function based on the entropy estimation

of the classifier’s posterior distribution. P (yi|x) is the posteriori probability. For binary

classes, both least confidence and entropy-based strategy reduce to be equivalent. In

our case, y ∈ {0, 1} where 1 stands for defect prone packages and 0 stands for not defect

prone packages. The highest uncertainty score implies that the current learner has the

least confidence on its classification of this unlabeled component, thus should be selected

first.

The QBC method construct an ensemble of learners induced over labeled data and

request labels for instances in unlabeled data set for whose class ensemble members

most disagree. This method is inspired by computational learning theory, that is, each

committee member may be viewed as a hypothesis consistent with the instances in

labeled data set. Acquiring a label for an instance about which two or more hypotheses

disagree can be seen as a means of explicitly shrinking the version space, comprising of

the hypotheses consistent with labeled data set.

Expected error reduction is decision-theoretic approach, which aims to measure not

how much the model is likely to change, but how much its generalization error is likely

to be reduced. Instances in unlabeled data set that directly minimize the expected

model prediction error should be archived by acquiring a label. This expectation can be

computed using the current model. Expected error minimization is appealing because

it explicitly maximizes the prediction accuracy. However, in terms of software fault

prediction, this type of approaches could be problematic, due to the accuracy is not a

suitable performance measure for imbalance class problem in fault data.

Density-weight active learning is a relatively new approach in this subject. The idea

behind is that informative instances should not only be those, which are uncertain, but

also those which are representative of the underlying distribution. For example, one can

query instances by maximize following equation:
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argmax
x

φA(x)× (
1

U

∑

u

sim(x, x(u)))β , (1.5)

where φA(x) represents the informativeness of x according to a learner A. The second

term weights the informativeness of x by its average similarity to all other instances in

the vector space of unlabeled data, subject to a parameter β controlling the relative

importance of the second term, i.e., the weights. Density-weighted active learning varies

when different learners of A or different similarity approaches sim are used.

In this dissertation we investigate the uncertainty-sampling active learning for software

fault prediction problem considering that it is straightforward for probabilistic learning

models. We will come back to this with detail in chapter 5.

1.6 Outline

The outline of this proposal is as follows. Chapter 2 provides a literature review for

software fault prediction problem. In Chapter 3, we present experimental results of

investigating semi-supervised learning in SFP problem. Chapter 4 extends the similar

experiments using semi-supervised learning approach with supplemented by dimensional

reduction technique. In chapter 5, we present our experiments using active learning

approaches. In Chapter 6, we revisit the active learning to release base software data

set. Finally, conclusion of our study and future work are discussed in Chapter 7.



Chapter 2

Literature Review

Software fault prediction involves the identification of software locations what quality

assurance efforts should focus on. It is one of the most important research areas in

software engineering. Studies regarding on software fault prediction can be dated back

to the mid 1970s. Each of these studies used their own unique data, features, and

predictive techniques and evaluated their models differently. It is important to study

the prior work in order to better understand the assumptions and implications of their

work. In this Chapter we discuss the elements in software fault prediction models and

review the prior literature in the area essential to understanding the role of machine

learning in software fault prediction problem.

2.1 Distribution of Faults in Software Systems

A software fault is defined as flaws or imperfection found within code, which may cause

the system or system component to fail to perform as required. Faults can be introduced

into code at any phase of the software life cycle. In [33], it was discovered that faults

in software product are not uniformly distributed throughout the code by investigating

three evolutionary releases of a software product. They claimed that the fault rate

increases when parts of the code for a new release are modified or newly developed code

is added. [34] stated that nearly half of all faults in their telecommunication software

system were related to coding faults, majority of which could have been prevented. A

recently study based on data extracted from NASA mission stated that requirement

faults, coding faults and data problems are the most common types of software faults

[35]. They also suggested that observed common trends in software faults are likely

intrinsic characteristics rather than project specific.

12
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The analysis of fault distribution in the development of software systems is an area of

interest to software developer as well as empirical researchers. [36] investigated four basic

fault distribution hypotheses on two releases of a large commercial telecommunications

system. One of the hypotheses showed that a small number of modules contain the

majority of faults, that is approximately 20% of all faults are concentrated in about

80% of the modules which follows the Pareto principle. This observation was replicated

and confirmed by [37–39]. Later on by Zhang [40], it was shown that the distribution

of software faults can be more precisely described as the Weibull distribution, where

they implemented Eclipse data and analyzed the distribution of its faults across models

in package level. [41] discussed both Pareto and Weibull distribution and proposed a

generalized pareto model to assess software fault distribution. Their results showed that

the modified pareto model highly fit to the actual fault data.

Another important hypothesis in [36] concerned the similarities in fault densities within

project phases or cross projects. This hypothesis was partly supported by their obser-

vation. The same hypotheses are replicated in [42] and [43] which confirmed Fenton’s

investigation by revisiting the same four hypotheses on different multi-releases software

systems.

2.2 Software Metrics

The size metrics, such as the lines of code (LOC), are widely used prediction metrics

that are the simplest and easiest to be extracted. Numerous studies investigated the

relationship between size of modules and the number of faults, such as [36, 44, 45].

Some studies directly built linear regression models by using software module size as the

predictor and fault count as the response. Others derived models analytically first and

then fit the data to validate those models, such as Lipow’s logarithmic model and Cox

proportional hazard model [45, 46]. In [47], Koru applied cox models and further pro-

viding evidence that there is a power-law relationship between size and fault proneness

with the latter increasing at a slower rate. This observation supports their hypothesis

that smaller modules are proportionally more fault prone. They thus recommended fo-

cusing quality assurance resources on smaller modules, as they are more cost effective,

i.e., more faults will be found in the same amount of code. This studies were further

confirmed in [48] by the study of four large-scale object-oriented products.

In [36], a hypothesis regarding whether size metrics are good predictors of faults is also

tested. Their observation shows that size metrics correlate with the number of faults,

but there is no strong evidence that size metrics are a good predictor of faults. Limited

supporting to the hypothesis was also observed in [42, 43].
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In addition to size metrics, complexity metrics such as McCabe’s cyclomatic complexity

[49] and Halstead’s metrics [50] are also widely used as fault prediction metrics. Some

important studies using complexity metrics can be found in [22, 51, 52]. Fenton and

Ohlsso [36] reported that complexity metrics are reasonable predictors but not the best.

They observed that both the McCabe and halstead metrics are highly related to each

other and to the lines of code. Zhou [53] also noted that size metric has strong con-

founding effect on association between complexity metrics and fault proneness and that

the explanatory power of complexity metrics is limited.

In a recent study[54], the authors reviewed 106 paper published between 1991 to 2011

and concluded that Object-Oriented metrics and process metrics are more successful

at fault prediction than traditional size metrics and complexity metrics. Their findings

are similar to those of Hall’s study [55] for size, complexity and OO metrics, but differ

regarding process metrics. In Hall’s paper, they reported that process metrics performed

the worst among all metrics.

Although most of the research done in recent years focused on the impact of structural

properties and process aspect of software component on fault-proneness, there are a few

studies that investigated other types of prediction metrics. For example, Nagappan [56,

57] used code churn together with dependency metrics to predict fault-prone modules.

In [58] counted the number of changes done in a module as well as the average age of

the code.

2.3 Software Fault Prediction Models

Identifying fault in software components effectively is an economically important activ-

ity. Software fault prediction is a well-understood research field and has been studied

for more than three decades. There exist a large number of modeling techniques to build

fault prediction models in the literature. These techniques include statistical modeling

techniques such as discriminant analysis [59–61], regression based models [62–66], and

machine learning techniques like Naive Bayes [1, 67, 68], random forest [13, 69–71],

C4.5 [12, 72, 73], neural network[74–78], and many others[79–85]. In [54], a system-

atic review on modeling techniques according 106 papers published from 2000 to 2010

indicated that statistical techniques, primarily logistic regression and linear regression,

were used in 68% of the studies, while machine learning techniques were used in 24% of

the studies. There are only 8% studies focusing on correlation analysis. However, even

the large amount of studies, there is still no consensus on which modeling techniques

perform the best when individual studies were viewed separately. Some researchers have
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been conducting empirical overview of various software quality prediction techniques

and analyze their performance in terms of various software datasets.

Khoshgoftaar and Seliya [72] compared seven fault prediction techniques that were built

using a variety of tools. The models were built using different regression and classification

trees including C4.5, CHAID, different versions of CART, logistic regression, and case-

based reasoning. The techniques were evaluated against each other by comparing a

measure of expected cost of misclassification. The differences between the techniques

were at best moderate. They explained that the datasets and system characteristics

affect the performance of prediction models.

Guo et al. (2004) compared 27 modeling techniques including random forest, logistic

regression and other techniques available through the WEKA tool using five projects

from NASA repository. The study compared the techniques using five different datasets

from the NASA MDP program, and although the results showed that Random Forests

perform better than many other classification techniques in terms of accuracy and speci-

ficity, the results were not significant in four of the five data sets.

In [86], the authors compared the performance of thirty predictive techniques on two

datasets - JEditData and AR3 from PROMISE repository. This study showed that clas-

sification via regression technique and LWL performed better than the other techniques.

However, this study was inconclusive as it only used two datasets.

Jiang and Cukic [87] claimed that comparison of fault prediction models is a multi-

dimensional problem. Their results across multiple software projects as well as perfor-

mance measures showed that there was rarely one model that can be proved to be the

best for all possible uses in software quality assessment.

Elish and Elish [88] compared SVM against eight other modeling techniques. The mod-

eling techniques were evaluated in terms of accuracy, precision, recall and the F-measure

using four data sets from the NASA Metrics Data Program Repository. All techniques

achieved an accuracy ranging from approximately 0.83 to 0.94. Their results showed

that there were some differences, but no single modeling technique was significantly

better than the others across data sets.

Vandecruys [89] compared Ant Colony Optimization against well-known techniques like

C4.5, support vector machine (SVM), logistic regression, K-nearest neighbor, RIPPER

and majority vote. In terms of accuracy, C4.5 was the best technique. However, the

differences among the techniques in terms of accuracy, sensitivity and specificity were

moderate.
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Lessman [2] tried to benchmark classification techniques for software fault prediction

problem. In his study, 22 techniques over 10 public domain datasets from NASA reposi-

tory were compared. However, there are no significant performance differences detected

among these techniques. He also argued that fault prediction techniques should not

be judged on their predictive performance alone, but that other aspects such as com-

putational efficiency, ease of use, and especially comprehensibility should also be paid

attention to.

Menzies [1] achieved fault prediction performance of pd=71% and pf=25% on NASA

projects using Naive Bayes leaner (with logNum filter) as predictive model, but they also

admit that the conclusion may not still apply when the data sets are changed. Another

study by Menzies [12] also suggested that to select a preferred learner for a particular

domain.

Catal and Diri [90] collected 74 software fault prediction papers in 11 journals and several

conferences. According to their review, they indicated that machine learning techniques

have better features than statistical methods or expert opinion based approaches, and

they suggested that the percentage usage of machine learning techniques should be

increased. An extension to this study can be found in [91] where Catal investigated 90

software fault prediction papers published from 1990 to 2009 and provided review on

each papers in terms of the year the papers published. Current trend in software fault

prediction domain was discussed in their paper.

Arisholm [85] compared many data mining and machine learning methods to build pre-

dictive models in an industrial setting for a java system. They showed that the choice

of predictive techniques has limited impact on the resulting classification accuracy or

cost-effectiveness. They argued that fault prediction techniques that are ranked, as the

best is highly dependent on the evaluation criteria applied. Thus, it is important that

the evaluation criteria should be justified in the context in which the models are to be

applied.

Tracy [55] reviewed 208 papers in term of software fault prediction from 2000 to 2010.

They illustrated that simple technique, such as Naive Bayes and Logistic Regression

perform comparatively well comparing to technique like SVM and C4.5. However, they

also claimed that models seem to have performed best where the right techniques have

been selected for the right set of data.

D’Ambros [92] provided a benchmark for software fault prediction models using publicly

available datasets consisting of several software systems. They presented an extensive

comparison of well-known prediction techniques as well as novel approaches. Their

results showed that, while some approaches perform better than others in a statistically



Chapter 2. Literature Review 17

significant manner, external validity in defect prediction is still an open problem, as

generalizing results to different context/leaners proved to be a partially unsuccessful

endeavor.

Dejaeger [93] investigated 15 different Bayesian Network algorithms and compared them

to other popular machine learning techniques in terms of the AUC and H-measure. Their

results showed that augmented Naive Bayes could perform similar or better than the

commonly used Naive Bayes classifier. They also claimed that the development context

is an item, which should be taken into account during modeling selection.

Recently, a new study [94] evaluated 179 machine learning classifiers, arising from 17

families, over 121 data sets. They concluded that “the classifiers most likely to be

the best are the Random Forest (RF) versions”. However, they also recognized that

the best-performed classifier has no significantly different with the second best - SVM

classifier.

2.4 Semi-supervised and Active learning in Software Fault

Prediction problem

To our knowledge, semi-supervised learning has been marginally considered in the field

of software fault-proneness prediction. The earliest study is the work from Khoshgof-

taar on NASA MDP software projects[95]. In their study, an EM-based semi-supervised

learning algorithm was implemented. As we’ve discussed in previous section, the EM

algorithm is natural to this problem since one could view the labels of unlabeled in-

stances as missing and thus semi-supervised learning can be reduced to be missing data

problem. In their study, a case study is presented in which NASA software project JM1

is used as training data for software measurement modeling. A small size of labeled data

is randomly selected from JM1, while remaining modules are treated as the unlabeled

dataset. The performance of the EM-based semi-supervised algorithm is evaluated with

multiple test datasets consisting of other NASA software projects. Their results demon-

strated that the semi-supervised learning approach yielded better performance than a

decision tree algorithm - C4.5 trained on program modules with known fault proneness

data. Unfortunately, unlike random forest, C4.5 has not been identified as one of the top

supervised learning algorithms on the MDP data set [2] making this result inconclusive.

They also examined the modules remaining in the unlabeled dataset to be noisy from

the perspective of data mining. They observed that roughly half of the modules that

remain were in common as noisy.
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Another interesting approach is semi-supervised clustering [96]. Unlike in self-training

which extends supervised learning into semi-supervised learning, this approach extends

traditional unsupervised learning (clustering) into semi-supervised context so that better

partitions (or grouping) is achieved with the use of unlabeled data. However, this is not

an entirely automated approach and requires software engineering experts in the loop.

Semi-supervised clustering improves the performance compared to the corresponding

unsupervised learning, but unsupervised learning does not perform as well as supervised

learning. Hence, it is not likely that semi-supervised clustering is a good candidate for

practical applications.

Catal[97] proposed an artificial immune system based semi-supervised learning approaches.

In their proposed approach, a recent semi-supervised learning algorithm called YATSI

(Yet Another Two Stage Idea) is used and in the first stage of YATSI, AIRS - Artificial

Immune Recognition System - is applied. In addition, AIRS and Random Forest are

benchmarked. Their experiments showed that the performance of AIRS based YATSi

are comparable with Random Forest algorithm.

Kocaguneli [98] proposed an active learning solution to the problem of software effort

estimation which relax the label data requirement. The proposed approach requires

at most 40% of the original data and can perform as well as state-of-the-art supervised

learners, which require all the available instances and labels. The reduced set of instances

that can provide performance values as good as using all the instances is called as the

essential content of the dataset.

Guangchun [99] implemented a two-stage active learning algorithm (TAL) for software

defect prediction, in which clustering and support vector machine techniques are com-

bined. Their results show that the proposed method improves the performance with a

moderate labeling effort.

Li[100] proposed a software fault prediction approach which maps ensemble learning,

random forest, into semi-supervised learning setting. Three methods of sampling were

discussed in this study: random sampling with conventional machine learners, random

sampling with semi-supervised learning learner and active sampling with active semi-

supervised learning learner. The proposed semi-supervised learning methods - CoForest

and ACoForest - then construct defect prediction models based on selected samples. In

their CoForest method, random forest is trained using initially labeled modules. Each

random tree is then iteratively refined with the original labels and the labels assigned

to previously unlabeled modules from the other random trees. When the stop criterion

is reached, the majority voting from the ensemble forms the prediction. CoForest is a

disagreement-based semi-supervised learning algorithm, which exploits the advantage of

both semi-supervised learning and ensemble learning. The ACoForest method extends
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CoForest by actively selecting and labeling some previously unlabeled data from train-

ing the classifiers. Their results showed that the prediction models constructed using

CoForest and ACoForest can achieve better performance than those using conventional

machine learning techniques, such as logistic regression, decision tree and Naive Bayes.



Chapter 3

Semi-Supervised Learning for

SFP problem

3.1 Semi-Supervised Learning approaches

Semi-supervised learning has tremendous practical value. In manay tasks, there is a

dearth of labeled data. The labels Y may be difficult to obtain because they require

human annotators, special devices, or expensive and slow experiments. Labeling fault

data in software development falls in this category. Semi-supervised learning is attrac-

tive because it can potentially utilize both labeled and unlabeled data, assuming that

information hidden in unlabeled data are useful in term of prediction.

In the past decade, semi-supervised learning has provided a class of classification ap-

proaches that can outperform corresponding supervised learning approaches, especially

when | L |<<| U |. Of particular note is self-training, which is the simplest and has less

restriction on data compared to the others. One can take a supervised approach as base

learner and extend it to semi-supervised learning by an iterative procedure. There are

different variants of self-training. The classic one is to take the instances with the high

confident scores from unlabeled data and then incorporate them (along with the corre-

sponding predictions) into the initial labeled data to train a new leaner for subsequent

iteration. The procedure repeats until converge or some stop criterion is met.

Yarowsky’s algorithm [101] is the earliest version of such approach in which a simple

decision list learner forms the “inner loop”. If instance x contains feature f , then

predict label j, and selects those rules whose precision on the training data is highest.

The Outer loop of Yarowsky’s algorithm is given a seed set of rules to start with. The

initial Yarowsky algorithm is extended with important modifications such as those from

20
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Abney et al. [102] and Haffari et al. [103]. The former argued that the best threshold

could be fixed at 1/n where n is the size of initial labeled data, and an instance must

stay labeled once it becomes labeled, but the label may change. The latter provided a

general framework together with mathematical analysis on the variants of the Yarowsky’s

algorithm.

In this study we investigate two variants of traditional self-training based semi-supervised

approaches in fault prone prediction problem: (i) the existing Fitting The Fits (FTF)

approach [104] and (ii) a new variation called Fitting The confident Fits (FTcF).

3.1.1 Notation Definition

To begin, let X be the (n + m) × p matrix that denotes the given software data set.

n is the size of labeled set l and m is the size of unlabeled set u. Rows in X are

p-dimensional vectors defined as x, with x ∈ ℜp. Specifically, X = {Xl, Xu}, where

Xl = {x1, x2, · · · , xn} and Xu = {xn+1, xn+2, · · · , xn+m}. Let Y = {Yl, Yu} be response

variable (or labels) where Yl = {y1, y2, · · · , yn} and Yu = {yn+1, yn+2, · · · , yn+m} is

missing or unspecified. The observed labels are binary variables, yi ∈ {0, 1}, where 0

denotes non-fault prone (nfp) module and 1 denotes fault prone (fp) module.

Our task with the investigated algorithms is to extend supervised learning into semi-

supervised setting. Let φ(.) be any given supervised learner (base learner). Given a set

of input-output pairs Dl = (Xl, Yl), the notation φDl
(Xu) indicates that the classifier

trained from Dl is used to predict on unlabeled data set Xu. The probability class

estimates (PCEs) for fault prone class, p̂ = P (Y = 1|Xu), are returned. PCEs are a

specific form of confident scores which is generally used in the literature. Commonly,

we consider a module as fault prone when p̂ > τ and non fault prone otherwise, where

p̂ ∈ [0, 1] and τ is a specified threshold for making the decision.

3.1.2 Fitting The Fits algorithm - FTF

The FTF algorithm provides an interesting variant of traditional Yarowsky algorithm by

extending learners from a supervised setting into a semi-supervised setting. It initially

sets up the labels for unlabeled data to ensure that both the labeled set and the unlabeled

set are labeled, and then a supervised procedure is implemented on the entire data set.

The labels for the unlabeled data are gradually updated until a convergence criterion is

met. This is different from Yarowsky’s algorithm in which only a subset of unlabeled data

is used to train a new classifier at each iteration. Also, FTF can be shown to globally

converge which is a property that cannot be achieved with Yarowsky’s algorithm.
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Figure 3.1 gives the description of the FTF algorithm. The procedure of FTF starts with

setting the initial labels for the unlabeled data at the 0th iteration. Specifically, a learner

is trained from initial labeled data D
(0)
l = (Xl, Yl), and then the learner is used to predict

the labels for unlabeled data Ŷ
(0)
u = φ

D
(0)
l

(Xu). In the loop, labels for initial labeled

data set are always reset to be original values Ŷ k
l = Yl (step 3). The base learner which

is built based on current status of entire data set D(k) = (X, Ŷ (k)) is used to predict

new labels for entire data set Ŷ (k+1) = φ
D

(k)(X) (step 4). This cycle continues until

the statuses of labels converge. We observed that the convergence property is sensitive

to the use of base learner, which will be discussed later. Note that the predictions of

unlabeled data Ŷ
(k)
u are the probability values (PCEs) in the sense that in the loop the

learner trained is regression based.

Algorithm1: Fitting The Fits (FTF)

1: Initialization: Ŷ 0
l = Yl, Ŷ

0
u = φ

D
(0)
l

(Xu), k = 0;

2: loop until convergence*:

3: Ŷ k
l = Yl

4: Fit Ŷ (k+1) = φ
D

(k)(X), where D(k) = (X, Ŷ (k))
5: k = k + 1
6: End loop

Figure 3.1: FTF algorithm

3.1.3 Fitting The confident Fits algorithm - FTcF

Next, we discuss another iterative self-training approach that can be considered as a vari-

ant of Yarowsky’s algorithm: Fitting The Confident Fits (FTcF). Typically, a learner

trained from current labeled data is used to classify the available unlabeled data. Pre-

dicted instances from unlabeled data with high confident scores are considered and added

to the pool of labeled data set. Both sizes of labeled data and unlabeled data are up-

dated due to the migration of instances from unlabeled data to labeled data at each

iteration. As the procedure accesses to the end, the size of unlabeled data set goes to

be zero, which means that all instances from unlabeled data set are labeled. The main

difference between FTcF and Yarowsky’s algorithm is that in Yarowsky’s algorithm se-

lected instances, which are used to train new learner are always given back to the pool of

unlabeled data set so that the size of unlabeled data never changes. For FTcF, instances

added to the pool of labeled data will stay in the pool with the fixed labels. Therefore,

the size of unlabeled data decreases until exhausted. Figure 3.2 provides the details for

FTcF algorithm.
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Compared to the FTF algorithm, which constructs the learner based on all the modules

set by giving an initial “guess” to the labels for unlabeled data, FTcF always learns from

current labeled data. Typically, in the iterative phase of FTF the labels for unlabeled

data set are updated based on the decision rules probabilities from previous iteration.

In contrast, FTcF gradually pushes confident modules into labeled data set so that the

size of labeled data set is increasing iteration by iteration. More specifically, in FTF it is

considered that there is a “better” classifier by repeatedly fitting the predicted labels in

unlabeled data set; in FTcF only a small amount of labels with highest confident scores

are trusted. Both algorithms need the guidance of initial labeled data at the beginning.

Algorithm2: Fitting The Confident Fits (FTcF))

1: Initialization: Ŷl = Yl
2: loop until |u| → 0:

3: Fit Ŷu = φDl
(Xu)

4: Take u′ confident cases from Xu

5: updating: Xl = Xl+u′ , Ŷl = Ŷl + Ŷ ′u, and
Xu = Xu−u′

6: End loop

Figure 3.2: FTcF algorithm

3.1.4 Base Learner

Both FTF and FTcF procedures share the underlying concept that a supervised learner is

trained repeated by using some form of unlabeled data. Basically, the supervised learner

plays two important roles in our investigated algorithms: (i) provides initialization for

iterative fitting, and (ii) trains new leaner at each iteration. Apparently, a well-chosen

base learner can provide effective prediction for initially unlabeled portion of the data

set and ensure a good starting point for tracking “better” learners. On the other hand,

the ability that a base learner extracts useful information from unlabeled data at each

iteration decides the behavior of entire algorithm. Most important, the selected base

learner may lead to local or global convergence. Thus, we have to carefully choose the

base learner.

In supervised learning literature, there are lots of choices. We have two constraints on

the choices of base learner. First, the learner should have competitive performance in the

fault prediction domain and its implementation should be available off-the-shelf. Second,

it should produce well-calibrated probabilities, i.e., PCEs. In [105], an examination

is provided on the relationship between the predictions made by different supervised

algorithms and true posterior probabilities. They showed that some learning algorithms

they examined, such as random forest and logistic regression, showed little or no bias
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and predicted well-calibrated probabilities. Based on their work, we will explore random

forest and logistic regression as supervised base learners. Also, support vector machine

are worth for consideration due to their popularity and off-the-shelf status [106].s

• Logistic Regression (LR)

Logistic regression is a standard off-the-shelf approach for building models for

binary classification and has been widely used in software fault prediction problem.

Let us assume that PCEs are modeled as a function of a linear combination, i.e,

p̂ = f(Xβ) ∈ [0, 1] where f(.) is a link function . For logistic regression, the

function is given as f(Xβ) = eXβ

1+eXβ , which is the logistic transform applied to

Xβ. This transformation forces probabilities to be between 0 to 1. Parameters

of a logistic regression model are usually estimated using the maximum likelihood

method.

• Support Vector Machine (SVM)

Support Vector Machine (SVM) is another popular classification approach which

is motivated by the intuitive geometric interpretation of maximizing the margin.

When two classes of points can be separated by a hyper-plane, it is natural to use

the hyperplane that separates the two classes of points by the largest margin. This

amounts to the hard margin support vector machine:

min
w,b

1

2
||w||2 (3.1)

yi(w
Tφ(xi) + b) ≥ 1,

The goal is to find the hyper-plane described by {w, b} that generates a maximal

margin between two classes of points. One can also utilize a mapping function φ(.)

to allow for the linear separation in non-linear classification problem. To allow the

misclassification, one can incorporate a penalty vector ξ such that ξi ≥ 1 indicates

the corresponding point xi is misclassified. This is well known as soft margin

support vector machine.

min
w,b,ξ

1

2
||w||2 + C

∑

i

ξi (3.2)

yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi > 0

• Random Forest (RF)

Random forest is an ensemble of individual tree predictors such that each tree is
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randomly generated based on the values of a random sampled vector. The outputs

of random forest are the majority votes by all individual trees. In random forest,

each tree is grown on a bootstrap sample of the training data set, which ensures

the independence of different trees. At each node of a tree, m out of M (M is the

total number of attributes for each instance) attributes are randomly selected and

the split is chosen from the m attributes for the node. Once the trees are built,

the final classification is given by the majority votes within the ensemble.

Table 3.1: Datasets used in this study

Data Size# % faulty project description language
JM1 10,878 19.3% Real time predictive ground system C
KC1 2109 13.9% Storage management for ground data C++.
PC3 1563 10.43% Flight software for earth orbiting satellite C
PC4 1458 12.24% Flight software for earth orbiting satellite C
PC1 1109 6.59% Flight software from an earth orbiting satellite C

3.2 Experiment and Results

3.2.1 Experimental Data Sets

The experimental datasets used in this study are collected from mission critical projects

at NASA, as a part of the Software Metrics Data Program (MDP). The repository

provides metrics that describe the software artifacts from 13 NASA projects. We selected

five of them that number of modules is larger than 1000. Table 3.1 provides the brief

description of these datasets. Each module in these projects is measured in terms of the

same set of software product metrics. A label associated with each module indicates if

the module has been found to contain one or more faults (fault prone, fp) or no faults

have been detected (not fault prone, nfp).

In order to provide a better understanding on our experimental data, we briefly describe

each project:

• JM1: JM1 project is a real-time ground system that uses simulations to generate

certain predictions for the space mission. It is coded in C language. There are

eight years of fault data associated with the modules and their metrics. Modules

in JM1 were characterized by 21 software measurement attributes. The data set

contains 10, 878 modules, of which 2, 102 have one or more faults and 8, 776 have

zero faults, the rate of 19.3%. The maximum number of faults in a module is 26.
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• PC1: The PC1 project is flight software from an earth-orbiting satellite that is no

longer operational. There are eight years of fault data associated with the metrics.

It consists of more than 40, 000 lines of source code written in C. The software

measurement data set contains 1, 107 modules characterized by 41 attributes /

metrics. Only 76 modules have one or more faults and 1, 031 have zero faults,

fault rate of 6.59%. The maximum number of faults in a module is 9.

• PC3: The PC3 project is also a flight software from an earth-orbiting satellite,

but the mission is currently operational. It consists of approximately 40, 000 lines

of source code written in C. The data set describes 1, 563 modules characterized

by 41 attributes, of which 160 have one or more faults and 1, 403 have zero faults,

the fault rate of 10.43%. The maximum number of faults in a module is 9.

• PC4: The PC4 project is flight software for an Earth orbiting satellite that is cur-

rently operational. It consists of approximately 36, 000 lines of source code written

in C. The software measurement data set contains 1, 458 modules characterized by

41 attributes, of which 178 have one or more faults and 1, 280 have zero faults,

with the fault rate of 12.24%. The maximum number of faults in a module is 25.

• KC1: The KC1 project is a computer software configuration item within a large

ground system and consists of approximately 43, 000 lines of source code written in

C++. The data set contains 2, 107 modules, of which 325 have one or more faults

and 1, 782 have zero faults with the fault rate of 13.9%. The maximum number of

faults in a module is 7.

It is important to note that these projects did not share a development process, they

come from different government contracting organizations and, generally, at the time

of their development, it would not have been possible to use one of them as a training

data set for the fault prediction modeling on the other one. In situations like this, if an

organization wants to deploy a fault prediction model, it needs to develop it using the

metrics and fault labels associated with the modules emerging from the development

early.

3.2.2 Experimental Setting

Before presenting our result, we need set up experimental parameters for our experi-

ments. Four parameters need to be taken account:

1. Rate of Faults

Although we know the fault rate for each of the data sets used, practically they are
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not available until the fault data is obtained. We could not exactly obtain the fault

rate of software prior to the development of a project. In our experiments, initial

labeled data must be given so that semi-supervised learning can be achieved. Under

this consideration, we provide a rough “guess” of the fault rate for the sampling

of initial labeled data. It is taken as 10% across the five data sets used which is

a reasonable setting as the overall fault rates in the five data sets is ranged from

6.59% to 19.3% (Table 3.1). Therefore, when a subset is sampled from the original

data to generate the initial labeled set, the proportion between fp and nfp is 1 : 9

prior to our training procedure.

2. Size of initially labeled data

In semi-supervised learning literature, it is aimed to exploit the unlabeled data set

in order to improve the performance of the classification achieved by a relatively

small size of labeled data (| L |<<| U |). Intuitively, the size | L | decides

the effectiveness of labeled data to exploit the information from unlabeled data.

Additionally, the lower | L | is, the more reduction of human-labeling consumption

is. To this end, we designed our experiments by exploring varied size of labeled

data from the range of 2% to 50% (2%, 5%,10% 20%, 50%) of entire data on each

data set used. Note that the size of data sets used are different, the size of the

initial labeled data also differs from data to data. Table 3.2 shows the number of

modules used as initially labeled data corresponding to the setting at 2%, 5%,10%

20%, and 50%.

3. Number of iteration for FTF

In FTF, a trained learner will repeatedly update the status of predicted labels

for unlabeled data until some stop criteria are met. The stop criteria could be

the convergent status. However, the convergence property is not common for any

given base learner in FTF algorithm. Some base learner, such as random forest,

will never converge (will be discussed later). In this study, we force FTF algorithm

to stop when it reaches 50 iterations.

4. Growth size for FTcF

Unlike FTF, FTcF gradually increases the size of labeled set by adding the most

confident candidates from unlabeled set until the size of unlabeled data set is

exhausted. Therefore, we need to know how many candidates should be moved

from unlabeled pool to labeled pool in each iteration, named as Growth Size (GS).

Some of our data sets are large and the others are small. For example, PC1 only

has 1107 modules, and JM1 has 10878 modules. Under this consideration, we used

two different settings of Growth Size for these data sets. For PC1, PC3, PC4, KC1,

which have module size smaller than 3,000, we pass 10 most confident candidates
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to per iteration labeled set (GS=10). Meanwhile, we pass 100 most confident

candidates to labeled set per iteration for the fifth data sets JM1 (GS=100), which

has the modules size larger than 10,000. Number of iteration for FTcF can then

be obtained by |U |
GS

.

Table 3.2: Number of modules in initially labeled data set

2% 5% 10% 20% 50%
JM1 218 544 1088 2176 5439
KC1 42 105 211 421 1054
PC3 31 78 156 313 782
PC4 29 73 146 292 729
PC1 22 55 111 221 554

To depict the performance of fault prediction experiments we will provide the Probability

of Detection (PD) and the Area Under Receiver Operating Characteristic Curve (AUC)

as the measures of binary classification. (PD), also called recall or specificity, is defined

as the probability of correctly classifying a module as fault-prone, that is P (Ĉ = fp|C =

fp). It is one of the most commonly used measures in this field. It is clearly suitable for

representing the ability of an algorithm to correctly classify the instances of a minority

class (fp). The PD value is obtained based on a specified threshold, which can be

adjustable by user as needed. Receiver Operating Characteristic (ROC) curve is a plot

of probability of detection (PD)as a function of the probability of false alarm (PF , the

probability of misclassifying a fault free module as faulty) across all thresholds setting.

AUC is the area under the ROC curve, another frequently used measure for performance

evaluation in software fault prediction [87].

As discussed in previous sections, semi-supervised learning should improve software

fault prediction models in situations where the number of modules with known fault

content (labels) is limited. So, the goal is to improve the performance of prediction on

unlabeled data (test data) using augmented training data set, referred as transductive

semi-supervised learning. Our study aims to answer the following questions:

1. What is the role of base learner in FTF and FTcF?

2. Does FTF or FTcF outperform supervised learning?

3. How small can the size of the labeled data set be for FTF or FTcF to outperform

supervised learning?

4. Are the behavior and performance of FTF or FTcF consistent over different data

sets?
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With these questions in mind, we developed experiments that compare the self-training

algorithms and the corresponding supervised approach. Both the supervised and self-

training approaches use the same base learner. Additionally, we will vary the sizes of

labeled data instances: 2%, 5%, 10%, 20%, 50%, of the size of the five MDP projects. To

track performance trends, we will present above described performance measures (PD

and AUC) at each iteration of the FTF and FTcF, so that a performance curve can be

derived. A total of 20 experiments were performed on each experimental setting. The

instances of labeled data are randomly selected from each set for the first iteration of both

self-training, with the remaining software modules being used for prediction as unlabeled

data. Ideally, in the context of software development scenario, the components that first

come out of development would be utilized for model building. Unfortunately, this

information is not available for MDP projects. This is the reason for the 20 experiments

over the same data set (and the proportion of labeled data). The repetition indicates

our attempt to make the order of component delivery to the project less important.

We understand this is one of the validity threats. Nevertheless, within the MDP data

repository, there is no remedy that would offer its reduction or elimination.

3.2.3 The Role of base learners

Perhaps the easiest-to-apply semi-supervised learning, self-training is characterized by

the fact that the learning process uses its own predictions to teach itself. For this reason,

it is important to select a good guide - base learner. Before going to the experiments on

FTF and FTcF, let us first take a look on the role of base learner in both approaches.

In this section, the convergence property of three standard supervised learners - Logistic

regression, Support vector machine and Random forest - in both FTF and FTcF will be

analyzed. Whether or not the convergence property contributes to outperformance will

be discussed as well.

3.2.3.1 Convergence with Logistic Regression

In supervised setting, the estimates of logistic regression model, β̃log, can be found via

solving the equation of XT (Y − P ) =
→
0 and the prediction of Xl will be Ŷl = plogl =

P (Xl, β̃
log).

In FTF algorithm, a repeat procedure will be provided at each iteration:

i) Ŷ k
l = Yl

ii)Ŷ k
u = P (Xu,

ˆβk−1) = pk−1u .
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Thus, for kth iteration, we can have β̂k by solving equation of XT
l (p

log
l −pkl )+XT

u (p
k−1
u −

pku) =
→
0 which is derived from XT (Y − P ) =

→
0 . Our solution then turns to be:

β̂k = β̃log +
[
(XTWX)−1(XT

u WuXu)
]k

(β̂0 − β̃log) (3.3)

We can show that when k → ∞, β̂ ≈ β̃log. The detailed proof can be found in Appendix

I. It implies that when logistic linear regression is used as a base learner, the unlabeled

data is not helpful as we expected.

In FTcF algorithm, the size of labeled data set and unlabeled data set will be changed

at each iteration. The algorithm will update the pool of labeled data set by gradually

adding most confident labeled data from unlabeled data pool until the unlabeled data

pool exhausted.

For a certain iteration, say kth iteration, we will have:

X(k) =

(
Xl

Xlk

)
,

Ŷ (k) =

(
Ŷ (k−1)

P (XT
lk, βk−1)

)
,

p(k) =
(
P (X(k), βk)

)

By translating the equation XT (Y − P ) at any give iteration, we found that above

equation can be presented as the form of Sup(XT
l ) + Sup(XT

l′ ) + Sup(XT
lk), where l′ =

l1 + l2 + · · · + l(k − 1) is the cumulative most confident points, and Sup(X) means

supervised learning on X.Therefor, for any given iteration k, the equation can be write

to be above form which contains three terms:

i) Sup(XT
l ) Supervised learning on Xl;

ii) Sup(XT
l′ ) Supervised learning on Xl′ ;

iii) Sup(XT
lk) Supervised learning on Xlk.

It turns out thatβ̂0 = β̂1 = β̂2 = · · · = β̂k = β̃log for any given iteration as long as

the logistic linear regression exists. That is, unlabeled data cannot help to improve the

prediction.

Until now, we learned that logistic regression is not a good candidate as base learner in

self-training.
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3.2.3.2 Convergence with SVM

In this section, we will analyze the convergence property of semi-supervised learning

when SVM is used as base learner. Recall that a standard SVM algorithm for binary

class problem can be defined as:

min
w,b,ξ

1

2
||w||2 + C

n∑

i=1

ξi (3.4)

yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n.

where C > 0 is a regularization constant and φ(.) is a kernal function that maps xi

into high dimensions. In supervised learning setting, by obtaining the optimal solution

of {w, ξ, b}, one can predict the label of a point xi by taking the sign of the equation

(wTφ(xi) + b), i.e., ŷi = sign(wTφ(xi) + b). If ξi > 1, xi is incorrectly classified.

In the first step of FTF algorithm, yi are the true labels for data Xl, i.e., Yl =

[y1, y2, ..., yn]
T and xi ∈ Rn. After solving the optimization problem (equation 3.4),

we can have the optimal solution {w(0), ξ(0), b(0)}. As for the iterative steps - step 2-6

in FIGURE 3.1, the FTF algorithm repeatedly solves the same optimization problem,

but yi are the true labels of Xl together with the predicted labels of Xu from previous

iteration, i.e., Y (k−1) = [y1, ..., yn, ŷ
(k−1)
n+1 , ..., ŷ

(k−1)
n+m ]T and xi ∈ Rn+m. k stands for the

kth iteration. At each iteration k, the optimal solution is {w(k), ξ(k), b(k)}. To show the

convergence property of SVM in FTF algorithm, we write the objective function in the

optimization problem at kth iteration as:

f(w(k), ξ(k)) =
1

2
||w(k)||2 + C

n+m∑

i=1

ξ
(k)
i (3.5)

In Appendix C we’ve shown that at the first iteration in FTF algorithm, {w(0), ξ(0), b(0)}

is feasible solution of following optimization problem:
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min
w,b,ξ

1

2
||w(1)||2 + C

n+m∑

i=1

ξ
(1)
i (3.6)

y
(0)
i ((w(1))Tφ(xi) + b(1)) ≥ 1− ξ

(1)
i ,

ξ
(1)
i ≥ 0, i = 1, . . . , n+m.

where {w(1), ξ(1), b(1)} is the optimal solution. Thus,

f(w(0), ξ(0)) ≥ f(w(1), ξ(1)) (3.7)

Similarly, at kth iteration where k > 1, we showed that {w(k−1), ξ(k−1), b(k−1)} is feasible

solution of following optimization problem:

min
w,b,ξ

1

2
||w(k)||2 + C

n+m∑

i=1

ξ
(k)
i (3.8)

y
(k−1)
i ((w(k))Tφ(xi) + b(k)) ≥ 1− ξ

(k)
i ,

ξ
(k)
i ≥ 0, i = 1, . . . , n+m.

where {w(k), ξ(k), b(k)} is the optimal solution. Apparently,

f(w(k−1), ξ(k−1)) ≥ f(w(k), ξ(k)) (3.9)

Incorporating with equation 3.7, we can conclude that equation 3.9 holds for any given

k ≥ 1. Since f(w(k), ξ(k)) ≥ 0, we proved that f(w(k), ξ(k)) is convergent when k in-

creases. Thus FTF algorithm is convergent.

As for FTcF algorithm with SVM, it is easy to prove that the convergence property

in FTF algorithm also holds in FTcF. Assume the {w(0), ξ(0), b(0)} is the optimal solu-

tion of optimization problem in equation 3.4 where only labeled data is used, and the

{w(1), ξ(1), b(1)} is the optimal solution of the following problem:
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min
w,b,ξ

1

2
||w(1)||2 + C

n+u(1)∑

i=1

ξ
(1)
i (3.10)

y
(0)
i ((w(1))Tφ(xi) + b(1)) ≥ 1− ξ

(1)
i ,

ξ
(1)
i ≥ 0, i = 1, . . . , n+ u(1).

where u(1) is the most confident cases selected at step 4 in FIGURE 3.2. By ex-

panding the vector ξ(0) to be the length of n + u(1) and using the prediction rule

y
(0)
i ((w(0))sTφ(xi)+ b(0)) ≥ 0 for i = n+1, .., n+u(1), we can prove that {w(0), ξ(0), b(0)}

is a feasible solution of optimization problem in equation 3.10. Thus,

f(w(0), ξ(0)) ≥ f(w(1), ξ(1)) (3.11)

Similarly, for any k > 1 ,{w(k−1), ξ(k−1), b(k−1)} is feasible solution of the following

problem:

min
w,b,ξ

1

2
||w(k)||2 + C

n+u(1)+...+u(k)∑

i=1

ξ
(k)
i (3.12)

y
(k−1)
i ((w(k))Tφ(xi) + b(1)) ≥ 1− ξ

(k)
i ,

ξ
(l)
i ≥ 0, i = 1, . . . , n+ u(1) + ...+ u(k).

where {w(k−1), ξ(k−1), b(k−1)} should be the optimal solution and u(k) is the most confi-

dent cases selected at k(k) iteration. Thus we have,

f(w(k−1), ξ(k−1)) ≥ f(w(k), ξ(k)) (3.13)

Given that f(w(k), ξ(k)) ≥ 0, we proved that f(w(k), ξ(k)) is convergent. Hence, FTcF

algorithm is convergent.

By now, we’ve showed that both FTF and FTcF algorithm will converge when the iter-

ation indicator k increases. However, it is not clear whether this convergence property

in FTF and FTcF will lead to increased classification performance. From our empirical

study, we learned that there are several factors that affect the performance of FTF and
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FTcF algorithm when SVM is use as base learner. First, the balance in two classes

can affect the performance. As a density based method, SVM relies on recognizing

low-density margin between two classes and then forming hyper-plane to maximize the

margin with lowest misclassification rate. When the data in two classes are heavily im-

balanced, the low-density margin will be hard to identify. Second, the selection of kernel

function or mapping function in SVM optimization problem can be critical. Different

kernel function with the same data may lead to significant different classification perfor-

mance. Prior knowledge on the data can be helpful to make the decision of what kernel

function to use. However, prior knowledge is not always available. Another factor that

affects the performance is the parameters in SVM, for example, the penalty term C and

the parameters in kernel function. Cross Validation is the most widely used approach

to tune these parameters in SVM. However, this often leads to local optimization and

semi-supervised learning usually won’t benefit from it.

Our results from using MDP data showed that both FTF and FTcF algorithm converged

to performing worse than the corresponding supervised learning when SVM is used as

base learner. We are not surprised with this observation, one reason is that our data is

heavily imbalanced in classes.

3.2.3.3 Convergence with Random Forest

Random forest creates single trees on many selected data subsets that are uniformly

sampled from the original data. The outputs of random forest are vote-based. This is a

non-parametric method, so that it would be mathematically hard to track the estimates

of outputs when it is implemented in FTF and FTcF algorithm. On the other hand,

the randomness of tree building in random forest also breaks the possibility of estimates

tracking. To explore the convergence property of random forest in our semi-supervised

approaches, we implemented an experiment to help us visualize the convergence trends.

We used the stop criteria: ‖Ŷk − Ŷk−1‖ ≤ δ, whereδ = 1e − 6, for both investigated

semi-supervised approaches. Here Ŷ = p̂(Y |X = x). The approach is considered to be

convergent when the change of predictions between any two successive iterations is less

than the value δ.

Figure 3.3 shows the convergence curves for both approaches on PC3 data set with

the initial labeled data is 10% of the entire data set. From the figure, logistic regres-

sion converges immediately for both approaches, which exactly confirms the proof we

presented above. The curve of SVM decreases at beginning and then converges soon.

Unlike logistic regression and SVM, random forest does not present the convergence

property. Instead, the changes of prediction on random forest are gradually decreased
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but never to be zero. Intuitively, it implies that, compared to logistic regression and

SVM, random forest has more hope to provide improvement in the iterative procedure

of semi-supervised approaches. To further visualize the convergence behavior, we pre-

sented a comparison among three base learners on the measure of PD (τ = 0.5) as shown

in Figure 3.4. From the figure, we observed the same convergence trend for logistic re-

gression and SVM as in Figure 3.3. Random forest presents increased trends for both

semi-supervised approaches.

By now it should be clear that the performance of self-training heavily relies on the

selected base learner. It is worth pointing out that, given a data set, blindly selecting

a base learner in self-training will not necessarily improves performance over supervised

learning. For example, when logistic regression is used as base learner, self-training per-

forms the same as supervised learning when logistic regression is used as base learner

and when there is solution of optimization problem in logistic regression. In fact, un-

labeled data can lead to worse performance with inappropriately selected base leaner.

For example, based on our preliminary experiment self-training may perform worse than

supervised learning when SVM is used as base learner, especially when the data is im-

balanced in terms of fault proneness and non-fault proneness and there are noises in

data. However, there is also chance that the self-training outperforms supervised learn-

ing when SVM is used as base learner. This is because, as we’ve mentioned earlier, that

the performance of SVM itself is heavily replies on the underlying assumption of the

data set - when the data has no significant noise and the data is well-balanced, SVM is

a good solution for classification problem. Apparently, SVM is not a good candidate as

base learner in self-training due to its inconsistent performance.

However, we have learned that when Random forest is used as base learner, self-training

performs consistently better than the corresponding supervised learning. In next section,

we mainly focus on the investigation of self-training when random forest is used as base

learner.
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Figure 3.3: Convergence plot on PC3(10%labeled set used).



Chapter 3. Semi-supervised learning for SFP problem 36

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

iteration

PD

FTcF

LR

RF

SVM

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

iteration

PD

FTF

Figure 3.4: Convergence plot on PC3 with the measure of PD(10%labeled set used).

3.2.4 Results

This section we show the results of experiment for FTF and FTcF approaches. Figures

3.5 and 3.6 show the results of FTF and FTcF on PC3 data set respectively. Recall

that we compute the PCEs (p̂) to decide the class of a fault prone module, that is when

p̂ > τ the module is classified as fp and as nfp otherwise. We measured PD based on

three settings of threshold value (τ), i.e, 0.1, 0.5, 0.75, not a widely used setting at 0.5

considering the imbalance classes issue in the investigated data sets. Their results are

presented as the first three plots in the figures. The fourth plot in the figures presents the

comparisons with the measure of AUC. Note that the lines connecting shaped points

represent the results of semi-supervised approaches. The single shaped points at 0th

iteration and the extended straight lines represent the results of supervised random

forest approach.

From Figure 3.5, we can see that when threshold is 0.1 (implies that modules with

p̂ > 0.1 are classified as fp), the performance curves for FTF significantly exceed the

corresponding straight lines(performance of supervised random forest) across all sizes of

labeled data. When threshold is 0.5, most performance curves for FTF, except the lines

of 2% and 5% labeled data, beyond the corresponding straight lines. When threshold

is 0.75, the performance curves, except the line of 2% labeled data, still behave well

but have relatively less improvement. The results based on AUC showed that our inves-

tigated semi-supervised approaches have the same performance as supervised learning

throughout the iterative procedure. The similar behaviors are observed when FTcF is

implemented on the same data set, which is shown in Figure 3.6.

Typically, when the threshold value is high (at 0.75), many modules are misclassified

as non-fault proneness and then the lower PD value will be. Both FTF and FTcF

algorithms help to identify more fault prone modules at threshold setting of 0.75 com-

paring to the supervised learning approach (check the first three plots in figure 3.5 and
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3.6). However, when the threshold value decreases (to 0.1), more modules are correctly

classified as fault proneness. That says there are only few fault prone modules are mis-

classified. This gives less space to improve for semi-supervised learning (check the fourth

plot in both figures). When looking at the measure of AUC, as we mentioned in pre-

vious section it takes account of all possible threshold values. Our results based on the

measure of AUC showed that the overall behavior by semi-supervised approaches across

all PD and PF is as well as the corresponding supervised approach consistently. In other

words, the improvement obtained by correctly identifying more fault prone modules with

respect to PD can be considered as bonus by using semi-supervised approaches.

We observed that these trends of performance (PD and AUC) for both FTF and FTcF

are quite common on all five data set used. Due to the consideration of paper size

we only presented the results on the measure of PD at threshold is 0.5 (which is most

commonly used in the literature) for other four data set (PC1, PC4, KC1, JM1), shown

in Figure 3.7 and Figure 3.8. The numbers of modules used as initially labeled data can

be found in table 3.2.
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Figure 3.5: Results of FTF algorithm on PC3(the numbers of modules initially labeled
at 2%, 5%, 10%, 20%, 50% are 31, 78, 156, 313,782 respectively)

3.2.5 Discussion

To our knowledge, semi-supervised learning has been marginally considered in the field

of software fault-proneness prediction. One of the work on this topics was from Taghi
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Figure 3.6: Results of FTcF algorithm on PC3(the numbers of modules initially
labeled at 2%, 5%, 10%, 20%, 50% are 31, 78, 156, 313,782 respectively)

0 5 10 15 20 25

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

PC1

PD

iteration

2%

5%

10%

20%

50%

0 5 10 15 20 25

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

PC4

PD

iteration

0 5 10 15 20 25

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

KC1

PD

iteration
0 5 10 15 20 25

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

JM1

PD

iteration

Figure 3.7: Results of FTF algorithm on four data set with threshold=0.5.
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Figure 3.8: Results of FTcF algorithm on four data set with threshold=0.5.

Khoshgoftaar [95] on NASA MDP software projects. In their approach an EM-based

semi-supervised learning algorithm [26] was implemented. Another interesting approach

is to perform semi-supervised clustering [96]. Both of their studies are inductive learning

based, that is, a model is built given a set of train data set (labeled and unlabeled

data) and then is used to predict on test data set (similar projects). Performance is

measured on the test data set. The goal of inductive semi-supervised learning is to

find a model for entire data space. In our study, we implemented a transductive semi-

supervised learning in which predicted labels of unlabeled data are the major concern

(although unlabeled data are used for training as well). Performances are evaluated on

the unlabeled data set. We refers the reader to [26] for detailed discussion between

inductive and transductive semi-supervised learning. Considering the differences in the

evaluation strategy used in inductive learning and transductive learning, it is impractical

to compare the semi-supervised learning algorithms used in our study with the ones used

in their work. However, we can compare our results with supervised learning algorithms

from previous work, as in both cases only the predicted labels for unlabeled data (test

data for supervised learning) are interested.

There has been large size of studies in software fault prediction using supervised learning

approaches. Consider the consistency and comparability in the view of data implemen-

tation and performance evaluation, we are going to compare our results with the work by

Menzies [1] and Lessmann [2]. Menzies’ results (by Naive bayes algorithm with feature
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filtering) has not been beaten since 2007 in which an average pairs (pd = 71, pf = 25)

of eight data sets from MDP repository were observed. Therefore, it will be interesting

to compare the results by our semi-supervised learning algorithms with the best results

from Menzies. In table 4.11, we compared both of our semi-supervised algorithms with

Menzies’ results, in which the PD value at the fixed PF value are presented. There are

three data sets (PC1, PC3 PC4) in common between Menzies’ work and our study. From

the table, the random Forest based learning algorithms (RF, FTF and FTcF) exceed

the Naive Bayes algorithm on PC1 and PC3. They have the equivalent performance on

PC4. The best one (PC1) starts to beat the results from Menzies at 5% (PD= 0.49 by

FTcF). Especially, Menzies evaluated its algorithms by a 9 : 1 separation (90% labeled

data) while we experimented much lower sizes of labeled data (2% to 50% labeled data).

Later in [2], Lessmann designed a comparative experiment with multiple classification

models on the same data repository, where AUC is measured as the performance metrics.

In their work, 2/3 of the data are used for training, that is 67% labeled data. In table

4.12, we show the comparison between our work and Lessmann’s results (the results by

random forests). Our results exhibit insignificant different to their work at a little lower

size of labeled data (50% labeled data).

Table 3.3: Comparison between our results and Menzies’s results with Probability of
Detection(PD) at specified PF

Data sets Size of L RF FTF FTcF Menzies [1]

pc1 2% 0.45 0.45 0.45
(PF=0.17) 5% 0.46 0.47 0.49

10% 0.53 0.54 0.55
25% 0.66 0.66 0.67
50% 0.74 0.74 0.75 0.48

pc3 2% 0.66 0.70 0.67
(PF=0.35) 5% 0.71 0.73 0.72

10% 0.74 0.75 0.75
25% 0.81 0.84 0.82
50% 0.85 0.87 0.87 0.8

pc4 2% 0.62 0.63 0.65
(F=0.29) 5% 0.80 0.80 0.81

10% 0.86 0.87 0.88
25% 0.94 0.95 0.97
50% 0.98 0.98 0.98 0.98
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Table 3.4: Comparison between our results and Lessmann’s results with Area under
ROC curve(AUC)

Data sets Size of L RF FTF FTcF Lessmann [2]

pc1 2% 0.67 0.67 0.66
5% 0.71 0.65 0.66
10% 0.77 0.78 0.79
25% 0.85 0.87 0.87
50% 0.87 0.86 0.86 0.9

pc3 2% 0.64 0.64 0.64
5% 0.7 0.71 0.7
10% 0.75 0.76 0.75
25% 0.82 0.82 0.82
50% 0.88 0.88 0.89 0.82

pc4 2% 0.72 0.71 0.73
5% 0.82 0.78 0.77
10% 0.87 0.88 0.89
25% 0.91 0.9 0.9
50% 0.93 0.94 0.95 0.97

kc1 2% 0.74 0.73 0.73
5% 0.74 0.73 0.73
10% 0.76 0.78 0.79
25% 0.78 0.79 0.79
50% 0.8 0.82 0.82 0.78

jm1 2% 0.64 0.67 0.67
5% 0.66 0.68 0.68
10% 0.68 0.69 0.7
25% 0.7 0.72 0.72
50% 0.73 0.74 0.74 0.76

3.3 Conclusion

Semi-supervised approaches have been successful applied in many problems. In this

chapter, we investigated two variants of self-training approaches to the problem of soft-

ware fault-prone prediction. Both approaches are variants of Yarowsky’s algorithm with

the difference of the way they update the labels for unlabeled data set. We illustrated

the comparison between each investigated self-training approaches - FTF and FTcF

algorithms - and the corresponding supervised approach.

Base learner as a critical component in our self-training approaches is discussed. To

investigate the impact of base learner in both self-training approaches, we selected three

widely used supervised learning algorithms - Logistic regression, Support vector ma-

chine and Random Forest due to their popularities in software fault prediction problem.

We demonstrated that both semi-supervised approaches are sensitive to base learner.

We proved that logistic regression as base learner causes both self-training approaches

convergent to a supervised learning setting. When SVM is used as base learner, both
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FTF and FTcF are convergent. However, their performances are worse than the su-

pervised SVM. In contrast, Random Forest never converges and exhibits outstanding

performance. Our results showed that both self-training approaches benefit from using

random forest as base learner. In particular, FTcF algorithm exhibits more superiority

on small set of initial labeled data than FTF algorithm.



Chapter 4

Semi-Supervised Learning with

dimensionality reduction

approach

In previous chapter, we demonstrated that FTcF algorithm outperforms FTF algorithm

as it is capable of reducing the size of initial labeled data to achieve the better perfor-

mance than supervised approach. We also learned that when random forest is used as

base learner, both FTcF and FTF perform consistently better than the corresponding

supervised learning. However, we admit that the improvement is limited and not statis-

tically significant. In this chapter, we continue on improving the prediction performance

by augmenting the FTcF algorithm with dimensionality reduction technique.

4.1 Multidimensional Scaling (MDS)

An inherent problem with self-training algorithms is that an existing noise or some wrong

information are repeatedly rounded up in each iteration of self-training. This inherent

problem also threatens the use of self-training algorithms applied on SE data sets, since

SE data sets are likely to contain:

• Noise due to different reasons such as human error or difficulty of measurement

and so on;

• As well as highly correlated variables, redundant and/or irrelevant variables.

Our intuition is that the dimensionality reduction techniques are good candidates to

address this inherent problem of semi-supervised learning by reducing the complexity

43
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of dimensionality and extracting the essential information without affecting the data

structure. In previous chapter, we claimed that the FTcF algorithm performs better

than the FTF algorithm, although it does not exhibit any significant outperformance.

Therefore, we augment FTcF with a pre-processing strategy - dimensionality reduction

based technique called Multidimensional scaling (MDS). The MDS algorithm is used

to reduce the dimensionality of the space of independent variables (metrics) before the

semi-supervised learning iterations are initiated. Throughout the dissertation, we call

this version of self-training approach as FTcF.MDS algorithm.

MDS is one type of dimension reduction, which has been widely used. In [107], mul-

tidimensional scaling as a dimension reduction technique is applied to the mapping of

computer usage data. In [108, 109], dimension reduction is extended to manifold learn-

ing. Typically, MDS is considered for the analysis of proximity data to reveal the hidden

structure. The main assumption of MDS is that instances of data can be placed as points

in a multidimensional space and the relation between instances is inversely related to

the similarities of the corresponding points in the multidimensional space. In machine

learning and statistical learning, MDS is used for exploratory data analysis in which in-

stances of data can be placed as points in a low dimensional space so that the observed

complexity in the original data is reduced while preserving the essential information.

The proximity metrics in MDS play an important role as they contain the similarity or

structural information of the data studied. Usually the proximity metrics can come from

distance metrics, similarity metrics, identification confusion metrics, grouping data, etc.

In practice, the Euclidian distance metric is often used because of its mathematical

convenience. In this paper, we use the similarity metrics obtained from random forest

[110].

In random forest, we construct a set of decision trees such that each tree contains a

randomly selected subset of the features. Next, instances of data are propagated down

the trees and a similarity matrix based on terminal leaf occupancy is calculated for

all instances. If two instances land in the same terminal node their similarity increases.

More specifically, let x1 and x2 be two instances in the data. Let T1, T2 be the terminal

positions for x1 and x2, respectively. k is the number of trees in the forest. Then the

similarity S(.) between x1 and x2 is set to:

S(x1, x2) =
1

k

k∑

i=1

I(T1i == T2i) (4.1)

where I(.) is the indicator of closeness of terminal positions; T1i and T2i are the terminal

positions of x1 and x2 in the ith tree.
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4.2 Dimensionality Reduction based FTcF algorithm

4.2.1 Notation Definition

Notation defined in previous chapter can be extensively used in here. For dimension-

reduced data, we need to define new notations. Again, let X be an (n+m)× p matrix

that denotes software metrics, where n is the size of the labeled set (represented with

l) and m is the size of unlabeled set (represented with u), i.e., x ∈ ℜp. Let Z be an

(n +m) × q matrix that denotes the dimension-reduced data derived from X, where q

is the number of principle dimensions in the reduced data representation, i.e., z ∈ ℜq.

Specifically, Z = {Zl, Zu}, where Zl = {z1, z2, · · · , zn} and Zu = {zn+1, zn+2, · · · , zn+m}.

In addition, let Y = {Yl, Yu} be the response variable (labels) where Yl = {y1, y2, · · · , yn}

are known and Yu = {yn+1, yn+2, · · · , yn+m} are missing or unknown. The observed

labels are binary variables, yi ∈ {0, 1}, where 0 denotes the absence of faults (i.e. nfp)

and 1 denotes faulty modules (i.e. fp).

Recall that φ(.) is defined as any given supervised learner - base learner. Consider the

step of incorporating dimension reduction procedure in the FTcF algorithm, we denote

DZ = D = (Z, Y ), the dimension reduced data associating the corresponding fault data.

Given a set of input-output pairs Dl = (Zl, Yl), the notation φDl
(Zu) indicates that the

classifier trained from Dl is used to predict on unlabeled data set Zu.

4.2.2 Methodology

The pseudo code of augmented FTcF algorithm is defined in Figure 4.1. In the Pre-

processing Step part of the pseudo code, X and Yl are the inputs. The tune.MDS

function is a tuning procedure, searching for the best d. The tuning criteria of d is the

evaluation function of generalized cross validation:

GCV (d) =

n∑
i=0

(yi(d) − ŷi(d))
2

(1−
df(d)
n

)2
(4.2)

Here df(d) represents generalized degrees of freedom for Random Forest [111]. The best

d takes the value that minimizes the GCV(.), i.e., d = argmind(GCV (d)). The tuned

dimension number (d), together with X, is then used as the parameter of MDS(.)

function. The output of the MDS(.) function is the dimension reduced data that is

represented with Z.
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Pre-processing Step:MDS
1: Input: X,Yl, dm
2: d = tune.MDS(Xl, Yl)
3: Z = MDS(X, d)
4: Output: Z

SSL Step: FTcF
1: Input: Z, Yl
2: Initialization: Dl = (Zl, Yl), u = u
3: loop until |u| → 0:

4: Fit Ŷu = φDl
(Zu)

5: Take u′ confident cases from Zu

6: Updating: Zl = Zl+u′ , Zu = Zu−u′ ,

Yl = Yl + Ŷu′ , and Dl = (Zl, Yl)
7: End loop

8:Output: Ŷu

Figure 4.1: Dimension Reduction based FTcF Algorithm

In the SSL step of the proposed algorithm in Figure 4.1: FTcF algorithm takes the

available information Z and Yl as inputs and starts with preserving the size of the initial

unlabeled data (u = u). After initialization, it enters a loop in which a model trained

from current labeled data. φDl
(.) is used to classify the current unlabeled data Zu (Step

4). The prediction Ŷu with high confidence scores are incorporated into the pool of

labeled data (Step 5). Both the size of labeled data and unlabeled data are updated

at each iteration due to the migration of instances between unlabeled data and labeled

data (step 6). As the procedure nears completion, the size of unlabeled data set becomes

zero |u| → 0, which means that all instances from unlabeled data set are labeled. The

output of the FTcF algorithm is the prediction for the unlabeled data set, that is Ŷu.

4.3 Experiment and Results

4.3.1 Experimental Setting

To understand the impact of the dimension reduction technique (MDS) to semi-supervised

learning, we will compare the performance through the following fault prediction experi-

ments: a) Supervised learning without MDS (acronym SL), b) Supervised learning with

MDS (SL.MDS); c) Semi-supervised learning without MDS (FTcF); d) Semi-supervised

learning with MDS (FTcF.MDS). Moreover, we explore multiple sizes of labeled data to

demonstrate one more benefit of semi supervised fault prediction: the ability to learn

from smaller sets of labeled data. The size of the labeled data set will range between 2%

and 50% of the overall number of modules in the project. More specifically, we will train
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from randomly selected module subsets that contain 2%,5%,10%,25%,50% of modules

in the project. The same projects from NASA MDP repository in Chapter 2 will be

used for performance evaluation, except the project JM1. Table 3.2 shows the numbers

of modules used in initially labeled data set for each project.

Again, the Area Under ROC Curve (AUC) and the Probability of Detection (PD) with

different thresholds (i.e., τ = {0.1, 0.5, 0.75}) are computed as performance measures.

Ten independent runs were performed for each of the settings and reported results rep-

resent the average classification outcomes. Considering the consistently outstanding

performance of random forest in our previous work (chapter 2), we will remain it as

base learner in this study.

4.3.2 Results

Figure 4.2 depicts the performance of the four fault prediction models on the PC4

project data. The four graphs depict the AUC, and the true positive rate (PD) at three

different thresholds: 0.1, 0.5 and 0.75. The X axes represent the size of the labeled data

used for model training. We observe that the FTcF algorithm with MDS (FTcF.MDS)

has the best overall performance across all performance measures. It demonstrates a

dramatic improvement over other algorithms especially for the probability of detection

at lower size settings of labeled data. For example, when threshold is 0.1, random

forest as a supervised algorithm detects about 67% of fault prone modules correctly

when learning from 2% of data that has labels. The semi-supervised algorithm with

dimension reduction, which uses the same random forest algorithm as the base learner,

returns over 91% correctly detected fault prone modules.

The second ranked classification approach is the supervised learning with MDS (SL.MDS),

which exceeds the results of FTcF and SL for most of the measures. Obviously, both

FTcF.MDS and SL.MDS have significant advantage compared to the same learning al-

gorithms with out dimensionality reduction. Meanwhile, FTcF is better than SL at PD

with threshold 0.1 and 0.5, while they are very similar at threshold 0.75 and in terms

of AUC. This figure provides us with an indication that the dimension reduction and

semi-supervised learning algorithm provide strong benefits for detecting fault proneness

modules in the software project, PC4. In addition, the dimension reduction technique

improves all learning algorithms. SL.MDS and FTcF.MDS outperform the correspond-

ing supervised learning algorithm (SL) and the original semi-supervised learning (FTcF).

The results of the other data sets (KC1, PC1, PC3) are similar to the PC4. In Tables

4.1 through 4.4, we summarize the performance of fault prediction models over all four

data sets and performance measures. The best performance point for each training size
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Figure 4.2: Performance plots for PC4 project.

setting (the size of the labeled data set) is highlighted in a bold font. Clearly, most of

the highlighted values are consistently located in the column for FTcF.MDS algorithm.

It is also not hard to observe that the supervised learning with MDS (SL.MDS) has

better performance then SL and FTcF. By itself, FTcF offers only a slight improvement

over SL for the probability of detection measure while their behaviors measured by the

AUC are almost the identical.

4.3.3 Statistical Analysis

To test statistical significance, we conducted one way ANOVA test for the experimental

outcomes reported above. The ANOVA test examines whether the level of the differ-

ences in algorithm performance is significant. The hypotheses of the test are:

Ho: There is no difference among the four algorithms across the data sets used;

Ha: The performance of at least one the algorithms is significantly different (better)

than the others.

An example of one way ANOVA test for the PD at threshold 0.5 with 2% labeled data is

given in Table 4.5. Classification results between different algorithms to the variability
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Table 4.1: AUC for the four data sets

Data size of L SL FTcF SL.MDS FTcF.MDS

PC1 2% 0.6733 0.6677 0.8379 0.8536
5% 0.7122 0.7087 0.8719 0.8889
10% 0.7721 0.7806 0.9166 0.9253
25% 0.8484 0.8464 0.9353 0.9356
50% 0.8687 0.8728 0.9425 0.9434

PC3 2% 0.7053 0.7096 0.7550 0.7841
5% 0.7386 0.7355 0.8494 0.8860
10% 0.7512 0.7573 0.8829 0.9024
25% 0.7922 0.7981 0.9103 0.9183
50% 0.8199 0.8246 0.9267 0.9260

PC4 2% 0.7235 0.7246 0.8264 0.8737
5% 0.8242 0.8243 0.9029 0.9183
10% 0.8672 0.8644 0.9129 0.9285
25% 0.9054 0.9069 0.9403 0.9430
50% 0.9321 0.9327 0.9538 0.9535

KC1 2% 0.7374 0.7295 0.6793 0.7382
5% 0.7404 0.7476 0.7437 0.7477
10% 0.7635 0.7693 0.7728 0.7831
25% 0.7794 0.7897 0.7938 0.7850
50% 0.8043 0.8108 0.8134 0.8030

observed within the outcomes of experiments that use only one algorithm. A large value

of F indicates that the outcomes of different algorithms vary more that the outcomes of

the single algorithm. The P-value is a probability of observing a test statistic as extreme

as the one actually observed. The smaller the P-value, the more strongly the test rejects

the null hypothesis. Choosing the significance criteria (α) of 0.05, we can conclude that

the differences in observed classification performance between SL, SL.MDS, FTcF, and

FTcF.MDS are significant as the p-value 0.000517 is much smaller than α.

Overall results of ANOVA test on all size settings of labeled data are presented in Table

4.6. Since p-value measures how much evidence we have against the null hypothesis

(H0), reporting p-values is sufficient. In our case, a p-value smaller than 0.05 indicates

that there is statistically significant difference among the algorithms. In the table, we

highlighted the significant outcomes. Only in cases when the size of the labeled data

is 2% the AUC results significantly different. While we cannot argue that AUCs of

different modeling approaches are significantly different (across all threshold settings),

for the probability of detection the story is different. For thresholds 0.75 and 0.5, at least

one of the proposed approaches significantly outperforms in the ability to correctly detect

fault prone modules across all labeled data size settings. For threshold 0.1, performance

of models significantly differs when we have less than 25% of modules with known fault

content (labeled).
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Table 4.2: PD with threshold=0.75 for the four data sets

Data size of L SL FTcF SL.MDS FTcF.MDS

PC1 2% 0.0000 0.0014 0.0514 0.1365
5% 0.0014 0.0070 0.0408 0.0789
10% 0.0185 0.0185 0.1400 0.1769
25% 0.0612 0.0612 0.2306 0.2327
50% 0.1190 0.1190 0.2571 0.2571

PC3 2% 0.0006 0.0019 0.1287 0.1994
5% 0.0026 0.0026 0.1131 0.1595
10% 0.0021 0.0021 0.1634 0.1800
25% 0.0058 0.0058 0.2760 0.3050
50% 0.0061 0.0061 0.2439 0.2427

PC4 2% 0.0080 0.0142 0.0392 0.0631
5% 0.0064 0.0099 0.1211 0.2029
10% 0.0049 0.0055 0.1866 0.2476
25% 0.0268 0.0289 0.1746 0.2099
50% 0.0358 0.0358 0.2189 0.2462

KC1 2% 0.0081 0.0246 0.0558 0.1533
5% 0.0181 0.0343 0.0917 0.1673
10% 0.0263 0.0359 0.1145 0.1602
25% 0.0121 0.0125 0.1484 0.1747
50% 0.0214 0.0223 0.1195 0.1286

Next, we conducted the post-hoc test to determine which algorithms differ from each

other. For this question, we use Tukey’s Honestly Significant Difference (HSD) [112].

For AUC, we did not obtain significant difference except the 2% labeled data setting.

Therefore, we will concentrate on the probability of detection with different thresholds.

The rates of detection of fault prone modules with threshold 0.75 are very low and likely

not interesting for software quality engineers. Our pairwise comparison will, therefore,

only consider PD with thresholds 0.5 and 0.1. Tables 4.7 and 4.8 show the Tukey’s HSD

pairwise comparison among discussed algorithms. If in the intersection between the

two modeling approaches indicates result “none” this means that no mater the size of

the labeled data, there are no significant prediction performance differences. The result

“all” has the inverse meaning.

For example, table 4.7 indicates that FTcF.MDS significantly outperforms supervised

Random Forest (SL) and FTcF for all size settings of labeled data. It also “wins over”

SL.MDS for the lower sizes of labeled data (2% and 5%). SL.MDS beats SL for all

labeled data size settings and beats FTcF for all labeled data size setting except the

2%. Table 4.8 makes similar comparisons for threshold 0.1. We infer FTcF.MDS still

consistently outperform SL, FTcF, and SL.MDS at the lowest labeled data size settings.

The dimension reduction based semi-supervised algorithm (FTcF.MDS), therefore, of-

fers significant advantages when very few project modules have known fault content.
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Table 4.3: PD with threshold=0.5 for the four data sets

Data size of L SL FTcF SL.MDS FTcF.MDS

PC1 2% 0.1027 0.1365 0.3351 0.4797
5% 0.1169 0.1690 0.3141 0.4577
10% 0.1508 0.1892 0.4554 0.5031
25% 0.2694 0.3041 0.4939 0.4898
50% 0.3476 0.3429 0.5143 0.5143

PC3 2% 0.0541 0.1510 0.2459 0.3930
5% 0.0895 0.1458 0.3458 0.4072
10% 0.0828 0.1103 0.3690 0.4193
25% 0.0934 0.1174 0.4636 0.4793
50% 0.1268 0.1390 0.4854 0.4817

PC4 2% 0.0324 0.0574 0.1205 0.2938
5% 0.1088 0.1871 0.3772 0.5140
10% 0.1622 0.2530 0.4732 0.5415
25% 0.2331 0.2782 0.5085 0.5268
50% 0.2679 0.2632 0.5670 0.5660

KC1 2% 0.0710 0.1583 0.1695 0.2732
5% 0.1022 0.1597 0.2384 0.3603
10% 0.1434 0.1970 0.3293 0.4303
25% 0.1348 0.1546 0.3300 0.3718
50% 0.1636 0.1695 0.3159 0.3186

Table 4.4: PD with threshold=0.1 for the four data sets

Data size of L SL FTcF SL.MDS FTcF.MDS

PC1 2% 0.6365 0.7108 0.8027 0.8770
5% 0.6662 0.7394 0.8648 0.9592
10% 0.7138 0.8092 0.8800 0.9631
25% 0.8204 0.8571 0.8796 0.9449
50% 0.8476 0.8667 0.9095 0.9238

PC3 2 % 0.6395 0.7758 0.7248 0.8771
5% 0.6693 0.7497 0.8196 0.9725

10 % 0.6910 0.7903 0.8366 0.9538
25% 0.7851 0.8587 0.8579 0.9240
50% 0.8085 0.8622 0.8780 0.9098

PC4 2 % 0.6710 0.7642 0.7727 0.9182
5% 0.8187 0.8924 0.9035 0.9930
10% 0.8677 0.8963 0.8774 0.9732
25% 0.9211 0.9606 0.9106 0.9585
50% 0.9538 0.9604 0.9311 0.9604

KC1 2% 0.5489 0.7249 0.5938 0.7969
5% 0.6067 0.6876 0.7130 0.8190
10% 0.6773 0.7461 0.7421 0.8043
25% 0.6773 0.7473 0.7260 0.7623
50% 0.7368 0.7695 0.7505 0.7618
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Table 4.5: One way ANOVA test for PD(threshold= 0.5) at 2% labeled data

d.f Sum Sq Mean Sq F value p-value

algorithm 3 0.197433 0.065811 12.569 0.000517
Residuals 12 0.062832 0.005236

Table 4.6: P-value of ANOVA test on varied size of labeled data for all performance
measures

size of L AUC PD(0.75) PD(0.5) PD(0.1)

2% 0.037951 0.000541 0.000517 0.001004
5% 0.056876 0.000105 1.09E-06 0.010114
10% 0.08185 5.72E-07 3.97E-06 0.02952
25% 0.338097 1.44E-05 0.000332 0.531505
50% 0.491754 0.000623 0.004326 0.853906

Table 4.7: Significance comparison of PD(0.5)

SL FTcF SL.MDS

FTcF none – –
SL.MDS all 5%,10%,25%,50% –

FTcF.MDS all all 2%, %5

Table 4.8: Significance comparison of PD(0.1)

SL FTcF SL.MDS

FTcF none – –
SL.MDS none none –

FTcF.MDS 2%, 5%, 10% 2% 2%

The algorithms that have MDS embedded (FTcF.MDS and SL.MDS) outperform the

corresponding supervised / semi supervised counterparts (SL, FTcF) for some of the

size settings. Both tables indicate that just changing the training method from super-

vised to semi-supervised, both using random forest at the core, does not offer significant

differences.

4.3.4 Robustness to Noise

On software fault identification, it is nature to contain noise in the labels due to many

practice issue such as mislabeling by software developers, or fault information reported

by untrustworthy part. This type of noise can dramatically affects the results of clas-

sification. It is then an issue that software developers should consider when selecting

the classification strategies. Robustness test is an effective technique to characterize the

behavior of an algorithm in the presence of mislabeling condition.

To investigate the robustness of our semi-supervised approach with the presence of noisy

response, we randomly selected partial of the modules from each data set and permuted
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the response. The noisy rate we explored is 2%, 5%, and 10%. Similar to previous

experiments, varied size of labeled data are sampled (2%, 5%, 10%, 20%,and50%) in each

of the four data sets. For this experiment, we are not interested in the performance of

our semi-supervised approaches on noisy data directly, because the performance will of

course be worse than original data (assume the original data are pure). Instead, we are

interested in the stabilization of our semi-supervised approach on noisy data.

Table 4.9 and 4.10 show the average decrease on the measure of AUC and PD (threshold

is 0.5) respectively when noisy response appears in four data sets. The positive value

implies the decrease of performance when noise appears and the negative value implies

the increase of performance. From the table, the changes on performance caused by

noise response are fairly small for both measures across all size setting of labeled data.

This implies that the dimension reduction based semi-supervised learning algorithm is

stable to noise..

Table 4.9: Average decrease in AUC measure.

Rate of Noise data set 2% 5% 10% 25% 50%

2% pc1 0.088 0.041 0.034 0.016 0.015
pc3 -0.04 0.022 0.018 0.012 0.006
pc4 0.029 0.024 0.046 0.034 0.019
kc1 0.009 0.025 0.025 0.029 0

5% pc1 0.112 0.104 0.072 0.058 0.031
pc3 -0.022 0.053 0.046 0.051 0.039
pc4 0.12 0.056 0.069 0.053 0.044
kc1 0.024 0.014 0.072 0.059 0.066

10% pc1 0.205 0.159 0.132 0.077 0.039
pc3 0.042 0.073 0.068 0.077 0.041
pc4 0.094 0.102 0.086 0.069 0.052
kc1 0.05 0.098 0.098 0.096 0.09

Table 4.10: Average percent decrease in PD measure (Threshold is 0.5).

Rate of Noise data set 2% 5% 10% 25% 50%

2% pc1 0.224 0.197 0.043 0.079 0.094
pc3 -0.035 0.005 0.009 0.066 0.034
pc4 0.061 0.038 0.139 0.073 0.094
kc1 -0.191 0.014 0.017 0.023 -0.002

5% pc1 0.222 0.204 0.136 0.2 0.168
pc3 0.026 0.084 0.035 0.077 0.096
pc4 0.085 0.172 0.178 0.091 0.148
kc1 -0.083 -0.002 0.063 0.06 0.029

10% pc1 0.354 0.319 0.309 0.177 0.15
pc3 0.18 -0.005 0.028 0.139 0.105
pc4 0.036 0.099 0.178 0.202 0.203
kc1 -0.064 0.003 0.113 0.095 0.046
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4.3.5 Discussion

To study the outperformance of the augmented FTcF algorithm, we repeated the com-

parison of semi-supervised learning with Menzies and Lessmann’s studies that we con-

ducted in previous chapter. Table 4.11 compares the results by providing the value

of the probability of correctly detecting (unlabeled) fault prone modules, PD, at fixed

probability of false detection, PF. We set the values of PF to 0.17, 0.35 and 0.29 for

PC1, PC3, and PC4, respectively, to match the performance reported by Menzies. For

PC1 project, Random Forest (SL) starts to beat Menzies’ results at 10% labeled data

and FTcF.MDS algorithm starts to beat the same result when only 5% of modules have

labels. Both SL and FTcF.MDS exceed Menzies’ result with 25% labeled data for PC3

and at 50% labeled data for PC4.

In Table 4.12, we compare FTcF.MDS and Lessmann’s results, both using Random

Forest algorithm. Since Random Forest exhibited the best performance in Lessmann’s

study (although not significantly better than other classifiers), the comparison of these

results is fair. The performance of FTcF.MDS exceeds Lessmann’s Random Forest

algorithm when only 10% modules have labels in PC1 and KC1, and when 5% modules

have labels in PC3. We could not exceed the performance reported by Lessmann on

PC4, but we did not try to use 67% labeled data for training either.

Table 4.11: Comparison of results with [1]

Data sets Size of L SL FTcF.MDS Menzies [1]

PC1 2% 0.45 0.73
(PF=0.17) 5% 0.46 0.80

10% 0.53 0.85
25% 0.66 0.88
50% 0.74 0.91 0.48

PC3 2% 0.66 0.77
(PF=0.35) 5% 0.73 0.90

10% 0.74 0.92
25% 0.81 0.94
50% 0.85 0.95 0.8

PC4 2% 0.62 0.89
(F=0.29) 5% 0.79 0.81

10% 0.86 0.97
25% 0.94 0.98
50% 0.98 0.99 0.98
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Table 4.12: Comparison of results with [2] using AUC

Data sets Size of L SL FTcF.MDS Lessmann [2]

PC1 2% 0.67 0.85
5% 0.71 0.89
10% 0.77 0.93
25% 0.85 0.94
50% 0.87 0.94 0.9

PC3 2% 0.71 0.78
5% 0.74 0.88
10% 0.75 0.90
25% 0.79 0.91
50% 0.82 0.93 0.82

PC4 2% 0.72 0.87
5% 0.82 0.92
10% 0.87 0.93
25% 0.91 0.94
50% 0.93 0.95 0.97

KC1 2% 0.74 0.74
5% 0.74 0.74
10% 0.76 0.78
25% 0.78 0.79
50% 0.80 0.80 0.78

4.4 Conclusion

In Chapter 3 we demonstrated that self-training typically improves the corresponding

supervised learning, when both use the same learning algorithm, in our case random

forest. Nevertheless, prediction performance improvement is not significant. In this

chapter, we then added a pre-processing strategy, MDS, to the semi-supervised learn-

ing algorithm, FTcF, and obtained statistically significant improvements. Statistically

significant performance improvements are rarely seen in fault prediction modeling. A

combination of semi-supervised learning and the dimension reduction technique provides

important benefits to software quality prediction. The robustness test is examined to

test the stabilization of our approach to noisy response when Random Forest is used as

base learner. Our results showed that the dimension reduction FTcF algorithm exhibits

stable performance.

The very good performance of FTcF.MDS at the 2% and 5% labeled data sizes at

threshold 0.1 are of particular interest to software engineers. To our knowledge, no

one so far reported success in developing fault prediction models that offer reasonable

performance with such an “extremely” small number of available modules with known

fault content. This is the situation in which semi supervised learning approach shines

because it incorporates unlabeled data in the learning process. Our results indicate that
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the metrics extracted from modules with unknown fault content can compensate for the

shortcoming of supervised learning. However, this advantage, while still present, is not

as significant when a larger portion of software modules is labeled.

This study, we believe, indicates that empirical software engineering needs to move from

the use of generic off-the-shelf machine learning algorithms towards the ones that take

into account the specificity of the domain in which we work. We also believe that dimen-

sion reduction technique developed in this chapter looks promising as a preprocessing

strategy for many software prediction problems with large dimensionality of independent

(predictor) variables.



Chapter 5

Active Learning in SFP problem

In previous chapters, we’ve investigated the semi-supervised learning approaches in soft-

ware fault prediction problem and demonstrated that semi-supervised learning, such as

self-training approaches, augmented with appropriate pre-processing technique can out-

perform the corresponding supervised learning when the same base learner is used. As

we proposed in Introduction chapter, an alternative to semi-supervised learning is active

learning, which has similar learning procedure but differs from the way they select can-

didates to label. Typically, semi-supervised learning approach boosts the accuracy of a

classifier, which learns from a few labeled instances selected according to some confidence

criteria. Active learning selects unlabeled instances according to their informativeness.

On the other hand, active learning requires labels from oracle interactively, while semi-

supervised learning requires no human efforts. In this chapter, we aim to investigate an

adaptive software fault prediction model. The core of the adaptive approach is active

learning.

5.1 Active Learning

Active learning, in statistics literature also called optimal experimental design or query

learning, is a class of strategies to choose the data from which to “learn”, in our case,

a fault prediction model. In principle, good prediction performance can be achieved

by using only “essential data”, that is, use only the selected data for training. This

characteristic of active learning is desirable in situations when labeled data items are

not abundantly available [113]. Traditional supervised learning approach is a two-step

procedure in which a learner is first trained using labeled data and the model then pre-

dicts on unlabeled data. Unlike supervised learning, active learning requires interactions

57
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Active Learning with uncertainty sampling

Input :
Labeled instances Xl with fault content Yl;
Unlabeled instances Xu;
A base learner C

loop :
1: Train C using current labeled data Xl, Yl;
2: Use C to predict unlabeled instances Xu;
3: Calculate the uncertainty score for each

module in Xu;
4: Select u′ most uncertainty instances;
5: Obtain labels for selected instances;
6: Updating: Xl = Xl+u′ , Xu = Xu−u′ ,

and Yl = Yl+u′ ;
End when stop criteria is met;
Output : The learnr C ;

Figure 5.1: Active learningn process

between a learner and an oracle simultaneously. A typical active learning approach be-

gins with a small labeled set. Base learner(s) is/are then trained using the small labeled

data set, such that labels within the considered unlabeled data set can be predicted.

Next, the most “informative” instances are carefully selected and sent to the oracle to

check the correctness of the prediction of their labels. After the labels are activated

(confirmed), these selected instances will be incorporated into the pool of labeled data.

In the next round, the learner(s) will be trained using data in the currently labeled data

pool. The cycle repeats until a stopping criterion is met.

In a general framework, active learning can be referred to as selective sampling. There

are many active learning strategies proposed with respect to a sampling method. The

most popular ones are uncertainty sampling, query-by-committee, error reduction, and

density-weighted methods [31]. Of particular note is uncertainty sampling [114–117],

the most widely used in machine learning literature. The motivation behind uncertainty

sampling is finding unlabeled instances that contain most uncertainty, and use them to

clarify the decision boundary. This approach is straightforward for probabilistic learning

models. For example, when using a probabilistic model for a binary classification prob-

lem, such as Naive Bayes, the instances with most uncertainty are those with posterior

probability closest to 0.5 – typical decision cutoff for binary classification with balanced

class sizes. Fiture 5.1 provides the process of active learning approach with uncertainty

sampling technique. C refers to a learner.

However, two issues can hamper uncertainty sampling: outliers and imbalanced classes.
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Usually, outliers in data have high uncertainty, but cannot provide much help for clas-

sification. In active learning, outliers raise the risk of introducing wrong predictive

information and failing to learn. On the other hand, when classes are of dramatically

different size, the selection of cutoffs, such as 0.5 for binary classification problems, is

indeterminate. This observation holds whenever the prior knowledge about the data is

not available. In our prior experiments, uncertainty sampling with mid-range cutoffs

(e.g. 0.5) does not show any benefits in software fault prediction, since the number of

not-fault-prone modules is significantly larger than the number of fault-prone ones.
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Figure 5.2: Comparison of two active learning sampling strategies with supervised
learning approach. 10-cross-validation is used to evaluate the prediction performance

of trained models at each iteration.

Instead of focusing on “uncertainty” at each adaptive round, we will be more concerned

with “representativeness”. More specifically, we will try to clarify the position of the

decision boundary between prediction classes using the most representative modules

from each pool, fault-prone and not-fault-prone. This borrows the basic idea from self-

training. Self-training and active learning approaches follow similar iterative procedures.

In the self-training approach, the instances with the highest confidence scores are selected

from unlabeled data set and then incorporated into the labeled data set. The confidence

score is a probabilistic prediction of a base learner wrapped in self-training procedure on

the particular unlabeled data item. The underlying assumption of self-training is that

the most informative instances are the ones with the highest confidence of prediction.

Iteratively augmenting labeled data set using the most informative instances guides

a prediction model towards gradual improvement. In our study, the active learning

mimics the same assumption about software data sets. The main difference between

active learning and self-training approach is that the former needs oracle to confirm the
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labels of selected modules, thus providing an additional level of software verification

checks, while the latter uses the predicted labels without an explicit confirmation.

To justify the choice and demonstrate the advantages of certainty sampling, we set up

an experiment to compare certainty sampling and uncertainty sampling on software

fault prediction data. 10-way cross validation procedure is utilized for evaluation, in

which 9 folds are used as training data and the instances in the last fold are used for

testing. For the training data, we separate modules into two pools - labeled data pool

and unlabeled data pool. Active learning proceeds until unlabeled pool is empty. We

tracked the performance of the trained model at each active learning iteration. The

performance of two active learning strategies (certainty vs. uncertainty sampling) is

depicted in Figure 5.2. The details of the experiment will be clarified in later section.

We use this experiment to better motivate the work that follows. In comparison to

random sampling of training instances with Naive Bayes (marked SL for Supervised

Learning in the Figure), we observe that uncertainty sampling performs worse while

certainty sampling performs better. The finding is reasonably consistent across all the

projects we analyzed.
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Figure 5.3: Diagram of the Adaptive Fault Prediction process.
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5.2 Active learning based Software Fault Prediction Model

In this section, we describe the Adaptive Fault Prediction approach - AFP. The idea of

utilizing an adaptive prediction mechanism in software engineering is not new. A few

adaptive failure detection mechanisms have been proposed to detect quality degradations

in computer networks and various other applications [118–121]. However, most of

these studies focus on on-line prediction and real-time processing. To the best of our

knowledge, there are no studies of adaptive learning in software fault prediction using

complexity metrics. In particular, this seems to be the first attempt to deal with the

prediction of fault prone modules in emerging software projects, those with no history

or previous releases. In these projects, only the modules developed and verified early in

the development can be used to predict fault content of those developed later.

Figure 5.3 shows the procedure of the proposed classification approach. In the beginning,

a small set of modules needs to be labeled (Initial Labeled Data). These modules would

be the thoroughly inspected and / or unit tested, allowing the developers to assign the

faulty or not faulty labels. These instances create the initial pool of currently labeled

data. At each adaptive iteration, the unlabeled data set is formed from the software

modules developed up until that point in time. They form the pool of currently unlabeled

data. In the adaptive loop, a supervised learner trains from currently labeled modules

and the learned rules are then applied to predict fault content in currently unlabeled

modules.

In this process, modules in the pool of currently unlabeled data receive confidence scores,

i.e., probabilistic predictions. An active learner then selects the modules with respect

to the confidence score which, it believes, are the most informative or the most likely to

be correct. The selected modules, marked in Figure 5.3 as Selected Cases (Unlabeled),

undergo a detailed labeling procedure by an expert (oracle). The expert ensures that

the modules are labeled correctly. These selected cases are then removed from the pool

of currently unlabeled data and incorporated into the pool of currently labeled modules,

together with those that had their labels assigned at the very beginning. The modules

not selected in the current round stay in the pool of currently unlabeled data. This cycle

repeats until no additional, new unlabeled data are available or a stop criterion is met.

In our experiments, we know the ground truth about the fault content of all software

modules from the NASA MDP data repository. Therefore, in our experiments, this

information replaces the oracle. In actual application of the proposed approach, the

modules selected for checking of label values would be passed to thorough inspections.

Since we know the labels of all the modules in the unlabeled pool from the same source

too, these will be used to evaluate prediction performance.
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Two types of learners, a supervised learner and active learner, are coupled together in the

adaptive procedure. First, the supervised learner triggers the adaptive cycle by providing

a prediction model on initially labeled data. This learning algorithm is then wrapped

into the adaptive loop and repeatedly retrains from the updated labeled data set. Each

time, a new prediction model emerges. The supervised learner can be any supervised

learning algorithm. In this study, we use Naive Bayes, one of the most popular learning

algorithms. The studies of software fault prediction [1, 2] recommend Naive Bayes due

to its computational efficiency, simplicity and the ability to sum up the information from

multiple attributes. Computational efficiency is important, as the learning algorithm will

be invoked within the loop, repeatedly. This being the first experiment with adaptive

fault prediction, we want to preserve simplicity in the core learning algorithm too, and

concentrate on the utility of the proposed adaptive learning framework. The predictions

created by Naive Bayes are the posterior probabilities (Pr(y = fp|x)), i.e, the scores of

certainty.

The other learning mechanism essential in our approach is the active learning with its

certainty sampling strategy. It plays a role in selecting of unlabeled modules whose

newly acquired or confirmed labels provide the “best” guidance for the separation of

classes in binary classification. In our experiments, the modules with the highest score

in each adaptive iteration are considered good class representatives and thus selected.

Table 5.1: NASA software metrics

Data Modules % Faulty features Project description
KC1 2109 13.9% 22 Storage management for ground data
PC3 1563 10.43% 41 Flight software for earth orbiting satellite
PC4 1458 12.24% 41 Flight software for earth orbiting satellite
PC1 1109 6.59% 41 Flight software from an earth orbiting satellite
CM1 505 16.04% 41 Spacecraft instrument
KC3 458 6.3% 41 Storage management for ground data

Table 5.2: Number of modules in initially labeled data set

5% 10% 20% 50%
KC1 105 211 421 1054
PC3 78 156 313 782
PC4 73 146 292 729
PC1 55 111 221 554
CM1 25 50 101 252
KC3 23 46 92 229
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5.3 Experiments and Results

5.3.1 Experimental Setting

Our goal is to address the difficulties raised by traditional supervised learning ap-

proaches, mentioned in Introduction chapter. Thus, following assumptions are the start-

ing point in our work:

• Only a modest number of labeled modules are initially available;

• Cost of human intervention (the V&V activities for modules selected in the itera-

tions of adaptive procedure) to support the algorithm is high and, therefore, can

be afforded at a limited scale.

The latter can be achieved by limiting the number of modules to which V&V activities

that check the validity of presumed labels (the oracle function) are applied. If we expand

the labeled data set with a very few modules in each iteration, verification activities

should have an acceptable cost.

In this study, we used six projects from NASA MDP repository for our experiments

(Table 5.1). We start the Adaptive Fault Prediction (AFP) process with the proportions

of initially labeled modules being 5%, 10%, 20% and 50% of all the project modules.

Table 5.2 shows the numbers of modules in each project at the setting of 5%, 10%, 20%

and 50%. We are particularly interested in the small sizes of initially labeled pools, 5%

or 10% of project modules. Going through the iterations of AFP, we will typically run

the next iteration by including u unlabeled modules that have not been considered in the

previous iteration. In other words, our experiments simulate fault prediction iterations

whenever u new modules are released by the development team. For KC1, PC3, PC4

and PC1, the number of new unlabeled modules added in each iteration of AFP, i.e., u,

is set to 100; for CM1 and KC3, we set the number to 50.

At the end of each iteration, for all data set, the algorithm selects only 5 modules for

oracle assessment. For example, PC3 data set has 1, 563 modules. Excluding the 5%

initially labeled modules (78), 1, 485 are left unlabeled for prediction, enough for 15

adaptive iterations. Therefore, selecting 5 modules in each iteration adds 15 ∗ 5 = 75

modules into the labeled data set. Together, only 78 + 75 = 153 modules will ever be

exposed to verification activities to determine their fault content. That is less than 10%

of project’s modules that need to have ground truth established, a far smaller number

than any approach in the research literature using supervised learning. To evaluate

the classification performance of our approach, we use Area Under Receiver Operating

Characteristic Curve (AUC) as the goodness measure.
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Figure 5.4: Performance of AFP for 5% of initially labeled modules.
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Figure 5.5: Performance of AFP for 10% of initially labeled modules.
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Figure 5.6: Performance of AFP for 20% of initially labeled modules.
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Figure 5.7: Performance of AFP for 50% of initially labeled modules.
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5.3.2 Results

Figures 5.4 to 5.7 depict classification performance of our approach with the four relative

sizes of initially labeled modules: 5%, 10%, 20% and 50%. Points in the figures repre-

sent the performance of the current model on the unlabeled instances in each adaptive

iteration. Each point is an average of 20 runs, allowing us to express variance. In the

figures, the number of iterations reflects the size of data set (larger data sets undergo

more iterations, since 100 unlabeled modules are added in each) and the proportion of

initially labeled modules. To visualize the variability of results, we show the error bars.

A bar measures one standard deviation from the average, at each iteration.

Figures 5.4 depict the performance trends of the AFP on six data sets when the number of

initially labeled software modules is 5% of the project size. The measure of interest is the

area under the ROC curve (AUC). From the first plot, we can observe that the average

prediction performance on KC1 in the first iteration is 0.77 with the corresponding error

band ranging from 0.72 to 0.82. This is a large variance. Through additional iterations,

the error band gets narrowed. At the end of the adaptive procedure, the error band is

reduced to the range (0.78, 0.80). Meanwhile, the performance of the model improves.

The average performance at last iteration is 0.79, an increase of 2.6% over the first

iteration. In the last iteration, the number of unlabeled modules is much larger than

in the first iteration. In case of project KC1, we observe that the performance of fault

prediction models gains stability throughout the adaptive procedure, i.e., the standard

deviation shrinks.

The same phenomenon can be observed with all the other data sets in Figures 5.4: PC1,

PC3, PC4, CM1, and KC3. For PC1, the average performance increases from 0.67 to

0.73 while the width of the error range is reduced from (0.53, 0.81) to (0.70, 0.76). There-

fore, over the iterations of adaptive learning, average prediction performance improves

9% and the standard deviation decreases by 78.6%. The average prediction improvement

rates for the other four data sets, PC3, PC4, CM1, and KC1 are 7.1%, 9.7%, 10.9% and

11.3%, respectively. The corresponding rates by which the standard deviation decreases

are 71.4%, 71.4%, 73.3% and 89.5%. The detailed statistics for the improvement rate

of average performance and the reduction rate of standard deviation for all data sets is

presented in Table 5.3.

We experimented with 10%, 20% and 50% of initially labeled modules too and the results

are shown in Figures 5.5 to 5.7, respectively. In these figures similar trends emerge.

Through consecutive iterations of adaptive learning, error bars consistently shrink on all

data sets across all initial labeled data size settings. However, the average performance
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Init. Labeled % of Changes KC1 PC1 PC3 PC4 CM1 KC3 AVE.

5% Ave. Performance 2.6 9.0 7.1 9.7 10.9 11.3 8.4
Std. 80.0 78.6 71.4 71.4 73.3 89.5 77.4

10% Ave. Performance 2.6 5.8 8.7 3.8 9.0 2.6 5.4
Std. 85.7 81.3 77.8 66.7 78.6 83.3 78.9

20% Ave. Performance -2.5 0.0 1.4 6.3 7.4 2.6 2.5
Std. 80.0 62.5 75.0 81.8 83.3 84.6 77.9

50% Ave. Performance 1.3 0.0 2.7 1.2 -1.4 -2.4 0.2
Std. 80.0 58.3 66.7 71.4 73.3 66.7 69.4

Table 5.3: Percentage of change over the iterations of adaptive learning procedure.

levels out as the size of initially labeled data set increases. For some experimental

settings, the average performance slightly decreased.

The rates at which average performance improves and variance decreases across all

experimental settings are clearly shown in Table 5.3. The values reflect performance

improvement parameters derived from predictions taken at the end of the first iteration

and after the last iteration. The percentage of increase for average performance and the

percentage of decrease for standard deviation are calculated. Ave.performance stands

for average AUC improvement and Std. stands for the reduction in standard deviation.

For example, PC1 exhibits a 9% improvement in average performance between the first

and last adaptive iteration when 5% of the data set is labeled initially. The same

rate of average performance improvement is reduced to 5.8% when 10% of the project

modules are initially labeled. When the initially labeled data size increases to 20% and

50%, the rate of performance improvement through iterations is closer to zero. This

demonstrates that with the larger number of initially labeled modules the improvement

obtained through the adaptive procedure is minimal.

An average increase in performance, measured by AUC, of (8.4, 5.4, 2.5, 0.2) across all

data sets is presented in the last column of Table 5.3). Meanwhile, the reduction of

standard deviation is relatively stable for all data sets. As the last column of Table 2

indicates, the average rate of decrease of standard deviation through algorithm iterations

is at or above 70%. This is a significant observation, as variability in the application of

fault prediction models is a strong concern.

Overall, we observe that through the iterations the performance of fault prediction model

in the adaptive procedure slightly improves while the corresponding standard deviation

is significantly reduced. This observation is consistent through most data sets, across

varied sizes of initially labeled modules. However, as the proportion of initially labeled

modules increases, average performance obtained through adaptive iterations of AFP

approach flattens out.
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Up until now, we analyzed the iterative performance of the AFP approach. One might

wonder about performance comparison between this approaches when compared with

the traditional supervised learning. Supervised learning is more popular and straight-

forward. Next, we compare the performance of AFP with the corresponding supervised

learning experiment, which uses Naive Bayes classifier. This is a fair comparison, as

Naive Bayes is used within each iteration of AFP too.

In Figure 5.8 , we compare AFP algorithm and the supervised learning approach - Naive

Bayes. Again, we vary the size settings for the initially labeled data set. The comparison

is fair from one more perspective: we use the same total number of labeled modules

for training in both cases. For example, PC1 contains 1, 107 modules. When 5% of

modules are initially labeled for AFP approach, there are 11 adaptive iterations. Within

each iteration the fault content is predicted for 100 new modules. Having five modules

added to labeled data set and used in training, we arrive to the total of 5 ∗ 11 = 55

modules newly labeled by the oracle. Together with the initial 5% (0.05 ∗ 1107 = 55)

labeled modules, there are (55 + 55 = 110) modules that require the application of

V&V activities to establish their faultiness. In the corresponding supervised learning

case, we randomly select 110 modules as training instances. The performance for both

approaches is evaluated on all the modules not used in training. Each experiment is

repeated 20 times to balance randomness in the selection of the training data. In Figure

7, the filled points represent the performance of AFP and the unfilled points represent

the AUC achieved by supervised learning. Again, the average performance and standard

errors are obtained from 20 runs.

The first plot in Figure 5.8 compares the performance of AFP and supervised learning

(SL) on all data sets when 5% of the modules are initially labeled for training in AFP

and the appropriate size of the training set is used by SL. In the plot, we observe that

AFP approach outperforms the corresponding supervised learning on all but one data

set (PC4). On the other hand, the error bars for AFP are narrower than those coming

from the application of SL. This observation is consistent across all the data sets.

In the second plot (10% of modules initially labeled) of Figure 5.8, the trends are similar

as in the first plot, although average performance improvements are less pronounced.

When the proportion of initially labeled modules increases to 20% and 50% in the two

bottom plots in Figure 5.8, the average performance of supervised learning approach

overtakes the performance of AFP for most of the data sets, although by a slight margin

and within error bars.

It is interesting to note that the difference of standard error between AFP and AL is

large when 5% labeled data set is used - AFP has narrower error bar than AL. The

difference in standard error tends to disappear when the size of labeled data increases



Chapter 5. Active Learning in SFP problem 69

up to 50%. This is because that when a small size of data is sampled and used as

initially labeled set, SL classifier is more likely to get stuck at local solution, thus its

classification performance is less stable. Data quality issues, such as outliers or noise in

labels, can also significantly affect the performance of SL when sampled training data

is small. AFP, repeatedly and intelligently selecting representative additional samples,

tends to train more generalized model, thus receives less dispersion in standard error.

When the size of initially labeled data is large (50% of entire data set), the instability

in classification by SL gets reduced and the impact of data quality issues to SL is less

significant. Thus, the standard deviations of SL in these experiments are close to that

observed from AFP.

It is apparent that the advantages of AFP can be expected with smaller number of

initially labeled modules. When the number of labeled modules approaches 20% or

more relative to the project size, supervised learning is a simpler and, likely, a better

choice.
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Figure 5.8: Comparison between AFP approach and supervised learning. Both use
Naive Bayes classifier with varied sizes of labeled data used in training.
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5.3.3 Discussion

In our experiments, we varied the number of modules in the initially labeled group

between 5% and 50% of the overall data set size. At 5% setting, there are 105, 78,

73, 55, 25, and 23 modules that are randomly selected from projects KC1, PC3, PC4,

PC1, CM1 and KC3 respectively, and used for training. For 10% setting, the number of

initially labeled modules is 211, 156, 146, 111, 50 and 46 (Table 5.2). Such small sets of

training data have rarely been used in software fault prediction literature and have been

deemed impractical for most practical purposes. The rationale has always been that fault

prediction is typically carried out to predict faulty modules in successive versions of the

project. When the fault content of modules in earlier versions is available and easy to

obtain, due to well-organized problem reporting and maintenance, this makes supervised

learning a practical method for modeling. However, every project has version one.

Within the initial development, the performance of existing fault prediction techniques

has never been studied, because supervised learning algorithms offer poor prediction

performance in absence of a substantial number of training instances.

Our adaptive approach offers better fault prediction classification results in the early

development context, when no more than 5% or 10% of modules have been inspected for

faults. Compared with the corresponding supervised learning approach at the same size

of training instances, AFP exhibits better average performance with less dispersion in

the standard error. Nevertheless, a large number of modules, 20% or 50%, are not likely

to be available for model training of Version 1 in practice. Consequently, we are not

as concerned with the limited benefits of AFP at large proportions of initially labeled

modules. Supervised learning would likely be the modeling technique of choice in such

cases.

We can summarize our observations as follows. For projects in which the number of

modules with known fault content is small, AFP approach:

1. Efficiently adapts fault prediction to the dynamics of software development in

which modules are developed over time;

2. Reduces the cost of quality assurance techniques;

3. Has better performance and less variance than traditional supervised learning when

the same number of modules are available for model training;

4. Works better when used to track emerging system’s quality, especially when the

fault rate of newly developed modules is uneven, i.e., not a constant.
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For observations 1 to 3, the merits are explicit, derived directly from experiments. The

last observation needs elaboration. Let us restrict attention to new software projects,

those without past performance data. If we want to use supervised leaning for fault

prediction, only the modules developed and released early can undergo verification ac-

tivities, be labeled and used as training data. In some projects, the fault introduction

rates can vary over time for a variety of reasons. For example, a project might have

low fault introduction rate in the beginning because early modules tend not to be as

complex as the ones released later. Or, for whatever reasons, if the most experienced

developers leave the project in its infancy and are replaced by less experienced ones, the

fault introduction rate may vary too.

Thereby, the proportion of faulty modules may increase with time. In a situation like

this, supervised learning approach will obviously lack the capability to capture the overall

quality distribution and trends. Similar argument can be made for situations in which

fault introduction rate decreases over time. AFP approach, in principle, predicts the

fault content of modules as they emerge from the development. The fault trends of

project can be “sampled” intelligently. In this study, we randomize the order of modules

in the experiments because the experimental data sets lack time order information.

However, studying fault prediction using the chronological development order would be

valuable.

5.4 Conclusion

Predicting and tracking software quality at the time of development is important for new

projects, which have no previous releases. Fault prediction literature mostly focuses on

supervised learning approaches. However, supervised learning is not practical in absence

of large training data set, the availability of which raises the cost of fault prediction.

Supervised learning approaches also lack the capability to capture variations of software

quality in development, over time.

In this chapter, we propose an adaptive learning approach, which resolves some of the

limitations of supervised learning. In our approach, we wrap supervised learning into

an adaptive procedure. Active learning is part of the adaptive learning procedure. It

supports intelligent automated selection of modules, which best represent faulty and non-

faulty classes. Our results show that the proposed adaptive approach provides improved

performance when the number of initially labeled modules is small - lower than 20%

of the project size. Compared to the corresponding supervised learning approach, our

algorithm provides slightly better performance with significantly reduced variability of

prediction results.
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Revisit Active Learning using

different Data Sets

By far, all of our experimental data sets are projects from NASA MDP repository and

we assume there are once-a-time projects that have no previous subsystems or versions

we can learn from. To validate our findings in active learning, in this chapter we extend

the investigation of active learning on version-based projects. Several active learning

approaches are investigated using releases of Eclipse, Camel and Ant projects from

PROMISE. From our precious studies, we also learned that the performance of active

learning, in general, depends on the combination of features and the quality of the data.

Hence, in this chapter we also investigated the effect of feature transformations in active

learning by exploring two dimensionality reduction techniques and four feature selection

techniques.

6.1 Feature Compression

Software metrics used as features in defect prediction problems can be described by

aggregating complexity metric values (maximum, average and total)[122]. Such aggre-

gation may introduce irrelevant or redundant information relative to defect prediction.

Compressing features into a small set may not only compact the information but remove

the noise too. On the other hand, active learning with uncertainty sampling typically

selects outliers for the assessment by the oracle. In many cases these are modules with

noise, for example incorrectly computed metrics, wrong labels, highly unusual code con-

tent or similar problems. Such outliers in the unlabeled data set have high uncertainty,

but may not provide much help in building the model. Feature selection and dimen-

sionality reduction are methods designed to reduce the number of dimensions and thus

72
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describe the objects of interest more succinctly [123, 124]. Feature selection and di-

mensionality reduction techniques are, therefore, reasonable solutions to minimize noise

related problems in software defect data. We postulate that these techniques enable

more effective and rapid learning process.

In this section we discuss the performance of multiple feature selection and dimensional-

ity reduction techniques applied to modules in software version control repositories prior

to active learning for defect prediction.

6.1.1 Feature Selection Techniques

Feature selection techniques [125, 126] broadly fall into two categories: a) the filter

model and b) the wrapper model. The filter model is based on general/intrinsic charac-

teristics of training data and it does not consider learning algorithms. Usually, it ranks

each feature according to some univariate metric such as uncertainty or correlation and
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Figure 6.1: Comparison of different feature selection techniques with active learning
using Eclipse 2.0 packages for training and 2.1 for evaluation.
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selects the highest ranked features. Note that the scoring should reflect the discrimina-

tive power of each feature. The wrapper model computes feature scores relative to the

learning algorithm. For each subset of features, the wrapper needs to create a predictive

model. The performance of selected features is evaluated with respect to the learned

model. Wrappers tend to find features better suited for the learning algorithm, boosting

its performance. Incorporating feature selection techniques prior to defect prediction

process is not new in the literature [127, 128].s In this study, we utilize four feature

selection methods, two from filter and two from wrapper feature selection models:

• Information Gain (InfoGain): A measure based entropy, it measures the decrease

of the weighted average impurity of the partitions compared to the impurity of the

complete set of data.

• Correlation-based feature selection (CFS): A heuristic, which scores feature subsets

and trades off the average relevance of the class - the dependent variable - against

the average inter-correlation. CFS selects features that are relevant to the class,

but are not redundant to any of the other relevant features.

• Forward selection (FWS): Selects features iteratively based on a certain criteria.

Newly selected features (in each sequence) boost the performance of previously

selected metrics.

• Backward selection (BWS): Similar to FWS, but it starts with all features and

iteratively removes the least relevant one. J48 is the predetermined learner in

both the FWS and BWS methods.

To compare above feature selection techniques, we applied each one of them in subse-

quent releases of the projects, when feature selection technique was followed by the active

learning process. The prediction model is built using, for example, Eclipse packages from

release 2.0 and each iteration adds 1% of the modules from release 2.1, following the

determination of their true labels. Trends in Figure 6.1, using Eclipse packages level

data, reflect the performance of trained models at each iteration, marked along the x

axis. While the details of our experimental methodology are explained later (Section

6.2.2), it is interesting to note the uniformity of observations in Figure 6.1. Essentially,

there is no observable difference in defect prediction performance that can be attributed

to the use of any of the four feature selection techniques. We observed a similar result

when the units of prediction were files in Eclipse, Camel and Ant.
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6.1.2 Dimensionality Reduction Techniques

As we’ve learned in Chapter 4, dimensionality reduction refers to the process of replacing

the original features of a high-dimensional space with a set of derived features in a

lower-dimensional space. Unlike feature selection in which subsets of original features

are selected, dimensionality reduction combines original features to extract essential

information [129].

With the success of Multidimensional Scaling (MDS) in our previous study, we continue

to use the MDS technique in this study. Recall that MDS is a non-linear optimization
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Figure 6.2: Comparison of Euclidean distance vs. RF similarity in multidimensional
scaling (MDS) on Eclipse release 2.0. The plus sign represents defective modules, the

minuses represent defect-free modules(at package level).
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Figure 6.3: Comparison of Euclidean distance vs. RF similarity in multidimensional
scaling (MDS) on Eclipse release 2.0. The plus sign represents defective modules, the

minuses represent defect-free modules(at file level).
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approach creating a lower dimensional mapping of high dimensional data with respect

to the proximity information. It attempts to find a data embedding such that the

similarities or dissimilarities are preserved. Typically, MDS starts with a proximity

matrix and then assigns a location to each data instance in a lower dimensional space.

Similar instances are represented by points that are close together.

We investigated two proximity measures in the context of Eclipse project data: Eu-

clidean distance and Random Forest’s (RF) similarity (check Chapter 4 for the details

about Random Forest similarity). Note that when Euclidean distance matrix is used as

the proximity matrix, the multidimensional scaling is equivalent to the Principal Com-

ponent Analysis (PCA) - a linear dimensionality reduction technique. In the case of RF

similarity, the matrix is built via the Random Forest algorithm.

To understand the difference between the two MDS proximity measures, we mapped the

Eclipse data, the packages and files from Version 2.0, into a two-dimensional distance

space. Figure 6.3 shows the 2-D scatter plots. The left plots in a) and b) reflect

the Euclidean distance matrix and the right plots come from the RF similarity as the

proximity matrix. In the plots, instances denoted by a + and a − are the indications of

defective and defect-free modules, respectively. This exercise shows the clear advantage

of RF similarity in spatial separation between the defective and defect-free modules.

Learning from the transformed space of software metrics, in which defective and defect-

free modules appear separated, is likely to lead to better classification performance.

Table 6.1: Software data sets

Release Size Defects (%) Metrics
Eclipse 2.0 (pkg) 377 50.4% 41
Eclipse 2.1 (pkg) 434 44.7% 41
Eclipse 3.0 (pkg) 661 47.4% 41
Eclipse 2.0 (file) 6,729 14.5% 32
Eclipse 2.1 (file) 7,888 10.8% 32
Eclipse 3.0 (file) 10,593 14.8% 32
Camel 1.2 608 35.5% 20
Camel 1.4 872 16.6% 20
Camel 1.6 965 19.5% 20
Ant 1.3 125 16.0% 20
Ant 1.4 178 22.5% 20
Ant 1.6 351 26.2% 20
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Table 6.2: Metrics in Eclipse data set

Metric Details
FOUT Number of method calls(fan out)
MLOC Method lines of code
NBD Nested black depth
PAR Number of parameters
VG McCabe cyclomatic complexity
NOF Number of fields
NOM Number of methods
NSF Number of static fields
NSM Number of static methods
ACD Number of anonymous type declarations
NOI Number of interface
NOT Number of classes
TLOC Total lines of code
NOCU Number of files(compilation units)

Table 6.3: Metrics in Camel and Ant data sets

Metric Details
WMC Weighted Methods per Class
DIT Depth of Inheritance Tree
NOC Number of Children
CBO Coupling between Object classes
RFC Response for a Class
LCOM Lack of Cohesion in Methods
CA Afferent Couplings
CE Efferent Coupling
NPM Number of Public Methods
LOC Line of Codes
DAM Data Access Metric
MOA Measure of Aggregation
MFA Measure of Function Abstraction
CAM Cohesion Among Methods
IC Inheritance Coupling
CBM Coupling Between method
AMC Average Method Complexity
Max CC Maximum values of methods in the same class
Avg CC Mean values of methods in the same class

6.2 Experiments

6.2.1 Software Data Sets

The data sets used in this study comes from four projects - Eclipse, Camel, and Ant.

Eclipse is a multi-language software development environment consisting of the base

workspace and extensible plug-ins that customize the environment. The environments

include the Eclipse Java development tools (JDT) for Java and Scala, Eclipse CDT for

C/C++ and Eclipse PDT for PHP, among others. We unitlized the defect content in

three successive releases of Eclipse, 2.0, 2.1, 3.0, at two levels of granularity: files and
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packages. Several versions of Eclipse data sets have been in use to study defect predic-

tion [130, 131]. In our study, we use the Eclipse data sets introduced by Zimmerman

et al. [122], which are publicly available. Zimmerman et al. used the Java parsers for

Eclipse - visitors and aggregators - to aggregate the metrics to file and package levels.

More specifically, the visitors is implemented to compute standard metrics for methods,

classes, or files (compilation units), while the aggregators is used to compute single val-

ues for each level. They computed the average (avg), maximum (max) and total values

(total) for each metric, except the NOCU - the Number of files. The complexity metrics

for each package/file can be computed from the archived builds of Eclipse. These data

sets have been used in several recent studies as well [100, 132, 133]. Table ?? presents

the metrics included in the Eclipse data sets.

In addition, we also applied active learning on data sets from two projects - Camel and

Ant which are publicly available in the PROMISE repository. Both of Camel and Ant

consist of three releases. Each instance in the three projects represents a class (.java)

file and consists of twenty software metrics.

A summary of the data sets used in our study is reported in Table 6.1. The table lists the

number of instances, actual defect rate and the number of metrics used in each release

of the four projects. We note that the sample sizes of Ant releases are particularly low.

For example, Ant 1.3 consists of 125 files and only 20 are defective. Table 6.2 and Table

6.3 provide the annotation for metrics in the three projects, respectively. To seek more

details of the projects, please refer to [122, 134].

6.2.2 Experimental Setting

Defect prediction between successive releases of the same product is practical because

we expect minimal changes in the development environment and, consequently, similar

defect characteristics. Further, the defect content of modules from an earlier release is

known as a consequence of defect reporting. If the community of users is sufficiently

large, the reports are likely to cover a big portion of the existing defects. Suggesting

that humans serve as “oracles” for some modules in the upcoming release does not

represent an extraordinary burden on the development team. For example, in Eclipse

the defects reported in the six months prior to the release date are called pre-defects.

Generally, development teams perform pre-release assessment, debugging and defect

removal through unit testing, code walk-through, inspection and other forms of software

verification.



Chapter 6. Revisit Active Learning using version based data 79

Active learning defect prediction approach investigated in this study simply introduces

a discipline in the selection of modules that need to be exposed to more thorough veri-

fication. Depending on project practices, this requirement may induce additional devel-

opment cost. However, if defect prediction model performs well, the cost of post-release

maintenance should be lower. Whether this value proposition is valid or not remains

an open question not only for the proposed defect prediction approach but for the en-

tire research area [135]. However, it is clear that our approach (like any other active

learning method) should use the oracle sparingly, requesting as few pre-release module

assessments as possible.

In this section, we report experimental results from active learning defect prediction on

four projects, totally nine releases, using visual analysis such as graphs and tables. In

Section 6.2.6, we supplement the visual analysis with appropriate statistical tests. The

experiments will help us understand:

• The defect prediction performance of active learning between subsequent releases;

• The impact of active learning variants - random selection vs. uncertainty-based

selection of modules that need oracle’s assessment;

• The impact of feature selection techniques when applied prior to active learning;

• The impact of dimensionality reduction techniques when applied prior to active

learning

• The impact of data size and defect rate on the prediction performance of active

learning;

In Section 6.1.1 we showed that all feature selection techniques perform similarly (see

Figure 6.1). Hence, for further experiments we selected only one of them - the informa-

tion gain feature selection (InfoGain). We also learned that the RF similarity coupled

with dimensionality reduction technique MDS outperforms Euclidean proximity. There-

fore, we will experiment with MDS, which uses RF similarity only. The six experimental

approaches we analyzed and their abbreviations are:s

1. Act: Active learning with uncertainty-based selection;

2. Rand: Active learning with random-based selection;

3. IG Act: Information Gain feature selection, IG, followed by Act;

4. IG Rand: Information Gain feature selection, IG, followed by Rand;

5. MDS Act: MDS with RF similarity followed by Act;

6. MDS Rand: MDS with RF similarity followed by Rand;
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Each release is experimented for each of the above six active learning approaches. For

example, Release 2.0 in Eclipse is used to build defect prediction model predicting defect

prone modules in release 2.1. Next, release 2.1 is used for training and release 3.0

for prediction. Every experiment is run 10 times and average values are reported for

experimental comparison.

Random Forest (RF) is selected as the base algorithm in active learning experiments

due to its consistent performance in[71, 136]. Our previous studies also showed that

random forest outperforms other supervised learning when the data is imbalanced and

noisy.

At each iteration of active learning, a fixed number of modules (∼1% of the unlabeled

modules) are selected for the assignment of their true defect labels. For example, with

the Eclipse data, 4 packages (79 files) are selected at each iteration when predicting on

release 2.1, and 7 packages (106 files) when predicting on release 3.0.

To track the prediction performance at each iteration of active learning, we do not

set an apriori stopping criterion. The algorithm continues until it runs out of unlabeled

modules (i.e. all unlabeled modules are labeled). Of course, in practice we are interested

in the prediction performance of models that use as few modules analyzed by the oracle

as possible, likely no more than 20%. A classic supervised learning experiment with

random forest (RF) is the same as the 1st iteration of our experiment, before active

learning process starts. At that point, modules from previous release(s) are used as

training data and all modules from the current release represent test data.

Performance measures for active learning can be derived by tracking the predictions,

i.e, P (Yu = 1|Xu), at each iteration. Following the best practices in [87] and [122], we

computed AUC, Precision, Recall and Accuracy measures. The fault prediction at each

iteration reflects the performance of the trained model on all the unlabeled modules of

the current release.

6.2.3 Results from Eclipse data sets

In this section we discuss experimental results using Eclipse at package and file levels. In

this section we discuss experimental results using Eclipse data sets. Figure 6.4 compares

the six active learning approaches using the release 2.0 for training and the release 2.1 for

prediction. By all measures (precision, recall, accuracy, AUC), dimensionality reduction

followed by active learning with uncertainty based selection (MDS Act) offers the best

performance. Active learning with uncertainty based selection (Act) works consistently

better than active learning with random based selection (Rand), regardless of the feature
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compression technique. The MDS Rand approach works better than the IG Rand.

The Rand approach performs the worst. In the AUC plot, which combines all the

other performance plots we observe that MDS Act and MDS Rand both outperform

the other approaches. The MDS Act is slightly better than MDS Rand. Although

differences are small, the IG Act slightly outperforms IG Rand, Act and Rand.

Figures 6.5 and 6.6 depict the performance of the six approaches when release 2.1 and

2.0 & 2.1 are used for training respectively and release 3.0 for prediction at the package

level. In the Precision plot, it is apparent that the active learning with uncertainty sam-

pling related approaches (MDS Act, IG Act and Act) outperform active learning with

random sampling (MDS Rand, IG Rand, and Rand). Regarding Recall and Accuracy,

the MDS Act outperforms the other approaches. In the AUC plot, there are no consid-

erable differences between MDS Act and MDS Rand, but both approaches are better

than the others. Prediction on release 3.0 at the package level is also interesting because

initially dimensionality reduction based methods need a few extra cycles to adjust their

performance.

Figures 6.7, 6.8 and 6.9 depict defect prediction experiments with Eclipse files. Similar

to the package level prediction, the Act approach wins over the Rand approach across

all measures. The MDS Act approach with files seems to be the one with the best

likelihood of providing the best prediction performance overall.

Tables D.1 to D.3 in Appendix D enable a closer look into the early cycles (1st, 10th,

20th, and 30th iteration) of active learning variants from Figures 6.4 to 6.6, respectively.

For example, in Table D.1, the MDS Act approach receives a Recall value of 0.924 at

30th iteration, when the Rand, Act, IG Rand, IG Act, and MDS Rand approaches

reach 0.815, 0.861, 0.797, 0.845, and 0.853, respectively. Tables D.4 to D.6 similarly

quantify the performance of active learning approaches depicted in Figures 6.7 to 6.9 for

the files in Eclipse. Recall that the measures at 1st iteration are obtained from classic

supervised learning where the previous release(s) is/are used as training data and the

current release as test data. One can easily observe that random forest as a supervised

learning approach performs better than logistic regression by simply comparing our

results with those by Zimmerman [122]. Considering that the focus of this study is

primarily on active learning and its variants, we will not delve in the comparison among

supervised learning approaches, which has been addressed in the literature.

6.2.4 Results from Camel and Ant data sets

Next, we explore the prediction performances of six approaches using Camel and Ant

projects. The results from Camel project are presented in Figure 6.10 and Figure



Chapter 6. Revisit Active Learning using version based data 82

0 20 40 60 80 100

0
.
6
5

0
.
7
5

0
.
8
5

0
.
9
5

Precision

iteration
P

r
e
c
is

io
n

MDS_Act
MDS_rand
IG_Act
IG_Rand
Act
Rand

0 20 40 60 80 100

0
.
7
0

0
.
8
0

0
.
9
0

1
.
0
0

Recall

iteration

R
e
c
a
ll

0 20 40 60 80 100

0
.
7
0

0
.
8
0

0
.
9
0

1
.
0
0

Accuracy

iteration

A
c
c
u
r
a
c
y

0 20 40 60 80 100

0
.
8
0

0
.
8
5

0
.
9
0

0
.
9
5

1
.
0
0

AUC

iteration

A
U

C

Figure 6.4: Defect prediction in release 2.1 from 2.0 (Eclipse - packages)
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Figure 6.5: Defect prediction in release 3.0 from 2.1 (Eclipse - packages)
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Figure 6.6: Defect prediction in release 3.0 from 2.0 and 2.1 (Eclipse - packages)
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Figure 6.7: Defect prediction in release 2.1 from 2.0 (Eclipse - files)
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Figure 6.8: Defect prediction in release 3.0 from 2.1 (Eclipse - files)
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Figure 6.9: Defect prediction in release 3.0 from 2.0 and 2.1(Eclipse - files)
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6.11. In Figure 6.10, we compared the difference of six approaches using the release

1.2 for training and release 1.4 for prediction. In the plot of precision measure, the

MDS Act outperforms the other five approaches. The MDS rand performs better

than the IG Act, IG Rand, AL and Rand before the 40th iteration. Act and IG Act

have the similar performance trends, and both are significantly better than the IG rand

and Rand. The same performance ranking of the six approaches is observed in the

plot of Accuracy. With the recall measure, the MDS Act has the worst performance

at beginning, but it exceeds the others soon near 20th iteration. Act performs slightly

better than the IG Act, IG Rand, MDS Rand and Rand, primarily between 20th and

40th iterations. The MDS Act and MDS Rand perform approximately the same, con-

sistently, both being better than the other approaches in terms of the AUC measure,

while all the other approaches are not distinguishable.

In Figure 6.11, we use Camel 1.4 for training and Camel 1.6 for prediction. In the

Precision plot, we observed that Act related approaches (MDS Act, IG Act, and Act)

outperform non-Act approaches. MDS Act stands out against the other five approaches

at the 15th iteration, where the MDS Rand starts to outperform the Act, IG Act,

IG Rand and Rand. In the plot of Accuracy, MDS Act significantly performs better

than the others. MDS Rand, IG Act, and Act have very similar performance. With

regard to the AUC measure, MDS Act and MDS Rand perform significantly better

than all others.

Figure 6.12 illustrates the prediction performance of the six approaches using Ant

project, where the release 1.4 is predicted from the release 1.3. In the first plot,

MDS Act, IG Act and Act perform better than MDS Rand, IG Rand, and Rand.

MDS Rand exceeds IG Rand andRand. With Recall and AUCmeasures, theMDS Act

approach slightly outperforms the others. It is hard to distinguish the difference among

the six approaches in the plot of AUC. The prediction performances of Precision, Recall

and Accuracy are very similar when release 1.5 is used for training and release 1.6 is for

prediction in Figure 6.13, except that the superiority of MDS Act tends to be significant

compared to those in Figure 6.12. In the last plot of Figure 6.13, MDS Rand slightly

outperforms the others.

Tables D.7 and D.10 in Appendix D quantify the performance measures of six ap-

proaches in Figure 6.10 to Figure 6.13. Considering the small size of data in Camel

and Ant, we capture the measures at 1st, 10th 20th and 40th iterations.
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6.2.5 Discussion

We mentioned above that in the case of active learning accompanied by dimensionality

reduction (MDS), prediction in early iterations may be degraded. For example, in Fig-

ures 6.5 and 6.10, it is interesting to note that in the early iterations (i.e., before the 10th

iteration) the active learning with dimensionality reduction technique (MDS Act and

MDS Rand) attained a much lower performance than the others. After a few iterations,

the dimensionality reduction based approaches quickly recover and exceed the other ap-

proaches. Rapid performance improvements by MDS Act and MDS Rand shows that

dimensionality reduction techniques adjust prediction performance as the features from

the new release enter the training. However, this is a cautionary tale against the use of

dimensionality reduction techniques such as MDS in supervised learning - learning at

1st iteration in active learning process. If there is no intention to deploy active learning,

dimensionality reduction methods may lower the performance of models built by the

random forest algorithm (see the performance in iteration one when predicting release

3.0).

For readers interested in comparing the performance of active learning with supervised

learning, we want to point out that the performance of active learning with random

sampling (rand) model closely resembles supervised learning using random forest. The

difference between rand and Act approaches is in the guidance towards the choice of “the

most informative” modules for labeling. Active models that use uncertainty principle

for selection generally perform better than those with a random selection, when training

data sets of the same size are provided to both methods.

Performance gains by active learning comes in part from utilizing more software modules

in training. The utilization of software verification engineers as “oracles” comes at a cost

of their time and effort. In order to reduce that cost, we should use the oracle sparingly.

Therefore, from a practical point of view it is important to focus on the performance of

active learning in earlier iterations.

6.2.6 Statistical Analysis

In previous section we analyzed the experimental results using graphs and tables. To

validate our observations from visual analysis, in this section we conduct a statistical

significance test (ANOVA) to compare the prediction performance among six investi-

gated active learning approaches. Figures 6.4 to 6.13 along with tables in Appendix D

offer the necessary information for the test. The hypotheses of the test are:
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Figure 6.10: Defect prediction in release 1.4 from 1.2 (Camel)
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Figure 6.11: Defect prediction in release 1.6 from 1.4 (Camel)
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Figure 6.12: Defect prediction in release 1.3 from 1.4 (Ant)
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Figure 6.13: Defect prediction in release 1.5 from 1.6 (Ant)
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HO: There are no performance differences amongst the six active learning defect pre-

diction approaches;

HA: At least one approach offers a different performance.

An example of one way ANOVA test is given in Table 6.4. A large F-value indicates that

the outcomes of different approaches vary more than the outcomes of the 10 experiments

performed for any specific algorithm. The P-value offers a probability of observing a

test statistic as extreme as the one actually observed. The smaller the P-value, the

more strongly the test rejects the null hypothesis. Let significant level α be 0.05. In

our example, the P-value of 0.0188 is smaller than the α value, resulting a rejection to

the null hypothesis Ho. We can therefore conclude that there is at least one approach

amongst those evaluated, MDS Act, MDS Rand, IG Act, IG Rand, Act and Rand,

that significantly outperforms the others.

The P-values of ANOVA for experiments at the package level are shown in Table 6.5.

The significant outcomes are those where the P-value is smaller than the significance

level, set at α = 0.05. They are presented in bold font. We observe that significant

differences exist amongst the six approaches, but not for all the performance measures,

at 10th iteration. Referring to Table 6.5 the P-values for Precision, Accuracy and AUC at

10th iteration are all smaller than α. The significance does not hold for the Recall, with a

P-value of 0.1364. At the 20th and the 30th iterations, the statistical significance between

the six approaches is consistently observed for all the four measures. These observations

are consistent for the other experiments with Eclipse packages and files. Hence, given

the page limit, we did not provide the P-value tables for all the experiments.

Next, we conducted the post-hoc test to determine which of the six approaches differs

from the others using Tukey’s Honestly Significant Difference (HSD) [112]. This is a

simple and frequently used pairwise comparison technique. Table 6.6 and 6.7 present

the results from post-hoc tests for all the experiments at package level and file level

respectively. In the tables, we compare the performance of the six active learning ap-

proaches at 20th, 30th and 40th iterations. Active learning by itself, with dimensionality

reduction and feature selection are of particular interest in this paper. For this reason,

some pairwise comparisons (MDS Rand vs IG Act or MDS Rand vs IG Rand, etc.)

are not included. Looking into Table 6.6, for example, for Eclipse 2.1 predicted from

Eclipse 2.0 at the package level, we can observe that the MDS Act significantly outper-

forms all the other approaches across all performance measures. The IG Act performs

significantly better than the IG Rand and Rand, but does not significantly outperform

Act except for AUC. Act outperforms Rand for all the measures except the AUC.
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Table 6.4: One way ANOVA test for AUC measures at 10th iteration, when defects
in release 2.1 are predicted from 2.0

d.f Sum Sq Mean Sq F value p-value

algorithm 5 0.01560 0.003120 2.988 0.0188
Residuals 54 0.05639 0.001044

Table 6.5: P-values by ANOVA test, when defects in release 2.1 are predicted from
2.0 (package level)

Iteration Precision Recall Accuracy AUC

10th 7.78E-10 0.1364 3.39E-08 0.0188
20th 1.77E-09 0.0005 3.98E-11 4.54E-18
30th 3.67E-09 3.00E-07 5.71E-11 1.36E-18

Table 6.6: Post-hoc test for performance differences between the six active learning
approaches at package level (1 : MDS Act, 2 : MDS rand, 3 : IG Act, 4 : IG rand, 5 :
Act, 6 : Rand). “ X” stands for statistically significant difference between two ap-
proaches. “x” stands for no signisficant difference detected between the two approaches.

Labeled Unlabeled Exp. Package level

Precision Recall ACC AUC
20th 30th 40th 20th 30th 40th 20th 30th 40th 20th 30th 40th

Eclipse Eclipse 1–2 X X X X X X X X X x X x

2.0 2.1 1–3 x X x X X X X X X X X X

1–4 X X X X X X X X X X X X

1–5 X X X x X X X X X X X X

1–6 X X X X X X X X X X X X

3–4 X X X x X X X X X x x X

3–5 x x x x x x x x x x X x

3–6 X X X x x x X X X x x x

5–6 X X X X X X X X X x x X

Eclipse Eclipse 1–2 X X X X X X X X X x x X

2.1 3.0 1–3 x x x X X X X X X X X X

1–4 X X X X X X X X X X X X

1–5 X X X X X X X X X X X X

1–6 X X X X X X X X X X X X

3–4 X X X X X X X X X x x X

3–5 x X x x x x x x x X X X

3–6 X X X X X X X X X x x X

5–6 X X X X X X X X X X X x

Eclipse Eclipse 1–2 x X X x X X x X X x X X

2.0 & 2.1 3.0 1–3 x x X x X X x X X X X X

1–4 x X X X X X X X X X X X

1–5 x X X X X X x X X X X X

1–6 x X X X X X X X X X X X

3–4 x X X X X X X X X x x X

3–5 x x x x x x x X x x x X

3–6 x X X X X X X X X x X x

5–6 x X X x X X x X X x X X
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Table 6.7: Post-hoc test for performance differences between the six active learning ap-
proaches at file level (1 : MDS Act, 2 : MDS rand, 3 : IG Act, 4 : IG rand, 5 : Act, 6 :
Rand). “ X” stands for statistically significant difference between two approaches. “x”

stands for no signisficant difference detected between the two approaches.

Labeled Unlabeled Exp. File level

Precision Recall ACC AUC
20th 30th 40th 20th 30th 40th 20th 30th 40th 20th 30th 40th

Eclipse Eclipse 1–2 X X X X X X X X X X X X

2.0 2.1 1–3 x x x X X X X X X X X X

1–4 X X X X X X X X X X X X

1–5 x x x X X X X X X X X X

1–6 X X X X X X X X X X X X

3–4 X X X X X X X X X X X X

3–5 x x x x x x x x x x x x

3–6 X X X X X X X X X x x x

5–6 X X X X X X X X X x x x

Eclipse Eclipse 1–2 X X X X X X X X X X X X

2.1 3.0 1–3 X x x X X X X X X X X X

1–4 X X X X X X X X X X X X

1–5 X x x X X X X X X X X X

1–6 X X X X X X X X X X X X

3–4 X X X X X X X X X x x x

3–5 x x x x x x x x x X X X

3–6 X X X X X X X X X X X X

5–6 X X X X X X X X X X x X

Eclipse Eclipse 1–2 X X X X X X X X X X X X

2.0 & 2.1 3.0 1–3 x x x X X X X X X X X X

1–4 X X X X X X X X X X X X

1–5 x x x X X X X X X X X X

1–6 X X X X X X X X X X X X

3–4 X X X X X X X X X x x x

3–5 x x x x x x x x x x x X

3–6 X X X X X X X X X x x x

5–6 X X X X X X X X X x x X

Camel Camel 1–2 X X X X X X X X X x x X

1.2 1.4 1–3 X X X x X X X X X X X X

1–4 X X X X X X X X X X X X

1–5 X X X x X X X X X X X X

1–6 X X X x X X X X X X X X

3–4 X X X x x X X X X x x x

3–5 X x x X X X X X x x x x

3–6 X X X x x x X X X x x X

5–6 X X X x X X X X X x x X

Camel Camel 1–2 X X X X X X X X X x x x

1.4 1.6 1–3 x X x X X X X X X X X X

1–4 X X X X X X X X X X X X

1–5 x x x X X X X X X X X X

1–6 X X X X X X X X X X X X

3–4 X X X X X X X X X X X X

3–5 x x x x x x x X X x X X

3–6 X X X X X X X X X X X X

5–6 X X X X X X X X X X X X

Ant Ant 1–2 X X X x x X X X X x x x

1.3 1.4 1–3 x x x x x X X x X x x X

1–4 X X X x x X X X X x x x

1–5 x x x x x X X X X x X X

1–6 X X X x X X X X X x x x

3–4 X X X x x x X X X x X X

3–5 x x x x x x x x x x x x

3–6 X X X x x x X X X x x X

5–6 X X X x x x X X X x X X

Ant Ant 1–2 X X X X X X X X X X X x

1.4 1.6 1–3 x x x X X X X X X x X X

1–4 X X X X X X X X X x X X

1–5 x x x X X X X X X X X X

1–6 X X X X X X X X X x x X

3–4 X X X X X X X X X x X x

3–5 x x x x x x x x x x x x

3–6 X X X X X X X X X x X x

5–6 X X X X X X X X X x X x
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6.3 Threats to Validity

In this section we discuss the threats to validity of our study. We believe in the in-

tegrity of the data set used in this research, i.e., it honestly represents the defect content

stemming from project development. However, as it is also the case with other em-

pirical studies, unintentional noise and mistakes during data collection are out of our

control. Dimensionality reduction techniques applied to software metrics prior to the

active learning process overcome noise or outliers to a certain extent. However, if the

data contains significant amounts of noise, internal validity may be compromised.

In addition, model parameters in active learning are set on the basis of the data size

of four projects. For example, we fixed the growth size of training data set at a small

amount, and we used the default settings in the random forest tool. Changes in these

parameters may lead to biased outcomes. For those interested in replicating our work,

we run all the experiments in R, version 2.15.1, with the RandomForest package.

Although we demonstrate the capability of active learning with dimensionality reduction

on predicting software, like most empirical studies, our observations reflect the findings

for release based data from three open-source projects. Software quality data from dif-

ferent applications may not achieve the same performance outcomes with active learning

approaches. To test the robustness of active learning in release based defect prediction

problem, it is necessary to extend our work on other release based software data sets.

Another possible validity threat pertains to the use of dimensionality reduction tech-

niques. These techniques may be reflecting the characteristics of the specific software

metrics used by the development team. The software metrics used in our study are

complexity metrics. We cannot claim that dimensionality reduction applied to other

software measures, such as OO metrics, process metrics or their combinations [54], will

show similar outcomes.

6.4 Conclusions

We analyzed the performance of six active learning approaches on defect prediction

between the successive releases of four projects. The prediction performance of active

learning improves as the model adapts to the characteristics of the new release. Our

experiments demonstrate that the guided selection of modules from the new release into

the model training achieves better prediction performance than supervised learning.

Given the same size of the training data set, the difference in performance is due to
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uncertainty selection in active learning, as opposed to the random selection in supervised

learning.

Improved performance through the inclusion of oracle-labeled instances from the new

software release into the training data set comes at the expense of additional verification

activities needed to identify the true defect content of the modules (which are selected via

active learning) in the new software release. Our research offers evidence that significant

performance advances can be observed in the early iterations of active learning.

We also demonstrate that feature selection techniques and dimensionality reduction tech-

niques complement active learning for defect prediction. Active learning preceded by

the dimensionality reduction algorithm MDS which uses Random Forest similarity mea-

sure on the software metrics (independent prediction variables) outperforms other active

learning approaches. However, some experiments indicate that dimensionality reduction

may not be appropriate with supervised learning in cases when major differences exist

between successive software releases.

In the future, we plan to expand this research with the analysis of defect prediction

performance on other software defect data sets and other software metrics. We want to

further elaborate on the validity issues and possible limitations concerning active learning

approaches. Active learning approaches exhibit great benefits for defect prediction and

have the potential of being applicable to industrial practice. We believe that they will

become tools of choice in practice, provided that they become supported by adequately

automated tools.



Chapter 7

Summary and Future Work

7.1 Summary

Although there is diversity in the definition of software quality, it is widely acknowledged

that software with many faults lacks quality. Accurate detection and removal of faulty

modules ensure high quality software product. A low cost method to detect software

fault proneness is to learn from past failures to prevent future ones. The assumption

is that if certain types of software modules were likely to fail in the past they are also

likely to do so in the future. Machine learning approaches are nature solutions to this

problem.

Research efforts to predicting where faults are likely to hide have been substantial.

Although a large number of machine learning based software fault prediction approaches

have been investigated, none of them has proven to be consistently accurate. As we

discussed in the Introduction section, the limitations stem from the lack of long fault

history, failure in using appropriate predictive approaches, and low data quality.

In many real-world learning scenarios, acquiring a large amount of labeled training

data is usually expensive and time-consuming. However, unlabeled data is a powerful

resource and is easy to obtain. The key question is how to gather useful information

out of unlabeled resources in a wide range of learning environments. In software fault

prediction problem, it could be the situation of identifying fault prone modules when

no previous subsystems or earlier versions are available for model training. In this

dissertation we proposed machine learning solutions to address this problem and also

discussed the efficacy of proposed approaches using multiple sources of software fault

data. Two machine learning paradigms we studied are semi-supervised learning and

active learning.

94
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Semi-supervised learning is a principled framework for training predictive models using

both labeled and unlabeled data. In many applications, it has been proved that semi-

supervised learning performs better than supervised learning where there is only a small

amount of labeled data. In the past decades, many semi-supervised learning approaches

have been proposed. In this dissertation we focus on the iterative based semi-supervised

learning approaches self-training.

In chapter 3 we implemented two variants of self-training approaches using software data

sets from NASA projects repository. Both variants follow the similar learning procedure

in which a supervised learner is repeatedly trained using newly labeled data. They differ

in the way they adapt information for unlabeled data at each iteration. The supervised

learner, also called base learner, could be any supervised learning algorithm. In our

study we explored three base learners Logistic Regression, Support Vector Machine,

and Random Forest. Convergence properties of both self-training approaches with dif-

ferent supervised learners were studied. Our results showed that the performance of

self-training heavily relies on which base learner is used. We proved that when logistic

regression is used as base learner, both self-training approaches converge to the super-

vised learning. In other word, the performance of semi-supervised learning is exactly

equivalent to that of a supervised logistic regression.

When support vector machine is used as base learner, both self-training approaches

are convergent too. However it is not certain that whether it converges to perform-

ing better or worse than traditional supervised learning. Our understanding is that

the performance could be determined largely by the parameters and mapping function

used in the support vector machine. In most cases, additional effort may be needed to

achieve satisfied prediction performance. For example, one may need to seek for the

optimal set of parameters needed in support vector machine by taking advantage of

unlabeled data. Based on our experimental results, we observed that both self-training

approaches perform worse than the corresponding supervised support vector machine.

We are not surprised to see this. Support vector machine is designed to do classification

by maximizing the hyper-plane among classes across low-density area. It lacks capability

of handling imbalanced data or data with noises, that is, the situation when the low-

density area is not clear or less reliable. However, we do believe that with well-balanced

high-quality data set, self-training with support vector machine can be strong candidate

in classification problem.

With random Forest as base learner, we observed that self-training is never convergent.

We are unable to prove this theoretically, as there is uncontrolled randomness in the

process of building random forests. Our experiments showed that self-training with
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random forest outperformed supervised random forest. In addition, with random Forest

as base learner, FTcF approach performs slightly better than FTF approach.

To answer the question that how small the labeled data could be for semi-supervised

learning to outperform the corresponding supervised learning, we have explored the

performance of both semi-supervised learning approaches FTF and FTcF approaches

- by setting the initial labeled data at 2%, 5%, 10%, 20% and up to 50%. We demon-

strated that semi-supervised learning with random forest starts exceeding the supervised

learning approach at a low 5% initial labeled data. However, we recognized that the

improvements by semi-supervised learning approaches are marginal.

In chapter 4 we proposed a new variant of semi-supervised learning approach, which

incorporates a data pre-processing technique dimensionality reduction technique into

the self-training approach. Dimensionality reduction is an important machine learning

technique that helps to reduce the misleading in prediction that derives from noises,

irrelevant or redundant predictors, or software metrics. It is a plausible addition to

semi-supervised learning. When implementing dimensionality reduction technique we

used random forest similarity as proximity matrix instead of using Euclidean metrics.

We observed that random forest similarity captures proximity in a better manner com-

pared to Euclidean metrics. Our results showed that the dimensional reduction based

semi-supervised learning approach performed statistically significantly better than that

without dimensionality reduction.

With the spirit of the semi-supervised learning, it is interested to investigate another

machine learning paradigm - active learning. Similar to semi-supervised learning, active

learning aims to train predictive model using both labeled and unlabeled data. In

chapter 5 we proposed an adaptive fault prediction approach where active learning is

the core. The prerequisite is a set of labeled data and at least one oracle. An oracle can

be a software engineer or software developer who is able to interactively communicate

with the learning machine and to label machine-selected modules as fault proneness or

non-fault proneness. The key difference between active learning and semi-supervised

learning is that the former requires the labors from oracle(s), while the latter is based

upon an automatic learning process. With controlling the size of modules sending to an

oracle, we observed that the active learning approach provides better performance and

less variance than the corresponding supervised learning approach.

To test the validation of active learning approach on other data sets, in Chapter 6 we

extended our study using version-based data sets. The intuition is that mistakes in

software modules can be dynamic in successive software versions. For example, coding

habit in one version may be largely changed in the next. Supervised learning, training

model using only previous version(s), may lead biased prediction as it may learn from
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outdated patterns. We thus proposed active learning approach for version-based soft-

ware fault prediction. Our results on multiple data sources showed that active learning

augmented by dimensionality reduction significantly outperformed the corresponding

supervised learning by using only a small set of labeled data in current version together

with labeled modules from previous version(s).

Below, we summarized the contribution of our studies in this dissertation:

• The investigation of two semi-supervised learning approaches for software fault

prediction problem, particularly for the situation where software complexity met-

rics are abundant but fault history data is limited. This includes the analysis of

convergence property for both semi-supervised learning when different base learn-

ers are used. We observed that semi-supervised learning perform pretty well when

random forest is used as the base learner;

• The creation of an augmented semi-supervised learning in which dimensionality

reduction technique is utilized on data prior to semi-supervised learning procedure.

This includes the comparison of random forest similarity and Euclidean distance

when both are used as the proximity matrix in dimensionality reduction technique.

We learned that semi-supervised learning with dimensionality reduction statisti-

cally significantly outperforms supervised learning approach as well as the ones

with no dimensionality reduction.

• The development of an adaptive approach for defect prediction with the core is

an active learning. We showed that active learning approach could accommo-

date changing defect dynamics better than supervised learning approach using

once-a-type projects. We observed that active learning approach achiever bet-

ter performance in defect prediction and lower variance comparing to supervised

learning. However we recognized that the improvement in prediction performance

is not statistically significant.

• The implementation of dimensionality reduction based active learning using ver-

sion based software data sets. This includes a thorough analysis of feature selection

and dimensionality reduction techniques. We observed that dimensionality reduc-

tion based active learning tends to outperform feature selection based one, while

feature selection based active learning approach performs no significantly better

than that without data compression techniques.
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7.2 Scope and Limitations

The scope of this dissertation is confined to the investigation of advanced machine learn-

ing approaches, more specifically semi-supervised learning and active learning, for identi-

fying software fault prone modules when limited fault contents are available. The inves-

tigation of the presented approaches primarily focuses on open source domain projects,

for example, the NASA projects or Eclipse defect data. Findings identified in this dis-

sertation hold across the investigated projects. It may be possible to extend the findings

of our study to similar software projects. However, further validations are necessary to

help us draw stronger conclusions. Rather, we suggest that, when limited fault data

are available, the semi-supervised learning or active learning approach could be a bet-

ter choice compared to supervised learning approaches. However, we recognized that

semi-supervised learning would not work well when base learner is not appropriately se-

lected. Semi-supervised learning may lead to working the same or worse than supervised

learning.

Due to the lack of information regarding when each module was generated, both of

the semi-supervised learning and active learning in our studies assume that the order of

software modules sequences generated in time is not a significant issue and has no effects

on the performance of the learning procedure. That means each module is generated

under the same environment without dramatic change in either the project requirement

or the plan of system design. Practically, this assumption could be violated. This could

threaten the validity of proposed approaches.

One may also concern the practical issues when proposed approaches are implemented

in the real world. In order to be widely adopted, fault prediction approaches should

be easy-to-use and applicable across different domain. However, both semi-supervised

learning and active learning require extra efforts on selecting suitable base learner or

tuning algorithmic parameters. Rather, software developer may also need to consider

the trade-offs between 1) the growth size at each iteration and the run-time; 2) base

learner and run-time; 3) dimensions to drop and run-time. Apparently, 2) is the key

deciding the time complexity of the approaches. Figure 7.1 shows the time used when

semi-supervised learning is conducted on PC3 project. Random forest is used as base

learner. At each iteration, 10 modules are labeled and added into the labeled data set.

Throughout the learning process, 10 dimensions extracted from original dimensional

space are used for model training. The figure depicts that it requires twenty minutes

for the semi-supervised learning to run 10th iteration, when there are 2% initial labeled

data. The time exponentially increases when the learning process continues. To reach at

50th iteration, semi-supervised learning costs more than one hour. Less time is consumed

if more data is initially labeled. Table 7.1 shows the association between the number
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Figure 7.1: Run-time (minutes) of semi-supervised learning for PC3 data set.

Table 7.1: Run-time (minutes) of semi-supervised learning when random forest is
used as base learner

Data sets Iteration 2% 5% 10% 25% 50%

PC1 iter10 4.566 5.033 5.639 7.448 11.113
iter20 6.508 8.197 9.052 12.248 20.015
iter30 9.529 10.424 12.063 18.143 30.236
iter40 14.619 15.892 17.871 27.056 43.819
iter50 21.845 22.949 25.826 37.245 59.939

PC3 10th 10.415 10.249 10.815 13.711 19.427
20th 11.978 13.226 14.276 20.798 32.531
30th 14.804 16.371 18.505 27.322 46.786
40th 21.553 22.872 26.167 39.456 66.659
50th 28.855 29.874 35.141 52.217 91.212

PC4 10th 8.029 8.61 9.116 11.769 15.63
20th 10.05 11.341 12.689 17.764 25.91
30th 13.378 14.699 16.751 24.388 39.655
40th 21.467 21.809 24.805 35.279 57.465
50th 26.433 28.522 34.027 50.638 76.507

KC1 10th 18.504 19.684 20.093 23.723 32.08
20th 21.072 21.859 24.393 31.588 50.108
30th 24.143 25.45 29.91 40.542 68.609
40th 32.048 35.588 39.574 55.147 95.12
50th 37.916 41.65 47.77 71.61 122.079
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of iteration and the run-time for semi-supervised learning across four NASA projects.

For active learning, it may require longer run-time due to the additional idle time when

waiting for response from oracle.

7.3 Future Work

This dissertation showed that semi-supervised learning and active learning approaches

have tremendous practical value in identifying fault prone modules, especially when

prior knowledge of fault content is limited. Software managers or software engineers can

take our approaches as alternatives when they tackle difficult tasks of software quality

prediction problems in real-world practice. However, we understand that there remains

more work for us to do in the future.

First, to validate proposed approaches, it is meaningful to expand our work to more

data sets from different data sources. This includes the validation study using different

software metrics, other than static metrics, for example the process metrics and dynamic

metrics.

The approaches investigated in our study are the simplest forms of some widely used

ones. Different types of semi-supervised learning and active learning along with their

improved versions can be examined in the future. Despite that sophisticated learning

approaches do not always work better than simple ones, it is always worthwhile to

compare the approaches in the market and find the ones we can benefit the most from

for software fault prediction. One direction of the future work can be investigating

other type of semi-supervised learning, such as clustering based semi-supervised learning

which extending unsupervised learning to semi-supervised learning, or graph-based semi-

supervised learning that applies structural software metrics.

It is not uncommon that researchers build applicable tools to transfer their knowledge.

For example, R is an open source with tons of free build-in packages contributed by

people all around the world. To our knowledge, majority of the learning algorithms

included in R packages are either supervised learning based or unsupervised learning

based. R packages that provide function of semi-supervised learning approaches are

very scarce. One future direction can be building software packages or tools for semi-

supervised learning or active learning, so our research can be available to other machine

learning practitioners.



Appendix A

Proof of convergence on FTF

with LR

In this section, we will prove that FTF algorithm will converge to supervised learning

with logistic regression as base learner.

Proof : For logistic regression, we have logit function: logit(pi) = xTi β, with pi = P(yi =

1|xi), where yi ∈ (0, 1). To have the optimal estimation, we can use MLE method to

minimize the likelihood function of β (L(β)). Then the log-likelihood function will be:

l(β) = logL(β) =

n∑

i=1

[yilog(pi) + (1− yi)log(1− pi)]. Take the derivation of l(β), we

will have:
∂l(β)

∂β
=

n∑

i=1

xi(yi − pi) = XT (Y − P ). (A.1)

To solve equation XT (Y − P ) = ~0, we can use Newton’s Raphson method. By some

mathematical calculation, we will have the supervised logistic regression estimates β̃log =

(XT
l WlXl)

−1XT
l WlZ, where Z = Xβold+W−1(Y −P ) and W is a diagonal matrix with

wii = pi(1 − pi). Therefore, given labeled training modules Xl, the prediction will be

Ŷl = plogl = P (Xl, β̃
log).

In FTF algorithm, remind that there are two main steps at each iteration:

i) Ŷ k
l = Yl

ii)Ŷ k
u = P (Xu,

ˆβk−1) = pk−1u .

For kth iteration, equation (A.1) will have the form:
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XT (Y − P ) =
(
XT

l XT
u

)[( Yl

pk−1u

)
−

(
pkl

pku

)]

= XT
l (p

log
l − pkl ) +XT

u (p
k−1
u − pku)

=
→
0

(A.2)

To solve above equation, we will use Taylor expansion techniques. The detailed calcu-

lation is shown as following:

XT
l (p

log
l − pkl ) +XT

u (p
k−1
u − pku)

= XT
l (p(Xl, β̃

log)− p(Xl, β̂
k))

+XT
u (p(Xu, β̂

k−1)− p(Xu, β̂
k))

∼= XT
l (p(Xl, β̃

log)− p(Xl, β̃
log)−

∂p(Xl, β̃
log)

∂β̃log
(β̂k − β̃log))

+XT
u (p(Xu, β̃

log) +
∂p(Xu, β̃

log)

∂β̃log
(β̂k−1 − β̃log)

− p(Xu, β̃
log) +

∂p(Xu, β̃
log)

∂β̃log
(β̂k − β̃log))

= XT
l (

∂p(Xl, β̃
log)

∂β̃log
(β̂k − β̃log))

+XT
u (

∂p(Xu, β̃
log)

∂β̃log
(β̂k − β̃log)

−
∂p(Xu, β̃

log)

∂β̃log
(β̂k−1 − β̃log))

= XT
l WlXl(β̂k − β̃log) +XT

u WuXu(β̂k − βk−1)

=
→
0

(A.3)

After translation, above equation can be written to be:

β̂k − β̃log =
[
(XTWX)−1(XT

u WuXu)
]
(β̂k−1 − β̃log)

⇒ β̂k = β̃log +
[
(XTWX)−1(XT

u WuXu)
]k

(β̂0 − β̃log)
(A.4)

Since Xu is contained in the space spanned by X, we get that XT
u WuXu < XTWX.

In the loewner ordering, it implies that, (XTWX)−1(XT
u WuXu) < I, and therefore, the

radial spectrum of the left hand side is less than 1 (i.e. ρ((XTWX)−1(XT
u WuXu)) < 1).
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Thus,
[
(XTWX)−1(XT

u WuXu)
]
=
→
0 when k → ∞. Finally we can show β̂k ≈ β̃log when

k → ∞.



Appendix B

Proof of convergence on FTcF

with LR

In this section, we will prove that FTcF algorithm will converge to supervised learning

with logistic regression as base learner.

Proof :In FTcF algorithm, at 0th iteration, we will have:

X
(0)
l = Xl, Ŷ

(0)
l = Yl, p

(0)
l = P (XT

l , β̂0)

and at kth itheration(k 6= 0), we will have:

X
(k)
l =

(
X

(k−1)
l

Xlk

)
,

Ŷ
(k)
l =

(
Ŷ

(k−1)
l

P (XT
lk
, β̂k−1)

)
,

p
(k)
l =

(
P (X

T (k)
l , β̂k)

)

Here, k is the number of iteration, lk is the confident samples that added to the labeled

data set at kth iteration. Now, we want to estimate β̂k by solving XT (Y − P ) = ~0 at

kth iteration. We’ve already have β̂0 = β̃log, since at 0th iteration, it is just a supervised

learning.

For 1st iteration, we will have:
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X
T (1)
l (Ŷ

(1)
l − p

(1)
l )

= (XT
l XT

l1)

[(
Yl

P (XT
l1, β̂0)

)
−

(
P (XT

l , β̂1)

P (XT
l1, β̂1)

)]

= XT
l (Yl − P (XT

l , β̂1)) +XT
l1(P (XT

l1, β̂0)− P (XT
l1, β̂1))

= ~0

(B.1)

We assume that the solution of equation (B.1), β̂1, is unique. The first term of the

equation is XT
l (Yl − P (XT

l , β̂1)) = ~0 , whenever β̂1 = β̃log = β̂0 by the definition of

supervised learning. In this case, the second term will be XT
l1(P (XT

l1, β̂0)−P (XT
l1, β̂0)) =

~0, which causesX
T (1)
l (Ŷ

(1)
l −p

(1)
l ) = XT

l (Yl−P (XT
l , β̂1))−XT

l1(P (XT
l1, β̂0)−P (XT

l1, β̂1)) =

~0 +~0 = ~0. Therefore, β̂1 = β̂0 is the solution of 1st iteration.

For 2nd iteration, we will have:

X
T (2)
l (Ŷ

(2)
l − p

(2)
l )

= (X
T (1)
l XT

l2)

[(
Ŷ

(1)
l

P (XT
l2, β̂(1))

)
−

(
P (X

T (1)
l , β̂2)

P (XT
l2, β̂2)

)]

= (XT
l XT

l1 XT
l2)







Yl

P (XT
l1, β̂0)

P (XT
l2, β̂1)


−




P (XT
l , β̂2)

P (XT
l1, β̂2)

P (XT
l2, β̂2)







= XT
l (P (XT

l , β̂0)− P (XT
l , β̂2))

+XT
l1(P (XT

l1, β̂0)− P (XT
l1, β̂2))

+XT
l2(P (XT

l2, β̂1)− P (XT
l2, β̂2))

(B.2)

From 1st iteration, we’ve have β̂1 = β̂0, it leaves equation (B.2) to be:

X
T (2)
l (Ŷ

(2)
l − p

(2)
l )

= XT
l (P (XT

l , β̂0)− P (XT
l , β̂2))

+XT
l1(P (XT

l1, β̂0)− P (XT
l1, β̂2))

+XT
l2(P (XT

l2, β̂0)− P (XT
l2, β̂2)) = ~0

(B.3)

It is apparently that the solution of equation (B.3) is β̂2 = β̂0.
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For generalizaiton, at kth iteration, assume β̂0 = β̂1 = β̂2 = · · · = β̂k−1, we will have:

XT
(k)(Ŷ

(k) − p(k))

= (XT
(k−1) XT

lk)

[(
Ŷ (k−1)

P (XT
lk, β̂(k−1))

)
−

(
P (XT

(k−1), β̂k)

P (XT
lk, β̂k)

)]

= (XT
l XT

l′ XT
lk)







P (XT
l , β̂0)

P (XT
l′ , β̂0)

P (XT
lk, β̂0)


−




P (XT
l , β̂k)

P (XT
l′ , β̂k)

P (XT
lk, β̂k)







= XT
l (P (XT

l , β̂0)− P (XT
l , β̂k))

+XT
l′ (P (XT

l′ , β̂0)− P (XT
l′ , β̂k))

+XT
lk(P (XT

lk, β̂0)− P (XT
lk, β̂k))

= Sup(XT
l ) + Sup(XT

l′ ) + Sup(XT
lk)

(B.4)

which shows that β̂0 = β̂1 = β̂2 = · · · = β̂k = β̃log for any given iteration as long as the

logistic linear regression exists.



Appendix C

Proof of convergence on FTF

with SVM

In this section, we will analyze the convergence property of semi-supervised learning

when support vector machine is used as base learner. A standard SVM algorithm for

binary class problem can be defined as:

min
w,b,ξ

1

2
||w||2 + C

n∑

i=1

ξi (C.1)

yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n.

where C > 0 is a regularization constant. In the first step of FTF algorithm, yi are

the true initial labels for labeled data Xl, i.e., Yl = [y1, y2, ..., yn]
T and xi ∈ Rn. As

for the iterative steps - step 2-6 in FIGURE 3.1, the FTF algorithm repeatedly solves

the same optimization problem, but yi are the true initial labels for Xl together with

the predicted labels for Xu, i.e., Y
(k−1) = [y1, ..., yn, ŷ

(k−1)
n+1 , ..., ŷ

(k−1)
n+m ]T and xi ∈ Rn+m.

Here, k stands for the kth iteration. To show the convergence property of SVM in FTF

algorithm, we write the objective function in the optimization problem at kth iteration

as:

f(w(k), ξ(k)) =
1

2
||w(k)||2 + C

n+m∑

i=1

ξ
(k)
i (C.2)
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According to the equation C.1, we can obtain the optimal solution {w(0), ξ(0), b(0)} using

only labeled data. To have the prediction Ŷ
(0)
u , we can solve the following inequalities:

y
(0)
i ((w(0))Tφ(xi) + b(0)) ≥ 0, i = n+ 1, . . . , n+m. (C.3)

This says that, given an unlabeled input xi, if ((w
(0))Tφ(xi) + b(0)) ≥ 0 then ŷ

(0)
i = 1,

otherwise ŷ
(0)
i = −1. It equals ŷ

(0)
i = sign((w(0))Tφ(xi) + b(0)). To expand the vector

ξ(0) to be the length of n+m, we can define:

ξ
(0)
i =

{
0 if y

(0)
i ((w(0))Tφ(xi) + b(0)) ≥ 1

1− y
(0)
i ((w(0))Tφ(xi) + b(0)) otherwise

(C.4)

where i = n+ 1, ..., n+m. This complies with the definition of SVM.

At the first iteration in FTF algorithm, we need to solve the following optimization

problem:

min
w,b,ξ

1

2
||w(1)||2 + C

n+m∑

i=1

ξ
(1)
i (C.5)

y
(0)
i ((w(1))Tφ(xi) + b(1)) ≥ 1− ξ

(1)
i ,

ξ
(1)
i ≥ 0, i = 1, . . . , n+m.

which provides the optimal solution {w(1), ξ(1), b(1)}. Learned from equation C.3 and

C.4, we know that {w(0), ξ(0), b(0)} is a feasible solution of equation C.5. We concluded

it from: 1) for i = 1, ..., n, ξ
(0)
i ≥ 0 and yi((w

(0))Tφ(xi) + b(0)) ≥ 1 − ξ
(0)
i ; 2) for

i = n+1, ..., n+m, the same constraints hold due to the prediction rule (equation C.3)

and the expanded ξ
(0)
i (equation C.4). Thus, we have:

f(w(0), ξ(0)) ≥ f(w(1), ξ(1)) (C.6)

Now, let us look at the solution when k > 1. With k > 1, we can have the {w(k−1), ξ(k−1), b(k−1)}

as the optimal solution of following optimization problem:
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smin
w,b,ξ

1

2
||w(k−1)||2 + C

n+m∑

i=1

ξ
(k−1)
i (C.7)

y
(k−2)
i ((w(k−1))Tφ(xi) + b(k−1)) ≥ 1− ξ

(k−1)
i ,

ξ
(k−1)
i ≥ 0, i = 1, . . . , n+m.

where the vector Y (k−2) = [y1, ..., yn, ŷ
(k−2)
n+1 , ..., ŷ

(k−2)
n+m ]T . Similarly, {w(k), ξ(k), b(k)} is

the optimal solution of following optimization problem:

min
w,b,ξ

1

2
||w(k)||2 + C

n+m∑

i=1

ξ
(k)
i (C.8)

y
(k−1)
i ((w(k))Tφ(xi) + b(k)) ≥ 1− ξ

(k)
i ,

ξ
(k)
i ≥ 0, i = 1, . . . , n+m.

where the vector Y (k−1) = [y1, ..., yn, ŷ
(k−1)
n+1 , ..., ŷ

(k−1)
n+m ]T .

We note that there are two cases between any two iterations (k > 1):

1) If y
(k−1)
i = y

(k−2)
i , i.e., predictions at (k − 1)th are the same as those from previous

iteration. This always holds for i = 1, ..., n. From the constraint of equation C.7,

y
(k−1)
i ((w(k−1))Tφ(xi) + b(k−1)) = y

(k−2)
i ((w(k−1))Tφ(xi) + b(k−1))

≥ 1− ξ
(k−1)
i , ξ

(k−1)
i ≥ 0 (C.9)

2) If y
(k−1)
i 6= y

(k−2)
i , i.e., predictions at (k−1)th are not the same as those from previous

iteration. This may hold for i = n+1, ..., n+m. We know that y
(k−1)
i ((w(k−1))Tφ(xi)+

b(k−1)) ≥ 0 for i = n+1, ..., n+m based on the definition of y
(k−1)
i . Here, y

(k−1)
i can be

written as ŷ
(k−1)
i and ŷ

(k−1)
i = sign((w(k−1))Tφ(xi) + b(k−1)).

Thus, we can have:

y
(k−2)
i ((w(k−1))Tφ(xi) + b(k−1)) ≤ 0 (C.10)

This implies that:
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y
(k−1)
i ((w(k−1))Tφ(xi) + b(k−1)) > y

(k−2)
i ((w(k−1))Tφ(xi) + b(k−1))

≥ 1− ξ
(k−1)
i , ξ

(k−1)
i ≥ 0 (C.11)

Until now, we have showed that {w(k−1), ξ(k−1), b(k−1)} satisfies the constraints of equa-

tion C.8. This says that {w(k−1), ξ(k−1), b(k−1)} is a feasible solution of the optimization

problem in equation C.8. Noting that {w(k), ξ(k), b(k)} is the optimal solution of C.8,

hence we have the inequality of

f(w(k−1), ξ(k−1)) ≥ f(w(k), ξ(k)) (C.12)

Incorporating equation C.6, we can conclude that C.12 holds for any given k ≥ 1, i.e.,

f(w(k), ξ(k)) is a monotonic decreasing function, where k = 1, ...,+∞. Since f(w(k), ξ(k)) ≥

0, we proved that f(w(k), ξ(k)) is convergent when k increases. Thus FTF algorithm is

convergent.



Appendix D

Tables of Performance

Comparison for Eclipse data sets

In this section, we present the tables of performance comparison for Eclipse data sets

between successive releases which correspond to the figures from 6.4 to 6.9.
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Table D.1: Performance comparison, from release 2.0 to 2.1 for Eclipse packages

M
e
a
su

re
m
e
n
t

It
e
ra

ti
o
n

R
a
n
d

A
c
t

IG
R
a
n
d

IG
A
c
t

M
D
S

R
a
n
d

M
D
S

A
c
t

Precision 1st 0.717 0.717 0.748 0.748 0.706 0.706
10th 0.751 0.779 0.772 0.789 0.805 0.812
20th 0.778 0.812 0.797 0.836 0.823 0.853
30th 0.805 0.849 0.819 0.868 0.839 0.894

Recall 1st 0.741 0.741 0.744 0.744 0.737 0.737
10th 0.764 0.785 0.758 0.788 0.765 0.818
20th 0.786 0.844 0.777 0.824 0.823 0.882
30th 0.815 0.861 0.797 0.845 0.853 0.924

Accuracy 1st 0.753 0.753 0.774 0.774 0.746 0.746
10th 0.781 0.804 0.791 0.811 0.81 0.832
20th 0.804 0.843 0.812 0.849 0.84 0.878
30th 0.829 0.87 0.831 0.874 0.86 0.916

AUC 1st 0.822 0.822 0.831 0.831 0.805 0.805
10th 0.847 0.848 0.855 0.86 0.879 0.891
20th 0.871 0.87 0.879 0.879 0.922 0.93
30th 0.891 0.884 0.898 0.895 0.939 0.947

Table D.2: Performance comparison, from release 2.1 to 3.0 for Eclipse packages.

M
e
a
su

re
m
e
n
t

It
e
ra

ti
o
n

R
a
n
d

A
c
t

IG
R
a
n
d

IG
A
c
t

M
D
S

R
a
n
d

M
D
S

A
c
t

Precision 1st 0.852 0.852 0.838 0.838 0.705 0.705
10th 0.865 0.881 0.851 0.878 0.857 0.869
20th 0.884 0.911 0.873 0.916 0.876 0.91
30th 0.895 0.928 0.88 0.949 0.891 0.947

Recall 1st 0.686 0.686 0.685 0.685 0.612 0.612
10th 0.729 0.764 0.735 0.756 0.846 0.871
20th 0.756 0.82 0.759 0.834 0.864 0.928
30th 0.792 0.88 0.793 0.87 0.883 0.949

Accuracy 1st 0.795 0.795 0.788 0.788 0.692 0.692
10th 0.818 0.839 0.813 0.835 0.858 0.876
20th 0.837 0.877 0.834 0.885 0.877 0.922
30th 0.857 0.911 0.851 0.917 0.893 0.951

AUC 1st 0.859 0.859 0.861 0.861 0.761 0.761
10th 0.882 0.884 0.885 0.888 0.931 0.927
20th 0.906 0.913 0.907 0.907 0.949 0.952
30th 0.925 0.932 0.924 0.92 0.962 0.967
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Table D.3: Performance comparison, from releases 2.0 and 2.1 to 3.0 for Eclipse
packages.

M
e
a
su

re
m
e
n
t

It
e
ra

ti
o
n

R
a
n
d

A
c
t

IG
R
a
n
d

IG
A
c
t

M
D
S

R
a
n
d

M
D
S

A
c
t

Precision 1st 0.854 0.854 0.848 0.848 0.644 0.644
10th 0.865 0.898 0.863 0.878 0.817 0.849
20th 0.885 0.913 0.873 0.911 0.861 0.899
30th 0.9 0.923 0.888 0.938 0.876 0.949

Recall 1st 0.694 0.694 0.692 0.692 0.57 0.57
10th 0.724 0.75 0.717 0.761 0.82 0.782
20th 0.76 0.807 0.765 0.837 0.858 0.886
30th 0.798 0.871 0.799 0.888 0.89 0.941

Accuracy 1st 0.799 0.799 0.795 0.795 0.642 0.642
10th 0.816 0.841 0.812 0.837 0.826 0.834
20th 0.84 0.872 0.836 0.884 0.867 0.9
30th 0.862 0.905 0.857 0.919 0.888 0.948

AUC 1st 0.855 0.855 0.871 0.871 0.687 0.687
10th 0.876 0.889 0.891 0.896 0.916 0.882
20th 0.901 0.913 0.914 0.916 0.945 0.943
30th 0.922 0.933 0.931 0.93 0.959 0.97

Table D.4: Performance comparison, from release 2.0 to 2.1 for Eclipse files.

M
e
a
su

re
m
e
n
t

It
e
ra

ti
o
n

R
a
n
d

A
c
t

IG
R
a
n
d

IG
A
c
t

M
D
S

R
a
n
d

M
D
S

A
c
t

Precision 1st 0.361 0.361 0.296 0.363 0.408 0.633
10th 0.445 0.727 0.398 0.745 0.553 0.85
20th 0.531 0.923 0.49 0.948 0.688 0.948
30th 0.613 0.974 0.615 0.994 0.744 0.983

Recall 1st 0.244 0.244 0.161 0.221 0.001 0.001
10th 0.302 0.377 0.23 0.364 0.227 0.611
20th 0.361 0.524 0.272 0.507 0.313 0.808
30th 0.423 0.656 0.344 0.644 0.418 0.889

Accuracy 1st 0.871 0.871 0.865 0.874 0.891 0.891
10th 0.884 0.917 0.877 0.918 0.896 0.946
20th 0.896 0.944 0.888 0.944 0.91 0.974
30th 0.909 0.961 0.904 0.961 0.921 0.986

AUC 1st 0.756 0.756 0.713 0.757 0.309 0.605
10th 0.787 0.782 0.748 0.783 0.769 0.899
20th 0.818 0.81 0.785 0.809 0.822 0.937
30th 0.847 0.84 0.816 0.838 0.86 0.957
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Table D.5: Performance comparison, from release 2.1 to 3.0 for Eclipse files.

M
e
a
su

re
m
e
n
t

It
e
ra

ti
o
n

R
a
n
d

A
c
t

IG
R
a
n
d

IG
A
c
t

M
D
S

R
a
n
d

M
D
S

A
c
t

Precision 1st 0.584 0.584 0.652 0.601 0.095 0.8
10th 0.72 0.952 0.735 0.948 0.622 0.768
20th 0.796 0.993 0.815 0.987 0.705 0.922
30th 0.847 0.994 0.86 0.993 0.761 0.978

Recall 1st 0.136 0.136 0.15 0.158 0.001 0
10th 0.227 0.342 0.243 0.345 0.301 0.64
20th 0.312 0.552 0.326 0.559 0.399 0.828
30th 0.399 0.683 0.422 0.661 0.48 0.906

Accuracy 1st 0.858 0.858 0.858 0.86 0.848 0.852
10th 0.873 0.9 0.871 0.9 0.869 0.917
20th 0.886 0.933 0.886 0.934 0.886 0.964
30th 0.9 0.952 0.901 0.949 0.9 0.983

AUC 1st 0.779 0.779 0.766 0.778 0.259 0.522
10th 0.818 0.805 0.801 0.802 0.788 0.893
20th 0.848 0.841 0.832 0.83 0.836 0.94
30th 0.874 0.867 0.859 0.855 0.867 0.964

Table D.6: Performance comparison, from releases 2.0 and 2.1 to 3.0 for Eclipse files.

M
e
a
su
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m
e
n
t
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e
ra
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n

R
a
n
d

A
c
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a
n
d

IG
A
c
t

M
D
S

R
a
n
d

M
D
S

A
c
t

Precision 1st 0.421 0.421 0.57 0.57 0.4 0.481
10th 0.54 0.936 0.692 0.873 0.769 0.905
20th 0.677 0.985 0.76 0.941 0.817 0.972
30th 0.797 0.988 0.826 0.992 0.874 0.993

Recall 1st 0.188 0.188 0.224 0.224 0 0.014
10th 0.245 0.276 0.294 0.34 0.132 0.443
20th 0.298 0.439 0.369 0.49 0.295 0.753
30th 0.4 0.566 0.438 0.599 0.388 0.866

Accuracy 1st 0.851 0.851 0.86 0.86 0.871 0.876
10th 0.866 0.897 0.876 0.895 0.886 0.925
20th 0.883 0.921 0.889 0.92 0.903 0.967
30th 0.902 0.939 0.903 0.94 0.916 0.983

AUC 1st 0.719 0.719 0.746 0.746 0.537 0.709
10th 0.758 0.751 0.787 0.771 0.745 0.829
20th 0.792 0.785 0.827 0.802 0.843 0.91
30th 0.837 0.815 0.852 0.836 0.882 0.942
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Table D.7: Performance comparison, from release 1.2 to 1.4 for Camel.

M
e
a
su

re
m
e
n
t

It
e
ra

ti
o
n

R
a
n
d

A
c
t

IG
R
a
n
d

IG
A
c
t

M
D
S

R
a
n
d

M
D
S

A
c
t

Precision 1st 0.257 0.257 0.358 0.358 0.415 0.415
10th 0.856 0.698 0.455 0.411 0.504 0.455
20th 0.950 0.785 0.586 0.465 0.621 0.503
40th 0.982 0.848 0.854 0.583 0.861 0.615

Recall 1st 0.168 0.168 0.548 0.548 0.652 0.652
10th 0.475 0.503 0.598 0.579 0.688 0.654
20th 0.699 0.567 0.643 0.622 0.728 0.675
40th 0.904 0.703 0.735 0.688 0.777 0.728

Accuracy 1st 0.786 0.786 0.762 0.762 0.789 0.789
10th 0.897 0.879 0.814 0.792 0.835 0.812
20th 0.944 0.901 0.865 0.818 0.881 0.835
40th 0.981 0.930 0.935 0.866 0.942 0.879

AUC 1st 0.669 0.669 0.756 0.756 0.775 0.775
10th 0.871 0.876 0.802 0.794 0.812 0.809
20th 0.910 0.914 0.844 0.832 0.850 0.844
40th 0.964 0.953 0.886 0.894 0.883 0.903

Table D.8: Performance comparison, from release 1.4 to 1.6 for Camel.

M
e
a
su

re
m
e
n
t
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e
ra

ti
o
n

R
a
n
d

A
c
t

IG
R
a
n
d

IG
A
c
t

M
D
S

R
a
n
d

M
D
S

A
c
t

Precision 1st 0.625 0.625 0.535 0.535 0.491 0.491
10th 0.836 0.737 0.754 0.598 0.768 0.567
20th 0.922 0.770 0.928 0.655 0.926 0.639
40th 0.977 0.830 0.951 0.760 0.985 0.772

Recall 1st 0.023 0.023 0.248 0.248 0.269 0.269
10th 0.450 0.391 0.354 0.289 0.377 0.314
20th 0.680 0.549 0.447 0.343 0.474 0.372
40th 0.895 0.694 0.596 0.446 0.615 0.480

Accuracy 1st 0.807 0.807 0.812 0.812 0.803 0.803
10th 0.873 0.852 0.852 0.824 0.856 0.820
20th 0.926 0.880 0.885 0.837 0.890 0.837
40th 0.975 0.912 0.915 0.864 0.923 0.871

AUC 1st 0.717 0.717 0.673 0.673 0.678 0.678
10th 0.853 0.869 0.698 0.717 0.708 0.730
20th 0.900 0.908 0.719 0.760 0.728 0.776
40th 0.960 0.948 0.770 0.842 0.786 0.858
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Table D.9: Performance comparison, from release 1.3 to 1.4 for Ant.

M
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M
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A
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t

Precision 1st 0.867 0.867 0.314 0.314 0.293 0.293
10th 0.964 0.743 0.582 0.474 0.515 0.410
20th 0.994 0.794 0.969 0.568 0.985 0.525
40th 1.000 0.848 0.996 0.736 1.000 0.727

Recall 1st 0.028 0.028 0.183 0.183 0.165 0.165
10th 0.205 0.203 0.235 0.295 0.228 0.250
20th 0.388 0.358 0.298 0.353 0.298 0.363
40th 0.728 0.573 0.610 0.543 0.595 0.533

Accuracy 1st 0.778 0.778 0.727 0.727 0.723 0.723
10th 0.819 0.800 0.790 0.767 0.778 0.751
20th 0.862 0.831 0.840 0.793 0.841 0.784
40th 0.939 0.879 0.912 0.852 0.909 0.849

AUC 1st 0.591 0.591 0.638 0.638 0.617 0.617
10th 0.666 0.687 0.680 0.714 0.650 0.673
20th 0.741 0.769 0.704 0.769 0.671 0.738
40th 0.858 0.887 0.788 0.858 0.742 0.860

Table D.10: Performance comparison, from release 1.5 to 1.6 for Ant.

M
e
a
su

re
m
e
n
t

It
e
ra

ti
o
n

R
a
n
d

A
c
t

IG
R
a
n
d

IG
A
c
t

M
D
S

R
a
n
d

M
D
S

A
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Precision 1st 0.900 0.900 0.619 0.619 0.606 0.606
10th 0.973 0.946 0.902 0.722 0.946 0.734
20th 0.984 0.925 1.000 0.809 1.000 0.807
40th 0.995 0.934 1.000 0.884 1.000 0.902

Recall 1st 0.001 0.001 0.187 0.187 0.160 0.160
10th 0.466 0.303 0.352 0.279 0.352 0.252
20th 0.678 0.503 0.546 0.370 0.573 0.346
40th 0.873 0.718 0.772 0.560 0.785 0.533

Accuracy 1st 0.737 0.737 0.757 0.757 0.752 0.752
10th 0.856 0.813 0.820 0.783 0.825 0.780
20th 0.913 0.859 0.881 0.812 0.888 0.807
40th 0.966 0.913 0.940 0.865 0.944 0.862

AUC 1st 0.686 0.686 0.762 0.762 0.766 0.766
10th 0.824 0.847 0.794 0.815 0.803 0.814
20th 0.859 0.901 0.841 0.855 0.839 0.858
40th 0.941 0.949 0.909 0.920 0.914 0.917
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