74 research outputs found

    The Potential of Economic MPC for Power Management

    Get PDF

    Use of turbine-level data for improved wind power forecasting

    Get PDF
    Short-term wind power forecasting is based on modelling the complex relationship between the weather forecasts and wind farm power production. To date, efforts to improve wind power forecasts have focused on improving Numerical Weather Prediction and wind farm power curve models. However, utility-scale wind farms cover large areas meaning that a single power curve model may struggle to represent the collective behaviour of large numbers of wind turbines. Contemporary statistical techniques are capable of processing large volumes of data, enabling the assimilation of measurements from individual wind turbines to construct a more detailed representation of wind farm power generation. Here, three state-of-the-art techniques are applied to forecast wind farm power production 1) directly from numerical weather predictions, and 2) by aggregating forecasts for individual wind turbines. Furthermore, it is observed that some wind turbines are better predictors than others and an aggregation process based on conditional weighting is proposed. In case studies of two large wind farms in the UK, it is shown that wind farm power forecasts comprising a conditional weighted sum of turbine-level predictions are superior to a direct wind farm forecast for horizons up to 48 hours ahead. Specifically, performance of the best-performing benchmark, the gradient boosting machine, is improved by 12% at Clyde South wind farm and by 6% at Gordonbush

    Solar farm cable layout optimization as a graph problem

    Get PDF
    We introduce the Solar Farm Cable Layout Problem (SoFaCLaP), a novel graph-theoretic optimization problem. SoFaCLaP formalizes the task of finding a cost-optimal cable layout in a solar farm where PV string positions are already determined but the positions of other components such as transformers can be picked from a set of candidate positions. The problem statement incorporates a network flow model in which the flow value of a connection represents the number of strings that are (indirectly) connected to a transformer via this connection. A mixed-integer linear program (MILP) formulation is proposed that uses binary variables to indicate which of several available cable types is chosen for each connection. We propose a framework to randomly generate benchmark instances to evaluate any algorithmic approach to SoFaCLaP. In particular, we generate a set of instances based on real-world solar farm characteristics. With an extensive evaluation of the MILP formulation on those instances we establish mixed-integer linear programming as a baseline for future algorithmic approaches to finding solar farm cable layouts

    Time-Series Analysis of Photovoltaic Distributed Generation Impacts on a Local Distributed Network

    Full text link
    Increasing penetration level of photovoltaic (PV) distributed generation (DG) into distribution networks will have many impacts on nominal circuit operating conditions including voltage quality and reverse power flow issues. In U.S. most studies on PVDG impacts on distribution networks are performed for west coast and central states. The objective of this paper is to study the impacts of PVDG integration on local distribution network based on real-world settings for network parameters and time-series analysis. PVDG penetration level is considered to find the hosting capacity of the network without having major issues in terms of voltage quality and reverse power flow. Time-series analyses show that distributed installation of PVDGs on commercial buses has the maximum network energy loss reduction and larger penetration ratios for them. Additionally, the penetration ratio thresholds for which there will be no power quality and reverse power flow issues and optimal allocation of PVDG and penetration levels are identified for different installation scenarios.Comment: To be published (Accepted) in: 12th IEEE PES PowerTech Conference, Manchester, UK, 201

    Reliability Models and Failure Detection Algorithms for Wind Turbines

    Get PDF
    Durante las pasadas décadas, la industria eólica ha sufrido un crecimiento muysignificativo en Europa llevando a la generación eólica al puesto más relevanteen cuanto a producción energética mediante fuentes renovables. Sin embargo, siconsideramos los aspectos económicos, el sector eólico todavía no ha alcanzadoel nivel competitivo necesario para batir a los sistemas de generación de energíaconvencionales.Los costes principales en la explotación de parques eólicos se asignan a lasactividades relacionadas con la Operación y Mantenimiento (O&M). Esto se debeal hecho de que, en la actualidad, la Operación y Mantenimiento está basadaprincipalmente en acciones correctivas o preventivas. Por tanto, el uso de técnicaspredictivas podría reducir de forma significativa los costes relacionados con lasactividades de mantenimiento mejorando así los beneficios globales de la explotaciónde los parques eólicos.Aunque los beneficios del mantenimiento predictivo se consideran cada díamás importantes, existen todavía la necesidad de investigar y explorar dichastécnicas. Modelos de fiabilidad avanzados y algoritmos de predicción de fallospueden facilitar a los operadores la detección anticipada de fallos de componentesen los aerogeneradores y, en base a ello, adaptar sus estrategias de mantenimiento.Hasta la fecha, los modelos de fiabilidad de turbinas eólicas se basan, casiexclusivamente, en la edad de la turbina. Esto es así porque fueron desarrolladosoriginalmente para máquinas que trabajan en entornos ‘amigables’, por ejemplo, enel interior de naves industriales. Los aerogeneradores, al contrario, están expuestosa condiciones ambientales altamente variables y, por tanto, los modelos clásicosde fiabilidad no reflejan la realidad con suficiente precisión. Es necesario, portanto, desarrollar nuevos modelos de fiabilidad que sean capaces de reproducir el comportamiento de los fallos de las turbinas eólicas y sus componentes, teniendoen cuenta las condiciones meteorológicas y operacionales en su emplazamiento.La predicción de fallos se realiza habitualmente utilizando datos que se obtienendel sistema de Supervisión Control y Adquisición de Datos (SCADA) o de Sistemasde Monitorización de Condición (CMS). Cabe destacar que en turbinas eólicasmodernas conviven ambos tipos de sistemas y la fusión de ambas fuentes de datospuede mejorar significativamente la detección de fallos. Esta tesis pretende mejorarlas prácticas actuales de Operación y Mantenimiento mediante: (1) el desarrollo demodelos avanzados de fiabilidad y detección de fallos basados en datos que incluyanlas condiciones ambientales y operacionales existentes en los parques eólicos y (2)la aplicación de nuevos algoritmos de detección de fallos que usen las condicionesambientales y operacionales del emplazamiento, así como datos procedentes tantode sistemas SCADA como CMS. Estos dos objetivos se han dividido en cuatrotareas.En la primera tarea se ha realizado un análisis exhaustivo tanto de los fallosproducidos en un amplio conjunto de aerogeneradores (amplio en número de turbinasy en longitud de los registros) como de sus tiempos de parada asociados. De estaforma, se han visualizado los componentes que más fallan en función de la tecnologíadel aerogenerador, así como sus modos de fallo. Esta información es vital para eldesarrollo posterior de modelos de fiabilidad y mantenimiento.En segundo lugar, se han investigado las condiciones meteorológicas previasa sucesos con fallos de los principales componentes de los aerogeneradores. Seha desarrollado un entorno de aprendizaje basado en datos utilizando técnicas deagrupamiento ‘k-means clustering’ y reglas de asociación ‘a priori’. Este entorno escapaz de manejar grandes cantidades de datos proporcionando resultados útiles yfácilmente visualizables. Adicionalmente, se han aplicado algoritmos de detecciónde anomalías y patrones para encontrar cambios abruptos y patrones recurrentesen la serie temporal de la velocidad del viento en momentos previos a los fallosde los componentes principales de los aerogeneradores. En la tercera tarea, sepropone un nuevo modelo de fiabilidad que incorpora directamente las condicionesmeteorológicas registradas durante los dos meses previos al fallo. El modelo usados procesos estadísticos separados, uno genera los sucesos de fallos, así comoceros ocasionales mientras que el otro genera los ceros estructurales necesarios paralos algoritmos de cálculo. Los posibles efectos no observados (heterogeneidad) en el parque eólico se tienen en cuenta de forma adicional. Para evitar problemas de‘over-fitting’ y multicolinearidades, se utilizan sofisticadas técnicas de regularización.Finalmente, la capacidad del modelo se verifica usando datos históricos de fallosy lecturas meteorológicas obtenidas en los mástiles meteorológicos de los parqueseólicos.En la última tarea se han desarrollado algoritmos de predicción basados encondiciones meteorológicas y en datos operacionales y de vibraciones. Se ha‘entrenado’ una red de Bayes, para predecir los fallos de componentes en unparque eólico, basada fundamentalmente en las condiciones meteorológicas delemplazamiento. Posteriormente, se introduce una metodología para fusionar datosde vibraciones obtenidos del CMS con datos obtenidos del sistema SCADA, conel objetivo de analizar las relaciones entre ambas fuentes. Estos datos se hanutilizado para la predicción de fallos en el eje principal utilizando varios algoritmosde inteligencia artificial, ‘random forests’, ‘gradient boosting machines’, modelosgeneralizados lineales y redes neuronales artificiales. Además, se ha desarrolladouna herramienta para la evaluación on-line de los datos de vibraciones (CMS)denominada DAVE (‘Distance Based Automated Vibration Evaluation’).Los resultados de esta tesis demuestran que el comportamiento de los fallos delos componentes de aerogeneradores está altamente influenciado por las condicionesmeteorológicas del emplazamiento. El entorno de aprendizaje basado en datos escapaz de identificar las condiciones generales y temporales específicas previas alos fallos de componentes. Además, se ha demostrado que, con los modelos defiabilidad y algoritmos de detección propuestos, la Operación y Mantenimiento delas turbinas eólicas puede mejorarse significativamente. Estos modelos de fiabilidady de detección de fallos son los primeros que proporcionan una representaciónrealística y específica del emplazamiento, al considerar combinaciones complejasde las condiciones ambientales, así como indicadores operacionales y de estadode operación obtenidos a partir de la fusión de datos de vibraciones CMS y datosdel SCADA. Por tanto, este trabajo proporciona entornos prácticos, modelos yalgoritmos que se podrán aplicar en el campo del mantenimiento predictivo deturbinas eólicas.<br /

    Multi-Objective Control Strategies and Prognostic-Based Lifetime Extension of Utility-Scale Wind Turbines

    Get PDF
    Windenergie wird zunehmend als erneuerbare Energiequellen attraktiv, da Wind nachhaltig genutzt werden kann. In vielen Ländern gibt es umfangreiche Anstrengungen, die Produktion von elektrischer Energie aus Wind zu steigern. Im Vergleich zu anderen erneuerbaren Energiequellen wie Sonne, Gezeiten, Wasserkraft o.ä. ist die Energiegewinnung aus Wind technologisch ausgereifter. Daher ist die Energiegewinnung aus Wind stärker gewachsen ist als andere Technologien. Windkraft verursacht weniger nachteilige Auswirkungen auf die Umwelt als konventionelle Energiequellen. Aufgrund der vergleichsweise hohen Investitions-, Betriebs- und Wartungskosten sind trotz einer weltweit starken Verbreitung von Windenergieanlagen die Produktionskosten von Windenergie im Vergleich mit anderen alternativen Energiequellen hoch. Um die wachsende Nachfrage nachWindkraft zu befriedigen, werdenWindkraftanlagen in Größe und Leistung zunehmend skaliert. Bei zunehmender Größe dominieren die strukturellen Lasten der Turbine. Dies führt vermehrt zu Materialermüdung und Ausfällen. Ein weiterer Schwerpunkt in der Entwicklung von Windtechologie ist die Forderung nach Senkung der Produktionskosten, um einen Wettbewerbsvorteil gegenüber anderen alternativen Energiequellen zu schaffen. Im Bereich der Steuerung können niedrigere Produktionskosten durch den Betrieb der Windturbine am/oder in der Nähe der optimalen Energieeffizienz im Teillastbetrieb erreicht werden. Dies erhöht die Zuverlässigkeit durch Verringerung des Verschleißes und die erzeugte Nennleistung auf ihrem Nennwert im hohen Windregime. Häufig ist es schwierig, einen Steueralgorithmus zu realisieren, der sowohl Effizienz als auch Zuverlässigkeit gewährleistet, da diese beiden Ziele widersprechen. In dieser Arbeit werden Mehrzielsteuerungsstrategien sowohl für den Teillastbereich als auch für hohe Windgeschwindigkeits bereiche vorgestellt. Im Bereich geringer Windgeschwindigkeiten ist eine Steuerungsstrategie so zu konzipieren, dass die Stromerzeugung sowie die strukturelle Belastung im Sinne einer Balance zwischen maximalen Stromproduktion und verlängerter Lebensdauer der Windturbine optimal ist. Für den Bereich hoher Windgeschwindigkeiten wird ein multivariates Steuerungsverfahren vorgeschlagen, um das Verhältnis von Leistung/Geschwindigkeit und struktureller Lastreduzierung zu optimieren. Es wird ein Regler zur Einzelblattverstellung entworfen, um sowohl die unausgewogene Strukturlasten als auch durch die Variation des Windgeschwindigkeit verursachte Rotorscheibe, vertikale Windscherung und Gierversatz fehler zu reduzieren. Um die Zuverlässigkeit derWindturbine zu gewährleisten, ist ein Online-Schadensbewertungsmodell in den Hauptwindturbinenregelkreis integriert, so dass die Windturbine entsprechend ihres aktuellen Verschleißzustandes betrieben wird. In Abhängigkeit von der akkumulierten Schadenshöhe werden Regler zur Einzelblattverstellung mit unterschiedlichen Lastreduktionen und Kompromissen bei der Stromerzeugung eingesetzt, um zwischen den beiden Zielen verlängerte Lebensdauer und Leistungsregelung einen geeigneten Kompromiss zu erzielten. Aufgrund der Herausforderungen die mit Offshore-Windpark Standorten verbunden sind, ist diese Art von prognose-basierter Regelung im Windturbinenbetrieb vor allem im Offshore-Einsatz vorteilhaft. Insbesondere im Kontext output-basierter Vertragsformen z.B. power purchase agreement (PPA) kann dieser Ansatz zur Optimierung der Wartungsplanung genutzt werden. Die Ergebnisse zeigen, dass die vorgeschlagenen Strategien die Auflast auf Windturbinen reduzieren kann ohne sich auf andere Ziele wie die Leistungsoptimierung und Leistung/Drehzahlregelung auszuwirken. Es konnte außerdem gezeigt werden, dass eine prognostisch basierte Steuerung effektiv die Lebensdauer von Windenergieanalagen verlängern kann, ohne das Ziel der Leistungsregelung einzuschränken.Wind energy is one of the rapidly growing renewable sources of energy due to the fact that wind is abundantly available and unlikely to be exhausted like fossil fuel. Additionally, there are deliberate effort to sensitize many countries to develop polices that support production of electrical power from wind. Maturity of wind energy technology has made power production from wind grow significantly compared to other renewable energy sources such as solar, tidal, hydro among others. Like many other renewable energy sources, production of power from wind has less adverse effects on the environment. Despite the growth of global cumulative installed wind capacity, its cost of production is still higher compared to other alternative energy sources due to high initial investment cost and high operation and maintenance (O&M) costs. To meet the growing demand of wind power, wind turbines are being scaled up both in size and power rating. However, as the size increases, the structural loads of the turbine become more dominant, causing increased fatigue stress on the turbine components and consequent loss of functionality before the end of lifetime. Another area of focus in wind power production is lowering its production cost; hence, making it more competitive compared to other alternative power sources. From the control point of view, low production cost of wind energy can be achieved by operating wind turbine at/or near the optimum power efficiency during partial load regime, regulating generated power to its rated value in the high wind regime as well as mitigating structural loads so as to guarantee extended lifetime. Often, it is difficult to realize a control algorithm that can effectively guarantee both efficiency and reliability because these two aspects involve conflicting objective. Therefore, it is important to optimize the trade-off between these competing control objectives. In this thesis, multi-objective control strategies for both the partial load region and high wind speed region are presented. During low wind speed, a control strategy that optimizes power production as well as mitigating structural load is designed to balance between power production maximization and extended lifetime of wind turbine. On the other hand, a multivariate control method to balance between power/speed regulation and structural load reduction is proposed for high wind speed region. More specifically, an individual blade pitch controller is designed to eliminate the unbalanced deterministic structural loads across rotor disc caused by variation in wind speed, vertical wind shear, and yaw misalignment error. To guarantee reliability in wind turbine, an online damage evaluation model is also integrated into the main wind turbine control loop such that wind turbine is operated accordance to its structural health status in order to tolerate fault or to extend its service lifetime by a given period of time. Depending on the accumulated damage level, individual pitch controllers with different degrees of load reduction and power production compromise are employed to balance between extended lifetime and power regulation objective. This kind of prognostic-based control is useful in wind turbine operation, especially in offshore application due to challenges associated with offshore wind farm sites. Additionally, in wind farms that are managed through output-based contracts such as power purchase agreement (PPA), this approach can be utilized to optimize maintenance scheduling to avoid unscheduled downtime. The results demonstrated that the proposed multi-objective control strategies can reduce structural load on wind turbine without adversely affecting other objectives of power optimization and power/speed regulation. It has also be shown that a prognostic-based control can be effectively used to extend the lifetime of wind turbine without sacrificing the objective of power regulation

    Power Management for Energy Systems

    Get PDF
    The thesis deals with control methods for flexible and efficient power consumption in commercial refrigeration systems that possess thermal storage capabilities, and for facilitation of more environmental sustainable power production technologies such as wind power. We apply economic model predictive control as the overriding control strategy and present novel studies on suitable modeling and problem formulations for the industrial applications, means to handle uncertainty in the control problems, and dedicated optimization routines to solve the problems involved. Along the way, we present careful numerical simulations with simple case studies as well as validated models in realistic scenarios. The thesis consists of a summary report and a collection of 13 research papers written during the period Marts 2010 to February 2013. Four are published in international peer-reviewed scientific journals and 9 are published at international peer-reviewed scientific conferences
    • …
    corecore