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Abstract—Short-term wind power forecasting is based on mod-

elling the complex relationship between the weather forecasts and
wind farm power production. To date, efforts to improve wind
power forecasts have focused on improving Numerical Weather
Prediction and wind farm power curve models. However, utility-
scale wind farms cover large areas meaning that a single power
curve model may struggle to represent the collective behaviour
of large numbers of wind turbines. Contemporary statistical
techniques are capable of processing large volumes of data,
enabling the assimilation of measurements from individual wind
turbines to construct a more detailed representation of wind farm
power generation. Here, three state-of-the-art techniques are
applied to forecast wind farm power production 1) directly from
numerical weather predictions, and 2) by aggregating forecasts
for individual wind turbines. Furthermore, it is observed that
some wind turbines are better predictors than others and an
aggregation process based on conditional weighting is proposed.
In case studies of two large wind farms in the UK, it is shown that
wind farm power forecasts comprising a conditional weighted
sum of turbine-level predictions are superior to a direct wind
farm forecast for horizons up to 48 hours ahead. Specifically,
performance of the best-performing benchmark, the gradient
boosting machine, is improved by 12% at Clyde South wind
farm and by 6% at Gordonbush.

Index Terms—Wind Power Forecasting, Big Data, Machine
Learning, LASSO, Gradient Boosting

I. INTRODUCTION

Wind power forecasting is an integral component of modern

power system operation and electricity market participation in

areas with a significant penetration of wind generation. The

stochastic nature of the wind resource means that forecasts

are required to inform decisions where future generation is

a factor. Forecast from days to a week ahead are valuable

when scheduling conventional generation and maintenance on

wind farms, day-ahead forecasts are required for participants

in electricity markets, and intra-day forecasts are used by par-

ticipants in short-term markets and to power system operators

who must balance supply and demand in real time [1], [2].

Deterministic wind power forecasting, comprising single-

valued estimates of future power, is approaching technological

maturity following a concerted research effort reviewed com-

prehensively in [3], [4]. At present there are many commercial

providers offering deterministic wind power forecasts. How-

ever, there is a broad consensus in the academic community

that wind power should be modelled as a stochastic process

and that forecasts should be probabilistic in order to quantify

forecast uncertainty [5], [6]. That said, many forecast users

still only utilise single-valued forecasts due to the difficulty of

incorporating complex probabilistic information into decision-

making processes in practice.

There are two sources of error in wind power forecasting:

meteorological forecast errors, and errors introduced by the

wind-to-power conversion process. In this work we attempt

to reduce the later. Typically, wind-to-power conversion is

modelled at the farm level; these models may contain tens or

hundreds of input features derived from meteorological fore-

casts and lagged measurements. Approaches based on boosted

regression trees [7], [8], linear regression with sparsity [9] and

neural networks [10] are at the forefront of the technology,

with gradient boosting methods winning both the 2012 and

2014 Global Energy Forecasting Competitions [11], [12].

However, large wind farms contain many turbines distributed

over a wide geographical area with each turbine experiencing

different conditions. Here we investigate the utilisation of

turbine-level power production an propose a bottom-up hier-

archical forecasting methodology, an idea which has proved

successful in other applications [13]–[15].

The power generated by wind turbines is routinely measured

and transmitted to operators making this data available for use

in forecasting systems. Here, we test the hypothesis that power

forecasts for large wind farms can be improved by modelling

and combining the wind-to-power conversion process for

individual spatially distributed turbines. We will draw upon

developments in large-scale spatio-temporal forecasting such

as [16], [17] and investigate the ability of modern machine

learning algorithms to efficiently model these processes and

aggregate the resulting forecasts.

II. FORECASTING METHODOLOGY

Two model structures are considered: first, wind farm power

production modelled directly on numerical weather predictions

(NWP) and lagged power production, and second, a two stage

process where individual turbine production is forecast based



on NWP and lagged power measurements and then aggregated

to form a prediction of the total wind farm production.

Forecasts are produced from 30 minutes to 48 hours ahead

in 30 minute intervals.

Three state-of-the-art forecasting techniques are imple-

mented to forecast wind farm and wind turbine power produc-

tion. First is linear regression with sparse parameter estimation

using the least absolute shrinkage and selection operator

(LASSO) [18]. LASSO simultaneously performs parameter

estimation and feature selection enabling the user to engineer

many features and then rely on the estimator to deselect some

features with parameters estimates equalling exactly zero.

Second is the gradient boosting machine (GBM) [19] which

is a tree-based method for non-linear function approximation,

and third is the extreme gradient boosting machine, which

is an extension of the GBM [20]. The LASSO and GBM

have pedigree as the basis of winning entries in the wind

power forecasting track of the Global Energy Forecasting

Competition 2014, and the latter in particular for winning

many other machine learning competitions [12].

A. Least Squares LASSO

A linear model for the quantity yt we are attempting to fore-

cast is the weighted sum of input features xt = [x1,t, ..., xp,t]
plus an error term ǫt,

yt =

p
∑

i=1

βixi,t + ǫt , (1)

where β = [β1, ..., βp]
T are unknown parameters to be

estimated.

For a set of T samples, {Y,X}, where Y and X are matri-

ces of vertically stacked instances of yt and xt, respectively,

the least squares estimate of β is the solution to the problem

argmin
β

{

||Y −Xβ||22
}

. (2)

Large numbers of features, and possible multicollinearity, and

can lead to poor parameter estimates and predictive perfor-

mance, as well as making model interpretation difficult [18].

There is therefore a need to regularise the estimation process.

LASSO achieves this by penalising the ℓ1 norm of β. The

lasso estimation problem is given by

argmin
β

{

1

2T
||Y −Xβ||22 + λ||β||1

}

. (3)

The user-defined shrinkage parameter λ controls sparsity and

is typically selected via a cross-validation procedure.

Due to the non-linear nature of the relationship between

wind speed and power, and others, it is necessary to construct

features which capture these effects. This can be achieved by

recasting (1) as an additive model

yt =

p
∑

i=1

βifi(xi,t) + ǫt , (4)

where fi(·) are smooth functions chosen to capture non-linear

effects such as the familiar power curve. The capability of

LASSO to perform feature selection makes this convenient as

multiple functions fi(·) can be included but only those which

add the most value are retained in the final model.

B. Tree-based Gradient Boosting Machine

A regression tree with J leaves and weights wj has the

additive form

k(x; T = {wj , Rj}
J) =

J
∑

j=1

wjI(x ∈ Rj) (5)

where Rj are disjoint regions that collectively cover the

input space spanned by x, and I(·) is the indicator function.

Individual trees can be fit very efficiently using the a process

of recursive partitioning but have limited predictive power and

for this reason are often called weak learners [21]. Gradient

boosting attempts to overcomes this drawback by constructing

a ‘stronger’ learner from an ensemble of weak learners.

The gradient boosting machine Fn(xt) is the sum of n weak

learners

yt = Fn(xt) + ǫt (6)

=

n
∑

i=1

fi(xt) + ǫt (7)

where, in this case, each fi(xt) is a regression tree. The

ensemble of regression trees is constructed sequentially by

estimating the new regression tree fn+1(xt) via

argmin
fn+1

∑

t

L (yt, Fn(xt) + fn+1(xt)) (8)

for some loss function L(·). Where L(·) is differentiable, this

optimisation can be solved by steepest descent written

gn(xt) =
∂L (yt, Fn(xt))

∂Fn

(9)

fn+1(xt) = −ρngn(xt) (10)

where

ρn = argmin
ρ

∑

t

L (yt, Fn(xt)− ρgn(xt)) . (11)

For a finite dataset, a regression tree k(x; T ) is fit to the psudo-

residuals gn(xt) by solving

argmin
T ,γ

∑

t

[−gn(xt) + γk(xt; T )]
2

. (12)

The process of recursive partitioning makes estimating each

new regression tree computationally inexpensive. The user

must specify the number of trees to fit, n, and the number of

regions each tree divides the input space into. An additional

shrinkage parameter may be included in (10) to control the

learning rate of the fitting procedure and reduce the impact if

individual trees.



C. Extreme Gradient Boosting Machines

A recent advance gradient boosting has seen the devel-

opment of Extreme Gradient Boosting (XGBoost) algorithm,

which solves the optimisation problem (8) by performing sec-

ond order gradient descent [20]. This approach results in more

efficient model fitting making it more scalable than traditional

gradient boosting, and is included here for comparison. For

details of the fitting algorithm see [20].

III. WIND POWER FORECASTING

As a benchmark, the methodologies described above are im-

plemented to produce power forecasts for wind farms directly,

the conventional approach to wind power forecasting, where

yt is the total power produced by the wind farm at time t.

Motivated by knowledge that wind conditions can vary sig-

nificantly across large wind farms and intuition that different

turbines will be better predictors than others at different times,

we use the same methodologies to forecast production for

individual wind turbines which are then combined to produce

a farm-level forecast. In both cases xt contains features from

NWP, namely wind speed and direction at 10m, 80m and 100m

above ground linearly interpolated to 30-minute resolution,

and lagged power measurements for the most recent 48 half-

hour periods. Bilinear interpolation is used to obtain single

values for each meteorological variable at the location of the

target wind farm from the closes four NWP grid points.

In order to capture non-linear features of the wind-power

relationship in the linear model (4) a series of threshold

functions are also included. Specifically

f (c)
max(xi,t) = max {c, xi,t} , c = 2, 4, ..., 24 . (13)

These additional features are not used in the tree-methods as

they would be redundant. In all models time-of-day features

included to capture and diurnal bias in the NWP and are

modelled by cubic spline kernels, along similar lines to [22].

A. Aggregating Turbine-level Forecasts

Two approaches to forecast aggregation are considered for

the novel turbine level methodology. In the first, the forecast

for the wind farm as a whole is given by the weighted

sum of individual turbine forecasts. The second is also based

on a weighted sum of individual turbine forecasts but in

this case the weights are conditioned on the forecast wind

direction. This approach was driven by the idea that different

combinations of turbines will be better predictors of total wind

farm generation depending on the incident wind direction due

to the array layout and local topographic effects. For the simple

weighted sum (WS)

yt =

N
∑

i=1

βixi,t + ǫt (14)

where here xi,t is the forecasts power a the ith turbine at time

t and the parameters βi are estimated by the LASSO (3).

In order to condition the weighting on wind direction,

separate parameters are estimated for different wind directions
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Fig. 1. Wind rose for forecast wind speed and meteorological wind direction
at 100m above ground for Clyde South from training dataset.
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Fig. 2. Wind rose for forecast wind speed and meteorological wind direction
at 100m above ground for Gordonbush from training dataset.

and the weighted sum (14) becomes the conditional weighted

sum (CWS)

yt =

N
∑

i=1

ωi(θ)xi,t + ǫt . (15)

For practical reasons, data are grouped into a fixed number

of bins (determined by k-fold cross-validation) and ωi(θ) are

estimated for each bin. Parameters are then estimated by

ω(θ) = argmin
β

{

1

2T
||Yθ −Xθβ||

2
2 + λ||β||1

}

(16)

where Yθ and Xθ are matrices of vertically stacked instances

of yt and xt where the forecast wind direction at time t lies

in the same bin as θ.

IV. CASE STUDY

The benchmark and proposed methods are tested on two

large UK wind farms operated by SSE. Details are listed in

Table I. Generation data from individual turbines’ SCADA



system and the wind farm power export meter are used at 30

minute resolution with instances of curtailment flagged and

excluded from the forecasting exercise. Numerical Weather

Forecasts from the Global Forecasting System [23] are used

and comprise wind speed and direction at 80m and 100m

above ground. The methodologies described are implemented

in R using the packages glmnet, gbm, and xgboost [20],

[24]–[26].

V. RESULTS

The LASSO, GBM, and XGBoost predictors and set-up

to 1) forecast wind farm power production directly, and 2)

forecast the power production of individual turbines. In the

second case, the forecast for the wind farm as a whole is

produced by a simple weighted sum (WS) and alternatively

a conditional weighted sum (CWS) of turbine forecasts, with

weights estimated using least squares LASSO.

To evaluate forecasts performance two metrics were used:

the mean absolute error (MAE) and root mean squared error

(RMSE). The RMSE across all forecast horizons was used to

inform model selection and performance is evaluated by hori-

zon in order to illustrate how forecast performance degrades

with lead-time. These metrics are given by

MAE =
1

N

N
∑

i=1

|yi − ŷi| (17)

RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)
2

(18)

where ŷi is the forecast of yi.

The parameters governing the fitting process of each fore-

cast method and the number of direction bins were determined

by k-fold cross validation with five folds on the training data

for each wind farm. The resulting direction bins are illustrated

in Figure 1 and Figure 2 for each wind farm.

The computational time for 5-fold cross-validation at Gor-

donbush was 6, 880, and 300 seconds for the LASSO, GBM,

and XGBoost, respectively. This illustrates the important trade-

off between model accuracy and computational time between

each of the methodologies. Additionally, the GBM and ex-

treme gradient boosting machine methods may controlled by

several parameters (including learning rate, interaction depth

and number of trees) whereas the only parameter for cross-

validation in the LASSO is the shrinkage.

Performance of the LASSO, GBM, and XGBoost methods

are plotted in Figure 3 for Clyde South. The performance of all

three methods is improved across all horizons when utilising

turbine-level information with the conditional weighted-sum

method. At this wind farm both variants of boosted machines

perform similarly with the turbine level data included up to a

horizon of 24h, with the GBM method performing best overall

when performance is averaged across all forecast horizons.

Full results are listed in Table II. The most improved method

with the incorporation of the turbine level data is the LASSO

model which shows a 17% reduction in RMSE when averaged
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Fig. 3. Forecast performance at Clyde South based on wind farm level data
only (–F) and wind turbine level data with a conditional weighted sum (–
CWS).
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Fig. 4. Forecast performance at Clyde South for the XGBoost method based
on wind farm level data only (–F), turbine level data with a weighted sum
(–WS), and wind turbine level data with a conditional weighted sum (–CWS).

across all horizons. Results for all methods are tabulated in

Table III.

The value of conditioning the aggregation of individual

turbine forecasts on wind direction is illustrated in Figure 4

which examines the XGBoost methodology at Clyde South.

Here the simple weighted sum performs well compared to the

wind farm level data and gives an appreciable improvement

across forecast horizons beyond 3 hours. However, the greater

value of the turbine level approach is realised through the con-

ditional weighted sum method which demonstrates consistent

improvement across all horizons compared to the wind farm

level data only. Averaged across all forecast horizons it leads

to a 16% reduction in the RMSE and 12% in MAE compared

to the standard wind farm level approach.

Forecast performance for Gordonbush is plotted in Figure 5.

It can be seen that with a more complex wind rose, shown

in Figure 2, the forecast quality is lower than that of Clyde



TABLE I
DETAILS OF WIND FARMS USED IN CASE STUDY. TRAINING AND TEST PERIODS DIFFER DUE TO DIFFERENCES IN DATA AVAILABILITY ONLY.

Wind Farm Terrain Area Number of Turbines Turbine Rating Training Period Test Period

Clyde South Complex 20km2 56 2.3MW 22 months 6 months

Gordonbush Complex 15km2 35 2MW 17 months 6 months
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Fig. 5. Forecast performance at Gordonbush based on wind farm level data
only (–F) and wind turbine level data with a conditional weighted sum (–
CWS).

South, possibly as a result of local effects which are not

captured by the relatively low resolution NWP. However,

the performance of all methods are improved when utilising

turbine-level information, although to a lesser extent. At Clyde

South the RMSE reduction was between 12% and 17% where

as at Gordonbush it is between 6% and 9%. For both wind

farms GBM with CWS had the lowest MAE and RMSE

overall.

A summary of the results across both wind farms is shown

in Table II where the error metrics have been averaged across

all forecast horizons. The simple weighted sum of forecast

turbine power generation led to consistent improvements in the

averaged RMSE at both wind farms, with the XGBoost method

showing the most improvement. However, the weighted sum

of turbine forecasts conditional on wind direction improved

overall performance to a greater extent across all methods and

wind farms.

VI. CONCLUSIONS

The use of turbine level data for improved wind forecasting

has been studied and evaluated using a case study of two

wind farms with differing characteristics. Three state-of-the-

art techniques — linear regression (additive model) estimated

via LASSO, gradient boosting machines, and extreme gradient

boosting machines — were applied to forecast wind farm

power production directly from numerical weather predictions,

and by aggregating forecasts made in the same way but for

individual wind turbines.

On a case study comprising two large wind farms consider-

ing forecast up to 48 hours ahead, it is shown that aggregating

TABLE II
SUMMARY RESULTS FOR DIRECT WIND FARM LEVEL FORECASTS (F),

TURBINE LEVEL WITH WEIGHTED SUM (WS), AND TURBINE LEVEL WITH

CONDITIONAL WEIGHTED SUM (CWS). THE BEST PERFORMING

AGGREGATION METHOD FOR EACH FORECASTING APPROACH IS

ITALICISED, AND BEST OVERALL PERFORMANCES ARE EMBOLDENED.

Model Aggregation
Clyde South Gordonbush

RMSE MAE RMSE MAE

LASSO

F 20.69 14.33 20.20 15.21

WS 20.63 14.62 20.16 15.59

CWS 17.16 12.76 18.68 14.76

GBM

F 17.74 12.70 18.57 13.76

WS 17.61 12.44 18.53 13.98

CWS 15.62 11.19 17.40 13.25

XGBoost

F 19.19 13.55 19.88 14.63

WS 17.77 12.97 18.93 14.60

CWS 16.06 11.96 18.02 14.05

Units: Percentage of nominal capacity.

TABLE III
PERCENTAGE REDUCTION IN RMSE COMPARED TO DIRECT WIND FARM

FORECASTS FOR AGGREGATED TURBINE LEVEL FORECASTS WITH

WEIGHTED SUM (WS), AND CONDITIONAL WEIGHTED SUM (CWS)

Model Aggregation Clyde South Gordonbush

LASSO
WS 0.29 0.20

CSW 17.05 7.52

GBM
WS 0.68 0.20

CWS 11.94 6.30

XGBoost
WS 7.37 4.74

CWS 16.33 9.36

turbine-level forecasts gives an improved overall wind farm

production forecast. Furthermore, the aggregation process is

improved if conditioned on wind direction. It was found that

gradient boosting machine produced forecasts with the lowest

RMSE and MAE, reducing RMSE over direct wind farm-level

forecasting by 12% for the Clyde South wind farm, and 6%

for Gordonbush, which has a more complex wind rose.

Future work should consider the utility of this approach in

combination with downscaled NWP and if similar improve-

ments are possible on very-short time scales where statistical

methods typically out perform those based on NWP. Another

consideration should be the use of turbine-level forecasting in

a probabilistic setting.
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