260 research outputs found

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime

    A centralized localization algorithm for prolonging the lifetime of wireless sensor networks using particle swarm optimization in the existence of obstacles

    Get PDF
    The evolution in micro-electro-mechanical systems technology (MEMS) has triggered the need for the development of wireless sensor network (WSN). These wireless sensor nodes has been used in many applications at many areas. One of the main issues in WSN is the energy availability, which is always a constraint. In a previous research, a relocating algorithm for mobile sensor network had been introduced and the goal was to save energy and prolong the lifetime of the sensor networks using Particle Swarm Optimization (PSO) where both of sensing radius and travelled distance had been optimized in order to save energy in long-term and shortterm. Yet, the previous research did not take into account obstacles’ existence in the field and this will cause the sensor nodes to consume more power if obstacles are exists in the sensing field. In this project, the same centralized relocating algorithm from the previous research has been used where 15 mobile sensors deployed randomly in a field of 100 meter by 100 meter where these sensors has been deployed one time in a field that obstacles does not exist (case 1) and another time in a field that obstacles existence has been taken into account (case 2), in which these obstacles has been pre-defined positions, where these two cases applied into two different algorithms, which are the original algorithm of a previous research and the modified algorithm of this thesis. Particle Swarm Optimization has been used in the proposed algorithm to minimize the fitness function. Voronoi diagram has also used in order to ensure that the mobile sensors cover the whole sensing field. In this project, the objectives will be mainly focus on the travelling distance, which is the mobility module, of the mobile sensors in the network because the distance that the sensor node travels, will consume too much power from this node and this will lead to shortening the lifetime of the sensor network. So, the travelling distance, power consumption and lifetime of the network will be calculated in both cases for original algorithm and modified algorithm, which is a modified deployment algorithm, and compared between them. Moreover, the maximum sensing range is calculated, which is 30 meter, by using the binary sensing model even though the sensing module does not consume too much power compared to the mobility module. Finally, the comparison of the results in the original method will show that this algorithm is not suitable for an environment where obstacle exist because sensors will consume too much power compared to the sensors that deployed in environment that free of obstacles. While the results of the modified algorithm of this research will be more suitable for both environments, that is environment where obstacles are not exist and environment where obstacles are exist, because sensors in this algorithm .will consume almost the same amount of power at both of these environments

    A multi-hop routing protocol for an energy-efficient in wireless sensor network

    Get PDF
    The low-energy adaptive clustering hierarchy (LEACH) protocol has been developed to be implemented in wireless sensor networks (WSNs) systems such as healthcare and military systems. LEACH protocol depends on clustering the employed sensors and electing one cluster head (CH) for each cluster. The CH nodes are changed periodically to evenly distribute the energy load among sensors. Updating the CH node requires electing different CH and re-clustering sensors. This process consumes sensors’ energy due to sending and receiving many broadcast and unicast messages thus reduces the network lifetime, which is regarded as a significant issue in LEACH. This research develops a new approach based on modifying the LEACH protocol to minimize the need of updating the cluster head. The proposal aims to extend the WSN’s lifetime by maintaining the sensor nodes’ energy. The suggested approach has been evaluated and shown remarkable efficiency in comparison with basic LEACH protocol and not-clustered protocol in terms of extending network lifetime and reducing the required sent messages in the network reflected by 15%, and, in addition, reducing the need to reformatting the clusters frequently and saving network resources

    Novel Scheme for Minimal Iterative PSO Algorithm for Extending Network Lifetime of Wireless Sensor Network

    Get PDF
    Clustering is one of the operations in the wireless sensor network that offers both streamlined data routing services as well as energy efficiency. In this viewpoint, Particle Swarm Optimization (PSO) has already proved its effectiveness in enhancing clustering operation, energy efficiency, etc. However, PSO also suffers from a higher degree of iteration and computational complexity when it comes to solving complex problems, e.g., allocating transmittance energy to the cluster head in a dynamic network. Therefore, we present a novel, simple, and yet a cost-effective method that performs enhancement of the conventional PSO approach for minimizing the iterative steps and maximizing the probability of selecting a better clustered. A significant research contribution of the proposed system is its assurance towards minimizing the transmittance energy as well as receiving energy of a cluster head. The study outcome proved proposed a system to be better than conventional system in the form of energy efficiency

    Energy Efficient Error Rate Optimization Transmission in Wireless Sensor Network

    Get PDF
    Wireless Sensor Network is a collection of independent nodes and create a network for monitoring purposes in various scenarios like military operation, environmental operation etc. WSN network size is increasing very rapidly these days, due to large network size energy consumption is also increased and it has small battery, lifetime of network   decreases due to early death of nodes and it impact the overall system performance. Clustering is a technique for enhance the network lifetime in WSN. Here in this paper we propose a new multi-objective adaptive swarm optimization (MASO) technique for clustering and computes the maximum number of clusters, which is best suited for the network. Each cluster has cluster head and cluster members and performed the task of local information extraction. Cluster head gathers all the extracted information from member nodes and send it to the base station, where base station performed global information extraction from all the cluster head nodes and generate some useful result. In MASO technique, object is used to find the best global position for the node and compare with existing position value. If new value is better than the old value, than node moves to a new position and object update their table for this new position. We are considering error probability in transmission of data packet in one hop communication. Here obtained the results are compared with other research in terms of overall network lifetime and effect on network lifetime when the size of the network is changed. We have fine tuned the node’s decay rate and throughput of the network

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems; its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Muhammad Imran” is provided in this record*

    A Co-evolutionary Algorithm-based Enhanced Grey Wolf Optimizer for the Routing of Wireless Sensor Networks

    Get PDF
    Wireless networks are frequently installed in arduous environments, heightening the importance of their consistent operation. To achieve this, effective strategies must be implemented to extend the lifespan of nodes. Energy-conserving routing protocols have emerged as the most prevalent methodology, as they strive to elongate the network\u27s lifetime while guaranteeing reliable data routing with minimal latency. In this paper, a plethora of studies have been done with the purpose of improving network routing, such as the integration of clustering techniques, heterogeneity, and swarm intelligence-inspired approaches. A comparative investigation was conducted on a variety of swarm-based protocols, including a new coevolutionary binary grey wolf optimizer (Co-BGWO), a BGWO, a binary whale optimization, and a binary Salp swarm algorithm. The objective was to optimize cluster heads (CHs) positions and their number during the initial stage of both two-level and three-level heterogeneous networks. The study concluded that these newly developed protocols are more reliable, stable, and energy-efficient than the standard SEP and EDEEC heterogeneous protocols. Specifically, in 150 m2 area of interest, the Co-BGWO and BGWO protocols of two levels were found the most efficient, with over than 33% increase in remaining energy percentage compared to SEP, and over 24% more than EDEEC in three-level networks
    corecore