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Abstract

Over the past decades, the wind industry has been growing significantly, and wind
energy has become one of the most important renewable energy sources in Europe.
Nonetheless, especially when considering economic aspects, the wind energy sector
is not yet fully competitive with conventional energy generation.

The main cost drivers of modern wind farms are activities related to Operation
and Maintenance (O&M). This is due to the fact that current O&M practice is still
primarily based on corrective or preventive actions. Applying predictive techniques,
however, could significantly decrease the maintenance related costs and with this
enhance the wind farms' overall revenue.

Although, the benefits of predictive O&M are increasingly being recognized,
there is still a remarkable lack of research regarding these techniques. Advanced
reliability models and failure prediction algorithms can enable operators to anticipate
wind turbine (WT) component failures and to adapt their maintenance strategies
accordingly.

To date, WT reliability models are almost exclusively based on the turbine age,
as they were originally developed for machinery operating in fairly steady surround-
ings, e.g. indoors. However, since wind turbines are exposed to highly varying
environmental conditions, these models are not reflecting the reality sufficiently
well. New reliability models need to be developed that are capable of representing
the failure behaviour of wind turbines and their components taking into account
the meteorological and operational conditions at site.

Moreover, failure prediction is often carried out using either data obtained
from Supervisory Control and Data Acquisition (SCADA) or Condition Monitoring
Systems (CMS). Yet, in most modern wind turbines both systems are installed, and
merging these sources can enhance failure detection.

This thesis aims at enhancing current O&M practice by: (1) developing ad-



vanced data-driven WT reliability and failure models including the environmental
and operational conditions measured within the respective wind parks, and (2)
establishing novel failure detection algorithms using environmental, operational and
CMS data. These two objectives are split into four tasks.

In the first task, a thorough wind turbine failure and downtime analysis is
carried out, providing an important understanding of the most commonly failing
components of different WT technologies and their failure modes. This information
is vital for further reliability and maintenance modelling.

Secondly, the meteorological conditions before failure events of main WT com-
ponents are investigated. For this, a data-driven learning framework based on
k-means clustering and apriori rule mining is developed, which is capable of hand-
ling large amount of data and deriving useful, human readable results. Additionally,
anomaly detection and motif discovery algorithms are applied to find abrupt changes
and recurrent patterns in wind speed time series before the failure events of main
WT components.

Thirdly, a novel reliability model that directly incorporates the meteorological
conditions recorded throughout two months prior to failure is proposed. The model
uses two separate statistical processes - one is generating the failure events as well as
occasional zeros, and the other process generates the structural zeros. Additionally,
possible unobserved effects (heterogeneity) at the wind farm site are taken into
account and sophisticated regularisation techniques are applied to avoid problems
due to over-fitting and multicollinearity. The model performance is tested using
historical failure data and weather related parameters obtained at the wind farms’
meteorological measurement masts.

In the final task, failure prediction algorithms based on meteorological conditions
or vibrational and operational data are developed. A Bayesian network is trained in
order to predict component failures within a wind farm mainly based on the on-site
weather conditions. Then, an approach to merge CMS vibrations and SCADA data
with the aim of analysing the relationships between both sources is introduced. Main
bearing failure events are predicted using several artificial intelligence algorithms,
such as random forests, gradient boosting machines, generalised linear models and
artificial neural networks. Furthermore, a generic tool (Distance Based Automated
Vibration Evaluation - DAVE) is developed, which is an on-line wind farm level

failure detection framework based on CMS vibrations.



The results of this thesis show that the failure behaviour of wind turbine
components is highly influenced by the site specific meteorological conditions. The
presented data-driven learning framework is capable of identifying the general and
time specific conditions before component failures. Furthermore, it is shown that
with the herein proposed reliability models and failure detection algorithms, wind
turbine O&M can be significantly enhanced. These reliability and failure detection
models are the first ones to give a realistic and site specific representation, by
considering complex combinations of on-site environmental conditions as well as
health and operational indicators obtained from merged CMS vibrations and SCADA
data, respectively.

Hence, this work provides practicable and effective frameworks, models and

algorithms for further application in the field of predictive wind turbine O&M.
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Resumen

Durante las pasadas décadas, la industria edlica ha sufrido un crecimiento muy
significativo en Europa llevando a la generacién edlica al puesto més relevante
en cuanto a produccién energética mediante fuentes renovables. Sin embargo, si
consideramos los aspectos econémicos, el sector edlico todavia no ha alcanzado
el nivel competitivo necesario para batir a los sistemas de generacién de energia
convencionales.

Los costes principales en la explotaciéon de parques edlicos se asignan a las
actividades relacionadas con la Operacién y Mantenimiento (O&M). Esto se debe
al hecho de que, en la actualidad, la Operacién y Mantenimiento estd basada
principalmente en acciones correctivas o preventivas. Por tanto, el uso de técnicas
predictivas podria reducir de forma significativa los costes relacionados con las
actividades de mantenimiento mejorando asi los beneficios globales de la explotacién
de los parques edlicos.

Aunque los beneficios del mantenimiento predictivo se consideran cada dia
mas importantes, existen todavia la necesidad de investigar y explorar dichas
técnicas. Modelos de fiabilidad avanzados y algoritmos de prediccién de fallos
pueden facilitar a los operadores la deteccién anticipada de fallos de componentes
en los aerogeneradores y, en base a ello, adaptar sus estrategias de mantenimiento.

Hasta la fecha, los modelos de fiabilidad de turbinas edlicas se basan, casi
exclusivamente, en la edad de la turbina. Esto es asi porque fueron desarrollados
originalmente para maquinas que trabajan en entornos ‘amigables’, por ejemplo, en
el interior de naves industriales. Los aerogeneradores, al contrario, estan expuestos
a condiciones ambientales altamente variables y, por tanto, los modelos clasicos
de fiabilidad no reflejan la realidad con suficiente precisién. Es necesario, por

tanto, desarrollar nuevos modelos de fiabilidad que sean capaces de reproducir el

xiii



comportamiento de los fallos de las turbinas edlicas y sus componentes, teniendo

en cuenta las condiciones meteoroldgicas y operacionales en su emplazamiento.

La prediccion de fallos se realiza habitualmente utilizando datos que se obtienen
del sistema de Supervision Control y Adquisicién de Datos (SCADA) o de Sistemas
de Monitorizacién de Condiciéon (CMS). Cabe destacar que en turbinas edlicas
modernas conviven ambos tipos de sistemas y la fusién de ambas fuentes de datos
puede mejorar significativamente la deteccién de fallos. Esta tesis pretende mejorar
las practicas actuales de Operacién y Mantenimiento mediante: (1) el desarrollo de
modelos avanzados de fiabilidad y deteccién de fallos basados en datos que incluyan
las condiciones ambientales y operacionales existentes en los parques edlicos y (2)
la aplicacién de nuevos algoritmos de deteccién de fallos que usen las condiciones
ambientales y operacionales del emplazamiento, asi como datos procedentes tanto
de sistemas SCADA como CMS. Estos dos objetivos se han dividido en cuatro

tareas.

En la primera tarea se ha realizado un anélisis exhaustivo tanto de los fallos
producidos en un amplio conjunto de aerogeneradores (amplio en nimero de turbinas
y en longitud de los registros) como de sus tiempos de parada asociados. De esta
forma, se han visualizado los componentes que mas fallan en funcién de la tecnologia
del aerogenerador, asi como sus modos de fallo. Esta informacién es vital para el

desarrollo posterior de modelos de fiabilidad y mantenimiento.

En segundo lugar, se han investigado las condiciones meteoroldgicas previas
a sucesos con fallos de los principales componentes de los aerogeneradores. Se
ha desarrollado un entorno de aprendizaje basado en datos utilizando técnicas de
agrupamiento ‘k-means clustering' y reglas de asociacién ‘a priori'. Este entorno es
capaz de manejar grandes cantidades de datos proporcionando resultados Utiles y
facilmente visualizables. Adicionalmente, se han aplicado algoritmos de deteccién
de anomalias y patrones para encontrar cambios abruptos y patrones recurrentes
en la serie temporal de la velocidad del viento en momentos previos a los fallos
de los componentes principales de los aerogeneradores. En la tercera tarea, se
propone un nuevo modelo de fiabilidad que incorpora directamente las condiciones
meteoroldgicas registradas durante los dos meses previos al fallo. El modelo usa
dos procesos estadisticos separados, uno genera los sucesos de fallos, asi como
ceros ocasionales mientras que el otro genera los ceros estructurales necesarios para

los algoritmos de célculo. Los posibles efectos no observados (heterogeneidad) en
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el parque edlico se tienen en cuenta de forma adicional. Para evitar problemas de
‘over-fitting" y multicolinearidades, se utilizan sofisticadas técnicas de regularizacién.
Finalmente, la capacidad del modelo se verifica usando datos histéricos de fallos
y lecturas meteorolégicas obtenidas en los maéstiles meteorolégicos de los parques
eblicos.

En la dltima tarea se han desarrollado algoritmos de predicciéon basados en
condiciones meteoroldgicas y en datos operacionales y de vibraciones. Se ha
‘entrenado’ una red de Bayes, para predecir los fallos de componentes en un
parque edlico, basada fundamentalmente en las condiciones meteorolégicas del
emplazamiento. Posteriormente, se introduce una metodologia para fusionar datos
de vibraciones obtenidos del CMS con datos obtenidos del sistema SCADA, con
el objetivo de analizar las relaciones entre ambas fuentes. Estos datos se han
utilizado para la prediccién de fallos en el eje principal utilizando varios algoritmos
de inteligencia artificial, ‘random forests’, ‘gradient boosting machines’, modelos
generalizados lineales y redes neuronales artificiales. Ademas, se ha desarrollado
una herramienta para la evaluacién on-line de los datos de vibraciones (CMS)
denominada DAVE (‘Distance Based Automated Vibration Evaluation’).

Los resultados de esta tesis demuestran que el comportamiento de los fallos de
los componentes de aerogeneradores esta altamente influenciado por las condiciones
meteorolégicas del emplazamiento. El entorno de aprendizaje basado en datos es
capaz de identificar las condiciones generales y temporales especificas previas a
los fallos de componentes. Ademds, se ha demostrado que, con los modelos de
fiabilidad y algoritmos de deteccién propuestos, la Operacion y Mantenimiento de
las turbinas edlicas puede mejorarse significativamente. Estos modelos de fiabilidad
y de deteccién de fallos son los primeros que proporcionan una representacion
realistica y especifica del emplazamiento, al considerar combinaciones complejas
de las condiciones ambientales, asi como indicadores operacionales y de estado
de operacién obtenidos a partir de la fusién de datos de vibraciones CMS y datos
del SCADA. Por tanto, este trabajo proporciona entornos practicos, modelos y
algoritmos que se podran aplicar en el campo del mantenimiento predictivo de

turbinas edlicas.
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Wind power is currently the second largest form of electricity generation in the
European Union (EU) [1] and is expected to grow significantly in order to reach the
EU’s greenhouse gas emission targets by 2020, [2]. Nonetheless, the cost related to
wind energy generation needs to be further reduced to ensure economic feasibility
and for it to be competitive with conventional energy sources in the future, [3].

A large share of the levelised cost of wind energy is directly related to Operation
and Maintenance (O&M) actions, [4, 5]. In order to decrease these costs and to
increase the wind farms’ revenue, advanced reliability and failure prediction models
are needed. With these, wind farm (WF) operators can anticipate faulty turbine
states before serious damage occurs and can react accordingly.

In recent years, O&M has become an emerging field of research and current
practice is shifting continuously from corrective towards predictive maintenance.
WFs are often located in remote areas, e.g. offshore, and maintenance actions have
to be planned with enough time in advance, taking into account for example the
availability of spare parts and the accessibility to the wind farms. Unexpected wind
turbine (WT) stops, due to e.g. component failures, can lead to long downtimes as
well as higher costs and energy losses. Sophisticated O&M models can lower the
risk of having unexpected downtimes and enable the operators to react adequately
to the given situations. Here, anticipating WT component failures is a core element
of predictive O&M practice and can be carried out using probabilistic reliability and

failure models as well as condition based failure prediction techniques.



1 Introduction

Nowadays, as vast amounts of data are produced by the turbines, data-driven
solutions have shown to be very promising for these purposes. The information
used for these approaches include failure data taken from maintenance logbooks,
operational data obtained from the Supervisory Control And Data Acquisition
(SCADA) system, information on the health conditions of various WT components
provided by the Condition Monitoring Systems (CMS), as well as meteorological

data from the WF's measurement tower (met mast).

1.1 Research Objectives

The global objective of this thesis is to develop advanced data-driven WT reliability
and failure models, which take into account the environmental and operational
conditions to which the turbines are exposed to. Furthermore, novel failure detection
techniques are developed using a combination of environmental, operational data
and information on the health conditions of various WT components. This PhD
thesis was carried out at CIRCE — University of Zaragoza, ENEL Green Power
(EGP) in Rome and the Danish Technical University (DTU) in RIS@. In order to
achieve the given overall aim of the thesis, four research tasks have been defined.
A summary of the research objectives included in each task is given in the following
including a short description of the proposed solutions. In most of these tasks the
open source programming language R, [6], was used for setting up the algorithms

and carrying out the calculations.

1.1.1 Task 1 — Wind Turbine Failure Analysis

The core elements for any data-driven reliability model are, well structured and
analysed, failure and maintenance data. The raw data are mostly collected by
operators and need to be carefully pre-processed in order to be used in any further
modelling approach. Therefore, firstly, each failure information needs to be assigned
to the corresponding failed component using a so called taxonomy. The latter is
a component-break down that unravels the WT system into a clearly structured
scheme of sub-systems, assemblies and sub-assemblies, according to their function-
ality. For this thesis, a WT taxonomy has been developed, which can be applied
to a wide range of data including different WT technologies, drive train set-ups,

etc. Subsequently, an extensive failure data analysis has been carried out using
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historical failure data obtained from wind turbines (WTs) of different drive train
concepts, ages and rated capacities. The taxonomy and the failure analysis have
been published in Paper (1). Additionally, a failure mode analysis has been carried
out to identify the cause of various component failures. This has not been published

elsewhere. The research objectives of this task are:

= Develop a modern WT taxonomy based on manufacturer information of different
WT technologies, such as drive train concepts, power regulation etc. This is
expected to eliminate one of the major issues in wind turbine failure analysis,
which is related to the non-uniform data treatment throughout literature.

» Determine the yearly failure rates and downtime for each WT sub-system and
assembly of different WT technologies. This information is fundamental for
further reliability and maintenance modelling and helps to identify the most
critical WT components.

= Investigate on the failure modes of the main WT components. With this, the
primary causes of these failures can be identified and further research can focus

on optimising the components respectively.

1.1.2 Task 2 — Analysing Meteorological Conditions and Component Failures

The failure behaviour of WTs and their components is influenced by their age,
their health conditions, as well as the site specific meteorological and operational
conditions. These can vary highly throughout the year and can affect the various WT
components differently. As stated in [7], understanding the complex combinations
of environmental conditions that lead to failures is vital for the development of
advanced reliability models and there is a serious lack of research concerning these

effects. This task aims at:

» Establishing a methodology that serves to identify the critical meteorological
conditions right before WT component failures. This shall be applied to a data
base containing historical failures and weather data. Furthermore, it should be
extendible and adaptable to similar problems in other areas.

= Analysing the short term changes in the wind speed conditions before failure.
These variations are expected to have a high impact on the reliability of WT

components. The wind speed variations obtained during ‘healthy’ WT operation
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shall be compared to the ones detected towards the time of failure in order to

investigate if higher variations in wind speeds can be correlated to the failures.

For this task, a framework is developed based on machine learning techniques
such as k-means clustering and Association rule mining (ARM), that allows to
analyse combinations of several environmental variables immediately before failure
in big data bases. The analysed meteorological variables are wind speed, relative
humidity and ambient temperature. Furthermore, the active power production is
included as indicator for the turbines’ operational performance. It is shown which
component is affected mostly by certain environmental and operational conditions.
The results of this analysis were published in Paper (Il). Then, the short term
changes in wind speed conditions are investigated using time series data mining

techniques. These results have been published in Paper (ll1).

1.1.3 Task 3 — Advanced Reliability Models based on Meteorological and

Operational Conditions:

To date, existing reliability models are almost exclusively based on the age of the
components or turbines. These models were originally developed for machinery that
is mostly operating in stationary surroundings, such as warehouses or machine shops.
However, as WTs are exposed to highly variable weather conditions, which have
shown to affect the failure behaviour of WTs and their components, these models
are not sufficiently representing the reality. After having analysed the meteorological

condition before failure, the objectives of this task are to:

= Develop an advanced WT reliability model taking into account the highly
variable meteorological and operational conditions the turbines are exposed to.
= The performance of this model shall be compared to other modelling techniques.
Furthermore, it has to be ensured that the model can be used to represent
the failure behaviour of the whole wind turbine system as well as one single

component.

A probabilistic WT failure model has been developed, based on a zero inflated
negative binomial distribution using penalised parameter estimation techniques.
Its performance is compared to several other probabilistic models, including con-
ventional methods used in WT reliability modelling. The model is based on six

environmental variables, including ambient temperature, wind speed, wind gusts,
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relative humidity, precipitation and turbulence intensity. Furthermore, turbine
and site specific variables, such as WT age, hub height, rated capacity, terrain
complexity, and active power production are accounted for in the model. As the
weather often has a delayed or cumulative effect on the failure behaviour, a model
memory is included accounting for the meteorological conditions observed some

time before the failure occurred. The results were published in Papers (IV) and

(V).

1.1.4 Task 4 — Failure Prediction based on Operational and Condition Monit-
oring Data:

The forth and final objective of this thesis is to develop fault detection algorithms
based on different data sources. This task is divided into three research objectives,

which include:

» Establishing a method for failure detection on wind farm level based on environ-
mental conditions. This method should be able to detect whether one or more
failures of several main WT components occur during a specific month.

» Exploring the possibilities of combining information on operational WT con-
ditions and internal component specific health conditions by merging SCADA
and CMS data, with the aim of enhancing predictive O&M modelling.

= Development of a generic tool for failure detection on wind farm level using

only vibration data.

For the first objective, a Bayesian method will be introduced to predict WT
faults based only on information of the external conditions to which the turbines
are exposed to.

Subsequently, for the second objective, the possibilities of using merged SCADA
and CMS data for fault detection will be explored. Fault detection in wind turbines is
usually carried out by either analysing SCADA or CMS data with the aim of finding
any abnormal behaviour. To the author’'s knowledge no studies have been carried
out yet combining SCADA and CMS data for WT fault detection. As, however,
these two sources can contain substantially different information on external and
internal conditions, which might be important for fault detection, it is expected
that joining these data sources leads to significantly better results. For this, the

relationship between these two data sources needs to be carefully analysed and
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suitable techniques and processes for fault detection need to be found. The task
explores the performance of several classification and regression algorithms, such as
for example artificial neural networks, random forests, gradient boosting machines,
and generalised linear models. Finally, a generic tool for failure detection on wind
farm level, based on dynamic time warping and using only vibrational data is
presented. The approaches and results of task 4 were published in Papers (VI) and
(VII).

1.2 Related Projects

This PhD thesis was carried out within the Advanced Wind Energy Systems Opera-
tion and Maintenance (AWESOME) project, an H2020 ITN research and innovation
programme funded by the EU under the Marie Sktodowska-Curie grant agreement
No. 642108. The AWESOME project is coordinated by Prof. Dr. Julio J. Melero
at CIRCE — University of Zaragoza and involves eleven PhD students working in
the field of wind farm O&M at different institutions throughout Europe. More

information can be found on the project website [8].

1.3 Structure of the Thesis

This thesis is divided into seven chapters. In Chapter 1 a brief introduction to the
topic is given and the research objectives of this thesis are outlined. Chapters 2
to 7 represent the main part of the thesis and each of these chapters will provide
a literature review, an introduction to the topic, as well as the methodology and
results for the respective research task. Thus, although to some extend the chapters
are thematically building on each other, they can also be treated as stand-alone and
informative in themselves. Nonetheless, a broad introduction on wind energy will
not be given in this thesis, but the interested reader can find extensive summaries
e.g. in [9, 10]. Chapter 2 is concerned with wind turbine failures and failure mode
analysis (Task 1). In Chapter 3 the meteorological conditions leading to WT failures
are investigated (Task 2). Subsequently, in Chapter 5, a failure model is developed
based on several environmental, operational and site specific conditions, as discussed
in Task 3. Chapters 6 and 7 discuss several methods for failure detection on wind

farm level, based on environmental conditions as well as on merged SCADA and
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CMS data. Chapters 8 and 9 conclude the thesis with a discussion of the obtained

results and an outlook on further studies in English and Spanish, respectively.






In this chapter, at first, a review on existing literature in WT failure analyses is
given. Then, the methodologies and results of the herein carried out failure analysis
are discussed. Furthermore, the failure modes that led to the respective component
damage are presented. The main results of this chapter have been published in
Paper (1), however, un-published results including the analysis of pitch and stall

regulated turbines as well as a failure mode analysis are included.

2.1 Background and Motivation

The core element of data-driven reliability models are comprehensive failure and
maintenance data. Several failure analyses have been carried out investigating
on the failure behaviour of different WT technologies, various components and
sub-assemblies. However, as stated in [7], the comparison of these studies is rather
difficult due to non-uniform data treatment. This can be avoided by using a clear
and uniform taxonomy throughout the whole field of wind energy. A taxonomy is a
component break down used to assign each reported failure to the corresponding
sub-system, assembly and sub-assembly. These are usually classified regarding their

functionality and/or physical location within the WT system.



2 Wind Turbine Failure Analysis

2.1.1 Wind Turbine Taxonomies

Many different WT taxonomies have been developed over the last decade. These
include for example a component break down presented by the SANDIA Laboratories
[11], a taxonomy developed by the VTT Technical Research Centre of Finland
[12], the RDS-PP® taxonomy, published by VGB PowerTech e.V. [13], and the
ReliaWind taxonomy [14]. The latter two represent the most recent approaches.
As the ReliaWind taxonomy was applied to an extensive wind turbine failure data
analysis, it was chosen as base for this study.

Nonetheless, certain drawbacks have been identified, of which the most severe
one is the fact that none of these taxonomies are publicly available. Additionally, as
the ReliaWind study ended in 2011, most of the 350 WTs used to develop the tax-
onomy represent older WT technologies built before 2008. However, over the past
decade the WT configurations have changed significantly including new drive-train
concepts, larger rotor diameters and hub heights, as well as higher rated capacities,
[15]. Hence, there is a significant need for developing a modern WT taxonomy

taking into account several different turbine technologies and configurations.

2.1.2 WT Failure Statistics

A series of wind turbine failure data analyses have been published in the past, yet,
most are based on data of very few WTs and/or outdated technologies. The most
important contributions in literature are discussed in the following. For example in
[16] a failure analysis of 72 WTs located in Finland is carried out. The data were
obtained between the years 1996 and 2008.

Extensive failure data from operating WTs in Denmark, Sweden and Germany
are collected within the WindStats data base, [17-19]. Around 4500 Danish, 2500
German and 1200 Swedish WTs are under observation. However, more information
on the wind turbine size, age and type is not available. Some results of the WMEP
project (‘250 MW Wind') containing failure data obtained between the years 1989
and 2008 of more than 1500 German WTs with 350 MW rated power installed were
published in [20-23]. Furthermore, for the previously mentioned ReliaWind project,
failure information of 350 wind turbines over a varying period of time between 2008
and 2010 were analysed, [14, 24]. More recent approaches were published in [4, 25],

where the failure data of approximately 350 offshore turbines with nominal power
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between 2 and 4 MW are analysed. In [26], the failure rates of WTs equipped with
doubly fed induction generators (DFIG) and permanent magnet generator (PMG)
technologies were compared. This study was based on around 2200 onshore WTs

with nominal power between 1.5 and 2.5 MW .

A summary of failure statistics from Swedish, Finish and German data bases is
given in [27]. An extensive review on failure data bases is presented in [28], they
further recommend that the results presented in Paper (I) of this thesis should be
used for upcoming applications in the field, as they represent the latest and most

relevant results in failure data analysis.

Table 2.1. Wind turbine failure data collection initiatives and publications. Adapted from
[28] and extended.

Name Country Start-End Number of Source
WTs
This thesis Europe, North 01.01.2013 ~4400 geared; [29]
and South Amer- — 215 direct-
ica 31.12.2015 drive
CREW - Data Base USA 2011 — ongo- ~900 [30, 31]
ing
CWEA - Data Base China 2010-2012  unknown [32]
Elforsk, Vindstat Sweden 1989-2005 786 [27, 33]
EPRI USA 1986-1987 290 [34]
EUROWIN Europe 1986-1995  ~3500 [35, 36]
Garrad Hassan Worldwide 1992-2007  unknown [37]
Huadian China 01.2012— 1313 [38]
05.2012
LWK Germany 1993-2006 643 [19]
Lynette USA 1981-1989  unknown [39]
Muppandal India 2000-2004 15 [40]
NEDO Japan 2004-2005 924 [41]
Reliawind Europe 2008-2010 350 [14, 24]
Robert Gordon University UK 1997-2006 77 [42]
Round 1 offshore WF UK 2004-2007 120 [43]
University of Nanjing China 2009-2013 108 [44]
SPARTA UK 2013~ 1045 [45]
ongoing
Strathclyde UK 20052010 350 [4, 25, 26]
VTT Finnland 1991- 72-96 [16, 27, 46]
ongoing
Windstats Germany, Denmark  1994-2004 7000 [19, 47, 48]
WInD-Pool Europe, Germany ~ 2013- 456 [49-52]
ongoing
WMEP Germany 1989-2008 1593 [22, 23]
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2 Wind Turbine Failure Analysis

Table 2.1 is adapted and extended from [28] and summarises some of the most
relevant failure data collection initiatives and publications. All initiatives presented
in Table 2.1 consist of data taken from onshore turbines, except for “Round 1
offshore” and “Strathclyde”, which contained offshore data and “WInD-Pool”,

which collected data from both, onshore and offshore turbines.

2.2 Data Base

The historical data used in this task consist of failure logbooks obtained during
three years of operation (from January 2013 to December 2015). The analysed
turbines are three bladed onshore WTs with rated capacities between 300 kW and
3MW. Different drive train technologies, such as geared and direct drive WTs,
from 14 different manufacturers are considered and all wind farms are located at
different sites in Europe, North and South America. The direct drive turbines have
rated capacities between 600 kW and 2 MW.

In this thesis a WT component failure is defined as an event that leads to a WT
stop requiring intervention such as repair or replacement of the faulty component.
This excludes, (bi-)annual inspections, cleaning activities, downtime due to grid or

meteorological restrictions, etc.

Table 2.2. Composition of the data base.

Total failure Events ~7000
Avg. yearly number of wind farms 230

Containing:

Avg. yearly number of WTs under 1 MW 2130
Avg. yearly number of WTs equal or over 1MW 2270
Number of direct drive turbines 215

Mean yearly installed capacity (MW) 5818

Table 2.2 shows the composition of the data base used in this study. The
number of turbines in operation changed slightly throughout the observation period,
thus, the average yearly number of wind farms, wind turbines, failure events and
installed capacity are displayed. In total around 7000 failure events were recorded
over the period of three years. In Table 2.3 the minimum, maximum, mean and
median age of the turbines (at the beginning of the observation period: January

2013) represented in the data base are summarised for each WT technology.
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Table 2.3. Age of the turbines in the data base at the start of the observation period
(January 2013).

Technology Age (years)

=
=]

Median Mean Max

All Turbines 0.08 5.19 6.49 2242
Geared WTs < 1MW 0.66  9.94 9.99 2241
Geared WTs > 1MW  0.08 1.96 275 11.19
Direct Drive WTs 0.67 5.92 6.08 11

In comparison to most of the previous studies, reviewed in Section 2.1, a
significantly higher amount of operating turbines is examined. Furthermore, newer
WT technologies are presented in this data base, as well as a high diversity of
different manufacturers and technology set ups. With this, this study is expected
to contribute significantly to the field of wind turbine failure analysis and reliability

modelling.

2.3 Methodology

In this chapter, firstly, a taxonomy is developed based on detailed manufacturer
information on recent WT technologies and failure data of wind turbines located in
different countries throughout Europe, North and South America. The objective
was to create a modern taxonomy that can be applied to data of several distinct
WT technologies. For this, the ReliaWind taxonomy, which is one of the most
sophisticated classification approaches, has been thoroughly reviewed. Furthermore,
the latter has been rearranged and extended for modern turbine concepts, while
considering the components’ functionality and physical location. In order to enable
the comparison of this study to previous ones, the taxonomy is in some aspects
intentionally similar to the ReliaWind taxonomy. The herein developed modern
taxonomy has been verified using a big data base, including a variety of different
WT technologies and ages.

Subsequently, an extensive failure rate and downtime analysis is carried out
using the failure data presented in Section 2.2. Therefore, the data base had to be
cleaned carefully assigning the failure events to the affected sub-system, assembly
or sub-assembly with the developed taxonomy. The failure rates as well as the hours

of downtime per turbine and year have been calculated for each component. For
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2 Wind Turbine Failure Analysis

the analysis, the wind turbines are divided into geared WTs with rated capacities
below 1MW (G < 1MW), geared WTs with rated capacities above or equal to
1MW (G > 1MW) and direct drive (DD) technologies, as well as stall and pitch

regulated turbines.

2.4 Failure Analysis Results

In this section the results of the failure data analysis are presented. At first the
taxonomy will be shown, then, the failure rates and downtimes for each sub-system
and assembly are presented. Finally, the results of the failure mode analysis are

given.

2.4.1 Taxonomy

The WT system was divided into seven sub-systems, 45 assemblies (components)
and 199 sub-assemblies. Figure 2.1 shows the sub-systems and assemblies, the

sub-assemblies are not displayed at this point.

Frequency Converter
Generator

Switch Gear

Soft Starter

MV/LV Transformer
Power Feeder Cables

Power Cabinet
Power Module Other
Power Protection Unit

Pitch System
Other Blade Brake
Rotor

Blades

Hub

Blade Bearing

Sensors

Controller

Communication System

Emergency Control & Communication Series

Data Aquisition System

Yaw System Tower

Nacelle Cover | Foundations
Nacelle Bed plate

Figure 2.1. Taxonomy used for the Failure Data Analysis, adapted from Paper (I).
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2.4 Failure Analysis Results

As stated before, the taxonomy is based on the ReliaWind taxonomy, never-
theless, components of modern WTs have been included and several assemblies
were re-arranged. The aim was to establish a taxonomy that can be applied to
both, older and modern WT technologies. Whenever possible, new sub-assemblies
were assigned to existing categories and only if the latter was not possible new
categories were established. Additionally, this taxonomy gives higher priority to the
functional similarity of components, rather than their physical location. This is of
great advantage when e.g. analysing different WT technologies or the effects of
environmental conditions on the failure behaviour of certain components, as e.g.
mechanical, hydraulic and electric components behave differently.

Several components related to the operational control and safety as well as
several sensors, including the condition monitoring system, have been added to
the control & communication system. Unlike in the ReliaWind taxonomy, the sub-
assemblies responsible for the control of the components, e.g. the converter control
unit or the pitch and yaw control, were assigned to the control & communication
system not to the component they are controlling. The same applies to the sub-
assemblies of the cooling systems, which are classified as auxiliary systems, due to

their functional proximity.

2.4.2 Failures and Downtime: Geared and Direct Drive Turbines

Table 2.4 shows the failures and downtime per wind turbine and year, as well as the
yearly average downtime per failure for the three analysed categories: G < 1 MW,
G > 1MW and DD turbines. In the further the term ‘failure rate’ will be used for
failures per WT and per year.

Table 2.4. Total failure rates and downtimes per year and turbine for the different WT
technologies, adapted from Paper (1).

WT technology Failures per WT Downtime  per Yearly avg.
and year WT and year downtime  per
failure
G < 1MW 0.46 78.46 h 151.46h
G > 1MW 0.52 4451 h 112.67h
DD 0.19 20.50h 34.98h

It can be seen that DD turbines showed significantly lower failure rates and
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2 Wind Turbine Failure Analysis

downtime than geared turbines. Comparing the failure rates presented in Table 2.4
to previous studies with similar objectives shown in Table 2.5, the here presented
values are slightly lower. This is due to the failure definition used in this study,
which focuses exclusively on internal component failures. Other WT stops due to
grid problems, wind farm tests, vandalism and similar causes were not considered.
Additionally, previous studies frequently consider failures due to ‘unknown’ or ‘other’
reasons, which were not included in this study. A full comparison of the detailed
component related failure rates for each study including the findings of the present

thesis, can be found in [28].

Table 2.5. Failure rates of several previous studies compared.

Initiative Source Failures per WT and year
CREW-Database [30, 31] 7.167
Elforsk/Vindstat [27, 33] 0.403
EPRI 34] 10.195
Huandian [38] 0.846
LWK [19] 1.855
Muppandal [40] 1.013
NEDO [41] 0.171
University of Nanjing [44] 46.856
VTT [16, 27, 46] 1.45
Windstats Germany  [19, 47, 48] 1.796
Windstats Denmark ~ [19, 47, 48] 0.434
WMEP [22, 23] 2.606

In Figure 2.2 the failure rates and downtime for each sub-system of the G <
1MW, G > 1MW and DD turbines are shown. All values are displayed in percent
of the respective total values presented in Table 2.4.

The three WT technologies (G < 1MW, G > 1 MW and DD) showed significant
different shares of failure rates and downtime for the respective sub-systems. For
G < 1 MW, for instance, the highest contributor to the overall downtime is the
drive train sub-system, whereas for G > 1 MW and DD WTs the power module
had the highest share. Regarding the failure rates of G < 1 MW turbines, the
sub-systems drive train and rotor & blades were the highest contributors to the
overall failure rate. Whereas for G > 1 MW and DD the power module and control

& communication system were the biggest contributors to the WT failure rates.
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2.4 Failure Analysis Results

The DD turbines hardly suffered from drive train failures, except for some torque
limiter problems. Furthermore, for this turbine technology rather low failure rates
of the Rotor & Blades sub-system were registered, these however, were the second
highest contributor to the overall downtime of this WT technology. Other structures
(apart from the blades) did not significantly contribute to the overall failure rate or
downtime of the three technologies. This can be due to the fact that over many
years a considerable effort has been made to optimise and enhance the reliability of
these structures.

Figure 2.3 shows the failure rates and downtimes for each assembly of the G <
1MW, G > 1MW and DD turbines. Again the values are normalised to the overall
values displayed in Table 2.4 for each technology. It can be highlighted that for
both, G < 1MW and G > 1 MW, the gearbox was the highest contributor to the
overall failure rate and downtime. For DD turbines, the highest failure rates were
recorded for the controller, while the generator and blades contributed highly to
their overall downtime. By virtue of the energy conversion principle of DD turbines
and the ‘missing’ gearbox, these components seem to experience higher stresses,
and thus, are more likely to fail.

The difference in failure behaviour between older and newer WT technologies
can be seen when comparing the results of G < 1MW and G > 1 MW turbines.
Older technologies usually have lower rated capacities, are often not equipped with
a pitch system and generally do not use complex control & communication systems.
Hence, higher failure rates for these components were registered for the G > 1 MW

technology.
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Figure 2.2. Normalised failure rates and downtimes for sub-systems of G < 1MW, G >
1MW and DD turbines.
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Figure 2.3. Normalised failure rates and downtimes for assemblies of geared turbines.
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2.4.3 Failures and Downtime: Pitch and Stall regulated Turbines

The overall failure rates and downtime per WT and year for stall and pitch regulated
turbines are displayed in Table 2.6. The data base consists of around 23% stall
regulated and 77% pitch regulated machines.

Table 2.6. Total failure rates and downtimes per year and turbine for stall and pitch
regulated WTs.

WT technology Failures per WT Downtime per

and year WT and year
Stall regulated ~ 0.47 86.8 h
Pitch regulated 0.51 54.7h

In Figure 2.4 the normalised failure rates and downtime of the sub-systems
of pitch and stall regulated turbines are compared. This is especially interesting
as many stall regulated turbines are nowadays reaching the end of their planned
life-time. Operators can either decide to keep on operating the latter (e.g. ‘run to
failure’ - if legally permitted), or replacing them with newer wind turbine technolo-
gies (re-powering the wind farm). In either case, to facilitate maintenance planning,
it is of great advantage to know which components cause the highest failure rates
and downtime for the two technologies.

While pitch regulated turbines were mostly affected by power module and
control & communication system failures, the stall regulated WTs showed higher
relative failure rates for the drive train components as well as the rotor and blades.
Moreover, the highest downtime in pitch regulated WTs was caused by the power
module followed by drive train components. For stall regulated turbines, the biggest
contributors to the turbine downtime were the drive train components and the rotor
and blades.

Figure 2.5 shows the normalised failure rates and downtime for the assemblies
of stall and pitch regulated WTs. The downtime and failure rates due to gearbox
failure are the most remarkable difference between the two turbine technologies,
which were significantly higher for stall regulated turbines. The generator was the

second largest contributor to the overall downtime of pitch regulated turbines.
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Figure 2.4. Normalised failure rates and downtimes for sub-systems of pitch and stall
regulated turbines.
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2.4.4 Failure Modes

In this section the failure modes obtained for five main components: the blades,
gearbox, generator, transformer and yaw-system will be presented. For this part
of the analysis only a sub-set of the whole data base, containing 1855 turbines
located in several Spanish wind farms, was used. This was due to the significantly
better quality of the maintenance logbooks for these wind farms, which gave an
insight on the exact cause of the failure. This subset of the data base contained
1432 G < 1MW and 423 G > 1 MW WTs (972 pitch and 883 stall regulated WTs).
Figures 2.6 to 2.7 show the percentages of each failure mode to the respective
overall of the component failures. This is shown without distinguishing between
the various WT technologies. The corresponding figures for G > 1MW and G <

1 MW technologies, as well as stall and pitch regulated turbines can be found in

Appendix B.
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Figure 2.6. Failure modes for the blades and gearbox.

Blades: The blades mainly experienced repair due to propagating cracks on the
blade surface. Additionally, for older WT technologies the airbrake had a sig-
nificantly large share on the causes for blade repair. Damages due to lightning

contributed with around 10% to the blade failures.

Gearbox: The gearbox was highly affected by gear bearing problems. This is
consistent with literature, e.g. the National Renewable Energy Laboratory (NREL)
gearbox failure data base [47, 53, 54]. Additionally, the gears, as well as the high
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speed shaft (HSS), intermediate speed shaft (IMS) and low speed shaft (LSS)

contributed often to gearbox problems.

Transformer: The transformer most frequently failed due to problems with the

windings and bushings, as well as the transformer control system.

Yaw System: The gear rim and the yaw motor were the most frequent causes of

yaw system failures.

Generator: The generator failures were mainly caused by generator bearing prob-
lems. Furthermore, the coils, phases, rotor and stator caused turbine stops due to

generator problems.
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Figure 2.7. Failure modes for the transformer and yaw system.
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Figure 2.8. Failure modes for the generator.

2.5 Conclusions for the Failure Data Analysis

For this chapter a modern WT taxonomy was developed that divides the wind
turbine system into seven sub-systems, 45 assemblies and 199 sub-assemblies. There
were several existing taxonomies, however, in most cases they are not publicly
available or based on old and outdated WT technologies. The herein presented
taxonomy, extends existing ones (mainly the ReliaWind taxonomy) by including
information on a higher number of turbines and combining different WT technologies
(e.g. age, drive train concepts, power regulation, etc.). This taxonomy has been
applied to extensive historical failure data and the failure rates and downtime of
geared and direct drive WTs as well as stall and pitch regulated turbines were
compared. It was shown that geared turbines have higher failure rates and downtime
than direct drive ones. Furthermore, pitch regulated turbines showed more failures
per WT and year than stall regulated ones, whereas the downtime per WT and
year was lower for pitch regulated WT than for stall regulated machines. In general,
the most failure prone components were the blades, controller, gearbox, generator,
pitch and yaw system. However, the failure behaviour of the different components
varies highly among the turbine technologies and they should be treated separately
as shown in this chapter. Finally, the failure modes of five main components were
analysed and the primary causes for their failures were identified. The information
presented in this chapter is of high importance for further research in the field of
0O&M, and can serve as input for reliability and maintenance models. It, furthermore,

builds the base for the subsequent chapters of this thesis.

25






This chapter is concerned with understanding the meteorological conditions that
frequently lead to WT component failures. For this, a machine learning framework
was developed, which allows to analyse very big data bases and to obtain useful
results regarding the failure behaviour of WT components under complex combin-
ations of environmental conditions. These include ambient temperature, relative

humidity and wind speed. The results of this study have been presented in Paper

(1.

3.1 Introduction

Previous studies have shown that not only the turbine age, but also certain weather
conditions affect the failure behaviour of WT components significantly.

The wind speed conditions leading to WT failures have been subject to several
publications. One of the first approaches analysing the effects of wind speed on
WT reliability was carried out in [55]. It was shown that with rising average daily
wind speeds the failure rates of certain components increased as well. In [56] the
effect of monthly averaged wind speed conditions on component failure rates was
analysed, using the previously mentioned Danish reliability data base WindStats.

They concluded that there is a certain annual periodicity in failure occurrences
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3 Meteorological Conditions and Wind Turbine Failures

due to seasonal variation in the wind speed conditions. However, no site specific
meteorological data were analysed, as the wind speed records consisted of monthly
average measurements for the entire country of Denmark. An analysis on the
effects of wind speed on WT downtimes, was carried out in [57] taking into account
energy- and time-based availability.

Other environmental variables, such as temperature and relative humidity, have
also shown to affect the failure behaviour of WTs and their components, causing
corrosion and other highly dangerous degradation processes. In [58] WT component
failures were cross-correlated with average monthly maximum and mean wind
speeds, maximum and minimum air temperatures as well as average daily relative
humidity. Three wind farms, which are operating quite old 300 kW wind turbine
technologies, were analysed using yearly and monthly average weather conditions
taken from close-by located meteorological stations. But, neither short-time weather
events nor the meteorological conditions at the time of failure occurrence were
considered. They, nonetheless, suggested that subsequent work should ensure to
include modern WTs as well as short-time weather variations. Wilkinson et al. [59]
show the impact of temperature, turbulence intensity and wind speed on failure
rates, downtimes and availability of WTs. The environmental data were taken from
the WT's SCADA systems and the Modern-Era Retrospective Analysis for Research
and Applications (MERRA) data base.

As demonstrated, existing studies on the meteorological conditions leading to
WT failures are mostly based on monthly or yearly averaged data obtained from
close-by located weather stations. Short-term changes in these parameters, as well
as the conditions directly in the wind farm are not taken into account. Furthermore,
most of these studies only consider WT system failures and do not distinguish
between the different components.

According to Kuik et al. [7], the complex combinations of external conditions
that are affecting WT reliability degradation are still not fully understood. They
state that the critical external conditions for the main WT components need to be
determined, enabling a more accurate reliability forecasting.

SCADA systems are nowadays among the standard equipment of wind tur-
bines and provide a vast amount of information on many operational parameters,
component conditions and external variables. These systems can give a realistic

representation of the on site conditions and seem to be a very promising source
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for understanding the impact of certain conditions on the failure behaviour of WT
components, as well as for setting up data-driven reliability and failure models.
However, in order to analyse such extensive data, sophisticated analysis techniques
and high computational effort are needed.

Task 2 of this thesis is concerned with analysing the short term effects of
environmental conditions on the failure behaviour of the main WT components.
The objective is to extend earlier studies by implementing new techniques to catch
especially short term changes and unexpected patterns in the recorded meteor-
ological data. As this analysis will be based on significantly bigger data bases
than previous studies, methodologies capable of handling big data and deriving
meaningful results had to be developed.

In this chapter, a framework based on k-means clustering and association rule
mining is introduced for processing big data bases with the aim of correlating the
different input variables with failure events. This framework is applied to historical
failure data of modern wind turbines and meteorological data taken from the WT

SCADA systems and close-by located weather stations.

3.2 K-Means Clustering

Clustering is the problem of assigning a collection of objects to groups based on
feature similarity among them. The various clustering algorithms can be roughly
classified as partitional, hierarchical, density-based and grid based clustering, [60].
K-means clustering, [61-63], is one of the simplest and most widely used unsuper-
vised learning algorithms for partitional clustering. The algorithm works iteratively
by grouping the input data based on the distance between the single data points.

The k-means clustering algorithm used in this study consists of two steps:

1. Finding the optimal number of clusters:
At first the optimal number of clusters k, which suitably fits the specific data
set, must be calculated. For non-hierarchical clustering procedures this is a
fundamental input, which needs to be defined for each given data set prior to
running the actual clustering algorithms. Several different methods have been
developed to achieve this objective, including the elbow technique, silhouette

and gap statistic methods. A technique presented in [64, 65], which is based on
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the Euclidean distance and an agglomeration method presented in [66], will be
used. This technique is capable of indicating the optimal number of clusters for
a given data set by varying all possible combinations of the latter. For further
information, see [64].

2. Clustering:
This step represents the actual k-means clustering algorithm, which is aiming
at minimizing the within-class sum of squares for a given number of clusters,

defined in step (1). The algorithm is divided into two sub-steps:

2.a. Cluster assignment: Based on the squared Euclidean distance, each data
point is assigned to the cluster centroid, to which it is located closest to.

This is achieved by assigning each data point z with:

argmin{d(cj,w)2} , (3.1)
CjGC

to a cluster centroid ¢; in a given set of cluster centroids C. Here, d(c;, x)

denotes the squared Euclidean distance, defined as:

d(cj,x) = (Z(Cj —xz)? . (3.2)

J
2.b. Moving the centroids: Subsequently, the positions of the centroids are
changed by taking the mean location of all assigned data points:
1
G =1g7 >z, (33)
551

IjESj

with S; being a set of data points assigned to the 4t cluster.

Steps 2.a and 2.b are carried out alternately until the clustering algorithm
converges. This is usually achieved when the sum of the distances is minimized

and the data points do not change clusters any more.

3.3 Association Rule Mining (ARM)

Association Rule Mining (ARM) [67] is a method that is often used in data mining

for finding correlations, frequent patterns, or interesting relationships among the
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different variables of a data set. Several algorithms employing the concept of
ARM have been developed, e.g. [68—70]. One of the most frequently used ARM
algorithms is called apriori rule mining, [70], which will be used in this chapter. In
the following, the concept of ARM will be explained in the context of the apriori

rule mining algorithm.

Table 3.1. Explanation of the terminology used in ARM.

Name Explanation

Group all data related to one specific variable.

Item (4) an attribute or member of a group.

Item set (1) a collection of one or more items, eg. [ =
{i1,42,...}

Frequent item set an item set, which has a support value higher than
the defined minimum support.

Transaction (TR) a combination of items of different groups that will
define at least one rule.

Association rule an implication of the form /tem set X — [tem set
Y.

Data Base (DB) a set of transactions, e.g. DB = {T'Ri,TRy, ...}

Data Base sub-set (SubDB) a part of a set of transactions.

In Table 3.1 the terminology used in this explanation of the ARM methodology
is introduced. A set of items is given by I = {ij,4s,...} and contains several
attributes (items). A data base (DB) is a set of transactions DB= {T'R;, T Ra, ...},
of which each transaction contains a number of items. A rule is defined as a
combination of an antecedent and a consequent transaction as X — Y, whereas
X, Y Cl,

The ARM procedure can be split into four steps:

1. Generating the item sets, transactions and data bases from the given input
data.

2. Finding all combinations of item sets in the data that have a support value
higher than the defined minimum support (frequent item sets).

3. Generating rules among the frequent item sets

4. Evaluating the strength of the generated rules.

In order to evaluate the strength of the discovered rules and to find the most
interesting ones, three measures of interest are applied: support, confidence and

lift. Support is defined as:
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Freq(X —Y)

supp(X = Y) = ~

=Pr(X AY) | (3.4)

and can be interpreted as the frequency of occurrence for each association rule
in relation to the total number of transactions N. Here, X indicates an item
set on the left hand side of the rule, Y is an item set on the right hand side of
the rule and Freq denotes the absolute frequency of appearance. The logical
conjunction AND (A) is used to indicate the relation between the item sets X and
Y. Consequently, the fraction of transactions containing only X would be denoted
as supp(X) = Freq(x)/N = Pr(X).

The support is calculated for each rule and must be greater than a pre-defined
value (between 0 and 1) for the rule to be considered in the evaluation process.

The confidence metric is given by:

supp(X —Y)

conf(X »Y) = supp(X)

=Pr(X1|Y) , (3.5)
and can be seen as a measure of how often a specific rule was true. It shall
be underlined that there is a notation difference between the probability of an
association Pr (Y A X) given as support, and the conditional probability Pr(X | Y)
representing the confidence metric. This is explained in detail in [71]. The lift

metric:

supp(X —Y)

WY = X) = (X supp(Y)

, (3.6)

is often referred to as “interestingness” and shows how different rules are correlated
within the DB. While, /ift > 1 and lift < 1 indicate positive and negative correlation
between the rules respectively, lift = 1 means that the rules are independent of
each other. The last case allows the other metrics, support and confidence, to be

more representative.

By comparing the support, confidence and lift values of all of the generated
rules, their strengths are evaluated. If the same support values are obtained for
two or more rules, the confidence value determines which one is more important.
Likewise, if the same support and confidence values are calculated for more than

one rule, the lift metric decides over which one is more important, [72].
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3.3 Association Rule Mining (ARM)

For a better understanding, in the following this concept is illustrated in a

simple example. Further explanation can be found e.g. in [72].

Example: In a supermarket, a set of products (items) is given by I={apples, ba-
nanas, cherries, milk, cheesecake}. Table 3.2 exemplifies the transactions recorded
based on the customers buying behaviour over a certain period. Each transaction
ID indicates a set of products that were bought by one costumer, where 1 indicates

that the item was bought, and 0 indicates that it was not bought. An example of

Table 3.2. Example for a data base DB containing transactions in ARM.

ID apples bananas cherries milk cheesecake

1 1 1 0 0 1
2 0 0 1 1 0
3 1 1 0 0 1
4 0 1 0 1 1
5 1 0 0 0 1
6 1 0 0 0 1

a rule derived from this data base would be {apples, bananas} — {cheesecake},
which means that if apples and bananas were bought, cheesecake was bought as
well.

The support of this rule is:
supp{{apples, bananas} — {cheesecake}} =2/6 = 0.33 , (3.7)

as this rule appears twice in the given DB containing six transactions. The confid-

ence of the rule is then obtained with:
conf{{apples, bananas} — {cheesecake}} =0.33/0.33 =1 (3.8)

which indicates that in 100% of the cases when apples and bananas are bought,

cheesecake is also bought. Finally, the lift results in:

lift{{apples, bananas} — {cheesecake}} = 0.33/(0.33-0.83) = 1.2
(3.9)
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3.4 Data-Driven Learning Framework

Based on the previously introduced concepts of k-means clustering and ARM, a
framework was developed that is capable of quantifying the impact of meteorological
conditions on WT failures by combining environmental and historical failure data.
The framework was presented in Paper (I) and its procedure is displayed in the
flowchart in Figure 3.1. It consists of four steps: (1) data pre-processing, (2) data
processing, (3) unsupervised rule mining and, finally, (4) ranking and interpretation
of the rules. These steps will be discussed in detail in the following. At first,

however, the data used in this chapter are introduced.
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1) Pre processing

Failure , SCADA,

RNCEP

2) Data Processing

Supervised
Labelling

Unsupervised
K Means
Clustering

3) Unsupervised Rule Mining

Apriori Rule Apriori Rule Apriori Rule
Mining Mining Mining
\ 2

Rules

of Literature of :::IIESD :fullesD

Based Process

4) Rule Ranking
and Interpretaion I I I
11} all [11]
L J
Y
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Process Duration
Number of generated Rules
Significance of Rules
Evaluation of Rules

Figure 3.1. Flowchart of the developed framework and its sub-processes
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3.4.1 Historical Failures, Meteorological and Operational Data

The presented framework is applied to a case study including historical failures
as well as meteorological and operational data taken from SCADA systems and
reanalysis data archives. Table 3.3 summarises all the input parameters for the
data-driven learning framework. The sources for each of the used parameters are

discussed below.

Table 3.3. Summary of the input parameters obtained from the various data sources.

Name Explanation

Wind speed (WS) Series of 10-minute mean values 80 minutes before
failure (WSso, WS7g, ... , WS1p), and one wind
speed measurement taken during last 10 minutes
before failure occurrence (W Suir).

Power Production (P) Two measurements: the power production at failure
time P, and the power production before failure
Py (the previous 10-minute measurement). Both
values are given in relation to the measured monthly
mean power curve, as explained in the text.

Relative Humidity (RH) Eleven measurements are considered, including the
hourly RH values of 10 hours ahead of failure, as
well as at the time of failure. These are indicated
by RHy,r, RHy, RHo,....,RH1g.

Ambient Temperature (Temp) The monthly mean Temp,,, maximum Tempmaq
and minimum temperatures T'empyy;, recorded dur-
ing 30 days before failure, as well as the temperature
at the time of failure Tempg; .

Maintenance Strategy The availability of the maintenance personnel affects
the WT downtime. It was classified considering typ-
ical working hours of close-by located personnel,
into day shift (8:00 to 18:00 o'clock) and night shift
(the remaining hours).

Downtime/Severity (S) The downtime or un-availability caused by each
failure is an indicator of its severity, and is obtained
from the historical failure data and cross-checked
with the SCADA data.

Failure Data. The historical failure data used in this chapter represents a sub-set
of the data presented in Chapter 2. It is comprised of 146 failure events obtained
for 448 WTs with rated capacities between 660 kW and 2000 kW. All turbines were
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produced by the same WT manufacturer and are three bladed, horizontal axis
turbines, equipped with DFIGs. Five WT components are analysed: the gearbox,
generator, frequency converter, pitch and yaw system. These were identified in
the previous chapter as some of the most important components, regarding their
contribution to the overall failure rates and downtime of the whole wind turbine
system. The failure data contain around 30 failures for each component and the
exact time and duration of the failure events. Table 3.4 summarises the failure

data used in this chapter and compares them to studies with similar objectives.

Table 3.4. Historical failure data used in this chapter compared to previous studies.

This study Wilson et al. [73] Tavner et al. [58]
Number of WTs 448 140 32
Total WT Years 972 381.7 130
WT Technology 47 WTs with 0.66 MW,  Variable speed, Enercon
289 WTs with 0.85 MW,  pitch regulated, E32/33 (300 kW)
2.3MW

112 WTs with 2 MW

Meteorological and Operational Data. The wind velocity, the downtime as well as
the active power production were obtained directly from the failed turbines’ SCADA
systems. The measurements are available as 10-minute average values. In order
to ensure properly functioning SCADA systems and correct data collections, the
measurements were compared to those obtained at close-by located turbines.

The active power is used to calculate the relative performance of the WTs,
which is considered a measure of efficiency regarding the turbines power production.
For this the observed active power SCADA measurements P, are divided by the
monthly mean value P,, taken at the same wind speed and the specific WF location
within the month of failure occurrence. This results in a measure for the turbines’
relative performance, or efficiency: P. = P, / P,, with values between 0 and 1.
The manufacturers power curves are not site and season specific and cannot be
used for this purpose.

The humidity and temperature measurements at the wind farm location were
obtained from the NCEP/NCAR reanalysis data set [74, 75]. This is a frequently

updated meteorological data base developed by the National Centers for Envir-
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onmental Prediction (NCEP) and the National Center for Atmospheric Research
(NCAR), exploiting observations and numerical weather predictions. Again, to
ensure good data quality, the downloaded reanalysis data were compared to real
data taken at three wind farm sites and very acceptable results were obtained (mean

absolute error under 3 %) for both variables, humidity and temperature.

Expert Judgement. As the availability of maintenance personnel has an effect
on the component’s repair time, the opinions of two big European wind farm
operators were consulted. This helped to define the maintenance strategy and the
classification of failure severity according to the WT downtime caused by each

failure event.

3.4.2 Data Pre-Processing

Firstly, the historical failure data were cleaned according to the failure definition
and taxonomy used in this thesis. The meteorological conditions were obtained
from the WT SCADA systems as well as the NCEP/NCAR reanalysis data set. As
the framework is very sensitive to missing observations (“NAs" in the data), only
wind farms with complete SCADA histories over the whole observation period were

chosen.

3.4.3 Data Processing

The objective of the data processing is to group the data into different categories
regarding their properties. For this, two distinct approaches are used in parallel:
(a) unsupervised k-means clustering and (b) supervised data labelling. These
two approaches will lead to different results that can be used for various analysis

objectives.

Supervised Labelling. The supervised labelling is a manual process that is based
on expert judgements, literature or experience in the field, which are often a result
of extensive experiments. This technique is used to assign thresholds and labels
manually to each input variable. It requires profound knowledge about the behaviour
of the respective variable and can in some cases be very time consuming. The

labelling process will here be exemplified for wind speed and relative humidity.
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For classifying the wind speed the typical cut-in and cut-out wind speeds for the
respective WT technology were chosen as lower and upper limits. The remaining
wind velocities were divided into calm, low, high and stormy wind conditions.

Labelling the relative humidity (RH) conditions required an extensive literature
research. As indicated in [76—78], this variable can be labelled according to the
effect it has on metallic components — the resulting corrosiveness. However, one
has to bear in mind that this is only valid for one certain type of steel and as
WTs consist of a high variety of different materials, very expensive experiments
would be needed to quantify the RH in terms of its corrosiveness for the entire
WT system. Nevertheless, it was considered a good indicator and the values for
RH will be grouped into categories reaching from ‘dry air’ to ‘highly corrosive’ and
‘precipitation’.

As demonstrated, the manual labelling approach has certain limitations, which

will be discussed in detail in the results section below.

Unsupervised Clustering. While the supervised labelling is based on experiments,
expert judgements and literature findings, unsupervised k-means clustering relies
exclusively on the input data. As the layout of the input data highly affects the
outcome of the k-means clustering method, two distinct layouts of the input data
are chosen. Both lead to different results for the entire framework and will be
compared. Multi-Dimensional (Multi-D) input is the standard format used in
k-means clustering. This layout considers all time steps of the input parameters as
one observation before a specific failure. In addition to the Multi-D approach, a
One-Dimensional (1-D) input is used. This layout does not distinguish between
the failures but rather separates the input parameters based on the type of input
variable. This results in a one dimensional input vector for each input variable,
similar to the results of the supervised labelling, however, without prior knowledge.
In literature both input layouts have been found, although multi-dimensional data
are the most frequently used input format.

In Figure 3.2, the input and output formats for Multi-D and 1-D are explained
for wind speed measurements taken from a specific WT before failure. For the
Multi-D input, all wind speed observations before a certain failure are gathered and
an overall cluster is defined. Thus, this cluster represents the general wind speed

conditions over the observation period.
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Input Data: Failures, meteorological conditions,WT location, etc.

WS at Failure WS at Failure - 10 min WS at Failure - 80min

'
'

'

'

'

'

' o7 o7 A o7
! = = =

'

'

'

'

'

'

'

Power Production

at Failure
Multi-Dimensional: One-Dimensional:
1 observation with 9 attributes 1 attribute with S observations
ID Wind Speed Conditions . .
Failure 1|| WSatF, WSatF-10min __ WSatF-80min wg'thSpeed Conditions
Failure 2|| WSatF, WSatF-10min . WSatF-80min a ;
WSatF-10min .
Failure 3|| WSatF WSatF-10min . WSatF-80min Failure 1
WSatF-80min
WSatF
WSatF-10min } Failure 2
WSatF-80min
K-Means Multi-Dimensional K-Means One-Dimensional
Result: Result:
1 cluster assignment for 1 variable: WS 9 cluster assignments for 9 attributes
ID WS Cluster D WSatF | WSsatF-10min | ...| WSatF-80min
Failure 1 d Failure 1 d C a
Failure 2 C Failure 2 [ a a
Failure 3 a Failure 3 a b c

Figure 3.2. Example for Multi-D and 1-D input and results.

The one-dimensional inputs consider the wind speed records with 9 observations
for each failure as one array for all analysed turbines. Hence, the measurements at
each time step are assigned to an individual cluster, which allows to analyse how

the environmental conditions change over time before the failure occurs.
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3.4.4 Rule Mining

The output of each classification approach serves as input to an apriori rule mining
algorithm, which derives rules from the input data by interconnecting logically the
environmental parameters and the historical component failures. The resulting rules,
not only determine the weather variables that have the highest impact on the WT
components’ failure behaviour; but also allow to evaluate for which input parameters
which machine learning technique, and input format are more appropriate. The
framework has been developed, so that it can be applied to a variety of problems

and parameters can be changed easily.

Set-up of the Apriori Algorithm: The minimal support value in the present applic-
ation was set to 0.3, as this has shown to be the best compromise between the size
of the input data and the amount and quality of the derived rules. Furthermore,
the pre-defined minimum of the confidence value was set to 0.5. Additionally, the
minimum rule length needed to be defined, which controls how many items have to
be included in a rule. In this study, the minimal rule length was set to 2, meaning
that each rule needs to consist at least of one input and one output item, in order
for it to be considered.

By dividing DB into several SubDBs according to the failed component, the
influence of the meteorological condition on the failure behaviour can be analysed for
each component separately. By sub-setting the data base however, the confidence
and lift metric of all rules obtained for one SubDB are equal to 1. In that manner
the support metric can be used as a single indicator for the importance of a rule.

The evaluation of the resulting apriori rules shall be explained in the following.

3.4.5 Evaluation of the Apriori Rules

The post-processing or evaluation procedure consists of (1) finding the frequency
of appearance of an item set in DB (or SubDB); and (2) calculating and comparing
the evaluation metrics.

As stated before, however, the evaluation process differs slightly depending
whether the whole DB is used or several SubDBs are analysed. When analysing
the whole DB all three metrics (support, confidence and lift) need to be compared.

Whereas, the analysis of one SubDB at a time gives more weight to the support
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metric, by setting confidence and lift to 1. In this manner a fast and very represent-
ative evaluation is granted, due to the fact that the support values can directly be
interpreted as percentage of appearance. This is exemplified in Tables 3.5 and 3.6
for the cases of using the whole DB or a SubDB containing only gearbox failures as
basis for the calculation of the evaluation metrics. The frequencies of appearance
of each item set as well as the total number of transactions N within the DB or
SubDB are shown in Table 3.5. These serve as input to the calculations of the
evaluation metrics for gearbox failures in Table 3.6, where it is shown that when
using the SubDB as reference input, the confidence and lift metrics automatically

become equal to 1 and the value for support becomes larger.

Table 3.5. Counting appearances in DB (N=146) and SubDB¢p (N=30).

ID  Input N [tem-set Freq.
(1) DB 146 Freq(Failure = GB) 30
(2) DB 146 Freq(WS =3AT=1) 21
(3 DB 146 Freq(WS =3AT =1A Failure=GB) 9

(4) SubDBgp 30 Freq(Failure = GB) 30

(5) SubDBgp 30 FreqWS =3ANT=1)
(6) SubDBgp 30 Freq(WS =3AT =1A Failure=GB) 9

Table 3.6. Calculating metrics for DB (N=146) and SubDBgp (N=30) metrics.

Input Item Supp. Conf. Lift
DB Pr(Failure = GBAWS =3AT =1) = 9/146 006 - -
DB Pr((Failure = GB | (WS =3AT =1)) = GIE - 043 -
o8 Pr(Failure=GB | (T:3AT:1)):% B B 500
Pr(Failure=GB)=(30/146)
SubDB¢p Pr(Failure =GBANWS=3AT=1)=9/30 0.3 - -
SubDBgp  Pr(Failure =GB | (WS =3AT =1)) = 558 - 1 -
supByy  Pr((Failure=GB | Ws=snT=D)=g758

Pr(Failure=GB)=(30/30)
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3.5 Results of the Data-Driven Learning Framework

The presented data-driven learning framework was applied to the case study data set
introduced in Section 3.4.1. In the following, the results for each of the framework's

sub-processes will be presented and discussed separately.

3.5.1 Performance of the Data Processing

In Table 3.7 the results for the three grouping techniques are presented. The table
shows the thresholds for the manual labelling process, the minima and maxima for
the clusters assigned with 1-D clustering and the cluster centroids for the Multi-D
clustering. It is shown that in some cases the number of groups established for the
several variables differs highly depending on the used classification technique. For
example for the temperature measurements, nine categories were defined manually,
while the k-means algorithms only defined three (for Multi-D) and four clusters
(for 1-D). Hence, the labels might give too much information, which can impede a
simple interpretation of the results. Contrarily, the downtime was split into two
categories during the manual labelling: major (> 48 hours) and minor (< 48 hours)
interventions, whilst three clusters were assigned by both clustering algorithms.
Here, k-means can provide more information for the subsequent data processing.
The power production efficiency was grouped into three categories by labelling and
1-D clustering and the Multi-D clustering algorithm only assigned two. Compared to
manual labelling, the clustering techniques slightly reduced the number of categories
that were assigned to wind speed and RH.

The objective of comparing manual labelling and unsupervised clustering is to
find the best method to process the input data for further use in the apriori ruling
algorithms. K-means clustering was expected to show better results, as the input
parameters are all clustered according to their appearance in the data. However,
for parameters that have previously been analysed thoroughly and their effect on
the components are well known, the manual labelling can provide a better solution.
Nonetheless, if there is little to no information on the effect of the respective variable
on the components’ failure behaviour, manual labelling is likely to introduce a bias.

Besides the variables shown in Table 3.7, also the availability of the maintenance

personnel was taken into account and classified manually into day- and night-shift.
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During the night-shift a detection of a faulty component is less likely and the

availability of the maintenance personnel is limited.
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In Table 3.8 the performance of the three grouping techniques is compared. It
can be seen that the techniques performed differently in terms of time consumption,

possible results and post-processing effort.
Table 3.8. Characteristics of the three processing techniques and framework performance.

Labelling 1-D Clustering Multi-D Clustering

DATA ANALYSIS

Time consumption data pre-processing high medium low
Time consumption data processing low high medium
Expert judgement needed v X X
POSSIBLE RESULTS

Behaviour (variations) over time v v X
Punctual analysis v v X
General conditions X X v
POST-PROCESSING

Interpretation of results medium dificult easy
Number of rules per component very high very high low
Number of obtained rules in the case study 15783 12814 127

Data Analysis: Supervised labelling was the most time consuming and complex
pre-processing. This is due to the fact that it involves a high amount of manual work
and relies heavily on experience and expert judgements, which are often difficult
to obtain. Nevertheless, after having defined the labels for each variable, the data
processing is significantly faster than for the other two methods. For 1-D clustering
the effort for the data pre-processing was slightly lower than for the manual labelling.
However, the time consumption related to the processing was the highest compared
to the other techniques, as the data have to be converted to a one-dimensional array
and the computational effort increases with the one-dimensional input. Multi-D

clustering does not require any time consuming pre-processing and processing.

Possible Results:  The three grouping techniques can result in fairly different results.
Labelling and 1-D clustering perform in a similar manner. Both can be used to
analyse a specific time step (e.g. Tempgr, RHy, etc.) or to detect for example
variations by considering subsequent time steps throughout the observation period.
Multi-D clustering is especially useful for looking into the general conditions over

the whole observation period. Due to the fact that the latter method threats all
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the input data before a specific failure as a whole and it is not possible to analyse

a specific time step nor alternations over time.

Post-Processing: The effort for post-processing is strongly related to the amount
of obtained rules. As shown in Table 3.8, the manual labelling resulted in the
highest number of obtained rules, which however, were quite easy to interpret. The
1-D clustering also resulted in a fairly large amount of rules, yet, in contrary to
labelling, a high effort has to be made to interpret the latter. Multi-D clustering
showed the lowest amount of generated rules and the interpretation of these results
is straightforward and fast. Regarding the evaluation of quality of the obtained
results, one has to keep in mind the restrictions of each technique, discussed in
Section 3.5.1. Multi-D does not need a time consuming data pre-processing and
processing as 1-D clustering and labelling do, thus, it is a very efficient technique for
quick analyses, which do not require a very high accuracy. Nevertheless, k-means
clustering only takes into account data that are fed to the algorithm and these
inputs need to be carefully chosen in order to assure consistent results. Contrarily,
labelling does not rely on the data, but the results in some cases can be heavily
biased.

3.5.2 Results for the whole Data Base (DB)

As stated before, the DB can either be analysed as a whole or split into component
related SubDBs. In this section the resulting rules for the application of the
framework to the whole DB are briefly discussed. These have been evaluated using
the support metric as primary indicator for the strength of the rules, followed by
confidence and lift. When analysing the whole DB the minimum support value
needed to be lowered to 0.03 as this set contained much more data than each
SubDB.

Multi-D clustering was used to analyse the general conditions throughout the
whole observation period before each failure. With labelling and 1-D clustering
the conditions at one specific point in time, e.g. W.Sog or W Sy, were obtained.
Furthermore, the variations of a parameter over time (alternations) were investigated
using these two techniques.

Figure 3.3 shows a grouped matrix including the rules obtained for manual

labelling using the whole DB. The corresponding rule matrices for 1-D and Multi-D
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clustering can be found in Appendix C. It can be seen that the interpretation of the
latter is quite difficult due to the high amount of items represented in each rule,
and not all of these items can be presented in the graph. The most important items
per set of rules are displayed, these were the ones that were found most frequently.
If more items were found, these are displayed without specifying their names (e.g.

'+ 2 items’) as they can be different within each set of rules.
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Figure 3.3. Grouped matrix for labelling rules with a minimum support of 0.03. On the
right hand side (RHS) of the rules the components are displayed; on the left hand side
(LHS) the input items are shown.

The support value is given by the size of the circles, the lift values are defined
by the level of transparency of the colour. Given the example presented in Figure

3.3 the following conclusions can be drawn:

» Frequency converter: The rules show that this component often fails during
months with very low temperatures. Furthermore, there is no sign of inefficient
power production right before the failure event. Rather low support and medium
lift values were recorded for these rules.

» Yaw system: These failures frequently occur under calm wind speed (WS)

conditions 20 minutes before failure and low corrosive RH values 2 hours before
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3.5 Results of the Data-Driven Learning Framework

the failure event. In two further sets of rules, the RH conditions 4 hours before
are once classified as highly corrosive and once as low corrosive. Hence, there
is no clear rule for this variable 4 hours before failure. Additionally, the power
production efficiency at failure is extremely low (‘consumption’).

» Pitch system: This component seems to be highly influenced by moist air at
failure as well as 2 hours before the failure occurrence. the rules show relatively
low support and weak lift values.

» Generator: The generator failures occurred frequently under low wind speed
conditions 10 minutes and 20 minutes before failure. Very week rules were
obtained indicating lower temperatures and efficiency loss before the failure
event.

» Gearbox: The rules for gearbox failures show that this component frequently
fails under high wind speed conditions right before the failure and high corrosive
relative humidity. These rules showed medium range support but high lift values.
Another weaker set of rules indicates that low monthly minimum temperature
and highly corrosive RH conditions (RHg) contribute to higher numbers of

gearbox failures.

The figures in Appendix C can be interpreted in a similar way. Nevertheless,
it was shown that the results obtained from the whole DB are rather limited and

difficult to interpret.

3.5.3 Results obtained for the SubDB for each Component

Sub-setting DB, however, can simplify the interpretation of the rules, as demon-
strated in Section 3.4.5. The results for the framework applied to the respective
SubDB are shown in Table 3.9. This shows the most frequently obtained rule
for each technique in percentage of their appearance in each SubDB. For easier
interpretation of the 1-D and Multi-D rules, the maximum number of clusters for
each variable are shown in brackets.

These results can be interpreted in three different ways:

1. Technique-based: Comparing the results row-wise according to the technique
that was used, i.e. labelling, 1-D and Multi-D clustering gives an insight on

what kind of results can be obtained from each technique.
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3 Meteorological Conditions and Wind Turbine Failures

2. Component/Item-based: For comparing the influence of the various envir-
onmental variables on the different components, the table can be analysed
column-wise. With this, the general environmental conditions before failure
(Multi-D) as well as the condition at a specific time step (Labelling and 1-D)
that most frequently appeared in the respective SubDB, can be analysed.

3. Combinations: for analysing the effects of combinations of several environmental
variables before the respective component failures, all rows related to the this

component can be combined.

At this point it shall be mentioned, that further environmental conditions, as for
example ice and snow, can also cause certain components to fail. These are not
included directly in the analysis, but enter indirectly considering the temperatures

and seasons.
The results that can be obtained from Table 3.9 will be discussed in the following

sections.
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3 Meteorological Conditions and Wind Turbine Failures

3.5.4 Environmental Conditions at Time of Failure - Labelling and 1-D Clus-
tering

In the following the meteorological conditions at the exact time of failure are
discussed. These were obtained using labelling and 1-D k-means clustering as input

to the apriori rule mining algorithm.
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Figure 3.4. Conditions at the time of failure, obtained for labelling.

Figure 3.4 displays the number of failures registered for each label assigned to
relative humidity, wind speed and temperature at the time of failure occurrence. It is
shown that the relative humidity at the time of failure occurrence is classified for all
components as corrosive or highly corrosive. Especially, the gearbox, generator and
frequency converter showed the highest failure frequencies under these conditions.
As higher wind speeds induce higher loads on most of the wind turbine components,
a correlation between high wind speeds and failure occurrences was expected. This
was not clearly visible in the results and high wind speeds did not seem to affect
all components. Only the results for the pitch system showed higher numbers of
failures in the presence of high wind speeds at the time of failure occurrence. Thus,
in the presence of high winds the pitch system is likely to fail abruptly. This does
not seem to match previous studies, which indicated that most WT components are
affected negatively by high wind speeds. However, this section is only concerned
with the wind speed conditions during the last 10-minute observation before failure.
During this time the wind speeds that cause the the component to fail might not

be present.

In Figure 3.5 the results for the 1-D clustering and apriori rule mining are shown.
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Figure 3.5. Conditions at the time of failure, obtained for 1-D clustering.

It can be seen that the number of clusters for RH and temperature differs from the
number of manually assigned labels. The results for RH are quite similar to the ones
obtained with the manually labelled data. The distribution of failure occurrences
for the different clusters assigned to WS and ambient temperature (Temp) is way
more balanced among the different wind speed categories than in Figure 3.4. This
could be due to the clustering algorithm, which intents to balance the number of
data points assigned to each cluster.

Most component failures occurred under mild and cold temperature conditions
at the time of failure occurrence. Both, the apriori results obtained with manual
labelling as well as clustering indicated these conditions as critical ones. Especially,

the gearbox was subject to many failures in the presence of lower temperatures.

3.5.5 Meteorological Conditions during the whole Observation Period - Multi-
D Clustering

The ARM algorithm based on Multi-D clustering can be used to find the general
environmental conditions throughout the whole observation period ahead of failure.
In Table 3.9 it is shown that all components were affected by corrosive RH con-
ditions. Especially, gearboxes showed high support values for cool mean monthly
temperatures T'emp,,. The algorithm suggests further that generator failures mainly
occur at low wind speeds and lower temperatures (cluster 1) at the exact time
of failure, as well as mean monthly temperature in the cold range. Nonetheless,

right before the failure occurrences, elevated wind speeds were registered (cluster
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3 Meteorological Conditions and Wind Turbine Failures

2). Converter failures mainly occurred in the presence of low wind speeds, mild
monthly mean temperatures and in highly corrosive RH conditions at the time of
failure. This might be due to the fact that electrical components are very sensitive
to high relative humidities. The pitch system frequently failed under higher wind
speed conditions at the time of failure as well as cool mean temperatures and
highly corrosive RH conditions. This was an expected outcome, as these are the
conditions that mostly challenge the pitch system. The yaw system showed to be
affected mainly by low wind speeds and cool monthly mean temperatures. This
component is used to place the WT rotor in the best position to catch the leading
wind direction, and especially in low wind speed conditions this is a rather difficult
task. Hence, the yaw system is constantly moving in search of the best direction in

order to capture most of the incoming wind and to maximise the energy production.

3.5.6 Changing Environmental Conditions over Time - 1-D Clustering and
Labelling

Having discussed the weather conditions directly at the time of failure occurrence
in Section 3.5.4 as well as the general conditions during whole observation period in
Section 3.5.5, this section will analyse their behaviour throughout the observation
period. For this purpose, the apriori framework based on labelling and 1-D will
be used. The aim is to test if the conditions are alternating or steady throughout
the observation period. This will be carried out for the wind speed and relative
humidity. As mentioned earlier, the Multi-D clustering did not perform well for
punctual analyses and cannot be used here.

In order to analyse the wind speeds, for which extensive previous information
was available, labelling was used for the data processing. For analysing the relative
humidity a mixture of labelling and the 1-D-clustering algorithm was used. Here,
there was very limited previous knowledge about harmful RH thresholds, which
could only be assigned based on findings from other areas.

In Figure 3.6 the percentage of appearance for each characteristic of the wind
speed and relative humidity time series before each component failure are summar-
ised. It is distinguished between steady (indicating no significant changes in the
thresholds), alternating between different thresholds, as well as descending and
ascending behaviour towards the time of failure.

Wind speed variations (alternations) seemed to affect especially the generator

54



3.5 Results of the Data-Driven Learning Framework

and yaw system. The frequency converter showed higher failure frequencies under
steadily low or rising wind speeds. The pitch system failed more often under low or

high wind speeds without variations.

Nonetheless, further studies should evaluate observation periods that are longer
than 80 minutes before failure and compare these to wind speed conditions measured
at healthy WTs, in order to analyse in more detail the effects of wind speed

variations.
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Figure 3.6. RH and WS conditions over time.

The relative humidity conditions before failure were mainly within the steady(
high) corrosive region or ascending towards the latter. Descending relative humidit-
ies might be misleading, as this still includes the RH being in the (highly) corrosive

range at least 10 hours before the failure occurrence.

3.5.7 Seasonal Failure Occurrence

In Figure 3.7 the failure events per season are displayed for each of the five com-
ponents. During the winter months an increased number of failures was recorded
for each component. This is most likely due to lower temperatures, higher wind
speeds and other factors such as icing and snow. The gearbox showed the highest
failure frequency during the winter months, which could e.g. be due to problems

arising with lower lubrication oil temperatures.
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Figure 3.7. Seasonal failure occurrences.

3.5.8 Energy Production Losses

In nearly all cases, the power production shortly before failure decreased below the
reference value for efficient production at the specific wind speed. This information
can be especially useful for failure detection, as the power production is quite easy

to measure in real time.

Using labelled input data for the ARM algorithm, it was possible to determine
whether the power production was efficient or not. 1-D clustering additionally
served to test to what extend the power production was inefficient. Hence, for
analysing the power production efficiency before failure a mixture of labelling and
1-D clustering gives the best results. With Multi-D clustering only the general
power production conditions were obtained, which were continuously in cluster 2.
As the power production is highly correlated to wind speed, a production efficiency
in cluster 2 means that most failures occur around an efficiency of 50 %, which
corresponds to a wind speed in low to medium range. In the wind speed distributions

this is the threshold with the highest probability of appearance.

In Table 3.9 an inefficient power production is detected for all components
during the last 10 minutes before failure. The highest support values for inefficient
power production right before failure were recorded for the converter and pitch
system. Additionally, the gearbox showed an inefficient production also in Fy,;. The

reduced production efficiency could indicate a degradation before the failure.
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3.5.9 Downtimes and Availability of Maintenance Personnel

In this study, the severity of each failure was characterised by the hours of downtime
it has caused. The time of failure and the maintenance strategy affect the downtime.
Hence, if there is a low availability of maintenance personnel at the time of failure
occurrence, e.g. when the failure occurs during the night, the repair will start
with a delay. The framework has identified the gearbox and generator failures as
the most severe ones. This is consistent with the findings presented in Chapter 2.
The pitch system failed in 79% during the day shift (8:00 to 18:00 o'clock). As it
was shown that the pitch system mainly fails under high wind speed conditions,
which can be related to the diurnal wind speed patterns and their peaks during
the day. The converter failures were registered in 65% of the cases during the
night shift (18:00 to 8:00 o'clock). This could be due to a rise in relative humidity
during the late evening and night time, which highly affects electronic equipment.
Additionally, lower temperatures during the night can have a negative effect on
these components. The generator and gearbox failures occurred equally distributed

between day and night shift.

3.6 Concluding Remarks for the Data-Driven Learning Frame-

work

In this chapter a framework was presented for correlating failure data and environ-
mental conditions. The functionality of the framework was demonstrated using a
case study analysing the weather conditions shortly before wind turbine component
failures. It was shown that the framework serves to indicate three different forms of
behaviours of the meteorological conditions. These are: (1) analysing the general
conditions over the whole observation period; (2) a punctual analysis of specific
time steps before failure (e.g. the last 10-minute time step before a failure event);
and (3) variations over time (alternations) in the measurements of certain variables.
For each of these objectives, the data processing techniques: supervised labelling,
unsupervised 1-D clustering and unsupervised Multi-D clustering performed dif-
ferently. Each of these processing techniques was used as input to an apriori rule
mining algorithm.

For obtaining rules on the general conditions over the observation period, the
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Multi-D clustering provided the best input to the ARM. The interpretation of these
rules is straight forward, nonetheless, the accuracy is lower compared to the other
two techniques. For analysing the meteorological conditions before failure in more
detail, supervised labelling and unsupervised 1-D clustering can be used. This
includes analysing the conditions at a specific time step as well as the behaviour
(e.g. variations) of each weather parameter over the whole observation period
before failure. Nevertheless, while 1-D needs less pre-processing, labelling requires
a large amount of information for categorising the variables, this includes time
extensive and costly experiments or expert judgements. If profound knowledge on
the behaviour of the weather variable is available, e.g. for wind speed, labelling
performs best. But, it can introduce a certain degree of bias, especially when the
previous information is limited. In the latter case, 1-D clustering works better.

The analysis showed that the failures of all components occurred mainly during
winter time. Furthermore, high relative humidities, low temperatures and fairly
high wind speeds affected most components, especially the pitch system. Moreover,
a loss in production efficiency was recorded for all components at the moment of
failure and for the gearbox even during the prior time step.

The framework has shown to perform well and the spectrum of possible results
is big. It can be used in subsequent studies for a variety of objectives related for
example to O&M and condition monitoring.

As in this chapter, however, only weather data obtained during a relatively short
period before the failure event were considered, some effects might not have been
observed. Hence, further approaches should consider longer observation periods.
Especially, the wind speed conditions shall be investigated in more detail, which

will be subject to the following chapter.
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The last chapter was dedicated to the analysis of the environmental conditions over
a relatively short period of time before WT component failures. Unquestionably,
failures are also often caused by cumulative stress over a larger period of time,
which can be induced by short-time variations in e.g. wind speeds.

Hence, in this chapter the wind conditions before the failures of six main WT
components are investigated in more detail over a larger time period. Especially
short-time variations are expected to induce significant loads on the components
affecting their reliability negatively, [56]. These variations have not been studied in
detail previously. Earlier studies tend to average the wind speed conditions over a
longer period of time, resulting in a loss of information regarding their short-term
variations. For example in [79, 80] the mean and standard deviations of wind
speed records before the failures of several components have been studied. It was
shown that both increase during the last month and week before the failures. The
mean and standard deviation, however, do not describe the wind speed conditions
sufficiently well. Even shorter time step anomalies, such as e.g. sudden velocity
peaks, can seriously affect the components’ degradation processes.

In order to find these previously unknown pattern, algorithms for time series
knowledge discovery such as anomaly detection and pattern discovery are used.

These are applied to the data taken directly from the failed WTs' SCADA systems,
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4 Anomalies in Wind Speed Conditions before Failures

providing a realistic picture of the on-site conditions. The objectives are (1) to
detect unexpected patterns (anomalies) in wind speed time series before failures
and (2) to identify previously unknown and frequently recurring patterns (motifs)
in the series. An observation period of 140 days before each failure event is used
to capture the wind speed conditions throughout several stages of the components’
deterioration. During the observation period no other failures besides the final
event were registered for the turbines, hence, it can be assumed that the WTs were
in a healthy state during the time before the failure event.

The detected short-term wind speed changes will, in the further, be referred
to as anomalies. However, it shall be made clear, that they do not indicate an
abnormality in the wind speed per se. These variabilities are a perfectly natural
behaviour. The term ‘anomalies’ rather refers to unexpected peaks or changes from
the WTs' point of view, as they affect the health of their components negatively.

The motif discovery will be carried out on the trend components of the respective
time series with the aim of finding similar trends in the series recorded before each

component failure. The results presented in this chapter were published in Paper

(n.

4.1 Time-Series Data Mining

Knowledge discovery techniques, such as for example anomaly detection and pattern
recognition, are used in many different areas, [81] and have become some of the
most important machine learning tasks for time series data.

Similar to other industries, the majority of the information gathered by WT
CMS and SCADA systems is available in time series format. Techniques for time
series data mining are used extensively for wind speed and power forecasting [82]
as well as condition monitoring of wind turbine components, [83]. However, to
the author’s knowledge detecting anomalies in wind speed time series before WT
component failures using advanced time series data mining techniques has not
been subject to previous work, yet. The use of CMS and SCADA for condition
monitoring is not discussed in this chapter as this will be done in Chapter 7, where

it is considered more appropriate.

In Figure 4.1 the two techniques used in this chapter as well as the necessary
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time series processing approaches are summarised. They will be explained in detail

Wind Speed
Time Series
NA Imputation

in the following.

STL

Piecewise
Median Trend
Replacement

Decomposition

Time Series
Trend

Y

Motif

Anomaly

Detection Discovery

Figure 4.1. Flowchart of the anomaly detection and motif discovery using time series

data.

4.1.1 Anomaly Detection

In data science, anomalies are defined as specific patterns that do not conform
to expected behaviour, [84]. Frequently, these non-conformities are also referred
to as outliers, discords, aberrations, surprising patterns or peculiarities. They can
often indicate critical or faulty states. Considering the effects of weather conditions
on WT reliability, for example, abrupt changes in wind speed can induce higher
loads on components and worsen their health conditions. Anomaly detection could
help to identify the changes that contribute to the deterioration of the components.
However, in order to avoid problems, the input data have to be carefully pre-
processed. It must be considered that anomalies might also be introduced into the
data due to e.g. measurement errors, or the pre-processing itself.

In literature, a large amount of different anomaly detection techniques can
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4 Anomalies in Wind Speed Conditions before Failures

be found. These include regression and statistical approaches, as well as classi-
fication techniques such as naive Bayes, support vector machines, and clustering
algorithms. Extensive reviews of various time series data mining techniques for
anomaly detection are given in [81, 85, 86].

For the herein performed anomaly detection in wind speed time series an
algorithm based on statistical learning is applied, similar to the Seasonal Hybrid
Extreme Studentised Deviate Test (S-H-ESD) presented in [87], which can detect
both local and global anomalies. This algorithm was chosen as it has shown to
perform very well for long time series. The procedure consists of two steps: (1) a
time series decomposition based on sliding windows and (2) the generalised Extreme
Studentised Deviate Test (ESD), proposed in [88] and [89].

(1) Decomposition: It is very difficult to detect anomalies in raw wind speed time
series, due to the fact that the latter are known to show daily seasonality, as well as
an underlying trend. Hence, the time series need to be decomposed into seasonal,
trend and random components before being further analysed. The most common
technique for time series decomposition is the Seasonal and Trend decomposition
using LOESS (STL), [90], where LOESS stands for ‘LOcal regrESSion’. The STL,
however, is problematic in the presence of anomalies and for long time series, as
it is likely to introduce artificial anomalies, [87]. For this reason, a de-trending
approach based on sliding windows is proposed in [87]. The time series is divided
into relatively short segments using non-overlapping sliding windows. Then, the
trend component of each time series segment is replaced with the piecewise median
of the same raw segment. In this manner, long time series can be de-trended
without introducing false anomalies. The decomposition procedure is summarised

in the following steps:

» Extract seasonality: Determine the seasonality of the whole time series using
STL. This serves to decide the size of the windows for the subsequent step.
= Piecewise trend replacement: Split the raw time series 1" into i non-overlapping
windows Wr(t), which contain at least two periods of the seasonality. Then,
for all Wp(t):
a. Extract the seasonal component S with STL ,
b. Calculate the median T ,
c. Obtain the residual with R =T — Sy — T .
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(2) Test for outliers (ESD): Subsequently, the generalised ESD is applied to the
residual (time-series after removing seasonality and trend), whereas the piecewise
median serves as baseline for the anomaly test. The ESD is a generalisation of the
Grubbs' test [91], and its objective is to test the null hypothesis of not having any
outliers against the alternative hypothesis of having r outliers. For this, r separate
tests are performed for each possible number of outliers » = {1,2,...,m}, given
an upper bound m. Given a number n of observations in the time series, the test
statistics are defined in [89] as:

R, = m““"Z:_T’ . with ¢=1,2,.,r . (4.1)
with the sample mean T' and the sample standard deviation o. However, as the
mean and the standard deviation are known to be very sensitive to outliers in the
input data, [92], more robust measures will be used instead. Hence, in the present
case the sample median T and the median of the absolute deviation M AD from

the sample median are used respectively. The latter is defined as:
MAD = median(|T; — median(T)|) , with i=1,2,...n . (4.2)

With this Eq. 4.1 is modified to:

maz|T —T|

W AD , with ¢=1,2,...,7 . (4.3)

R, =

The aim is to find the observation that maximizes |T; — ﬁ] This observation is
excluded and the same test is carried out for n — 1 observations. This process
is repeated until r observations have been removed. The result is a vector R
of r possible candidates for outliers, the r test statistics. In order to test the
null-hypothesis Hy (i.e. there are no outliers in the data set) versus the alternative
hypothesis H, (i.e. there are up to r outliers), the critical values for ¢ = {1...r}

have to be calculated with:

2
(n—q) o/ @n—qi1)w

Ag = ;
Vvn—q+1\(n—q-1) +ti/(2n7q+l),l/

(4.)

where « corresponds to the significance level, and t,,/(2,—q+1) is the upper critical

63



4 Anomalies in Wind Speed Conditions before Failures

value from the t-distribution with v = (n—q—1) degrees of freedom. A candidate is
accepted as outlier if R, > A, (i.e. the null hypothesis is rejected). By maximizing
q for which R, > A,, the number of detected outliers in the time series is defined.
For further information reference is made to [89, 91, 93]. The maximum number
of possible outliers r is specified as 15% of the total number of observations n and

the statistical significance level is set to a = 5%.

4.1.2 Motif Discovery

Motifs are defined as frequently appearing patterns in sub-sequences of time series,
which are very similar to each other, [94, 95]. Extracting these previously unknown
recurring patterns from time series data, has been subject to research for many
years, e.g. [94-98]. An extensive review on the latter, can be found for example in
[86]. Here, the aim of this application is to find recurring patterns only within the
trend component of the wind speed time series. Hence, before starting the actual

motif discovery, the trend component of each time series are extracted using STL.
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Figure 4.2. Example for the motif detection using SAX representation of two time series.
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4.1 Time-Series Data Mining

A widely used algorithm for motif detection in time series was proposed by Chiu
et al. in [97] and is able to detect recurring patterns within one time series.
In Figure 4.2 the procedure of the motif detection is exemplified for two time

series. This procedure consists of three steps:

(A) Dimensionality reduction with Symbolic Aggregate approXimation (SAX),
(B) Extracting sub-sequences using sliding windows.

(C) Finding motifs with random projection

These will be discussed in detail in the following. The reader shall keep in mind
that although some of these techniques have similar features as the techniques
discussed in the previous Section 4.1.1, this is an independent analysis and does

not build upon the latter.

(A) SAX representation Due to the fact that the time series are very long, firstly,
the dimensionality of the time series has to be reduced. A Symbolic Aggregate
approXimation based decomposition, as presented in [99], is used to symbolically
represent the numerical series. SAX is frequently used in bioinformatics and has
shown very good potential when used in combination with anomaly detection and
motif discovery in time series, [100]. It uses symbols (often letters) to represent
the various aspects of a time series, as shown very simplified in Figure 4.2 (A). A
so called ‘alphabet’ indicates how many different symbols are used to represent
the whole series. The alphabet used in this study consists of 6 letters. The SAX
algorithm consists of two sub-steps: (A.1) Piecewise Aggregate Approximation
(PAA) and (A.2) conversion of the PAA sequence into a series of letters. The
PAA divides the time series consisting of n data points into w equally spaced
segments, whereas w << mn. Then, each of the w segments is replaced by the
average value of the data points contained in w. These piecewise averages are
shown in the figure as horizontal blue or red lines. The sequence of these mean
values is called the PAA approximation (or transform) of the original time-series.
The SAX algorithm assumes that the discretised time-series approximately follow
the Normal distribution. This assumption was taken by the developers of SAX after
analysing a very high number of time series data sets. With this, ¢ equal-sized
areas under the Normal curve are produced. These are given as green dashed cut
lines in the Figure 4.2, where as the Normal distribution is displayed as solid green

line. Assigning a symbol (e.g. letter) to each area, results in a sort of look up table
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for each value in the PAA transform. If we consider an alphabet a consisting of
the letters a = {b, ¢, d, e, f, g}, all PAA coefficients below the lowest cut line are

marked b, those between the second lowest and the lowest are named ¢, and so on.

(B) Extracting sub-sequences In step (B), the time series are split into sub-
sequences of a predefined length using sliding windows with a size of 100 time
steps, corresponding to approximately sixteen hours, with a 50% overlap. With
this several sub-sequences are extracted and stored, see Figure 4.2 (B). These
sub-sequences are often called ‘words’ as they are made up of symbols represented

in the earlier defined ‘alphabet’.

(C) Finding motifs Finally, all sub-sequences are compared among each other
using random projections. The results are saved in a collision matrix, as shown in
Figure 4.2 (C). The ‘planted (I, d)-motif’ problem was defined in [101] as finding an
unknown pattern of length [ (called ‘I-mer’) in a set of sequences. This unknown
patterns should differ at exactly d positions. Buhler and Tompa [102] developed
a powerful algorithm to solve this problems via random projections. For this,
randomly h out of the [ positions are selected (hashed), where h < (I — d). In this
study, [ corresponds to the window size of sixteen hours and d is chosen such that
the different sub-sequences have to match at least 70% in order for them to be
considered a motif. All [-mers are stored in a hash table and grouped in so called
‘buckets’ according to their hashed value. This is carried out several times with
different hash functions. The number of iterations must be chosen high enough so
that the probability of a bucket containing at least a previously defined number of
sequences s in w iterations, is > 0.95.

In Figure 4.3 this is exemplified for a length of [ = 10 and a projection size
of h = 5. The projection size h must be chosen small enough to guarantee that
several possible motifs hash to the same bucket, but at the same time large enough
to avoid including spurious I-mers.

If any buckets contain a number of I-mers that is greater or equal to s, these
are called enriched buckets and are expected to be motifs. In the subsequent
‘motif refinement step’ the enriched buckets are used as input to an Expectation

Maximisation (EM) algorithm, developed for motif discovery problems in [103, 104],
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which maximises the likelihood of each motif candidate being actually a motif.

More information on this procedure can be found e.g. in [105].
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Figure 4.3. Example for the random projection algorithm.

4.2 Data for the Time Series Knowledge Mining

The data used for the anomaly detection is a sub-set of the data presented in
Chapter 2. The set consists of data representing 3288 operational years taken
from 1096 modern three-bladed and pitch regulated turbines with rated capacities
between 0.66 MW and 2 MW. In Table 4.1 the number of failures per component
considered in this sub-set are summarised. Six main components are analysed: the
blades, converter, gearbox, generator, pitch and yaw system. This data set was
chosen according to the availability and quality of the SCADA data, as discussed
below.

The wind speed conditions were obtained directly from the SCADA systems
of the failed WTs and were available as 10-minute mean measurements. SCADA
systems are installed in most operating wind turbines and can provide a huge amount
of information on the WTs operational status. Certainly, the SCADA systems are
able to provide measurements at higher resolutions (e.g. 1Hz), however, many
operators do not store these huge amounts of data. Thus, this chapter explores the
use of 10-minute mean data for the purpose of anomaly detection in wind speed

time-series before WT component failures. These data are usually available to
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Table 4.1. Data used for the anomaly detection.

Component Nb. of Failures

Blades 48
Generator 40
Pitch System 16
Gearbox 26
Yaw System 15
Converter 13
Total 158

operators at no additional cost (e.g. due to extensive data storage). Furthermore,
after analysing the information given in the SCADA systems of several different
WT technologies, it was found that the wind speed and power are measured by
all SCADA systems. Other variables such as turbulence intensity, etc. are often
not recorded. Especially, older wind turbines, which are more likely to suffer from

component failures do not provide this information.

The SCADA data needed to be carefully checked for measurement errors as well
as missing data points, which could affect the outcome of the study negatively. To
ensure correctly functioning measurement systems, the wind speed data obtained
at the analysed WT were compared to the measurements of close-by located WTs
of the same type. Additionally, only SCADA time series containing less than 5%
missing values over the whole observation period of 140 days were used. As anomaly
detection is very sensitive to missing values, even these small amounts had to be

imputed before applying the algorithm.

In [106] various methods for replacing missing values in time series are sum-
marised. After testing several, a technique presented in [107] was used, which
showed the best compromise of computational effort and accuracy. This method
is especially useful for time series with strong seasonality. It extracts the seasonal
component of the time series and uses linear interpolation on the remaining data.
Afterwards the seasonal component is added again. It shall be stressed that this
technique only served for the imputation of the missing values and it is not part of

the decomposition methods used for anomaly detection.
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4.3 Results of the Anomaly Detection

By applying the anomaly detection algorithm to the discussed data set, the global
and local anomalies for each time series have been detected. In Figure 4.4 an
example of the discovered anomalies (blue circles) before a generator failure are
shown. These include unexpected steep drops and sudden wind speed peaks. It
can be seen that the majority of the anomalies were detected during the last 7 days

before failure.

8.33% Anomalies

2211

Wind Speed (m/s)
=3
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-28 days -21 days -14 days -7 days
Time before Failure

Figure 4.4. Example of detected anomalies (blue) in wind speed time series before a

generator failure for an observation period of 1 month.

As displaying the all 158 available time series would not be very handy for
the interpretation of the results, the average number of detected anomalies per
day in all time series of each component are summarised in Figure 4.5. The total
number of time series per component corresponds to the number of failures of the
respective component. These are shown over three different observation periods:
140, 70 and 30 days before failure.

Within the last 30 days before failure a significantly higher number of anomalies
was detected for all components. Especially during the last month before blade
failures the figure shows a steep increase in anomalies per day. The wind speed
conditions before gearbox failure contained the lowest amount of anomalies per day

throughout the whole observation period. These results underline the hypothesis
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Figure 4.5. Average number of detected anomalies per day in wind speed time series of
different lengths before failure occurrence.

that the failure behaviour of these components is affected by short-term changes in

wind speed.
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Figure 4.6. Detected anomalies in wind speed time series 1 month before component

failures.
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For analysing when exactly during the last month before failure the anomalies
were detected, in Figure 4.6 a heat-map is presented, showing the obtained anom-
alies per day. The detections for each time step are presented as their contribution
to the total number of anomalies per time series for this component. This enables
an easier interpretation of the results, as the total number of anomalies differ
for each component. However, the components shown in Figure 4.6 have to be

analysed separately.

Blades: A high number of anomalies were detected between 14 and 7 days before
the blade failures. During the last 7 days before the event, significantly less
anomalies were present. A possible reason for this is that blade problems are in
many cases not detected at the exact moment when they occur. For example
cracks in the blade surface often occur under extreme wind speed conditions and
propagate until they reach a critical state after a certain number of load cycles.
Furthermore, manual blade inspections are a rather difficult task and usually require
special tools and equipment (e.g. cranes, drones). Thus, these are frequently
carried out with a certain delay. Even if the blade is not in a good state it might
still be functioning, until the maintenance team decides to shut down the turbine

due to the blade degradation.

Pitch system: Between day 30 and 25 a large number of anomalies were detected
followed by a period of 3 days with rather regular wind speed time series. Sub-
sequently, during day 20 and 15 again a period with a higher number of anomalies
were recorded. The pitch system regulates the rotor speed and protects the turbine
from damages, in wind speed conditions that show a large number of irregularities
it is especially challenged. Experiencing several periods in which the wind speed
suddenly rises or drops, the pitch system has to actuate immediately, which affects

the component’s reliability.

Generator: The anomalies were almost exclusively detected during the last three
days before failure. This indicates that the generator is highly affected by these
conditions. The generator converts mechanical to electrical energy and consists
of both, electrical and mechanical components. In general, electrical components

have shown to fail abruptly, while mechanical ones are subject to degradation
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processes over a longer period of time. Hence, the anomalies can lead to short
circuits and damages in the electrical parts of the generator, which cause immediate
failure of the component. Nonetheless, only taking into consideration the wind
speed conditions might, however, not be the best method to detect malfunction in
this component. Generator currents, for example, have shown to be quite reliable
indicators for the detection of faulty generators, [108, 109]. These two methods

could be combined in further applications.

Gearbox: As shown in Figure 4.5, prior to gearbox failures very few anomalies
were found. The degradation processes of gearboxes are slow and the failures are
discovered with a certain time delay. They could not clearly be related to the

occurrence of anomalies.

Yaw System: As shown in Figure 4.5 a lower number of anomalies per day were
recorded for this component. The anomalies obtained for the yaw system during
30 days before failure showed a similar behaviour as the ones registered for the
pitch system. As discussed in Chapter 3, the yaw system seems to be less affected
by wind speed, rather by frequently changing wind directions. Hence, it would be

interesting to include the changing wind directions in further work.

Converter: Throughout the observation periods of 140 days and 70 days, the con-
verter showed the highest and almost constant daily average number of anomalies.
Furthermore, a higher number of anomalies were detected during the last 30 days.
This leads to the assumption that the converter is affected by constantly occurring
anomalies over longer period of time. As these anomalies lead to peaks in the

produced electrical power, they can cause recurring damage to the converter.

4.4 Results of the Motif Discovery

Having shown to be highly affected by short term changes and recurring anomalies
in wind speed over long periods, the trends of the time series recorded before
converter failures are used to analyse the performance of the motif detection.

In Figure 4.7 it can be seen that the most frequently detected pattern is charac-

terised by a steep increase in wind speed with a minimum length of approximately
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4.4 Results of the Motif Discovery

100 time steps (almost 16 hours). This is visualised by the coloured sub-sequences
in five randomly selected wind speed time series measured before converter failures.
The red lines indicate the regular time series data, while the other colours are the
detected patterns in each of the series. The graphs show in total 4320 time steps
before the time of failure occurrence, which is equal to 30 days prior to failure.

This pattern has been found on average 6.4 times per time series before converter
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Figure 4.7. Detected patterns in wind speed time series of converter failures.

failures. Nonetheless, the algorithm also detected fairly short parts of the time
series as motifs, which can be seen in time series 2 and 4 in Figure 4.7.

Although, the computational effort is quite high, this technique has shown to
be able to discover previously unknown and recurring pattern. The results obtained
for the converter failures lead to the assumption, that the latter tend to occur after
frequent steep rises in the wind speed trend over a longer period of time. This
underlines the findings from Section 4.3.

Nonetheless, the application of the motif detection in the case of wind turbine

failures did not result in a clear useful outcome as for example the anomaly detection
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did and needs to be studied further. The presented findings need to be compared
to those of other components. Interpreting these results and deriving statistically
relevant conclusions was found to be rather difficult, as also discussed by [110]. This
is a common issue, and usually the detected motifs have to be analysed manually.
In [110] a method to calculate the expected motif counts with the obtained ones
based on Markov Chains is proposed. This could be taken into consideration in
future studies. Furthermore, an optimisation of the applied window size and the

size of the 'alphabet’ should be carried out.

4.5 Conclusions for the Anomaly and Motif Detection

Earlier studies showed that the wind speed measurements during the last month
before component failures are frequently characterised by higher means and standard
deviations compared to the months where no failures were recorded. It was stated
that these metrics give a good insight on the wind speed conditions, however, do
not describe its short term changes sufficiently. Hence, the aim of this chapter
was to detect the short-term changes in wind speeds and their effect on the failure
behaviour of six main components: blades, converter, gearbox, generator, pitch
and yaw system. An anomaly detection algorithm based on statistical learning
was applied to wind speed time series recorded during 140 days before 158 WT
component failures. In order to provide a useful method for wind farm operators,
intentionally, 10-minute mean wind speed measurements were used. The herein
employed knowledge discovery techniques have shown great potential and could be
implemented in future O&M models for wind turbine failure prediction.

All of the analysed components, but especially the blades and the pitch systems,
showed to be highly affected by short-term changes and anomalies within the wind
speed time series measured before their failures. Hence, a significant higher average
number of anomalies per day has been recorded throughout the last two to four
weeks before failure. The wind speed measurements before converter failures were
characterised by many anomalies over a long observation period up to 140 days. In
further analyses of the yaw system, the changing wind directions should be taken
into account. Furthermore, analysing the generator currents in combination with
the anomaly detection in wind speeds, could lead to further findings regarding the

failure behaviour of the generator.
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The motif discovery has shown to be able to successfully detect unknown
patterns in wind speed time series before failure. It underlined the results obtained
from the application of the anomaly detection algorithm. However, this method
needs to be tested more extensively and a larger-scale optimisation of this procedure
tailored to wind turbine failure analysis needs to be carried out.

Nonetheless, both, the anomaly detection and the motif discovery, provide
interesting new insights on the wind speed behaviour before failure and should be
implemented in further O&M modelling.

After having shown in this and the previous chapter, that certain environmental
conditions affect the failure behaviour of certain wind turbine components, the
following chapter will develop reliability models including the complex combinations

of these conditions.
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In Chapters 3 and 4 it was shown that there is a strong correlation between the
meteorological conditions to which the turbines are exposed to and their failure
behaviour. In this chapter, at first, an overview over existing methods for reliability
modelling is given and specific applications in wind energy are discussed. Then, a
WT failure model is proposed taking into account the effects of several environ-
mental parameters on the failure behaviour of WTs and their components. In order
to avoid common problems in failure modelling, variable selection and complexity
reduction techniques are incorporated. The results of this chapter were published
in Papers (IV) and (V).

5.1 Background Reliability Modelling

The objective of reliability modelling is to estimate the failure behaviour of systems
and components over time. Reliability models can be categorised into probabilistic
models and physical models. Probabilistic models use failure data collected over a
considerable amount of the systems’ life-time and are often referred to as data-driven
reliability models. Physical models can be used to represent the deterioration of
the system under given load conditions, however, require a thorough understanding
of the physical processes leading to failures. As WTs are very complex systems,
building detailed physical models of all components involved in the different WT

technologies, would be an extremely difficult task.
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5 Advanced Reliability Modelling

This thesis focuses on data-driven (probabilistic) reliability models and in the
following some of the main concepts for reliability modelling will be introduced. At
first, probability distributions traditionally used in reliability modelling are discussed.
Then, stochastic processes, such as counting processes and Markov chains will be
explained. Finally, a short summary of other techniques for reliability modelling will
be given.

Nonetheless, a complete review containing all possible reliability modelling

techniques will not be presented. This can be obtained from literature, e.g. [111-
113].

5.1.1 Probability Distributions

Probabilistic reliability models are usually based on so-called life distributions, which
are probability density functions defined over an operational parameter, such as
time, distance or cycles. Among these distributions are for example the exponential,

normal, log-normal and Weibull distributions [111].

The probability density function (PDF) f(t) expresses the relative frequency of
failure occurrence and has an expected value (mean), which is commonly called
the mean time to failure (MTTF), of:

Eﬁhﬂﬂ?F:Amﬁ@ﬁ . (5.1)

Given a specific PDF, the probability of experiencing a failure event on a time
interval [0,t] can be obtained from the cumulative density function (CDF), which

is defined as:

F@:Aﬁ@ﬁ. (5.2)

The CDF is often referred to as unreliability. With this, the reliability function or

the probability of not having any failure event can be derived as:
R(t)=1—-F(t) . (5.3)

The failure rate function A(t), i.e. the number of failures occurring at a specific

unit of time, is then given by:
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At) = D (5.4)

Weibull distribution. As the Weibull distribution is one of the most widely used
life distributions, [113], it will be used in the further to exemplify how to derive the
reliability and failure rate functions. More information on other life distributions

can be found for example in [111, 113, 114].

The PDF of the three-parameter Weibull distribution is given by:
B (t=\"" (=)
fy="2 () ) 5.5
(t) 7 ; (5.5)

with the shape parameter 3, the scale parameter 7, the location parameter v and

the operational time t. The MTTF, is denoted as:

MTTF:7+n-F(;+1) , (5.6)

with the gamma function I'. The CDF, the Weibull reliability and failure rate

functions can then be written as:

Fiy = 1- (5" (5.7)

Rt = (597 (5.8)
oAl

At) = 'f}(’m) . (5.9)

Due to its flexibility, the Weibull distribution can be used to model several properties
of a system's failure behaviour. By adjusting the shape parameter 3, the life-time
can be divided into three periods: the early life, the useful life-time and the wear-out
period. This results in the famous bathtub-curve, of which an example is shown in
Figure 5.1.

The early life is characterised by a decreasing failure rate and is modelled with a
shape parameter 3 < 1. The failure rates during the useful life-time are assumed to
be constant and are modelled with 5 = 1, which simplifies the Weibull distribution
to a two-parametric exponential distribution with MTTF = % Towards the end
of the system’s life the failure rates show an increasing behaviour (8 > 1) due to

wear out processes that are affecting the components reliability negatively.
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early life useful life wear out

Failure Rate

Time

Figure 5.1. Example for the bathtub curve with the three periods.

5.1.2 Counting Processes

Counting processes are stochastic processes that are often used to model the
deterioration of repairable systems over time. Three of the most frequently used
counting processes in reliability modelling are the Homogeneous Poisson Process
(HPP), Non-Homogeneous Poisson Process (NHPP) and the Renewal Process (RP).
The HPP and NHPP shall be shortly introduced here, however, as they will not be
used in this thesis no complete explanation will be given. Further information can
be found e.g. in [115-117]. A counting process is used to model the number of
failure events N (t) > 0 that are occurring over an interval of time (0,¢]. The rate
of failure occurrence w(t) at time ¢ can be derived by taking the derivative of the
expected value W (t) = E(N(t)):

d(E(N(t))

w(t) =W'(t) = pn

(5.10)

The expected value denotes the mean number of failure events on the time interval,
[111].

The HPP is the simplest form of a stochastic counting process and it assumes
that the inter-arrival times of the failure events are independent and identically
distributed following an exponential distribution with a constant rate A, [118]. The
inter-arrival time is the time difference between the failure events and its CDF is

defined as:
Ft)=1—¢? . (5.11)
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The probability of exactly having n failures over time-interval (0, ] is given by the

Poisson distribution:

Pr{N(t) = n} = (M);e_M , (5.12)
with the expected number of failures M (¢) at time ¢:

M(t) =Mt (5.13)
and the repair rate m(t) is denoted as:

M #t)=m(t)=X . (5.14)

The HPP is widely used to model the failure behaviour of repairable systems. This
is due to the fact that it is the only model for repairable systems that can be applied

to the useful-life period with a constant failure rate in the bathtub curve, [118].

The NHPP is a more flexible approach to model the failure rates of repairable
systems. It can be used with a Power Law or exponential intensity function. The
most popular approach is the NHPP with a Power Law intensity function and will
be discussed in the further. However, more information on the NHPP with both
intensity functions can be found e.g. in [115]. The probability of having n failures
during (0, ¢], is given by:

nef]\/f(t)
Pr(N() =np = 0 (5.15)

with the expected number of failures:

M(t)=at® |, with a,b>0 . (5.16)

Unlike the HPP, the NHPP does not have a constant repair rate (intensity function):

m(t) =At) =at™? . (5.17)

The model can be used to model both, the early life (5 < 1) and the wear out
phase (8 > 1) of the bathtub curve. Moreover, for 5 = 0 it simplifies to the HPP.
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5.1.3 Markov Processes

Markov chains are a special form of stochastic processes, and can be used to
model systems with various states as well as transitions between these states, [111].
Markov chains can be classified into discrete-time Markov Chains (DTMC) and
continuous-time Markov Chains (CTMC) depending on the definition of time either
being discrete or continuous. In literature, CTMC are often referred to as Markov
processes, [112, 119], which will be discussed in the further. The state of the
process at time ¢ is denoted by X (¢) = {0,1,2,...,r} and all possible states are
gathered in a state space x. The transition probabilities P; ; from state ¢ to state

j of the Markov process at time ¢ are defined as:
P i(t) = Pr(X(t) = j|X(0) =4) forall i,je€x . (5.18)

This can be written in form of a matrix:

PO,O P071 P()’r
P Py .. P

Py =" M M (5.19)
Pro Pri o Prr

Figure 5.2 shows an example of a system with two states A and B, with which the
use of CTMC for failure modelling will be shortly explained. If it is assumed that
state A represents the healthy and state B the faulty state of the system, then the
transition rate from state A to state B can be called the failure rate P4 p = A.
This represents the probability that the process X (¢) enters state B after leaving
state A.

Prs

PB-A

Figure 5.2. Example for a Markov Chain with two possible states A and B.
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Likewise, the transition rate from state B to A is called the repair rate Pp 4 =
p. With this the stochastic transitional probability matrix at a specific point in

time can be derives as:

Pia P 1-A A
p=| M AP . (5.20)

Pg s Ppp p  l—p

For further information see e.g. [112, 113].

5.1.4 Other Aproaches

Accelerated life models [120] or proportional hazard models (PH) [121] can be
alternatives to the discussed techniques. These account for externally induced
stresses, however, they can only be applied when modelling continuous responses
such as the time to failure of non-repairable systems. As they are not appropriate
when modelling discrete responses as for instance the rate of occurrence of failures

(ROCOF) in repairable systems, they will not be discussed further.

5.1.5 Reliability Modelling in Wind Energy

In the previous section some of the main concepts for reliability modelling have been
introduced. As shown in Table 5.1, several studies have applied these techniques

to wind turbine reliability modelling.

Table 5.1. References applying common reliability modelling techniques to wind energy

systems.

Technique References
Weibull Models [122-124]
HPP and NHPP [48, 125-129].
Markov Models [130-135]
Renewal Process [136, 137]

Accelerated Life Models  [138]

Proportional Hazard [139-141]
Models
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However, being designed for machinery operating indoors or in fairly stable
surroundings, these models are mainly driven by the operational life of the system
or component. Thus, as it was shown that the WT failure behaviour is highly influ-
enced by the surrounding conditions, they are not reflecting the reality sufficiently
well. An exception are Markov processes, which could also be used to represent
the different states of the environmental conditions as well as their effect on the
failure behaviour. These, however, become extremely complex with an increasing
number of input variables and their respective states. Hence, Markov chains are
not feasible for achieving the herein defined objectives.

Despite the fact that much research has been dedicated to analysing the met-
eorological conditions before WT failures, there are very few existing studies that
actually develop models to represent the effects of these conditions on the failure
behaviour of WTs.

Wilson et al. [142] use artificial neural networks to model the effects of rainfall,
pressure, relative humidity, temperature, wind direction, wind speed and gust speed
at ground level on different WT components. In [73] the relationship between
0O&M cost and wind speed conditions was modelled via a Markov Chain Monte
Carlo (MCMC) model, using data for one wind farm over a relatively short period of
time. Furthermore, in [143] the same authors presented a non-parametric mixture
model to compare the distributions of weather conditions including relative humidity,
temperature and wind speed, obtained during normal WT operation to the ones
measured in the presence of WT failures.

An additive Weibull failure rate model for WT rotor blades based on their age,
the hours being exposed to full load and the wind speed (overload) was proposed
by Faulstich et al. in [124].

Slimacek et al. [129] proposed a Poisson-Gamma model for modelling the
ROCOF of WTs using a time-constant base function following the HPP. The
environmental conditions are not modelled directly, but a proxi-covariate indicating
the number of stops caused by external natural factors is implemented. They
conclude that the proxi-variable representing the environmental conditions was
the most important input covariate and that further studies should include these
meteorological covariates directly.

Hence, in most cases the existing approaches either do not consider the envir-

onmental conditions directly in the modelling process, or the influence of different
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weather variables on the WT failure behaviour is modelled separately for each
variable. Furthermore, in order to set up effective maintenance strategies, WF
operators are mostly interested in having models that can represent failure rates on
relatively short time intervals e.g. on a monthly basis. Assuming constant failure
rates during the entire useful-life period (e.g. with the HPP) can lead to wrong
conclusions and higher O&M expenses.

Thus, there is a significant need for developing advanced reliability models that

take into account the effect of the surrounding meteorological conditions.

5.2 Data used in this Chapter

For practical reasons before introducing the proposed models, the data which will
be used to evaluate their performance is presented.

The data used in this chapter are comprised of historical failure logbooks, WT
SCADA data and the WF's met mast data. Furthermore, weather data obtained
from meteorological stations located close to the WFs are used. The failure data
represent a sub-set of the historical data presented in Chapter 2. The composition

of the latter regarding the failed components is shown in Figure 5.3.

Generator 5%
Pitch 3%

Yaw 49

Gearbox 29%

Other 59%

Figure 5.3. Failure data composition in this chapter.

The various WT components react differently to certain combinations of envir-
onmental conditions and setting up separate models for each component can be very
useful for WF operators. Thus, apart from modelling the whole WT system, the
functionality of the models for representing a single component's failure behaviour

will be analysed. This will be exemplified using gearbox failures. It can be seen,
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that around 29% of all recorded failures in this sub-set were related to the gearbox.
Furthermore, in Chapter 2 as well as in [19], the gearbox was identified as one of
the most critical WT components in terms of failure rate and downtime, which is

highly affected by environmental conditions, [142].

5.2.1 Wind Farm Characteristics and Failure Data

In Table 5.2 the specifications of the wind farms included in the failure data base

are displayed. Furthermore, the site specific terrain types, classified according to
the IEC 61400-12-2 [144] standard, are shown.

Table 5.2. Wind farm specifications.

Wind Farm Rated Capacity (kW) Age (years) Nb. of Turbines Hub Height (m) |EC Terrain Class

WEF-A 2000 5 30 67 4
WEF-B 1800 5 21 80 3
WE-C 800 8 36 55 5
WE-D 660 12 43 45 5
WEF-E 660 14 25 45 2
WEF-F 660 9 32 45 3
WE-G 660 11 74 45 3
WEF-H 660 14 21 45 4
WE-I 330 4 16 30 2
WE-J 330 16 40 30 2
WEF-K 300 15 45 30 4

Table 5.3 displays the number of registered WT system and gearbox failures per
turbine and month. The data were recorded over a period of three years (January

2013 to December 2015) at eleven Spanish WFs, operating in total 383 turbines.

In Figures 5.4a and 5.4b the histograms of the monthly WT system and gearbox
failures are displayed. It can be seen that the distributions of the failure occurrences

are very right skewed with a high number of zeros.

86



5.2 Data used in this Chapter

Table 5.3. Summary of the historical failure data.

Wind Farm  WT Failures  Failure/Turb./Month ~ Gearbox Failures  Failure/Turb./Month Gearbox

WEF-A 121 0.112 11 0.010
WEF-B 40 0.053 14 0.019
WEF-C 86 0.066 16 0.012
WE-D 59 0.038 30 0.019
WEF-E 36 0.040 16 0.018
WE-F 36 0.031 14 0.012
WE-G 32 0.012 12 0.005
WE-H 23 0.030 8 0.011
WE-I 35 0.061 14 0.024
WE-J 29 0.020 10 0.007
WEF-K 44 0.027 10 0.006
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Figure 5.4. Histograms for the recorded failures per month.

5.2.2 Meteorological and Operational Data

Six environmental variables are included into the models, which were identified
previously as the most critical ones regarding their effect on the WT failure beha-
viour, [59, 143]. To avoid issues due to distinct covariate magnitudes, all inputs are
centred to a mean of 0 and divided by their standard deviation (scaled). In that
manner, the feature importance within the context of the respective model can be
compared, [145].

The monthly mean WS, turbulence intensity (TI), and monthly maximum wind

speed (MaxWS) were obtained from the wind farms’ met-mast at a height of
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45 meters. The monthly mean Temp, RH and total monthly precipitation (Rain)
are taken from close-by located meteorological stations. In Figures 5.5 to 5.7
the histograms of the measured meteorological data are shown. The TI was only
available for two wind farms (WF-A and WF-C), hence, it will not be considered in
the model for all WT technologies. Nonetheless, the influence of Tl on the models
will be discussed separately for WF-C.

To account for the WTs' operational conditions, the covariate PWR is intro-
duced. It is defined as the average monthly active power (taken from the SCADA
system) in percent of the turbines’ rated capacity. With this, it is possible to include
a model covariate that indicates how long and with how much capacity the turbines
are operating on average during each month. Additionally, the hub-height, rated
capacity and turbine diameter are included in the models, in order to distinguish

between the different WT technologies.
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Figure 5.5. Histograms for the measured environmental data.

In Figure 5.8 the correlation between the different input covariates is shown.
The Tl was excluded, as it is only available for two WFs. Red squares indicate
negative and blue squares positive correlation, and it can be seen that, although
only pairwise correlation is displayed, many of the variables are highly correlated to
each other. These correlations can result in serious problems during the modelling
process. Hence, methods need to be used to eliminate the correlated input variables.

This will be discussed in detail in the next sections.
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Figure 5.7. Histograms for the measured environmental data.

5.2.3 Model Memory

As the meteorological conditions can have a delayed and/or cumulative effect on
the WT components, a so called model memory is introduced. This includes the
environmental conditions of the month before the failure. In the following, the
covariates representing the model memory will be denoted with the suffix .mem.

With the model memory the total number of covariates rises from 11 to 17.
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Figure 5.8. Pairwise correlation between the input variables.

5.3 Advanced Reliability Models and Problem Statement

In Section 5.1 reliability models based on the age of the system were discussed.
These have found application in wind turbine failure modelling. For the above stated
reasons, however, novel WT reliability models should incorporate the meteorological
phenomena at the wind farm site.

Modelling the failure behaviour based on external variables could be carried out
in several ways. Discrete responses, such as the number or the rate of occurrence
of failures (ROCOF) over a given time interval are often modelled using Poisson
regression. Nonetheless, these models have shown to be problematic in certain
situations and are not able to represent all forms of data properly.

In this section the Poisson regression model as well as three advanced alternatives
will be discussed. These include an extension of the Poisson distribution as well as
two zero-inflated models. As these alternatives usually result in increased model
complexity, more sophisticated parameter estimation and variable selection (PEVS)
methods must be considered. The presented models along with the estimation
techniques will be applied to the data in order to determine the most appropriate

combination.

5.3.1 Failure Models

The Poisson distribution dictates that its mean is equal to its variance. This property

can lead to serious problems when dealing with over-dispersed count data having
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a larger variance than the Poisson distribution allows. Especially, the presence
of unobserved effects (heterogeneity) and/or an abundance of zero counts in the
data can lead to over-dispersion. When modelling the monthly failure events, for
example, their distribution is usually highly right skewed, as the number of zeros is
significantly larger than the non-zero counts - see Figures 5.4a and 5.4b. In these
cases the Poisson models are likely to over-estimate the response variable.

In order to account for unobserved effects, the Poisson model is often extended
with a Gamma distribution resulting in the negative-binomial (NegBin) model. This
is frequently referred to as a Poisson-Gamma model.

Not only heterogeneity, but also a high number of zero-counts in the data (highly
right skewed failure distributions) can cause over-dispersion. This could be avoided if
two separate processes are considered: one generating the structural zeros using e.g.
a binary distribution; the other one generating the counts including occasional zeros
by a regular count process, such as the Poisson or the negative binomial distribution.
These types of models are sometimes referred to as the zero-inflated Poisson (ZIP)
and zero-inflated negative-binomial (ZINB) regression models and have been applied
to a variety of different research areas, [146]. Being significantly more complex due
to the two separate processes and the higher number of regressors, these models
are often avoided. Nonetheless, if combined with a suitable parameter estimation
technique other than the standard maximum likelihood estimation (MLE), they can

lead to better results than conventional modelling techniques.

5.3.2 Parameter Estimation and Variable Selection Techniques

High dimensional regression problems often struggle with over-fitting (e.g. a model
with too many covariates) and multicollinearity (strongly correlated covariates). By
selecting suitable regularisation and variable selection techniques during parameter
estimation, these issues could be avoided.

A standard technique for parameter estimation is the maximum likelihood
estimation (MLE), which finds the set of model parameters 3 that maximizes a
known log-likelihood function. As MLE does not provide any criteria for variable
selection, it can lead to high coefficient variance and over-fitting when including
many model covariates. Furthermore, MLE can result in highly biased outcomes if
multicollinearity is present.

In order to select the best sub-set of model covariates and to avoid over-fitting,
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various techniques have been developed. These include manual, forward, backward
and stepwise model selection approaches. Yet, all of them are said to be very
unstable and multicollinearity is still a remaining issue, [147, 148].

A more stable and computationally efficient form to avoid problems with over-
fitting and multicollinearity can be achieved with penalised likelihood estimation.
Frequently used penalisation techniques are the least absolute shrinkage and selec-
tion operator (LASSO) ¢; [147] and ridge ¢ (Tikhonov) [149] regularisation.

While ridge regularisation (on the f2-norm) deals with these issues by shrinking
the coefficients to values close to zero, the LASSO using the ¢1-norm is actually
able to set unimportant covariates to zero, with the aim of reducing the number of
model covariates to the most relevant ones. Hence, it provides a form of variable
selection for the regression problem. Yet, LASSO has shown to be still a highly
biased estimate, as discussed in [150].

In order to overcome these bias issues, the minimax concave penalty (MCP)
[151] and the smoothly clipped absolute deviation penalty (SCAD) [150] have been
developed. Both, at first, apply the same penalisation rate as LASSO, but relax
it towards zero with higher coefficient values. Hence, they reduce the bias by
applying less shrinkage to the non-zero coefficients. Nevertheless, LASSO, MCP
and SCAD have certain limitations in the presence of collinearity, as they assume
the independence between penalty and correlation among predictors.

In the presence of highly correlated input data, the ridge regularisation usually
performs better, [152]. However, as it does not perform variable selection, Zou
et al. [152] proposed to combine the ¢; and ¢y penalties within the elastic net
(Enet) regularisation. For the same reasons, Huang et al. [153] introduced the
Mnet penalty, which is a combination of the the MCP and the {5 penalty. Both
techniques, the Enet and Mnet, are able to delete groups of correlated covariates
and, thus, reduce multicollinearity and over-fitting, carry out variable selection and

help to avoid bias in the regression coefficients.

5.4 Methodology and Objectives

The objective of this chapter is to extend existing research by developing models
that directly consider the environmental conditions and are able to capture their

combined effect on the failure behaviour of WTs and their components. Previously
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used regression techniques and parameter estimation methods, have not been found
to entirely accomplish the objectives. Advanced alternatives need to be applied.
Due to the very high numbers of (correlated) input covariates the latter, however,
might require PEVS techniques other than MLE.

In order to find the most suitable modelling technique, four regression models:
Poisson, NegBin, ZIP and ZINB; in combination with the three presented PEVS
methods MLE, Enet and Mnet, are compared. The failure events are modelled on
a monthly basis, as the environmental conditions significantly change throughout
the year. As mentioned previously, the models will be applied to the failure data of
the whole wind farm system, not distinguishing between the failed components, as
well as on data containing only gearbox failures.

To cover the most relevant aspects the following steps are carried out and will

be presented in this order in the results section:

1. Evaluating the model performance with MLE: At first the failures of the
whole WT system and the gearbox will be modelled using Poisson, NegBin, ZIP
and ZINB models in combination with MLE. As the MLE is not able to carry
out any variable selection, it is used to understand how the model performs

when all input covariates are included.

2. Effect of the model memory: Including the meteorological conditions of the
month prior to failure can significantly enhance the model performance and will

be analysed in detail.

3. Performance of the PEVS methods: By combining each regression model
with either MLE, Enet or Mnet regularisation, the performance of the PEVS

methods is evaluated. Figure 5.9 displays this modelling and evaluation process.

4. Model Performance on data of a single wind farm: To plan their O&M
actions properly, operators often prefer separate reliability models for each WF.
This is due to the fact that, on the one hand, the different WT technologies
have a distinct failure behaviour, and on the other hand, the weather conditions
vary strongly at each wind farm site. Hence, in a final step, the proposed models
will be applied to the data of a single wind farm. Thus, the capability of the
proposed models for establishing separate WF models will be assessed in a final

step.
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Figure 5.9. Modelling and evaluation process. AIC Akaike information criterion; Enet,
elastic net; MAE, mean absolute error; MLE, maximum likelihood estimation; NegBin,
negative binomial; RMSE, root mean square error; ZINB, zero-inflated negative binomial,
ZIP, zero-inflated Poisson.

5.4.1 Model Evaluation

The evaluation metrics mean absolute error (MAE), root mean square error (RMSE)
and the Akaike information criterion (AIC) will be used to compare the performance

of the different modelling approaches.

The MAE and RMSE are given by:

N

RMSE = | & 3 Gi—w? | (521)
=1

AN
MAE = N ; V@i —vi)? (5.22)

where 7 are the modelled and y the measured data values. The AIC is a measure
of the relative quality of statistical models that have been applied to the exact
same data, [154, 155], and is defined as:

AIC =2d —2In(L) (5.23)

where £ is the maximum value of the likelihood function and d is the number of
estimated parameters. If very small data samples are used, the AlIC can be modified

with a correction factor, [156], resulting in:
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2d(d + 1)

AIOC:AIC+m ;

(5.24)

where n is the sample size.

Models with lower AIC and AlCc values shall be preferred. By virtue of their
definition, the AIC and AlCc account for the model complexity and increase with
an rising number of model parameters. Chi-square tests are often used for similar
purposes, however, as this test is highly sensitive to low sample sizes (which is
the case in this study), [157], most sources recommend the use of Fisher's F-Test
instead. Nonetheless, as stated in [158, 159], the AIC and AlCc have several
advantages over the F-Test, and are able to find the best fitting model more

reliably.

5.5 Mathematical Formulation of the Models

In Section 5.3 different possible alternatives to models have been explained. Prob-
lems of current WT failure models including over-fitting, over-dispersion, excess
zeros in the response variable, variable selection, heterogeneity and multicollinearity
have been discussed. Possible solutions to these problems were presented. Their
mathematical formulations are introduced in this section. To account for the
different numbers of turbines per WF, the failure counts are modelled with an offset
of the number of turbines. This is essentially the same as modelling the failures

per turbine over a certain time interval (ROCOF).

5.5.1 Regression Models

In the following, the four regression models: Poisson, NegBin, ZIP and ZINB will
be introduced.

The probability distribution for the Poisson model is given by:?

Yi
Pr(yi|z;) = ‘;%, et (5.25)
.l

where y is the response variable of non-negative integer values, which in the present

case is the monthly number of observed failures. The mean and variance are denoted

! For better readability and to distinguish the concepts, there is a slight notation difference

between Eq. 5.12 and Eq. 5.25, however, in both cases the Poisson distribution is shown.

95



5 Advanced Reliability Modelling

as E(yilz;) = Var(y|lx;) = u; = exp(x;f;), with the estimation coefficients £;.
The covariates x; for each observation 4 include the variables described in Section
5.2:

age
Max WS

Rain.mem

i RH.mem |

The Poisson model can be extended to the NegBin model with the probability

distribution:

[(yi +9) < Y )ﬂ( i >yi
Pr(y;|z;, V) = , 5.27
R e e M C (5.27)

with p; = exp(z;5;). Here, the dispersion parameter ¢ is used to adjust the
model regarding the degree of over-dispersion. The mean is given by E(y;|z;) =
wit; = exp(z;B; + €;), which accounts for the unobserved effects 7; = exp(e;)
following a Gamma distribution. The variance of the NegBin model is denoted as
Var(yle:) = pi + 153 /9,

As stated in Section 5.3, zero-inflated models use one process governed by a
binomial distribution and a second one governed by a count distribution such as

Poisson or negative binomial.

The probability distribution for the ZIP model is denoted by:

o; + (1 — Ui)ef‘ui fory; =0

pglet

(1 —0i)= fory; >1

Pr(yilz:) = (5.28)

with the zero-inflated regressors z;, mean E(y;|z;,z;) = wi(l — o;), variance
Var(yilxi, zi) = E(yilzi, zi)[1 + pioi] and p; = exp(x;5). The zero-inflation
probability o; is given by the logistic link function o; = exp(v;2;)/(1 + exp(vizi))
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with parameters ;.

The probability distribution for the ZINB model is defined as:

i+ (1—0) (1—1—%)_19 fory; =0

Pr(yi|z:, ) = 9 :
C(y;+9 ) i \Y
(1- "i)F(yfil)Fzﬁ) (ﬂm-) (ﬂiui) for y; > 1,

(5.29)

with the logistic link function given above. The mean is E(y;|x;, z;) = wui(1 — ;)
and the variance Var(y;|z;, z1) = E(yi|zi, z:)[1 + pi(o; +971)], with the model

covariates ;.

5.5.2 Parameter Estimation and Variable Selection Techniques

The PEVS techniques MLE, Enet and Mnet are used in this chapter and will be
explained in the following.

Maximum likelihood estimation aims at finding the values for 8 that maximize
the log-likelihood function L(8|z;) = In (L£(B|x;)). Given the fact that maximizing
the log-likelihood is essentially the same as minimizing the negative log-likelihood

(loss-function), the MLE estimators are given by:
BrLE = argglax{L(ﬁ\xi)} = arg;nin{ - L(ﬂ|mz)} . (5.30)

Instead of minimizing the negative log-likelihood function, penalised regression aims

at minimising the objective function M (p):
Bpen = arggnin{M(ﬁ)} = arg;nin{ — L(B|X) + )\CD(B)} , (5.31)

with the penalty function ®(3) and parameter \ that controls the trade-off between
penalty and fit. By subtracting the penalty, sparsity is introduced and the mag-
nitudes of the coefficients are lowered. The penalty function for the regularisation
depends on the used technique.

The Enet regularization penalty is stated in [152] as:

A8(3.¢) = A (Bl + 5= 2)BI3) with Az0 . 5:32)

The parameter ¢ € [0, 1] controls the share of the ¢; and /2 penalties. The Enet
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estimates are defined as:
Biner = axgmin{M(Bi A, o)} (5.33)

For ¢ =1 a pure LASSO regression is obtained, which penalises the sum of the
absolute values of the model coefficients ||3]|; = Y- _; |Bk|, where p is the number
of model covariates. For ¢ = 0 a ridge regularisation with the model coefficients
18113 = Y-F_, B% is obtained. In this chapter, by setting ¢ = 0.5, an Enet with
equal share of LASSO and ridge penalty is used.

Contrarily to the Enet, which is using the ¢; penalty in the first term, Mnet
uses the MCP, which is defined in [151] as:

P

#5) = 3ol 0. ) )+ 52lBl (534)

with A = (A1 > 0, A2 > 0) and regularisation parameter -, as well as:

B -2 , for B <\
pBM =1, 7 (5.35)
VAT , for B>\

The Mnet estimator is given in [153] as:
Buinet(3,7) = argmin{ M(5; A, ) (5.36)

In order to find the appropriate shrinkage parameter A that minimises the mean
squared error, in all cases a K-fold cross validation (with K = 10) is carried
out before fitting the models. More information on the presented regularisation
techniques can be found in [151-153].

5.6 Results and Discussions - Failure Models

In this section the results of the modelling process shown in Figure 5.9 for general
WT system and gearbox failures are presented. However, as the interpretation of
the modelling results might not be straight forward, at first some comments will be

made to aid the model interpretation.
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5.6.1 Comments on the Model Interpretation

When analysing the influence of each regressor on the model outcome, several
things need to be considered. This can only be analysed if at the same time all
other regressors are assumed to be constant. Nevertheless, due to the naturally
high correlation between many meteorological parameters, this is a very unlikely
behaviour. The Enet and Mnet regularisations tend to eliminate these correlated
regressors and the reader might get the impression that the latter are not important
for the model interpretation.

Notwithstanding, as they are correlated to regressors that are included in the
model, the deleted regressors still influence the model outcome and need to be
considered in the interpretation. By taking a look at the correlation between all of
the different input variables, this information can be combined.

In Figure 5.10 the pairwise Pearson correlation values are shown on the upper
right triangle, the histograms and density functions for the measurements of each
variable in the diagonal, and their scatter-plots with smoothed lines (LOESS) on

the lower left triangle.
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Figure 5.10. Correlation plots of the meteorological inputs.
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The following relations can be obtained from the graph:

= The covariates WS, MaxWS and Temp are strongly negatively correlated, as
with rising temperatures the WS and MaxWS decrease.

= The temperature and RH are negatively correlated.

= Precipitation is only weakly correlated with the other input parameters.

= WS and RH are positively correlated.

= The covariate average monthly active power in percent of the rated capacity
(PWR) is highly positively correlated with WS and MaxWS; and negatively
correlated with Temp.

= The RH is defined as the percentage of moisture held in the air in relation to
the possible maximum moisture content at a given temperature. Hence, both,
higher temperatures and/or less precipitation can cause lower RH. However, as
shown in Figure 5.10 the temperature seems to be more important for the RH

changes and there is almost no correlation between RH and precipitation.

These relations are of high interest for the interpretation of the model covariates
later in this chapter, especially in Section 5.6.5. Firstly, however, the model

performance using different PEVS techniques shall be evaluated.

5.6.2 Performance of the Regression Models using MLE

In Table 5.4 the model evaluation metrics for the four modelling techniques with
MLE applied to data for general WT system failures are shown. Table 5.5 presents

the results for the gearbox failures.

Table 5.4. Evaluation metrics for the wind turbine failure models with MLE.

Measure Poisson  NegBin ZIP ZINB

AIC 1144.73 1004.02 1056.88 991.45
AlCc 1146.92 1006.21 1065.94 1000.51
MAE 1.226 1.206 1.242 1.137

RMSE 1.903 1.848 1.883 1.812

It can be seen that in both cases, the the lowest values for all evaluation metrics
were obtained for the ZINB-models. Hence, these models showed a substantially

better fit to the data than the other ones. Furthermore, when comparing these
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Table 5.5. Evaluation metrics for the gearbox failure models with MLE.

Measure Poisson NegBin ZIP ZINB

AIC 557.18 532.34 542.74 523.52
AlCc 559.37 53453 551.80 532.58
MAE 0.6005 0.6126 0.6430 0.5733
RMSE 0.7749 0.7827 0.7830 0.7572

results to those of other studies, e.g. [124], the error metrics for both models are

significantly lower.

Figures 5.11 and 5.12 show hanging rootograms of the models (with MLE) for
WT and gearbox failures, respectively. Rootograms were introduced in [160, 161]
and are useful methods to display the model fit to the data. Furthermore, they
can highlight issues such as over-dispersion and problems with excess zeros. In
the figures, the red lines represent the expected counts and the gray bars are the
observed counts, which are ‘hanging’ from the red lines. The distance between
the bars and the reference line indicates the dissimilarity between expected and
observed frequencies, [161]. The square root of the frequency is used on the y-axis,

in order to display even small dissimilarities.

As presented in Figures 5.11a and 5.12a, the Poisson model has problems with
high over-dispersion and the zero counts. The ZIP models shown in Figures 5.12c
and 5.11c also present some degree of over-dispersion, but a significantly better fit
for the zeros. Figure 5.11b and 5.11d as well as 5.12b and 5.12d present almost
identical results for the NegBin and ZINB models, which handle over-dispersion

and excess zeros significantly better than Poisson and ZIP.

Hence, having the lowest errors and dealing well with over-dispersion and excess
zeros, the ZINB models show the best overall performance for both, the whole WT
system and the gearbox failures. The error metrics for the model of the whole WT
system, shown in Table 5.4, are fairly low, hence the model shows a very good fit.
Nonetheless, as presented in Table 5.5, one can observe that the gearbox models
have lower errors, and thus, the proposed ZINB model performs even better for
modelling a single component. This is due to the fact that there is no distinction
between the various components in the failure data of the whole WT system.

They contain information on any failed component during the observation period,
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Figure 5.12. Rootograms for gearbox failure models.
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and their failure behaviour is substantially harder to capture by models. As each
component is affected differently by the meteorological conditions, the components
should be modelled separately. Therefore in the following sections, only the results

for the gearbox failure models will be displayed.

5.6.3 Results for the Model Memory

As the ZINB-model has shown the best results in the previous section, it will be
used to display the effects of including a model memory. For this, the model with
MLE will be used in order to emphasize the effects of the model memory without

eliminating covariates, as Enet and Mnet do.

Table 5.6. Comparing ZINB-models with and without memory.

MLE

Measure  ZINB without memory ZINB with memory

AIC 542.63 523.52
AlCc 544 .82 532.58
MAE 0.6702 0.5733
RMSE 0.7936 0.7572

In Table 5.6 it can be seen that including a model memory considerably decreases
the MAE and RMSE about approximately 9%.

Event though the model with memory has more covariates, lower values for the
AIC and AlCc were obtained compared to those calculated for the model without
memory. This leads to the assumption that certain input covariates of the model
memory are important and need to be included in the failure model.

However, as introducing a memory results in a higher number of model covari-
ates, the variable selection techniques discussed earlier in this chapter should be
considered, as they can reduce model complexity by selecting the most relevant

covariates. This will be discussed in the following.

5.6.4 Results of the Variable Selection Methods

To assess which of the variable selection methods works best, in the following the

four considered models in combination with the Enet and Mnet penalty will be
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applied to the gearbox failure data. In Table 5.7 the resulting evaluation metrics
are presented. It can be seen, that the zero-inflated models outperform the Poisson
and NegBin models in both cases, whereas ZINB again showed the best results.
Only an approximately 1% difference in MAE and RMSE was found for ZINB-Enet
and ZINB-Mnet. However, the values for the AIC and AlCc are in favour of the
ZINB-Mnet model. Comparing this to the evaluation metrics for the models with
MLE, presented in Table 5.5, Mnet also outperforms MLE.

Table 5.7. Evaluation metrics for the models with Enet and Mnet .

Enet

Measure Poisson NegBin  ZIP ZINB

AIC 554.19 530.85 512.36 508.32
AlCc 555.34 532.18 513.88 510.80
MAE 0.6047 0.6103 0.6035 0.5468
RMSE 0.7776 0.7812 0.7768 0.7394

Mnet

Measure Poisson NegBin  ZIP ZINB

AIC 552.43 527.39 503.27 494.45
AlCc 553.76  528.72 504.42 495.43
MAE 0.6012 0.6090 0.5936 0.5503
RMSE 0.7754 0.7804 0.7704 0.7419

In Tables 5.8 and 5.9 the standardised model coefficients, standard errors and
95% confidence intervals for the ZINB-Mnet and ZINB-Enet models are shown
respectively. The coefficients that were eliminated by the penalised regressions are
not displayed in the tables, as they are not included in the resulting models. The
variable 1 is the model specific dispersion parameter, discussed in Section 5.5.

It is shown that the Enet model has 13 coefficients, while the Mnet model only
has six. Both show a similar fit regarding the RMSE and MAE. However, the Mnet
model shows lower AIC and AlCc values.

As shown earlier in Figure 5.10, most input variables are highly correlated and
Mnet successfully eliminated as many of them as possible in order to prevent
collinearity, whereas the Enet model tends to include most of them. Thus, the

Mnet model is able to describe the data very well by only using very few of the
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input variables. As the model with less complexity shall be preferred, the Mnet

model results will be discussed further.

Table 5.8. Results of the estimation of the ZINB models with Mnet .

Variable Coefficient (8) Standard Error 95% Confidence Interval
Intercept -0.321 0.159 (-0.582, -0.060)

Rated Capacity -0.327 0.160 (-0.591, -0.063)

Age -0.430 0.137 (-0.655, -0.205)

Temp -0.288 0.204 (-0.622, 0.047)

Rain 0.209 0.101 (10.043, 0.376)
RH.mem -0.929 0.225 (-1.299, -0.559)

Log() 1.139 0.777 -

Table 5.9. Results of the estimation of the ZINB models with Enet .

Variable Coefficient (3) Standard Error 95% Confidence Interval
Intercept -0.395 0.189 (-0.706, -0.085)
Rated Capacity -0.336 0.158 (-0.596, -0.077)
Age -0.314 0.173 (-0.599, -0.029)
WS 0.176 0.234 (-0.208, 0.560)
Temp -0.512 0.255 (-0.932, -0.092)
PWR -0.112 0.250 (-0.523, 0.300)
RH -0.372 0.263 (-0.805, 0.060)
Rain 0.286 0.120 (0.089, 0.484)
WS.mem -0.187 0.259 (-0.614, 0.239)
RH.mem -0.704 0.288 (-1.177, -0.230)
Rain.mem -0.097 0.138 (-0.323, 0.130)
PWR.mem 0.214 0.233 (-0.170, 0.598)
MaxWS.mem -0.240 0.197 (-0.564, 0.084)
Log() 1.294 0.895 -
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5.6.5 Interpreting the Model Covariates

The effect of each covariate on the model response can be interpreted by analysing
the estimated coefficients of the ZINB-Mnet model given in Table 5.8

For the non-meteorological conditions the following observations were made:

» Age: The negative model coefficient for the covariate age suggests that the
gearbox failures occur mainly in younger wind turbines. This result is consistent
with literature, where premature gearbox failures are frequently considered one
of the main problems of WTs. Although, being designed for a life-time of 20
years, literature states that gearboxes frequently suffer from serious damages
within the first 2-11 years of their life-time, [162], or commonly fail at least
once within the first 5 years, [163].

» Rated Capacity: A negative coefficient was obtained for the Rated Capacity,
which means that turbines with lower rated capacity suffer from more gearbox
failures. This, however, could be also because the data base itself includes more

WTs with lower rated capacity.

The model coefficients for the meteorological covariates, showed the following

behaviour:

= Rain: The covariate related to precipitation has a positive coefficient. This
indicates that with more precipitation the gearboxes fail more frequently. Sudden
and heavy rain can facilitate the air exchange between the gearbox and the
surroundings, causing oil contamination and oxidation, which can accelerate
the degradation of gears and gear bearings. This is explained in more detail
later in this section.

= Temperature (Temp): The model further states that more gearbox failures occur
for lower monthly mean temperatures. This is consistent with earlier findings,
see Chapter 3. Furthermore, during months with colder mean temperatures
(winter), usually the mean wind speeds are higher, causing increased wear on
the gearbox. Additionally, lower temperatures affect the gearbox oil viscosity
resulting in a less effective lubrication, as discussed below.

= Relative Humidity (RH.mem): The negative coefficient for the model memory
covariate RH.mem shows that for lower mean relative humidities during the

month prior to the gearbox failures, these occur more often. The higher RH.mem
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values are most likely due to higher temperatures in the previous month (model
memory). How the conditions in the month before failure affect the gearbox, is

explained below.

Some of the model covariates are highly correlated, as discussed in Section
5.6.1. Hence, combinations of the latter need to be interpreted while taking into

consideration the failure modes of the component.

Failure Modes. Wind turbine gearboxes can fail in several different ways. However,
as shown in Chapter 2 and according to literature [54, 164, 165], a very high
percentage of all gearbox failures are directly related to the gear bearings. The main
reasons for WT gearbox bearing failures are oil degradation and contamination.
Furthermore, temperature related changes in oil viscosity can affect the gearbox.
Oil contamination is usually caused by moisture, particles and entrained air (foam),
which can result in high vibrations and wear. These intrusions can enter the gearbox
in a variety of ways, such as e.g. during manufacturing or maintenance . They
could further be generated internally or be ingested through air exchange with the
ambient air. The latter occurs frequently due to diurnal temperature variations that
cause air to be sucked into the gearbox through the seals and ‘breathers’, as for
example discussed in [166]. The gearboxes are not sealed completely and the typical
breather systems in WT gearbox housings are usually not sufficiently preventing
the contaminants from entering the system. The herein presented model suggests
that the gearbox failures occur in the presence of these temperature variations, as

discussed in the next two paragraphs.

The Month before Failure. The model indicates that the months before the failure
events occur are characterised by lower relative humidity and thus higher temper-
atures, lower mean wind speeds and less PWR. Although, the relative humidity
might be lower at higher temperatures, the increased air exchange contributes
to an elevated risk of contamination inside the gearbox. As the effect of these
contaminations usually occurs time-delayed, the component might only fail after
a certain period of time or when the operational conditions change due to higher

wind speeds and/or increased operational time.
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The Month of Failure. The model states that the month, during which the failure
events were registered, was defined by lower temperatures. This has also been shown
by the data-driven learning framework presented in Chapter 3. As the previous
month was rather characterised by higher temperatures, this is likely to indicate a
transition month from warmer to colder seasons (e.g. during autumn). As stated
in [167], especially, the daily temperature swings during these months can cause
wear due to oil viscosity changes, which result in less oil flow. Further air exchange
between the ambient air and the interior of the gearboxes through the breathers is
facilitated by temperature variations due to periods of heavy rain. The correlations
between temperature and rain are discussed e.g. in [168]. Additionally, along with
lower temperatures usually higher mean wind speeds are measured, which cause a
larger number of WT shut-down and start-up events and a longer time in operation.
Under these conditions the gearboxes are mechanically challenged and possible
damages due to previously entered oil contaminations can lead to a component
breakdown. Hence, a combination of degraded and contaminated lubricants due to
previous air exchange with the surroundings and problems with oil viscosity and
higher loads during the failure month are affecting the gearbox life-time negatively.

This has been successfully captured by the model.

5.6.6 Application of the Model to a single Wind Farm

In Sections 5.6.2 to 5.6.4 the ZINB-models with Mnet penalty have shown to
perform significantly better than other combinations of modelling techniques. The
ZINB-Mnet model has lead to very satisfying results when applied to a large data
set containing several different WFs and turbine technologies.

However, the several WT technologies can react differently to combinations of
environmental conditions, and operators often prefer modelling each technology
separately. Thus, in order to test the model performance on a data set containing
only one technology, a single WF taken from the data set presented in Section 5.2
is tested. WF-C was chosen for this analysis as its data contained information for
the turbulence intensity, and with an age of 8 years the WF is well into its useful
life without being very old. The results were expected to show slightly different
model coefficients than for the whole data set.

In Figures 5.13 and 5.14 the modelled versus the original monthly failures for

ZINB-Mnet with and without the covariate Tl. Additionally, the constant failure
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rate that is usually assumed by conventional reliability models during the useful

life-time, as discussed in Section 5.1, is displayed. Figure 5.15 compares the kernel

density plots for the two set-ups.

It can be obtained from the three graphs that the model including TI performs

best. Furthermore, it is made clear that assuming a constant failure rate throughout

the useful life-time leads to quite wrong results, which from a practical point of

view can delay the repair and maintenance processes for months.
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Figure 5.15. WF-C: kernel density plots of the original and modelled gearbox failures with
and without TI.

Table 5.10 summarises the model evaluation metrics for the model with and
without TI. It can be seen that including Tl significantly increases the model
performance, as lower values for AIC, MAE and RMSE were obtained. Having one
additional covariate the difference between AIC and AlCc for the model with TI
is slightly higher. Nonetheless, the values are both lower than for the model that
does not include TI.

When comparing these evaluation metrics to the results presented in Table
5.7 of Section 5.6.4, one can see that much lower errors were recorded when one
WT technology is modelled separately. This was an expected result, as the failure

behaviour of distinct technologies and different sites varies.

Table 5.10. Comparing the models with and without TI.

ZINB-Mnet

Measure without T1  with TI

AIC 43.43 39.83
AlCc 47.85 44.25
MAE 0.331 0.100
RMSE 0.485 0.192

As shown in Section 5.6.5 the terrain class was eliminated by both variable
selection algorithms for modelling the gearbox failure data of all WT technologies.

Nevertheless, as the terrain complexity affects the wind conditions, e.g. turbulence
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intensity, which has lastly shown to play quite an important role for modelling
gearbox failures, the terrain complexity enters indirectly into this model.

The coefficients obtained during the estimation process of the ZINB-Mnet
model with Tl are displayed in Table 5.11. The Mnet penalisation algorithm
selected six environmental parameters. Here again, the model shows that the
combination of low temperatures and high precipitation increases the number of
gearbox failures. Furthermore, higher Tl and MaxWS during the month of failure
lead to more failures. Mnet did not eliminate the TI covariate, which shows that it

is an important parameter for modelling the gearbox failures in this WF.

Table 5.11. WF-C: Results of the estimation of the ZINB model with Mnet including TI.

Variable  Coefficient Standard Error 95% Confidence Interval

Intercept ~ -2.528 1.672 (-5.806 , 0.750 )
Temp -2.920 1.769 (-6.387, 0.548)
Rain 2.154 0.845 (0.498 , 3.811)
Tl 1.375 0.765 (-0.123,2.874)
MaxW5 4.286 2.021 (0.324, 8.248 )
WS.mem  0.746 0.542 (0.316 , 1.808 )
Tl.mem 0.518 0.312 (-0.095,1.130 )

In this section the ZINB-Mnet model has shown to also perform very well for
modelling one WT technology separately. The results contained even lower errors
than when modelling several turbine technologies at the same time. As the data
set for WF-C was fairly small, the coefficients show wider confidence intervals than
those presented in Section 5.6.4. Bigger data bases (longer observation periods)
would be needed to obtain lower confidence intervals. This is in turn likely to

slightly affect the selection of the model coefficients.

5.7 Conclusion for the Reliability Modelling

In this chapter a novel approach for modelling WT failures, including the meteoro-
logical conditions the turbines are exposed to, was presented. Several regression
models as well as suitable parameter estimation and variable selection techniques

to reduce issues with high dimensional regression problems have been tested and
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evaluated. To the author’s knowledge this is the first work of this type in the
context of modelling WT failures based on environmental conditions.

A model based on a zero-inflated negative binomial distribution in combination
with an Mnet penalty is proposed for further use in the field. The model relies on
two separate processes: one is generating the failure events as well as occasional
zeros based on a negative binomial distribution; the other process generates the
structural zeros and is governed by a binomial distribution. Possible unobserved
effects (heterogeneity) in the model covariates are taken into account for using a
Gamma distribution.

Furthermore, the Mnet penalty has shown to be able to select the most im-
portant input covariates very efficiently. Using the proposed model in combination
with this penalisation, helps to prevent several problems such as over-dispersion,
over-fitting, multicollinearity, etc. Additionally, including a model memory with the
meteorological covariates of the previous month enhances the model performance
significantly.

The proposed model was tested on a large data set and three specific test
cases. At fist it was used for modelling WT system failures of different turbine
technologies without further specifying the failed component. It showed a very good
fit to the failure data. Nonetheless, when modelling the different WT components
separately — instead of modelling the whole system — the models performed even
better. This is related to the fact that the environmental conditions affect the
reliability of the distinct components differently. This has then been demonstrated
using a sub-set of the data containing only gearbox failures. This component is one
of the most critical WT components and the model reveals that low temperatures,
high maximum wind speeds and precipitation affect the gearbox failure behaviour
negatively.

Finally, the model performance was tested on the failure data of a single wind
farm. Different WT technologies behave differently when exposed to specific
environmental conditions. Therefore, operators often use separate models for each
technology or wind farm. Modelling the different technologies and their components
separately has shown to lead to the best results and is recommended for future
studies in this context. However, in order to analyse WFs separately, further work
shall consider bigger data bases. Model improvements could also take into account

noise in the input variables by using e.g. error-in-variable models. Correlated model
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covariates were eliminated by the proposed model selection techniques. In order to
test if the model accuracy can be further enhanced, further work, however, could
consider introducing interaction terms between these covariates and subsequently
reducing the number of total inputs using penalised regression.

In all three test cases the model performed very well. With this, it contributes to
research in WT reliability modelling, by providing a robust technique for modelling

WT failures including the effects of weather conditions.
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The previous chapter was concerned with modelling the failure behaviour of wind
turbines and their components using probabilistic techniques. This was carried out
based on the meteorological conditions on site, as well as some operational and
turbine specific variables. The monthly number of failures were modelled.

In this chapter a method is introduced for failure detection on wind farm level
based on these meteorological conditions. Instead of the number of failures per
turbine, this model predicts the event of having one or more failures during a
month within the whole wind farm given the surrounding weather conditions. Naive
Bayesian classifiers are used to estimate the conditional probability of having one
or more wind turbine failures in a wind farm. This is carried out using information
on monthly wind turbine failures, turbine technology specific attributes, and the
complex combinations of the weather variables introduced in the previous chapter.
These include wind speed, wind gusts, precipitation (Rain), relative humidity and
ambient temperature (Temp).

The trained models are then employed to predict the failure events of specific
components in a wind farm during a prediction period of 36 months. Additionally
to the failure events related to the whole turbine system, also component failures of
the blades, gearbox, generator, main bearing, pitch and yaw system are predicted.

Furthermore, an extensive sensitivity analysis is carried out to determine the most

115



6 A Bayesian Approach for WT Failure Detection

suitable input variables for each model of six main WT components. With this, it
can be determined which environmental variables affect the respective components
the most. The results of this chapter have been published in Paper (VI) and are
expected to significantly contribute to research in O&M and enable operators to
predict and understand the conditional probabilities of having a failure under given
meteorological conditions. Additionally to the results presented in Paper (VI), the
performance of the naive Bayes classifier is compared to the performance of a

logistic regression model, which is frequently used for similar purposes.

6.1 Data for Failure Prediction

In this chapter again a sub-set of the failure data presented in Chapter 2 is used.
This comprises of historical failures obtained for 29 different wind farms during 1045
operational months. The wind farms operate in total 984 geared wind turbines, of
which 638 are stall and 349 are pitch regulated. The machines are aged between
1 and 16 years with rated capacities of 300 kW to 2000 kW. In Figure 6.1 the

meteorological and turbine specific model covariates are summarised.
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Figure 6.1. The environmental and turbine specific input data: WS (m/s), MaxWS (m/s),
Rain (mm); Temp (°C), RH (% ), Rated Capacity (kW), Hub Height (m), Diameter (m),
Age (years), PWR (%).

The monthly mean measurements for the meteorological variables relative hu-
midity (RH), ambient temperature (Temp), and the total monthly precipitation
(Rain) were taken from close-by located weather stations or if available from the
wind farms met mast. The monthly mean wind speed (WS) and maximum wind
gust (MaxWS) measurements were taken directly from the wind turbines’ SCADA
systems. Furthermore, the measured monthly mean active power production in

percent of the rated capacity (PWR), is included into the model in order to account
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for the time in operation per month. This variable was taken from each turbine’s
SCADA system.

The failures of six main WT components, which have earlier been identified as
the most critical components of the WT systems, are analysed. Additionally, the
failures of the whole wind turbine system without distinguishing between the failed
components will also be analysed. This will be referred to as ‘all Failures’ in the
further.

In Table 6.1 the number of failure events per component over the whole

observation period are displayed.

Table 6.1. Number of failure events per component in the data base used for this study.

Component Blades Gearbox Generator Main Bearing Pitch Yaw Total
Failure events 232 230 104 14 6 18 609

6.2 Naive Bayes Classifier

In this part of the study a naive Bayesian classifier, [169], will be used, which is a
special form of a Bayesian Belief Network (BBN). It is particularly useful for high
dimensional input data and applies Bayes' theorem with a strong independence
assumption among every pair of input features. Despite the fact, that this assump-
tion does rarely hold true in reality, it has shown to perform surprisingly well in real
world classification problems and reduces the complexity of the classification task
significantly, [170]. This is partially due to the fact that this assumption does not
seem to affect the posterior probabilities, especially when getting close to decision
boundaries, [171]. Hence, in most cases, it does not impair the classification task
at all. Furthermore, it allows to break down the multidimensional classification task
into several one-dimensional ones, by being able to calculate the class conditional
densities separately for each input variable, [171].

The conditional probability using Bayes’ theorem is defined as:

Pr(y)Pr(x|y) _ Pr(y)Pr(zy,x2,...xn|y)
Pr(x) Pr(xzi,x9,...;xy)

Pr(y|x) = : (6.1)

with a vector of features x = {z1, 22, ..., 2, }, for which the posteriori probability

Pr(y|x) that x belongs to class y is determined. The class prior probability is given
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by Pr(y), the predictor prior probability by Pr(x) and the the likelihood Pr(x|y).

The ‘naive’ conditional independence assumption is defined as:

Pr(y) ITie, Pr(zily)

P = 2
r(yl) e (62)
The fact that Pr(x) is constant given the input states that:

Pr(ylx) oc Pr(y) [T Pr(zily) (6.3)

i=1

which results in the naive Bayes classifier model, given by:

n

Y = argmax {Pr(y) H Pr(:vz|y)} , (6.4)
J i=1

with the relative frequency Pr(y) of class y in the training set. For classification

problems, the likelihood Pr(xz;|y) of the features is assumed to follow a Gaussian

distribution:

1 (7 <z7;—;12y>2)
Pr(z;|y) = e 20y , (6.5)
\/27o
where the parameters o, and ji, can be estimated with maximum likelihood estim-
ation (MLE), discussed in Chapter 5.

The response for the predictions is a boolean class variable indicating the event
of having one or more failures in a wind farm during the respective month. In total
17 input covariates are considered, which include the environmental parameters
presented in Section 6.1. All input features are discretised, as discussed in the

following section.

As shown in the previous chapters, the meteorological conditions often have a
delayed or even accumulative effect on the failure behaviour. Hence, in a similar
manner to Chapter 5, the meteorological measurements taken throughout the
previous month are also taken into consideration and are indicated with the suffix
".b", which stands for ".before’. In order to distinguish between the WT technologies,
additionally, the turbine age, hub height, (pitch and stall) regulation, rated capacity

and rotor diameter are added as model covariates. In Figure 6.2 the Bayesian Belief
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Network (BBN) is exemplified with all input variables, to show how the covariates
could be connected, however, the interconnections may vary for each component
model.

The values for each environmental input variable are grouped into four equally-
populated categories using quantile discretisation. Given the data of 29 wind
farms and after eliminating observations with missing values, in total 716 monthly
observations are available. The data are split randomly into training and testing
sets, so that a training period of 680 months and a testing (prediction) period of
36 months are obtained. During the training phase, the conditional probabilities of
having a failure event in the presence of the respective categories of each covariate
are derived. Then, the trained naive Bayes classifier is used to predict failure

occurrences in a wind farm during 36 months of operation.

Regulation
e
@ Failures I

Figure 6.2. Example of a Bayesian Belief Network including all model covariates of this

study.

6.2.1 Sensitivity Analysis

In the previous chapters it was shown that the distinct combinations of environ-

mental conditions are not influencing the failure behaviour of all WT components
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equally. Thus, for each component model a sensitivity study was carried our to find
the most suitable model inputs, compromising between prediction accuracy and

model complexity.

For the sensitivity study, separate models using all possible combinations of
input covariates are trained and predictions are carried out on the test data set.
Each combination can involve between 1 and 17 covariates (members). Hence,
with b = 17 types of different variables in the data set and m = {1...17} members
possibly involved in each combination, the total number of models ,C,, are trained

for each component can be calculated by:

Con(b,m) = i <b> i Z 271 =131071.  (6.6)
mo\m)

For evaluating the performance of the different classification models, each one of
them is used to predict the classes of the response variable in the test data set.
Subsequently, the confusion matrices of all predictions are compared. From these
the information on the true positive (TP), true negative (TN), as well as false

positive (FP) and false negative (FN) predictions can be obtained.

Finally, the best model will be selected based on four quality measures of the
binary prediction. The sensitivity (true positive rate (TPR)) and specificity (true
negative rate (TNR)) and the prediction accuracy (ACC) are defined as:

TP
TPR = ZpTFN (6:7)
TN
TNR = ——— _
R TN +FP '’ (6.8)
TP+ TN
ACC = TP+TN+FP+FN (6.9)

Further, the Mathews correlation coefficient (MCC) is given by:

MCC — TPxTN —FPxFN . (6.10)
V(TP +FP)(TP+ FN)(TN + FP(TN + FN))

The TPR, TNR and ACC, can take any value on the interval {0,1}, where 1 is the
best case. The MCC can take any value between —1 to 1, where —1 represents
a complete disagreement with the observed data, 0 is a random and 1 a perfect

prediction. The MCC is often considered a more robust metric compared to TPR,
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TNR and ACC, which are often found to introduce a certain bias to the model
evaluation process. Additionally, the MCC works well for imbalanced data sets, as
it avoids that the outcome is affected by the majority class, [172]. It can be seen in
Section 6.1 that depending on the component, the input data are to some extend
imbalanced (the number of failures recorded for each component is in some cases
much lower than 50% of the overall number of observations). Hence, the MCC

shall be used as primary evaluation metric in the results section.

6.2.2 Alternative Approaches

There are several alternatives to naive Bayes classifiers. Two of the most popular
ones shall be compared to the herein proposed component models. These techniques
will not be described fully at this point, as they are only used for comparison.
Nonetheless, they will be explained in detail in Chapter 7, where they will be used
for more sophisticated purposes.

Logistic regression models are often referred to as alternatives to naive Bayes
classifiers. However, the fact that naive Bayes classifiers perform better when the
size of the input data is limited, makes this technique very attractive for achieving
the given objectives, [173]. In order to demonstrate this, a logistic regression
model will be trained using a LASSO regularisation. As discussed in Chapter 5, the
LASSO eliminates unimportant input variables and with this it achieves a similar
goal as the sensitivity study carried out for the naive Bayes classifier. Another
very popular method for classification problems are random forest classifiers. A
random forest is composed of several weak decision trees, which as ensemble can

perform better than a single tree. In this study a random forest with 80 trees is used.
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6.3 Results and Discussion - Naive Bayes Classifiers

In this section, in order to find the best model for each component, at first, the
results of the sensitivity study of the trained naive Bayes classifier models are
presented. Subsequently, these results are compared to those obtained for the
logistic regression models. Finally, the component models based on the naive Bayes
classifier will be explained in detail including the conditional probabilities of their

covariates.

6.3.1 Results Sensitivity Analysis

In Figure 6.3 the sensitivity versus specificity of the predictions obtained for each
possible combination of input covariates with the failure model of the whole WT
system (‘all failures’) are shown. The graphs are sorted by the number of possible
members in each combination m. It is shown that the best compromise between
sensitivity and specificity is obtained for mid-range m. Notably, the model using all
input variable did not show the best performance out of all models. Nevertheless,
with these kinds of graphs it remains a rather difficult task to determine the best

performing model.
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Figure 6.3. Sensitivity versus specificity for failures of the whole wind turbine system.

When looking at Figure 6.4, which shows the ACC and MCC for each m, this
becomes clearer, however. It can be seen that the maximum values for both, ACC
and MCC, were obtained for m between 6 and 11 members.

Figure 6.5 displays the MCC of the predictions for all components and all
numbers of members per combination. One can see that the model for all WT
failures obtains its maximum MCC value with six model covariates.

The model for the blades needs a minimum of m = 9 members in a combination
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Figure 6.4. Metrics: (a) ACC and (b) MCC for failures of the whole wind turbine system.
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Figure 6.5. MMC of the predictions made for all components and all possible numbers of

members per combination.

of covariates, while the gearbox needs m = 6, the generator m = 5 and the main
bearing, at least, m = 3 members. The models for yaw and pitch system were no
better than a random model, and thus, did not perform well in the predictions.
This is likely to be due to the limited amount of failure events in the used data
set for these components. Additionally, it could imply that the failure behaviour of
these components is influenced more by other variables, which were not included
into the models. The remaining component models, however, showed very high
MCC values, confirming that these models serve as very good predictors.

As further displayed in Figure 6.5, many components showed a wide span of
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possible m, for which the highest MCC values were achieved. It is worth pointing
out that, as the objective of this chapter is to find the best compromise between
model complexity and prediction accuracy, only the combinations of covariates with
the minimum number of members for which the highest MCC value was obtained,
will be considered in the further. Nonetheless, more covariates could possibly be

added to the respective models, while having the same prediction performance.

Table 6.2. Results of the predictions for all naive Bayes component models with mpes:.

Component mpest MCC  ACC  Sensitivity Specificity TP FP TN FN

All Failures 6 0.783 0.889 0.842 0.941 6 1 16 3
Blades 9 0.862 0.944 0.800 1.000 8 0 26 2
Gearbox 6 0.880 0.972 0.800 1.000 4 0 31 1
Generator 5 0.686 0.944 0.500 1.000 2 0 32 2
Main Bearing 3 1.000 1.000 1.000 1.000 1 0 3 0
Pitch System - 0 0.973 0 1.000 0 0 36 1
Yaw System - 0 0.973 0 1.000 0 0 36 1

In Table 6.2 the evaluation metrics of the predictions obtained with all com-
ponent models are summarised. The number of members per combination, which
results in the best model, is denoted as mypes. It can be seen that only one false
positive (FP) was obtained for all predictions. Generally, the models for the blades,
gearbox, generator, main bearing and the whole WT system performed very well,
having high sensitivities and specificities, as well as good detection rates.

As stated before, the number of failure events for each component in the
available data set influences the accuracy of the predictions, as the models need a
certain number of positive events during the training in order to learn the structure
of the data. Hence, the models for the pitch and yaw system did not perform well
and will be excluded from further discussion. Furthermore, the main bearing failure
records only contained one event during the testing period. This was successfully
predicted, however, the model covariates discussed in the next section might be
biased with this restriction.

As shown in Table 6.3, in some cases there was little to no difference between
the best and the second-best performing component model obtained for mpes:. For
the main bearing and gearbox models, the same performance was obtained for
several combinations of input covariates. In any case, only one combination for

each component will be analysed in detail.
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Table 6.3. Comparing the best and the second-best performing naive Bayes component

models.

Component Mpest MCC - best model MCC - 27 best model Comment

All Failures 6 0.783 0.734 -

Blades 9 0.862 0.792 -

Gearbox 6 0.880 0.880 7 models showed the same MCC
Generator 5 0.686 0.533 -

Main Bearing 3 1.000 1.000 11 models showed the same MCC

6.3.2 Comparing the Results obtained for the Naive Bayes and Alternative
Models

In Tables 6.4 and 6.5 the results for the logistic regression model with LASSO
penalisation and for the classification with random forests are shown, respectively.
It can be seen that the naive Bayes classifier clearly outperformed both alternative
approaches for most components. Only the logistic regression model for the main
bearing shows the same values for all evaluation metrics. The discretisation of
the input data had a positive effect on the performance of these two algorithms,
which showed less accuracy when using the ‘normal’ input data set. This shall not
be displayed here, but can be found in Appendix D. Being the best performing
approach for the herein presented problem, in the further, only the models based

on the naive Bayes classifier will be discussed in more detail.

Table 6.4. Results of the predictions using logistic regression.

Component MCC ACC Sensitivity Specificity TP FP TN FN

All Failures 0.460 0.722 0.895 0.529 17 8 9 2
Blades 0.322 0.750 0.400 0.885 4 3 23 6
Gearbox 0.468 0.806 0.800 0.806 4 6 25 1
Generator 0.156 0.833 0.250 0.906 1 3 29 3
Main Bearing 1.000 1.000 1.000 0.906 1 0 35 0
Pitch System 0 0 NA 0 0 36 O 0
Yaw System 0 0.972 0 1.000 0 0 3 1
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Table 6.5. Results of the predictions using random forests.

Component MCC ACC Sensitivity Specificity TP FP TN FN

All Failures 0.353  0.667 0.895 0.412 17 10 7 2
Blades -0.105 0.694 0 0.962 0 1 25 10
Gearbox 0 0.861 0 1.000 0 31 5
Generator 0.213  0.861 0.250 0.938 1 30 3
Main Bearing -0.029 0.944 0 0.971 0 34 1
Pitch System 0 0 NA 0 0 36 0 0
Yaw System 0 0.973 0 1.000 0 0 3 1

6.3.3 Interpretation of the Resulting Models

This section discusses the predictions made with the naive Bayes classifier model
that was determined as the best performing in the sensitivity study for the respective
component, being displayed in Table 6.2.

In Figure 6.6 the observed and predicted failure events for each component
during the prediction period of 36 months are shown. In general, a very good

accuracy is obtained as most component failures were found.

all Failures
observed
predicted
Blades
observed
predicted
Gearbox Failure
observed no
predicted
yes
Generator
observed
predicted
Main Bearing
observed
predicted
0 10 20 30
Month

Figure 6.6. Monthly observed ans predicted failures (boolean).

Table 6.6 shows the levels to which the covariates were assigned to during
the quantile discretisation. The conditional probabilities for having one or more
failures of a certain component within the whole wind farm under the given val-

ues of the meteorological variable are shown in Figures 6.7 to 6.9 as well as Table 6.7.
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Table 6.6. Assigned levels for the model covariates by quantile discretisation.

Level WS MaxWS Rain Temp RH
Sl-unit m/s m/s mm °C %
low 2157 94184 0207 (2)-86 3559.9

mid low 5.8-6.8 18.5-21.6  20.8-35.5 8.7-13.6  60-69.9
mid high 6.9-8.1 21.6-26.3  35.6-70.3 13.7-17.9 70-76.9

high 8.1-13.6 25.3-40.5 70.4-526  18.0-27.7 77-91
Level Capacity  Hub Height Diameter Age PWR
Sl-unit kW m m years %
low 300-600 30-35 30-42 1-6.9 3.8-19.2
mid low 660 -850 43-55 44-58 7-11.6 19.3-25.7
mid high  900-1300 57-67 59-78 11.7-15.1 25.8-33.6
high 1800-2000 80-87 80-90 15.2-19  33.7-64.5

The figures display to what extend each covariate level contributed to the overall
conditional probability of the respective covariate. As the minimum m for which
the highest MCC value was obtained is used, these figures do not include all the

model covariates that could possibly affect the failure behaviour.

In the following each covariate will be analysed separately for each component
model. These findings are consistent with and extend those of Chapter 3, which
showed a similar behaviour of the environmental conditions before the respective
component failures. However, the reader shall keep in mind that the failure events
occur under the condition of a combination of all of these covariates at specific

levels.

= All failures: Figure 6.7a shows that the conditional probabilities for having
a WT failure (without distinguishing between the failed components), are
much higher for stall regulated turbines than they are for pitch regulated ones.
Additionally, slightly elevated power production and relative humidity also con-
tributed to higher probabilities of failure. Furthermore, it was found that WTs
with lower rated capacities and smaller diameters are affected more often. This
is not necessarily consistent with Chapter 2, where it was shown that pitch

regulated turbines have higher failure rates. However, this could be due to the
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fact that only a sub-set of the data introduced in Chapter 2 is used in this
chapter.

= Gearbox: In Figure 6.7b it is shown that colder temperatures during the
month before the failure as well as throughout the failure month, higher power
production and higher mean wind speeds increase the probability of having a
failure of this component. Furthermore, lower hub-heights showed to be affected
more often.

= Generator: The conditional probabilities of the generator model indicated that
the failures are likely to occur under higher relative humidity and mean wind
speeds. Turbines of lower rated capacity were affected more often. During the
month before failure slightly higher temperatures and lower maximum wind
speeds resulted in a higher probability of failure. In literature, e.g. [174],
it is shown that generator failures often occur under highly variable weather
conditions, as for instance during transition periods from summer to winter.
This might explain the difference of temperature and wind speed indicated by
the model.

= Main Bearing: The compromise of best performing model and prediction
accuracy for the main bearing failures only considered 3 covariates. According
to these, younger turbines with higher rated capacity operating under wind
conditions with low gust speeds, showed higher failure probabilities.

= Blades: High precipitation, high relative humidity during the month before
failure, slightly higher wind speeds throughout the failure month as well as
the month prior to the failure, resulted in higher probabilities of blade failures.

Furthermore, marginally older turbines were affected.

all Failures ‘ Gearbox
Regulation | [N ..o PWR.before - NI
Diameter | NI 8 ich Hub Height - I | Lov
Reted Capaciy | NI " ws |- I |
ated Capacity [ mid low S [ mid high
PWR.before - [N o PR [ | mid fow
pur - I i e - I | ov
Rruveore | NI 5% Tempocrre |
O \o) N} ) O O < N} ) O
S P ¢S S P LS
Conditional Probability Conditional Probability
(a) (b)

Figure 6.7. Model covariates and conditional probabilities for (a) all failures, (b) gearbox.
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Figure 6.8. Model covariates and conditional probabilities for (a) generator, (b) main

bearing failures.
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Figure 6.9. Model covariates and conditional probabilities for blade failures.
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Table 6.7. Conditional Probabilities for all models and input variables.

low  mid low mid high high

Diameter 0.263  0.500 0.127 0.111

o Rated Capacity 0.285  0.475 0.095 0.146

3 PWR 0231 0234 0266 0.269

€ PWR.before 0.269 0.228 0.250 0.253

® RH.before 0.209  0.266 0.278  0.247
Regulation Stall = 0.633 Pitch = 0.367

low  mid low mid high high

Hub Height 0.219  0.603 0.075  0.103

9 WS 0.164  0.185 0.308  0.342

_g PWR 0.130  0.219 0.336  0.315

§ PWR.before 0.212 0.219 0.274  0.295

Temp 0.281  0.247 0.336  0.137

Temp.before 0.260 0.315 0.247  0.178

low  mid low mid high high

WS 0.236  0.218 0.309 0.236

§ MaxWS.before  0.291  0.273 0.327  0.109

g RH.before 0.182  0.200 0.309  0.309

8 Temp.before 0.218  0.236 0.218 0.327

Rated Capacity 0.236  0.527 0.091 0.145

low  mid low mid high high

Age 0.000  1.000 0.000  0.000

g MaxW$S 0.000  1.000 0.000  0.000

Rated Capacity 0.236  0.527 0.091 0.145

low  mid low mid high high

Age 0.066  0.360 0.213  0.360

WS 0.228 0.213 0.213  0.346

WS.before 0.250 0.26 0.191  0.353

2 PWR 0.257  0.243 0.243  0.257

B Rain.before 0.176  0.199 0.338  0.287

@ RH.before 0.184  0.228 0.287  0.301

Temp 0.206  0.257 0.235  0.301

Temp.before 0.191  0.294 0.243 0.272
Hub Height 0.257  0.676 0.037 0.029
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6.4 Conclusions for the Failure Detection with Naive Bayes

In this chapter the failure events of six main WT components were predicted with
a naive Bayes classifier based on meteorological and operational conditions as well
as WT technology specific covariates. In order to find the best performing model
for each of the six main components, an extensive sensitivity analysis was carried
out, compromising between model complexity and prediction accuracy. It was
shown that each component model is driven by different input covariates. The
presented techniques are able to detect failure events in wind farms during 36
operational months reliably. Even with a certain degree of multicollinearity among
the environmental input variables, as well as the independence assumption of the
naive Bayes classifier, it performed very well. Most failures were detected by the
models. Additionally, the effects of the environmental variables on the failure
behaviour of the different WT components were discussed. These mainly match
with the findings of Chapters 3 to 5. Moreover, the performance of the naive
Bayes classifiers and the logistic regression models were compared, and it was
demonstrated that the naive Bayes classifiers outperformed the logistic regression in
all cases except for the main bearing, where both showed the same results. However,
as for this component only very limited failure data was available, this might not

be representative.

Hence, the herein proposed model based on the naive Bayes classifier can aid
wind farm operators to detect and predict WT component failure events in their
wind farms based on the environmental conditions at the wind farm site, and with

this, lower the cost related to O&M actions.

Future studies should investigate the influence of different data pre-processing
for the naive Bayes classifiers, as the form of input discretisation can affect the
model outcome. Also, a kernel density estimation (kernel based naive Bayes) could
be used to estimate the probability density functions of the input variables to the
classifiers, which might enhance the predictions. However, this requires extensive
input data, which was not available for the present study. Additionally, other
meteorological variables should be included. Especially, the turbulence intensity is
expected to have a significant impact on the failure behaviour of certain components.
Also, data should be used that contain more failure information for the main bearing,

pitch and yaw system. These were represented with a low number of failures in
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the data set of this study. This results in highly imbalanced classes (‘failure’, ‘no
failure’) and it was not possible to generate reliable prediction models for these
components. Hence, in further work, the underlying class distribution should either
be adjusted, or more failure events should be considered. Finally, future research
could also focus on different failure modes of each component, as it is supposed
that each failure mode is provoked by different combinations of meteorological and
operational conditions.

After having proposed a well functioning technique for failure detection on wind
farm level based on the site specific environmental conditions, in the subsequent
chapter, approaches for failure prediction using operational and component specific

condition monitoring data will be introduced.
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In the previous Chapter 6, failure detection on wind farm level was carried out using
naive Bayes classifiers. The presented method has shown to perform well when
taking into consideration the weather conditions in the wind farm. This chapter
will focus on data-driven fault detection in wind turbine components using SCADA
and CMS data. Both systems collect a remarkable quantity of data, which contain
important information on the health status of the WT components as well as on
operational and external conditions. Analysing these vast amounts of data and
deriving useful information is a very costly and difficult task. In order to use these
data for fault detection purposes, appropriate data mining and machine learning
techniques have to be identified. Furthermore, the relationships between the data
generated from both systems need to be understood to eliminate unnecessary
information and to select appropriate inputs for fault detection algorithms.

Some studies have compared the use of SCADA and CMS data for failure de-
tection, [175, 176]. Furthermore, the synergies between different SCADA variables
have been analysed in [177]. Few efforts have been made to join SCADA and
vibration data, [178, 179]. These are, however, limited to time series measurements
of vibrations obtained from the SCADA system. Hence, to date there has not
been any approach combining SCADA and CMS data for enhanced WT condition

monitoring, failure detection and remaining useful lifetime estimation, see also [7].
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In this chapter SCADA data and CMS vibration measurements are merged and
the relationships between both sources are analysed. Then, several applications
suitable for condition monitoring based on both data sources are presented. Fur-
thermore, a tool for failure detection in wind turbine components is presented,
which compares the vibration data on wind farm level and triggers alarms when a
component is at risk. The results presented in the following have been published in
Paper (VII).

7.1 Background: Condition Monitoring of Wind Turbines

The objective of condition monitoring is to detect faulty or degraded components
as early as possible in order to avoid unplanned downtimes of the wind turbines.
Condition monitoring systems have been used in several industries over many
years, however, only recently WF operators have started to install these systems
in their wind turbines. This might be due to the fact that installing CMS is
quite expensive and it might not be financially feasible for all wind farms, [176,
180]. Nonetheless, in many cases it could be an attractive investment for wind
farms, where the benefits of early failure detection can outweigh the initial cost
of installation. Contrarily, SCADA systems are nowadays installed in nearly all
operating wind turbines. Their data are often directly available to the WF operators,

making them an attractive source for condition monitoring.

7.1.1 Condition Monitoring based on SCADA Data

Recently, research has increasingly been focusing on finding solutions for condition
an performance monitoring using exclusively SCADA data. In that manner, ad-
ditional cost for installing and operating CMS, as well as analysing the obtained
data are avoided. Common variables monitored by SCADA systems are the wind
conditions (e.g. wind speed, direction, turbulence intensity), operational parameters
(for example power output, pitch angles, rotational speed, etc.), as well as operating
temperatures and in some cases vibrations of certain components. These measure-
ments generally have a sampling frequency of roughly 1 Hz, however, in most cases
ten-minute average statistics are saved. Additionally, the SCADA systems trigger

alarms if certain pre-defined thresholds for the monitored variables are exceeded.
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Literature in condition monitoring with SCADA data has focused on the use
of alarm logs, [181-184], as well as the development of damage models derived
from SCADA measurements, [185, 186]. Most available literature, however, is
concerned with the use of temperature measurements for fault detection in drive-
train components. For this, clustering approaches, [187], and trend analyses,
[175, 180], to discover similarities in the signals have been applied. Moreover,
normal behaviour modelling has found several applications, which have lead to very
promising results. Various normal behaviour models have been developed using
adaptive neuro-fuzzy inference systems, [188], artificial neural networks, [189, 190],

or other regression techniques, [191].

7.1.2 Condition Monitoring based on CMS Data

Condition monitoring based on CMS data has a long history frequently used in
machinery throughout several different industries. In wind turbines, the installed
systems usually consist of acoustic, oil level, strain or vibration sensors, which are
spread over different WT components, [192]. In this chapter, the term CMS data
will exclusively refer to vibration data. The latter is the most frequently obtained
form of CMS measurements, due to the comparably low installation cost of the
required equipment, [176].

The vibration measurements need to be pre-processed before being analysed
further, as the raw time series signals are not very useful for failure detection.
Frequently used processing techniques can be classified as time-domain analysis
(e.g. Hilbert transform, statistical analysis, envelope analysis), frequency domain
techniques (e.g. Fast-Fourier-Transform (FFT), Cepstrum analysis), as well as
time-frequency techniques (e.g. wavelet-transform), [193].

The most frequently applied pre-processing technique is the FFT, which trans-
forms the time domain signals into the frequency domain, and represents the
vibration measurements in a single frequency spectrum. This spectrum is then
analysed by experts, whereas certain spikes and harmonics can directly be related
to component degradation or faulty conditions, [194, 195]. One limitation of FFT,
however, is that it can only be used for stationary signals. Non-stationary signals
might result in indistinct FFT results. For machinery operating in highly non-
stationary conditions (e.g. wind turbines), several techniques have been developed

to ensure stationarity before carrying out the FFT, [196, 197].
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Envelope analysis is another often applied signal processing technique and is
able to bring forward fault frequencies that are not necessarily shown in frequency
spectra generated by FFT, such as for example shock impulse repetition and their
harmonics, [198]. The enveloping process involves the application of a band pass
filter to the time domain signal, which centres on the desired frequency energy
region. The repetition rate is extracted from the filtered time signal using amplitude
demodulation. When applying a FFT to the enveloped signal one can derive
the fault specific characteristic ‘impact frequencies’ and their modulations, e.g.

sidebands.

Another commonly used frequency-domain technique for vibration data pre-
processing is the Cepstrum analysis, [199, 200]. It performs an inverse Fourier
transform of the logarithmic power spectrum and can be used to analyse the lower
level harmonics of the logarithmic power spectrum, [53, 194, 201]. Thus, it is very
similar to auto-correlation analysis, which in turn carries out the inverse Fourier

transform on the regular power spectrum.

By identifying harmonics and sidebands in the frequency spectra of the vibration
data, specific fault frequencies of rotating machinery can be determined. While
different harmonic families can be found with Cepstrum analysis, sidebands can
be obtained by performing Envelope analysis, [202]. Thus, by combining FFT,
Envelope and Cepstrum analysis as well as statistical methods such as the root
mean square amplitude (RMS), various forms of failures can be found. This is
essential for failure detection and many commercially available solutions rely on
combinations of these techniques for fault diagnosis, [203]. Nonetheless, the results
obtained from these tools always need to be evaluated by an expert, deciding on
whether the analysed spectra indicate a faulty condition or not. By deriving features
like side band energy and kurtosis, [204], applying deep learning networks, [205],
or classifying wind and rotor speeds for monitoring purposes, [206], some authors

have tried to automate failure detection with CMS data.

Comprehensive literature reviews concerning condition monitoring techniques
for wind turbines based on vibration analysis are presented in [53, 194, 207]. It has
been found that there is still a serious lack of fully automated, generic approaches

for fault detection with CMS data requiring little to no human interaction.
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7.2 Methodology

In Figure 7.1 the objectives of this chapter are summarised. The global aim is to
demonstrate how SCADA and CMS data can be coupled for condition monitoring
and fault detection and to build a basis for further research in the field. This work
is intended to explore different possible solutions that can be achieved with the

merged data.

Hierarchical
Clustering (HC)
Understanding relationships | |
between data Dynamic Time
Warping (DTW)

Merging CMS and SCADA data
Distance-based Automated

using a spectral binning method Vibration Evaluation Random Forests (RF
for vibration records

7

Generalised Linear
Models (GLM)
Prediction of CMS alarms —

Gradient Boosting
Machine (GBM)

Artificial Neural
Networks (ANN)

Figure 7.1. Application of the merged data for different purposes.

Firstly, a method is introduced to merge the 10-minute mean SCADA data
with the CMS vibration data. These merged data serve as input to three different
tasks, which are not necessarily building upon each other and should be treated as

independent. These are:

A Understanding relationships between data: compare the different signals in the
merged data set and find similarities and/or relationships.

B Distance-based automated vibration evaluation: an algorithm is developed for
automated failure detection on wind farm level based on CMS data.

C Prediction of CMS alarms: with this the possibilities of triggering earlier warnings
than the CMS system are evaluated. Different well known data-driven learning
algorithms are used.

= Count of alarms: predict the number of CMS alarms only with SCADA data.
This is done to examine the possibility of substituting condition monitoring

systems.
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» Time dependent probability of alarm: predict the probability of experiencing
a failure event in a WT. This can be used as an early warning system based
on only SCADA data.

» Alarm time shifting: this represents an alternative approach for early warn-
ings. The aim is to predict the alarms in a classification set-up, investigating

also on the benefit of adding CMS data to the prediction.

7.2.1 Data

The data used in this chapter were recorded over a period of four years (January
2013 to December 2016) at an onshore wind farm in Denmark operating 13 turbines
(referred to as TO1 to T13). The turbines have rated capacities of 2.3 MW and
are three bladed and pitch regulated machines. Different data sources have been

considered and consist of:

= Component failures: Both, the SCADA and CMS systems indicated severe main
bearing failures in three turbines (T01, T03 and T08), which had to be replaced
causing significant downtime. There were no further confirmed failures or major
replacements.

» SCADA data: The SCADA data consist of 155 channels with 10-minute average
values measured at various locations of the turbines.

» SCADA alarm logs: These contain high temperature alarms related to the main
bearing generated automatically when a pre-defined temperature value was
surpassed.

= CMS vibration data: Consisting of multiple Envelope (Env), FFT, Cepstrum and
RMS records in irregular sampling intervals. For better readability in the further
‘spectra’ and ‘frequency’ will be used to describe CMS records, however, these
also refer to the respective equivalents (‘cepstra’ and ‘quefrency’) in Cepstrum
analysis. Each record is named after its characteristic sampling frequency and
bandwidth, e.g. 'Env1000’ or ‘FFT1000', which indicate an Env and FFT with
frequencies between 0 and 1000 Hz. The vibrations of seven WT components

were measured:
1. Generator Drive End (GDE),
2. Generator Non-Drive End (GNDE),
3. High Speed Shaft (HSS),

138



7.2 Methodology

4. Intermediate Speed Shaft (IMS),
5. Main Bearing (MB),
6. Planetary Stage (PS),

7. Tower top acceleration, which only contained RMS.

In order to ensure quasi-stationary operating conditions, the vibration measure-
ments were taken in seven different active power intervals. It will be shown
later which of these active power intervals is the most suitable for the herein

presented approaches.

s CMS alarms per component: Triggered by the commercial condition monitoring
system, as soon as the vibration level of the component indicated by the Env,
FFT, Cepstrum or RMS exceeded a certain threshold. In the case of main

bearing failures this was mainly indicated by the RMS.

7.2.2 Merging SCADA and CMS Data

In order to set up a uniform data base for further application of the data driven
prediction algorithms, the CMS and SCADA data need to be processed. Both are
available in different temporal resolutions, and while SCADA data are frequently
given as 10-minute average values, CMS measurements are obtained once per day,

week or month.

Figure 7.2 shows an example for typical Envelope spectra (on log-log axes)
obtained before and after a main bearing failure. For examining the health condition
of a component one has to track down how the amplitudes of different spectral
peaks, i.e. fault frequencies, side-bands and harmonics, change over time. This is
normally done manually by experts and is a time consuming process that involves
a great amount of experience. Component deterioration is usually indicated by a
specific trend in the vibration behaviour, expressed by e.g. rising amplitudes of
specific frequency ranges across subsequent measurements. This can be observed
in Figure 7.2, where the amplitudes over certain frequencies increase steadily until
the failure occurs in April 2016.

CMS spectra obtained from Envelope, FFT and Cepstrum analysis can contain
a high number of data points. Hence, including them entirely in machine learning

algorithms can lead to unnecessarily high computational effort and can affect the
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accuracy of the results. Thus, reducing the complexity of these input data is

necessary.
0.1
0.01
Amplitude

0.001

100p

0.1 Jan 2016
1 Mar 2016
Freq. (Hz) 10° May 2016
Jul' 2016

Figure 7.2. Example of Envelope records in time-frequency domain (log-log axes) for
manual analysis by experts. The amplitudes of certain frequencies rise significantly prior to
a failure (in April 2016) .

For this, a binning approach was developed, which splits each Envelope, FFT and
Cepstrum record into bins of frequencies and takes the integral over the frequency

and amplitude recorded in each bin. In Figure 7.3 this process is displayed.
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(a) Spectral binning. (b) Binned spectrum.

Figure 7.3. The binning process developed for this chapter.

After having carefully evaluated the different CMS records (FFT, Cepstrum and
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Envelope), the total number of bins was set to 17, which are labelled in alphabetical
order A,B,...,Q. This number of bins enables to capture the different peaks in the
spectrum that can indicate the fault frequencies, harmonics and side-bands, while

reducing the dimensionality of the spectrum significantly.

This is illustrated in Figure 7.4, where the Box-Whisker plots of all binned
Envelope and FFT spectra obtained during healthy and faulty operation of one WT
main bearing are compared. It is shown that the variations and mean values obtained
in the healthy and faulty states differ substantially from each other. Furthermore,
it can be seen that the changes occur in different regions of the binned spectra.
This is due to the fact that both techniques, FFTand Envelope, treat the raw signal
differently. Hence, a significant dimensionality reduction is achieved by applying
the proposed binning approach, whilst preserving the important properties of the

spectra for distinguishing between healthy and faulty states.
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(a) FFT. (b) Envelope.

Figure 7.4. Comparing binned FFT and Envelope records in a healthy and faulty state of

a wind turbine main bearing.

In a final step, the temporal resolution of the CMS and SCADA records need
to be matched. As fewer CMS measurements are available, they will be adjusted
to match the resolution of the SCADA measurements, by keeping the CMS values
constant (i.e. it is assumed that they do not change) if no measurements are

available and are updated as soon as there are new measurements.

The merged CMS and SCADA data were then standardized: centred to a mean
equal to 0 and divided by their standard deviation.
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7.2.3 Understanding Relationships between Data

The relationships between SCADA and CMS data are analysed in order to under-
stand how similarities change in the case of a component failure. With this it can
be seen which signals are appropriate for data-driven failure detection and which
ones can be omitted. Here, a simple correlation analysis would not be effective,
due to the irregular temporal resolution of CMS data and the large number of
signals. Instead, Hierarchical Clustering (HC) and Dynamic Time Warping (DTW)
are applied.

HC is a frequently used unsupervised machine learning tool to group data
bottom-up (agglomerative) or top-down (divisive), [208]. In this section an agglom-
erative HC is used with the average linkage method and Euclidean distances.

DTW was originally developed for speech recognition, [209] and is a method
to measure similarities in two time-dependent signals. These signals may have
characteristics that are out of phase, and DTW re-aligns them by finding the
best ‘warping’ path that results in the lowest sum of pairwise distances. The
warping path is required to be monotonic and boundaries might be set to limit
the adjustment. For this task, DTW is applied with a Euclidean distance and a
maximal adjustment window of two weeks. Groups of data are compared by a

2-dimensional DTW distance that stretches all signals of each group together.

7.2.4 Distance-based automated vibration evaluation

In this section, the methodology for the herein developed distance-based automated
vibration evaluation (DAVE) framework is described. It uses CMS vibration data
and is intended as a generic tool for WT health assessment based on the fact that
it is unlikely that all turbines in a farm experience a failure of the same component
at the exact same moment. This tool is especially useful for automated failure
detection and as early warning system on wind farm level. By calculating the
pairwise distances between the measured vibrations of the components of all WTs,
it detects deviations of the measured vibrations of a ‘faulty’ WT component from
‘healthy’ operation.

At first, this tool needs to be set up for the wind farm during normal operation.
This procedure involves analysing the CMS records for each component separately.

The initial configuration is then used for the actual failure detection with online

142



7.2 Methodology

measurements obtained for the same component. In Figure 7.5 the automated

failure detection process is visualised.
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Figure 7.5. Distance-based Automated Vibration Evaluation (DAVE) workflow .

This procedure involves the following steps:

1. Initial setup: The thresholds to distinguish abnormal from normal beha-
viour/operation have to be defined. This could be accomplished either by
consulting expert judgement or by applying data-driven methods. The latter
will be used for setting up the tool. It uses the measured vibrations during
‘healthy’ operation and includes two sub-tasks:

(a) DTW calculations on wind farm level: At each time step ¢, the spectra of the
vibration measurements of two turbines are compared using DTW distances
(e.g. the vibration records of turbine TO1 are compared to those of T02,
T03, etc.). Hence, for each point in time and each combination of WTs, the
similarity of two binned vibration spectra is assessed. The DTW algorithm
is used to identify similar trends in the different vibration spectra. By virtue
of its flexibility, DTW can achieve this even if the spectral peaks are at
slightly different frequencies. To ensure that similar fault frequencies are
captured, the warping window is limited to a maximum of two neighbouring
bins (one at each side of the actual bin). This allows a slight shift of peaks

without considering peaks at opposite ends of the spectra as corresponding.
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(b) Distribution fit and threshold definition: By fitting a distribution to the
distances and setting a threshold for the healthy condition, the anomalies
are defined for the subsequent on-line application. The threshold for this is
a critical value, which is set to a certain percentile of the distribution. All

values higher than this critical value are flagged as anomalous subsequently.

2. Operation: The on-line data recorded during operation are then used for the

following:

(a) DTW calculation on wind farm level: Analogue to step 1 (a), for each point
in time all pairwise distances between the vibration measurements of all
turbines are calculated. With this a distance matrix containing all turbines

is created.

(b) Anomaly detection: Based on the threshold defined during the initial setup,

anomalies within the pairwise distances are identified.

(c) Alarm assignment: To determine whether an alarm has to be triggered and
to which turbine it corresponds, the number of anomalies from pairwise
comparisons is counted for each turbine (at each time step). If the count is
larger than one, an alarm is issued. The alarm is assigned to the turbine

with the highest count.

(d) Health status: With the above procedure, alarms are generated for each
turbine, component and CMS record. The overall health status can be

visualised with a dashboard summarising all alarms.

The DAVE framework is exemplified in this chapter for the main bearing, for

which several failures were recorded in the data base.

7.2.5 Algorithms used for the Prediction of CMS alarms

Usually CMS alarms are triggered significant time before the component actually
fails. Being able to predict these CMS alarms could lead to considerable benefits in
terms of early failure detection. The third objective of this chapter is to predict
the CMS alarms using classic machine learning algorithms. Here, three different
approaches are investigated. (1) The count of CMS alarms is modelled. (2) The
probabilities of having an alarm over time are obtained. (3) The alarms are predicted

in a classification set-up with an alarm time shifting approach. As there have been
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observed failures in the main bearings (MB) of three turbines, the focus here is

only on MB alarms.

For this, four regression and classification techniques are used: Generalised
Linear Model (GLM), Random Forests (RF), Gradient Boosting Machines (GBM),
and Artificial Neural Network (ANN). These algorithms will be shortly explained in

the following.

Generalised Linear Model (GLM) A GLM, [210], is a generalisation of the ordinary
linear model and allows for having an error distribution other than the Gaussian
distribution. Hence, depending on the modelled response variable, an appropriate
distribution has to be chosen. Assuming a distribution of the exponential family,

the probability density function can be written as:
yp—b(p) +e(y,9)
flyip,0) =e SO (7.1)

with the response variable y, parameters ¢ and ¥, as well as the functions b(-) and
¢(+), which determine which distribution of the exponential family is used. The
conditional mean and variance of the distribution are given by: Ely;|z;| = p; =
V' (i) and Var|y;|z;] = 90" (v;i). The link function, which denotes the dependence

of the conditional mean on the regressors x;, is given by:

g(w) =i B (7.2)

where 3 is a vector of regression coefficients. For modelling the count of CMS
alarms a Poisson distribution will be used. It was introduced in Eq. 5.25 in
Chapter 5. For better readability, however, it will be given again at this point. The

probability density function of the Poisson distribution is defined as:
My
flys ) = j,’-e "o (7.3)

The dispersion parameter is equal to one ¥ = 1 hence, the mean and the variance of
the distribution are identical. In a Poisson distributed GLM, a log-linear relationship
between the linear predictor and the mean of the distribution is used, which results

in the logarithmic canonical link function:
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g(pi) = log(pi) - (7.4)

For modelling the time dependent probability of having a CMS alarm a logistic
regression is applied. This is achieved by using a binomial distribution for the GLM
in combination with a logit-link function. The probability density function of the

binomial distribution is given by:

— (1) v(1 — )7y _
f(%@(y) (I—m) ; (7.5)

with parameter 7, and y is the number of successes when running ¢ trials. The

logit-link function can be defined as:

g(m) = logit(m) = 77— . (7.6)

In order to eliminate redundant covariates, the GLMs will be used with a LASSO
penalised likelihood estimation, which was explained in Chapter 5. The estimated
standardised coefficient magnitudes serve then as indicator for the importance of

each input variable.

Random Forests (RF) In RF, [211, 212], an ensemble of single decision tree
predictors is trained using a so called ‘bagging’ method. Each decision tree predictor
is considered a weak learner, however, a combination of these weak learners results
in a strong learner, and thus, in a better predictor. RFs are very often used in
machine learning, as they can handle both, classification and regression problems.
One of the major advantages of RFs is that they do not have problems with
over-fitting, by selecting a random set of predictor variables for each tree node, as

explained below.

In Figure 7.6 the RF classifier is exemplified for three decision trees. At first,
subsets of the entire data base are randomly generated using a Bootstrap Aggrega-
tion (bagging) algorithm, [213]. The number of sub-sets depends on the number
of trees that are to be grown. Each sub-set should approximately include 2/3
of the whole data set, [212]. The remaining 1/3 are called out-of-bag samples.
Then, full trees for each random sub-set are grown, while the out of bag samples

serve to determine the unbiased estimate of the error. For growing each node of
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each tree, a set of d predictor variables are randomly chosen out of all predictors,
whereas d should be significantly lower than the total number of predictors D in the
data (d << D). Usually, for regression problems d = D/3, and for classification
problems d = /D are chosen. At the next node of the tree, a new set of d predictor
variables are chosen.

After having grown all decision trees, the random forest is used to predict the
response variable. This is exemplified in Figure 7.6 for a classification problem.
Here, each single decision tree makes a prediction on the resulting class variable.
The final prediction is the one that was predicted by the majority of the decision
trees.

For regression problems the procedure is similar. However, instead of a majority
vote to determine the final prediction, usually an average or weighted average of

all of the resulting nodes is taken.

Random Sub-Set Random Sub-Set Random Sub-Set
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Final Prediction: Class A

Figure 7.6. Example of a random forest classifier with three decision trees.

Given the high number of channels in the input data, in this study aa RF with
60 individual decision trees will be used.

The importance of the predictor variables (feature importance) is then obtained
using a method called permutation, which is also known as Mean Decrease Accuracy

(MDA). The idea behind this method is to investigate how the accuracy of the
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prediction (indicated by e.g. the coefficient of determination R?, or an error metric
such as MAE, RMSE, etc.) decreases if the investigated feature is not present.
This could be done, as shown in Chapter 6, by re-training the classifier leaving
out one or more predictor variables. As the model in this chapter is significantly
more complex, however, re-training would be extremely computationally expensive.
Hence, in order to avoid re-training, one can remove the input variable only from
the test data set, and calculate the score without this feature. As simply removing
one input variable from the test data would not work, it is replaced by random
noise that follows the same distribution as the original input variable. With this, the

permutation importance for each input variable can be calculated and compared.

Gradient Boosting Machines (GBM) Similar to RF, the GBM, [214], produces a
prediction model based on a combination of weak learners. Whereas, RF uses fully
grown trees (high variance, low bias), and lowers the prediction error by reducing
the variance, the GBM uses very shallow decision trees with low variance and high
bias, and uses 'boosting’ mainly to reduce bias (but also variance). The boosting
is a sequential process (not parallel tree growing like in RF) and in each iteration a
decision tree is added, enhancing the previous model. Hence, the boosting process
is a way of increasing the model accuracy by learning from the mistakes of the
previous model. This involves, firstly, defining a loss function, e.g. an error metric
like the Mean Squared Error (MSE). The gradient boosting aims at minimising
this loss function by continuously adding weak learners to the model, while leaving
the existing ones unchanged. The predictions are updated until the residuals are
close to the minimum and the predictions are similar to the observed values. Unlike
RF, it is possible to over-fit a GBM, this risk can for example be lowered by using
very shallow decision trees (reducing the nodes per tree), or by defining a (high
enough) minimum number of observations that have to be included in a node for it
to be considered for splitting. Furthermore, reducing the learning rate (shrinkage)

or carrying out a cross validation can be used to avoid this problem.

In this study a GBM with 100 decision trees is applied. Each tree has a maximum
depth of 10 levels and a learning rate of 0.1 is applied. Furthermore, a 10-fold cross
validation is carried out. Again, permutation is used to obtain the significance of

the different variables.
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Artificial Neural Networks (ANN) ANNSs are among the most famous machine
learning techniques and have been used in a vast number of classification and
regression problems. A network consist of various interconnected nodes, often called
neurons, which are distributed over several layers. The neurons are connected via
so called ‘synapses’, which are weighted paths from one neuron to another. More
important connections have bigger weights than unimportant ones. In Figure 7.7
an example of an artificial neural network with one input, two hidden, and one
output layer is shown. In this study, a feed-forward ANN set-up is used, which
implies that the connections between the nodes only follow one direction: from the
input layer towards the output layer. Three hidden layers of 50, 40 and 20 nodes
respectively are trained. This set-up showed the best performance in an iterative
testing of different configurations starting with one hidden layer and a small number

of nodes. The ANN is trained using Levenberg-Marquardt backpropagation [215].
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Figure 7.7. Example of an artificial neural network with two hidden layers.

This method aims at changing the internal structure of the ANN, i.e. the weights
and biases at each node, in order to minimise a given cost function. A commonly

used cost function for ANNSs is the mean squared error (MSE), which is given by:
1
Ww, B) = o= S ly(@) - al* (7.7)

where z is the individual input from the training data set, y(x) is the desired output,

a are the actual outputs for x, n is the number of inputs in the training set, w
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are the weights and B denotes the bias. The backpropagation algorithm assumes
that the cost function can be written as an average of the cost functions for all z,
which is applicable to the MSE. In a fist step, the weights of the neural network
are selected randomly and the outputs are calculated using one of the inputs. With
this, the cost function is determined, indicating how close the outputs are to the
actual values. Subsequently, the output is propagated back through the network
to calculate the error of all hidden and output neurons. Then, the weights and
biases of the neurons are modified accordingly. In order to determine how changes
in weight and bias of the j-th neuron on layer [ affect the cost function, its partial

derivatives (S\I//(Swé-,,C and 5\11/5B§- need to be computed.

This can be achieved by applying the chain rule starting from the output layer
and propagating backwards in direction of the input layer. This shall be explained
in the further for the adjustments of the weights of each nodes, however, it is
carried out in a very similar manner for the bias. The chain rule for the changes is

given by:

v _ 5w, i
5“’9,14 N 505,C 52}C &Ué.’k

, (7.8)

where 02, is the output of neuron k on layer [, wé- i is the weight of the connection
between neuron j and k, zfg is the weighted input value of neuron k, and the error

of the output neuron:

v d

§= 2" .
l l
doy.

(7.9)
For example on the output layer, the final value of the derivative 5\11/505,f is obtained
by:

o _ov =a—y(x) . (7.10)

— =
dop,  da

As in this case the output of the neuron is equal to the output value of the whole

ANN, the derivative is the expected output value minus the obtained one in this

neuron. The derivative of the output of neuron k regarding its input can be obtained

by:
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dol, _ 9v(z})
(5zf€ (5zfC

=70z (1 —(=) (7.11)

where 7(z}) is the sigmoid activation function, denoted as:

I 1

a) = —— (7.12)
1+e %k

Note, activation functions other than the sigmoid function can be used, as explained
e.g. in [215]. The derivative of the weighted input with respect to the weight of
the incoming connection is written as:
!
82} 0w 1,0k !

Swt - Swk % (7.13)
Js I

With this, the error § on the neuron of the output layer can be defined as:
0= (a—y(x)) -a(l—a) . (7.14)

In order to calculate the error on a neuron of the next hidden layer, it is assumed
that the cost function depends on all inputs from the neurons that receive input
from this neuron. Hence, the derivative is obtained by the sum of the derivatives of
all neurons in the layer closer to the output layer that are connected to this neuron.

This is given by:

g S 6z ST ol
—_— —_— € = 776 . 1
(502 Z (zé 502) Z ((5016 52éwk’e> (7.15)
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Here, the neurons of the layer that is located closer to the output and that serve

as input to the neuron of interest, are denoted with e. This results in the error for

this neuron:
d= Z(éewk,e)a(l —a) . (7.16)
eck

This, however, only works if the errors of all neurons of the layer closer to the output
have been calculated beforehand. Finally, the weights of the connections have to
be adjusted, using gradient descent optimisation, with the aim of minimising the

cost function. The adjustment of the weights is given by:
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ow

K = —ryf ok (7.17)
L

Awék =
where k is the learning rate, that has to be pre-defined. With higher learning
rates, the algorithm converges faster, is however, likely to be less accurate. This
procedure is carried out for all neurons of all layers of the ANN starting from the
output layer and progressing towards the input layer. For further information, a
comprehensive explanation of backpropagation and gradient descent optimisation
can be found for example in [216, 217].

The variable importance is determined using functional analysis of the final
weight matrix, as introduced in [218]. This method derives measures based on the
architecture of the trained ANN, not exclusively on the data, and has shown to

outperform traditional magnitude based input significance for ANN.

7.2.6 Prediction of CMS alarms

Three distinct approaches for predicting the CMS alarms are used. These contain
predicting the count of CMS alarms, the time dependent probability of having
a CMS alarm, and predicting the events using an alarm shifting method. Each

approach will be explained in detail in the following.

Count of alarms. For predicting the number of CMS alarms, only SCADA data
are used. The SCADA channels that were containing constant or cumulative values
were eliminated for this task, as they would contain unnecessary information.

For this task, the previously mentioned algorithms are used in a regression
set-up. This means a discrete quantity output for the count of alarms is predicted.
Thus, the GLM is set with a Poisson distribution and logarithmic link function. The
other algorithms are used as explained above.

Two distinct concepts for training and testing are applied:

» Random sampling: The data from all turbines are split with a ratio of 80%
training and 20% testing.

= Blind testing: The training is carried out with data from all turbines except
one. Then blind testing is then done on the data of the remaining turbine. This

leads to an approx. share of 92% of the data for training and 8% for testing.
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As in the data set the number of time-steps containing entries for alarm events is
much lower than the time-steps where no alarms were observed, the class distribution
needed to be adjusted using a method called ‘under-sampling’. This technique
re-balances the representation of different targets, [219]. Hence, the resulting
training dataset is under-sampled, which limits the number of time-steps without

alarm to 80% of the data.

Time dependent probability of alarms. For this task, the aim is to calculate the
time-dependent probability of getting a CMS alarm using a classification approach.
Again, only SCADA data are used for the predictions. For the training, the data
are under-sampled to a ratio of 80% and 20% for the two respective classes {0,1},
which stand for {'no alarm’,‘alarm’}. For the prediction, the blind testing approach
is applied, as any random sampling would hinder a time-dependent evaluation.
The algorithms introduced earlier are used in a set-up for classification problems.
Thus, the GLM is applied with a binomial error distribution and a logit link-function.
Also, when modelling binary response variables, the other learning algorithms can be
used as probabilistic classifiers. Then, the output from the predictions is a posterior
class probability at each point in time, [220]. To compare the performance of the

techniques, both, turbines with and without failures are analysed.

Alarm time shifting. Here, again a binary classification approach is used. The
predictions are carried out by shifting the dataset to an earlier time step and thus
training the model with shifted data. A lead time equal to zero, corresponds to
modelling the alarm, while higher lead times correspond to prediction of the alarm
in advance. Although this is a static way to represent a dynamic process, it can
provide useful information about the performance of the classifier before the actual
occurrence of an event. Various combinations of the different input sources are
investigated: 1) SCADA, 2) SCADA and RMS and 3) all data. Here ‘all data’
stands for SCADA, RMS and all MB spectra from one active power interval. With
this the contribution of each data source to the prediction accuracy is evaluated.
For this task, the classifiers RF and ANN are employed. Furthermore, data from all
turbines are used with random sampling and are again under-sampled, as described
before. A 10-fold cross validation is carried out on the data leading to 10 distinct

predictions, which are then gathered to provide an average performance.
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7 Data-Driven Fault Prediction based on SCADA and CMS Data

7.3 Results: Failure Prediction based on merged CMS and
SCADA Data

This section presents the results for the application of the processed and merged
CMS and SCADA data for the three defined objectives: (1) understanding relation-
ships between the data, (2) automated failure detection (DAVE) and (3) predicting
the CMS alarms. These three approached do not interact and their results should

be considered separately.

7.3.1 Understanding Relationships between Data

In Figures 7.8 - 7.9 the results of the HC analysis of all data per turbine are shown
using simplified dendrograms and statistics of the most separated clusters. Generally
speaking, a cluster analysis can show which signals are similar, i.e. joined in a
cluster, and which are more different, i.e. in separated clusters. In agglomerative
HC, the process of building the clusters is more important than the final result
as all signals are eventually joined to one cluster. This process can be visualised
using so called dendograms, which show how the clusters are formed by connecting
two ‘leaves’, i.e. sub-clusters, to form the next cluster. The x-axis shows the
sub-clusters or in the lowest level all signals. Due to the high number of signals
used in this study (3375), the lowest level can not be shown, and the dendrograms
were cut at 20 leaves. The height in the y-axis represents the difference of the two
joined sub-clusters with respect to the Euclidean distance. Hence, a dendrogram
with vertically close clusters indicates very similar signals.

It can be seen in Figure 7.8a that in fault-free operation, there was no clear
cluster separation obtained. The two clusters that are joined at the top of the
dendrogram consisted here of one big cluster and one smaller cluster with only a
few signals (the most separated cluster). The second most separated cluster, which
is not a sub-cluster of the most separated cluster, showed a similarly small number
of signals. However, in the case of the MB failures clear separation of more signals
is shown in Figures 7.8b and 7.9. The two most separated clusters were formed by
many MB signals for TO3 and T08. This proves that there are clearly deviating
features in a number of signals before the failure event. Noticeably, there were
mainly GNDE and not MB contributors in the case of the MB failure in T01.
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7 Data-Driven Fault Prediction based on SCADA and CMS Data

In a second step, the relationships between the CMS records for different active
power intervals were evaluated using DTW distances. As stated before, in order
to ensure nearly stationary operating conditions for further analysis, the condition
monitoring systems separate the vibration records according to the respective active
power interval, in which they were recorded. The aim of this comparison was to
see, which of the seven active power intervals is the most relevant to indicate faulty
conditions, such that this can be used in further application for failure prediction.
The DTW distance was calculated by comparing two spectra, each measured in a
different active power interval. Here, the calculated distance is normalised by the

number of samples in the signal for better readability.

The pairwise comparison of the spectra obtained in different active power
intervals showed that for fault-free operation, the normalised distances were usually
greater than 0.2. However, in the case of MB failures, the spectra obtained for all
active power intervals became more similar, showing values as low as 0.05. The
normalised distances between the spectra recorded before the failure of turbine TO01,
TO3 and TO8 are displayed in Figures 7.10, 7.11a and 7.11b. In these graphs, the
pairwise distances of all active power intervals are shown for various combinations
of MB records. Each set of seven nodes represents the seven active power intervals.
The heading above each set of nodes identifies the two compared record types
according to the direction of the arrows connecting the nodes (always starting
at the lower number). The colour of the arrows shows the similarity of the two
connected spectra, as indicated by the DTW distance. With this, higher distances
imply higher dissimilarities.

As shown in Figure 7.10 for TO1, some spectra were only similar for certain
power intervals. Very low distances and accordingly similar features were obtained
for all intervals in the FFT1000 spectra. Contrarily, interval 1 appeared to have
unique features for Env200 spectra, as they are not connected to any other node.
If the different types of records are compared, it can be seen that the FFT1000
and Env200 are more similar, but the two FFT records FFT1000 and FFT35 are
less similar.

The resulting DTW distances for the MB failures in TO3 and T08 shown in
Figures 7.11a and 7.11b are comparable to T01, except for interval 6 with unique
features (instead of interval 1). However, all FFT1000 and Env200 distances were
slightly larger in TO8 — a trend that was amplified in TO3 with even higher distances.
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7.3 Results: Failure Prediction based on merged CMS and SCADA Data

To sum it all up, the DTW analysis confirmed that the CMS records from the
different active power intervals showed mostly similar features, i.e. using data from
only one active power interval is a reasonable compromise to handle large number
of records. Thus, in the further, the study is based on data from the fourth active
power interval corresponding to 58-69% rated capacity.
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Figure 7.10. DTW distances for various MB records with different active power intervals
in the case of a MB failure for T01 (Jan-Mar 2016).
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Figure 7.11. DTW distances for various MB records with different active power intervals
in the case of a MB failure: (a) T03 (Apr-Jun 2015), (b) T08 (Oct-Dec 2015).
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7 Data-Driven Fault Prediction based on SCADA and CMS Data

7.3.2 Distance-based automated vibration evaluation

In this section the performance of the automated failure detection tool DAVE is
demonstrated for CMS records obtained for the main bearing.

The initial setup of DAVE was achieved by deriving the thresholds from the first
two observed (healthy) years of the entire dataset. A Weibull distribution showed
the best fit to the calculated distances and the threshold for an anomaly was set
to the 99.9 percentile of the distribution. In Figure 7.12 the alarms, triggered by
CMS, SCADA and DAVE (for FFT1000) as well as the downtime caused by the
failure during an observation period of four years, are displayed. The turbines T09
to T13 are not shown in this graph as none of them had CMS nor SCADA alarms
and DAVE did not indicate any alarms for these WTs.

DAVE showed very early alarms for the three MB failures in TO1, TO3 and TO08.
Furthermore, no false positives or false negatives were recorded during the four
year period.

In Table 7.1 the number of days DAVE was able to anticipate the component
problem in comparison to the CMS and SCADA alarms are displayed. It can be
seen that using FFT1000, DAVE was able to detect the problems up to 72 days
before the CMS did. The other MB records, Env200 and FFT35 gave less reliable

warnings.
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Figure 7.12. Results for the automated failure detection (DAVE). Comparing CMS,
SCADA and DAVE (FFT1000) alarms.
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Table 7.1. Number of days the different systems triggered alarms before failure.

WT DAVE CMS SCADA
FFT1000 FFT35 Env200

TO1 106.5 11.8 - 345 9.3

TO3 119.9 - 105.1 110.1 0

TO8 65.1 - 93.8 55 0

7.3.3 Predicting the Count of CMS alarms

Here, the results for modelling the number of CMS alarms using only SCADA data
are presented. The performance of the four different algorithms is evaluated using
the coefficient of determination R?, the mean absolute error (MAE) and the root
mean squared error (RMSE). Furthermore, the most important model covariates
for each set-up are determined. In Table 7.2 the evaluation metrics for training and

testing of each technique using random sampling are shown.

Table 7.2. Evaluation metrics for modelling CMS alarm counts using only SCADA data

with random sampling.

Metric RF GBM GLM ANN
c R? 0.893 0.942 0.142 0.610
;c_:s MAE 0.151 0.192 0.982 0.388
RMSE 1.261 0.929 3.573 2.438
Metric RF GBM GLM ANN
= MAE 0.149 0.224 0.982 0.379
(9]
F RMSE 1.151 1.182 3.592 2.468

Figure 7.13 displays the recorded CMS alarms and the predictions obtained
from each model. RF and GBM performed best, intermediate results were obtained
for ANN, while GLM showed a rather poor performance.

In Figure 7.14 the importance of the different variables in each of the models
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Figure 7.13. Results for the predictions of CMS alarm counts with random sampling.

are shown. These indicate that in all cases the average main bearing temperature
was the most important model covariate.

The results for blind testing are displayed in Figure 7.15 and Table 7.3. It
can be seen that during training and testing RF and GBM performed better than
ANN and GLM. Additionally, it is shown that the predictions using the testing
dataset were characterised by substantially higher errors than for the predictions
with random sampling. This is most likely due to the splitting process used in
blind testing. As one turbine is left during in the training phase, the algorithm can
not capture the variations in the turbine-dependent operational and environmental

conditions for this turbine. Hence, the predictions are less accurate.
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Figure 7.14. Variable importance for the algorithms used for random sampling.
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Figure 7.15. Results for modelling of CMS alarm counts with blind testing.

Table 7.3. Evaluation metrics for modelling CMS alarm counts using only SCADA data
with blind testing.

Metric ~ RF GBM GLM ANN
- R? 0.979 0.989 0.218 0.549
:_E MAE 0.028 0.053 0.504 0.195
RMSE  0.364 0.256 2.211 1.672
Metric ~ RF GBM GLM ANN
=  MAE 0.974 0.950 1.350 1.079
~ RMSE 4698 4689 5640 5498
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7.3.4 Predicting the Time Dependent Probability of Alarms

This section shows the results of predicting how the probability of having a CMS
alarm is evolving over time. The predictions are carried out using only SCADA data.
This is evaluated graphically by plotting the alarm events as well as the predicted
probabilities over time obtained with all four algorithms. The aim is to see how
the probabilities behave before the failure event and which algorithm was able to
indicate an upcoming alarm more reliably.

In Figures 7.16a to 7.16¢ the results for turbines TO1, TO3 and T08 are shown,
for which CMS MB alarms were recorded during the observation period.

Furthermore, in Figures 7.16d to 7.16f turbines T06, T10 and T11, which did
not experience any MB CMS alarms, are displayed. For an easier interpretation,
the probabilities over time are smoothed using a moving average filter.

It can be seen that GBM performed best. It showed a rising probability towards
the time of occurrence of the alarms for turbines T01, TO3 and T08. Contrarily, for
turbines T06, T10 and T11, which did not experience any CMS alarms, the model
resulted in near-zero probability. The algorithms GLM and RF indicated a quite
high probability of having an alarm for T06. Generally, GLM performed poorly for
all cases. A certain seasonality was observed for the ANN predictions of T01 and
TO6 as well as the GLM predictions of TO1, T10 and T11. Furthermore, in T08
GBM and RF showed a peak in the obtained probability approximately one year
before the failure. This could be caused either by seasonality, or a separate problem
with the MB or any other component in T08. Further investigation is required to

fully understand the observed trends.
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Figure 7.16. Probability of having a CMS alarm for blind testing.

7.3.5 Alarm Time Shifting

The performance of the predictions using alarm time shifting is evaluated by receiver

operator characteristic (ROC) curves at different fixed lead times. These curves

show the hit rate (probability of detection (POD)) versus the false alarm rate (FAR)

as a function of the threshold for an alarm in a probabilistic setting. In Figures
7.17a and 7.17b the results for the predictions made with ANN and RF, with a lead
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time of 0 hours, are shown. The figures consist of ten different ROC curves for

each of the predictions made during cross validation. The red line is the average
ROC curve.
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Figure 7.17. Example of variation in the results of the 10-fold cross-validation.

Figures 7.18a and 7.18b display the average ROC curves for different
combinations of input data and various lead times. It has to be noted that
in the figures, different x-axis scales are used in order to emphasise the difference
between different combinations of data, rather than comparing the performance of
the two classifiers. Furthermore, in the legend of the figures, ‘all data’ stands for
the input set combining SCADA, RMS, FFT and Envelop records.

The RF algorithm performed significantly better than the ANN in all cases.
Nonetheless, the POD of both algorithms in predicting the CMS alarms using only
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Figure 7.18. Average ROC curves for ANN and RF at lead times 0 and 40 hours.

SCADA data is quite high. But, using more data improved the predictions. Hence,
the combination of all CMS and SCADA data performed best, followed by the
combined SCADA and RMS data. This shows that the added value of CMS data

is large.

Additionally, it is shown that with a lead time of 0 hours the predictions for all
combinations of input data are better. This was also an expected result, since closer
to an actual event the separability between the classes increases. It is worth noting
that the order of the POD and FAR displayed is affected by the used pre-processing
approach for the data, in particular the fact that the CMS records are kept constant

if there was no measurement.
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7.4 Concluding Remarks for the Data-Driven Fault Prediction

In this chapter a method for merging CMS, SCADA and alarm data was proposed.
Subsequently, a thorough analysis was carried out on the possible applications with
respect to enhancing predictive O&M practice.

Analysing the relationship between the different data sources gave insight on
how the signals obtained during faulty conditions differ from the ones measured
during ‘healthy’ operation. The HC analysis showed that in the case of normal
conditions, there is no significant cluster separation in the data obtained for the
whole turbine. In the case of imminent failures, however, a strong separation
of clusters was seen. Hence, failures are clearly reflected in a number of signals.
Evaluating the DTW distances of different CMS records shows that the information
contained in the MB records does not differ significantly for various active power
intervals.

An automated failure detection framework (DAVE) was developed and tested
on three registered MB failures within the analysed wind farm. It was demonstrated
that this tool was able to issue alarms up to 120 days prior to the failure. Fur-
thermore, the low number of false alarms proves that DAVE gives not only earlier
alarms than the CMS, but is also very reliable.

In order to predict the CMS alarms, three different approaches were chosen.
Each one of these approaches was used to accomplish distinct objectives.

Firstly, the number of CMS alarms were modelled with RF, GBM, ANN and
GLM by using only SCADA data as model input. It was shown that it is possible to
anticipate the CMS alarms by only using the data taken from SCADA systems. For
this, the algorithms RF, GBM and ANN performed best. Additionally, by analysing
the importance of the input covariates on the model outcome, it was found that
the main bearing temperature was the most important model covariate.

Secondly, the probability of having a CMS alarm over time was calculated also
only based on SCADA data. This could for example be used by operators as an
early warning system. It was stated that the GBM algorithm reliably indicated an
increase in the probability of having an alarm several months before the actual
alarm. Furthermore, for turbines that did not experience any CMS alarm, the GBM
indicated a probability close to zero over the whole observation period.

Finally, the CMS alarms were predicted using a method to shift the alarm time
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to an earlier time-step. For this, the performances of RF and ANN with different
combinations of input data were examined using ROC curves. The alarms were
predicted with different lead times (0 and 40 hours) before the actual alarm event.
As expected, the use of combined CMS and SCADA data showed the best results for
predicting CMS alarms. However, only using SCADA data still led to a remarkably

low number of false alarms.

This chapter intends to exemplify the use of merged CMS and SCADA data for
several applications in the field of failure prediction and detection. Further studies,

can build upon and extend this work by for example including:

= A more detailed analysis of the relationships between the different data sources
by considering the detailed composition of clusters and DTW similarities inside
these clusters.

= The DAVE tool should be evaluated for other failure modes and components.
Additionally, it could be equipped with a user interface in order to obtain a tool
framework for failure detection that can be used by operators.

= The methodology of predicting the probabilities of having an alarm could be
integrated into an online monitoring framework.

= The prediction of CMS alarms could be extended using other learning algorithms,
maximising the possible lead times for several components.

= The effectiveness of the classification based predictions should be evaluated
from a risk perspective.

= The different approaches presented in this work could be merged, for example

by predicting alarms generated by DAVE.

Generally speaking, the synergies between CMS and SCADA data should be
explored more precisely. In order to avoid high frequency time series storage, a data
processing directly in the turbine could be established.

It can be concluded that with the proposed methods for merging CMS and
SCADA data, it is possible to develop several different applications for predictive
O&M. The ones presented in this paper have shown to perform very well and could

contribute to lowering the costs related to maintenance actions.
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Operation and maintenance is one of the main cost drivers of modern wind farms.
Current O&M practice is still primarily based on corrective or preventive actions,
however, applying predictive techniques could notably decrease the maintenance
related costs and with this enhance the wind farms’ overall revenue.

Novel approaches, such as advanced reliability models and failure prediction
algorithms would enable operators to anticipate WT failures and to adapt their
maintenance strategy accordingly. It has been found that, to date, there is still a
significant lack of research regarding these predictive techniques. At present, WT
reliability models are mainly based on the turbine age, similar to models that were
originally established for machinery operating in fairly steady surroundings. This
is not reflecting reality sufficiently well, as the turbines are exposed to a highly
varying environment. Furthermore, failure prediction is often carried out using
either SCADA or CMS data. However, in modern wind turbines both sources are
available and could be used simultaneously. By merging both sources, it has to be
discovered, how these data depend on each other and if it is possible to omit one
or the other system.

The main objective of this thesis is to enhance current WT O&M practice by,
firstly, developing advanced data-driven WT reliability and failure models including
the environmental and operational conditions measured within the respective wind
parks. And, secondly, establishing novel failure detection algorithms using environ-

mental, operational and CMS data. These two objectives were achieved by splitting
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them into four independent tasks, which included: (1) A wind turbine failure and
downtime analysis; (2) understanding the meteorological conditions before failure
events of main WT components; (3) developing a reliability model that incorporates
these conditions; and (4) failure prediction based on environmental conditions or

vibrational and operational data.

An extensive failure analysis was carried out taking into account historical
failure data of around 4600 wind turbines of different turbine technologies including
various drive train set-ups, ages, power regulation, etc. For this, firstly, a taxonomy
was developed for classifying the WT system into 7 sub-systems, 45 assemblies
and 199 sub-assemblies. Developing this taxonomy was necessary, as there was
hardly any component break-down publicly available. Furthermore, it extends the
existing ones, which are mainly based on outdated technologies, by incorporating
information on modern WTs of different technologies. This taxonomy is applied to
the data base and the yearly failure rates and downtime for each WT sub-system
and assembly are determined. The results presented for this task enhance previous
research on WT failures significantly, as they give a detailed insight on the failure
behaviour of different components and WT technologies, including both, older and
newer ones. Furthermore, a failure mode analysis is carried out for each assembly.
The results were presented for geared and direct drive WTs with rated capacities
below, over or equal to 1 MW, as well as pitch and stall regulated turbines. It was
shown that geared turbines have higher failure rates and downtime than direct drive
turbines. This is consistent with previous research. Furthermore, the sub-system
and assembly related failure rates and downtimes obtained for each of the analysed
technologies differed in some cases remarkably. The failure mode analysis showed
that there are often prevalent failure modes for certain components. These include
e.g. gear bearing problems in the gearbox, surface cracks in the blades; gear rim
faults in yaw systems, and bearing issues leading to generator failures. All of the
presented results are very important for predictive O&M of wind turbines, as they
serve as input to reliability and maintenance models. Moreover, operators and
manufacturers can obtain information on which components are the most affected

ones in each of the WT technologies, as well as on how they fail.

Subsequently, the meteorological conditions before the failures of five main
WT components were analysed. These main components were identified in the

previous failure analysis as the most critical ones in terms of failure rates and
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downtime. At first, a data-driven learning framework based on apriori rule mining
was developed to analyse the conditions during a relatively short period of time
before failure. These included the general conditions over the whole observation
period, the combinations of environmental variables at the exact time of failure
as well as variations in the weather parameters. The results show that the failures
occurred mainly during winter time, with high relative humidities, low temperatures
and fairly high wind speeds (especially for the pitch system). Furthermore, a loss

in production efficiency was recorded before all component failures.

As previous research had shown that high wind speeds affect the components’
failure behaviour, and it was supposed that variations and recurrent patterns
in wind speed time series before failures could affect the components’ life-time
negatively, these were analysed in this thesis using anomaly detection and motif
discovery techniques. To the author's knowledge these variations and patters
have not been subject to previous studies. The findings show that during the
month of failure, the average number of anomalies detected per time series before
component failure, are much higher than during a ‘regular’ month. Hence, it can
be concluded that the variations in wind speed (not only the mean wind speeds)
highly affect the components, especially the blades, converter and pitch system.
The motif discovery also was able to detect recurrent patterns before converter
failure, however, this technique will have to be further enhanced. The findings
regarding the meteorological conditions leading to WT component failures further
contribute to the field and extend previous research by clearly indicating which
factors influence the failure behaviour of the components and by providing a tool

that enables to analyse big data bases in future studies.

After having shown that certain environmental conditions affect the components'’
failure behaviour, an advanced failure model was established taking into account
these conditions. Here, weather data obtained during a longer period before failure
(two months) are considered. The model is based on two separate processes, one is
generating the failure events as well as occasional zeros with a negative binomial
distribution, the other process generates the structural zeros and follows a binomial
distribution. Possible unobserved effects (heterogeneity) are taken into account
using a Gamma distribution. To the author’s knowledge, no previous approaches
have been made to model the failure behaviour of wind turbines taking into account

the complex combinations of weather conditions. This model has sown to perform
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very well for modelling failure events of the whole wind turbine system as well as a
single component (i.e. the gearbox). Using sophisticated regularisation techniques,
several common problems of statistical models are avoided. The herein developed
model contributes to current research providing a novel and more realistic reliability

model, which is recommended for further use in the field.

For the purpose of failure detection on wind farm level, a naive Bayesian
classifier was trained also based on the site specific environmental conditions.
Instead of predicting the number of failures as in the previous chapter, the model
detects the probability of having one or more failures within a wind farm given
the surrounding weather conditions. The approach reliably predicted most of
the component failures given in a test data set. Furthermore, the conditional
probabilities of each meteorological input variable were extracted and compared
to the results of Chapters 3 to 5. This technique provides a valuable tool to wind
farm operators, and enables them to detect problems in the wind farm even without
having to analyse extensive CMS and SCADA data.

Nonetheless, fault detection based on CMS and SCADA data is becoming a
well established area and failures can be predicted significant time ahead of the
actual event with quite low uncertainties. However, current research focuses either
on SCADA data or CMS data. Combining both sources with the aim of enhancing
failure detection has not been subject to previous research. Hence, the last chapter
of this thesis explored data-driven fault detection in wind turbine components using
a combination of SCADA and CMS data. For this, the relationship between the
different data sources were investigated. Then, a technique for merging CMS
vibrations and SCADA data of different time resolutions was proposed. As CMS
alarms usually occur way ahead of the actual failure event, predicting these alarms
implies an early detection of the failure. The alarms were predicted with several
machine learning algorithms. It was found that Random Forests and Gradient
Boosting Machines provide very good results in predicting the count of CMS alarms
as well as the changing probability of having a CMS alarm over time. It was further
shown that it is possible to predict the CMS alarms only using SCADA data. This
leads to the assumption that, under certain circumstances, there could not be a
conspicuous reason for using time consuming and expensive CMS data analysis.
Nevertheless, the prediction accuracy was significantly enhanced when including

the CMS vibration data into the algorithms.
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Finally, the DAVE framework was presented, which is an on-line wind farm level
failure detection tool based only on CMS vibrations. It uses Dynamic Time Warping
to calculate the distances between the vibrations obtained at the same component
of different wind turbines. This tool has shown to be able to detect failures up
to 119 days ahead of their actual occurrence and outperformed the alarm system

embedded in the condition monitoring system.

8.1 Future Work

Future work could focus on including SCADA alarms into the herein presented
models and tools. It is supposed that certain alarms, even if they are not triggered
by the respective component, can indicate faulty components. For example, a
combination of cooling system and high interior temperature alarms could indicate
a gearbox problem even before a gearbox alarm is issued. This information, together
with environmental, operational and vibration measurements, could be capable of
enhancing the failure prediction for certain WT components.

The environmental conditions before failures could be analysed in more detail
focusing on their cumulative and long term effects on the components. This could
be carried out by adapting the herein presented data-driven learning framework
respectively.

Moreover, commercial on-line monitoring tools could be developed based on the
Bayesian classifier and the DAVE framework presented in this thesis. For this, it
would be necessary to test these approaches on bigger scenarios in order to ensure
their robustness.

The motif discovery has shown great potential to detect recurrent patterns in
wind speed time series, this should be analysed further and appropriate techniques
to evaluate the results of the algorithm must be taken into account.

As the approaches presented in this thesis all follow slightly different objectives,
it would be interesting to combine the anomaly detection and motif discovery
algorithms, the DAVE framework, the naive Bayesian classifier approach and the re-
liability model, in one predictive O&M tool, which combines the different objectives

and generates several forms of early warnings.
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Las tareas de Operacidén y Mantenimiento (O&M) representan una de las mayores
partidas dentro de los costes de explotacidn de los parques edlicos modernos. La
practica actual de O&M esta todavia basada en acciones correctivas o preventivas
que se basan en reparaciones, generalmente caras, de componentes averiados o
bien en acciones que se repiten de forma periodica sin tener en cuenta el estado
real del activo. Sin embargo, la aplicacion de técnicas predictivas podria disminuir
notablemente los costes relacionados con el mantenimiento y con ello mejorar los
beneficios globales de los parques edlicos.

Nuevos enfoques tales como modelos avanzados de fiabilidad y algoritmos de
prediccion de fallos, permitirian a los operadores anticipar los fallos de los aerogen-
eradores y asi adaptar su estrategia de mantenimiento. Hasta la fecha, todavia
existe una carencia significativa de investigacion en estas técnicas predictivas. En
la actualidad, los modelos de fiabilidad de turbinas eélicas se basan principalmente
en la edad de la turbina de forma similar a los modelos que se establecieron ori-
ginalmente para maquinaria que opera en entornos ‘amigables’. Esto no refleja la
realidad lo suficientemente bien, ya que los aerogeneradores estan expuestos a un
entorno altamente variable y agresivo. Ademas, la prediccién de fallos se lleva a
cabo habitualmente utilizando datos SCADA o CMS. Sin embargo, en las turbinas

eblicas modernas ambas fuentes estan disponibles y podrian usarse simultaneamente.

175



9 Conclusiones Generales de la Tesis

Al combinar ambas fuentes, debe que descubrirse, como dependen estos datos
el uno del otro y si es posible omitir, en parte o completamente, alguno de los
sistemas.

El objetivo principal de esta tesis es mejorar las actuales practicas en Operacién
y Mantenimiento de turbinas eélicas desarrollando, en primer lugar, modelos avan-
zados de fiabilidad basados en las condiciones ambientales y operativas existentes
realmente en el parque. Y, en segundo lugar, proponer nuevos algoritmos de
deteccién de fallos utilizando datos ambientales, operativos y CMS. La consecucién
de estos objetivos se logré mediante su dividién en cuatro tareas independientes
que incluyeron: (1) anélisis de datos de fallos y paradas de turbina edlicas; (2)
comprensién del comportamiento de las condiciones meteoroldgicas previas a los
fallos de los componentes principales; (3) desarrollo de un modelo de fiabilidad
que incorpora dichas condiciones; y (4) prediccién de fallos basada en condiciones

ambientales o datos de vibraciones (CMS) y operacionales.

Se ha realizado un extenso anélisis de fallos teniendo en cuenta los datos
histéricos de alrededor de 4600 aerogeneradores de diferentes tecnologias, incluyendo
varias configuraciones de transmisién, antigliedad, regulacién de potencia, etc.
Para esto, en primer lugar, se completé una taxonomia que permite clasificar los
distintos elementos de la turbina edlica en 7 componentes principales, 45 sistemas
y 199 subsistemas. El desarrollo de esta taxonomia era necesario, ya que apenas
existia informacion, disponible piblicamente, sobre este tipo de descomposicién
por componentes. Para ello, se trabajé partiendo de resultados existentes, que
estaban basados principalmente en tecnologias anticuadas, con la incorporacién de
informacién de turbinas modernas de diferentes tecnologias. La aplicacién de esta
taxonomia a la base de datos permitié determinar las tasas anuales de fallos y el
tiempo de parada para cada componente general y sistema.

Los resultados obtenidos y presentados en esta tarea mejoran significativamente
los estudios previos sobre fallos de aerogeneradores, ya que proporcionan una visién
detallada del comportamiento de fallo de diferentes componentes y tecnologias, in-
cluyendo tanto las antiguas como las mas modernas. Ademads, también se realiz6 un
analisis del modo de fallo para cada tipo de turbina. Los resultados se presentaron
para turbinas con multiplicadora y de eje directo con capacidades nominales inferi-
ores, iguales o superior a 1 MW, asi como turbinas de paso de pala (‘pitch’) variable

y turbinas reguladas por pérdida aerodindmica. Se demostré que las turbinas con
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multiplicadora tienen mayores tasas de fallo y tiempos de parada que las turbinas
de eje directo, resultado que es consistente con investigaciones previas. Ademas, las
tasas de fallo y los tiempos de parada relacionados con el componente principal y el
sistema obtenidos para cada una de las tecnologias analizadas difirieron en algunos
casos notablemente. El anélisis del modo de fallo mostré que a menudo existen
modos de fallo dominantes para ciertos componentes. Estos incluyen, por ejemplo
problemas de rodamientos en la multiplicadora, grietas superficiales en las palas;
fallos en el anillo de orientacién y problemas de rodamientos que conducen a fallos
del generador. Todos los resultados presentados pueden ser muy importantes para
las actividades de O&M predictivo de turbinas edlicas, ya que sirven como datos
de entrada para modelos de fiabilidad y mantenimiento. Ademas, los operadores
y fabricantes pueden obtener informacién sobre qué componentes son los mas
afectados para cada una de las tecnologias estudiadas, asi como también sus modos
de fallo.

Posteriormente, se procedié al estudio del efecto de las condiciones meteorol6-
gicas existentes antes de los fallos de cinco de los componentes principales. Estos
componentes principales se identificaron en el anélisis de fallos anterior como los
mas criticos en términos de tasas de fallo y tiempo de parada. Inicialmente, se
desarrollé un marco de aprendizaje basado en datos utilizando técncias de bisqueda
de reglas aprioristicas (‘apriori rule mining') para analizar las condiciones durante
un periodo de tiempo relativamente corto antes del fallo. Se incluyeron aqui las
condiciones generales durante todo el periodo de observacién, las combinaciones de
variables ambientales en el momento exacto del fallo, asi como las variaciones en
los parametros. Los resultados muestran que los fallos ocurrieron principalmente
durante el invierno, con altas humedades relativas, bajas temperaturas y velocidades
de viento bastante altas (especialmente para el sistema de control de paso del angulo
de pala, ‘pitch’). Ademas, se registré una pérdida en la eficiencia de produccién

antes de todos los fallos de los componentes.

Como los resultados previos habian demostrado que velocidades altas de viento
afectan al comportamiento de fallo de los componentes, y se suponia que las
variaciones y patrones recurrentes en las series temporales de velocidad de viento
podian afectar negativamente a la vida (til de dichos componentes, se procedid a
analizar las series temporales de velocidad de viento utilizando técnicas de deteccién

de anomalias y descubrimiento de patrones repetitivos. Los resultados muestran que
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durante el mes del fallo, el niimero promedio de anomalias detectadas antes del fallo
del componente para cada serie temporal es mucho mas alto que durante un mes
‘regular’. Por tanto, se puede concluir que las variaciones en la velocidad de viento
(y no solo las velocidades medias) afectan mucho a los componentes, especialmente
a las palas, el convertidor y el sistema de control de paso de pala, ‘pitch’. La técnica
para la detecién de patrones también fue capaz de detectar patrones recurrentes
antes del fallo del convertidor. Sin embargo, hay que decir que esta técnica
deberia mejorarse para obtener resultados mas fiables. Los hallazgos relativos a las
condiciones meteorolégicas que producen fallos de los componentes contribuyen
aln mas al campo y amplian la investigacion previa al indicar claramente qué
factores influyen en el comportamiento de fallo y al proporcionar una herramienta

que permite analizar grandes bases de datos en estudios futuros.

Después de haber demostrado que ciertas condiciones ambientales afectan al
comportamiento de fallo de los componentes, se desarrollé un modelo avanzado de
fiabilidad teniendo en cuenta estas condiciones. Para el desarrollo de este modelo, se
utilizaron los datos meteoroldgicos obtenidos durante un periodo méas largo antes del
fallo (dos meses). El modelo se basa en dos procesos separados, uno que genera los
eventos de fallo asi como ceros ocasionales con una distribuciéon binomial negativa,
y un segundo proceso que genera los ceros estructurales siguiendo una distribucién
binomial. Los posibles efectos no observados (heterogeneidad) se tienen en cuenta
en el modelo utilizando una distribucion Gamma. No se han encontrado, hasta la
fecha, trabajos previos en los que se hayan considerado combinaciones complejas
de las condiciones para modelar el comportamiento de fallo de turbinas edlicas.
Este modelo ha demostrado comportarse muy bien tanto para predecir sucesos
globales del aerogenerador como para detectar fallos de componentes especificos, por
ejemplo la multiplicadora. Cabe destacar ademas que los problemas mas comunes
de los modelos estadisticos, como por ejemplo el ‘over-fitting’, sobredispersién y
multicolinealidades, se han evitado utilizando técnicas de regularizaciéon avanzadas.
El modelo aqui desarrollado contribuye a la investigacidén actual proporcionando un
modelo de fiabilidad novedoso y mas realista que los existentes hasta la fecha por

lo que se recomienda para su aplicacidon posterior en campo.

Para la deteccion de fallos a nivel de parque, se planted y entrend un clasificador
bayesiano basado también en las condiciones ambientales especificas del emplazami-

ento. En lugar de predecir el nimero de fallos como en los desarrollos previos,
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el modelo detecta la probabilidad de tener uno o més fallos dentro de un parque
eblico a partir de las condiciones climatolégicas. El sistema predijo de manera
fiable la mayoria de los fallos de componentes dados en un conjunto de datos de
prueba. Ademas, se extrajeron las probabilidades condicionales de cada parametro
meteorolégico de entrada y se compararon con los resultados de los capitulos 3 a 5.
Esta técnica proporciona una herramienta valiosa para los operadores de parques
eblicos, y les permite detectar problemas en el parque, incluso sin tener que analizar
datos extensos de CMS y SCADA.

Ademas de los métodos previamente descritos, la detecciéon de fallos basada
en datos CMS y SCADA se esta convirtiendo en un técnica bien establecida y los
fallos pueden predecirse mucho antes del suceso real con incertidumbres bastante
bajas. Sin embargo, la investigacion actual se centra en datos SCADA o CMS. La
combinacién de ambas fuentes con el objetivo de mejorar la deteccién de fallos
no ha estado sujeta a investigaciones previas. Por lo tanto, en el Gtimo capitulo
de esta tesis se explor6 la deteccion de fallos en componentes de aerogeneradores
utilizando una combinacién de datos SCADA y CMS. Para esto, se investigé la
relacién entre las diferentes fuentes de datos. Luego, se propuso una técnica para
fusionar datos CMS de vibraciones y SCADA con diferentes resoluciones temporales.
Como las alarmas de CMS generalmente ocurren mucho antes del suceso de fallo, la
predicciéon de estas alarmas implica una deteccién temprana del fallo. Las alarmas
se predijeron con varios algoritmos de inteligencia artificial. Se demostré que
los ‘Random Forests’ y los ‘Gradient Boosting Machines’ generan muy buenos
resultados para predecir las alarmas CMS vy la probabilidad de tener una alarma
CMS a lo largo del tiempo. Se demostré ademas que es posible predecir las alarmas
del CMS solo con datos SCADA. Esto lleva a la suposicién de que, en ciertas
ocasiones, puede no existir una razén de peso para utilizar el andlisis de datos
de CMS. La precisién de prediccién se mejoré cuando se incluyeron los datos de
vibracién CMS en los algoritmos. Finalmente, se presenté el entorno DAVE, que es
una herramienta 'on-line’ de deteccién de fallos a nivel de parques edlicos basada
dnicamente en vibraciones (CMS). Utiliza técnicas de 'Dynamic Time Warping’
para calcular las distancias entre los espectros de vibraciones obtenidos para el
mismo componente de diferentes aerogeneradores. Esta herramienta ha demostrado
que puede detectar fallos hasta 119 dfas antes de su ocurrencia real y superando

asi al sistema de alarma integrado en el sistema de CMS.
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9.1 Trabajo Futuro

El trabajo futuro podria centrarse en incluir alarmas SCADA en los modelos y
herramientas presentados aqui. Se supone que ciertas alarmas, incluso si no son
activadas por el componente respectivo, pueden indicar componentes defectuosos.
Por ejemplo, una combinaciéon de alarmas del sistema de refrigeracién y de alta
temperatura interior podria indicar un problema en la multiplicadora incluso antes
de que se emita una alarma de dicho componente. Esta informacién, junto con las
variables ambientales, operacionales y de vibracién, podria ser capaz de mejorar la
prediccién de fallo para ciertos componentes de la turbina.

Las condiciones ambientales previas a los fallos podrian analizarse con més
detalle, centrandose en sus efectos acumulativos y de largo plazo en los componentes.
Esto podria llevarse a cabo adaptando el entorno de aprendizaje presentado en esta
tesis.

Ademas, se podrian desarrollar herramientas comerciales de monitorizacién en
linea basadas en el clasificador bayesiano y el entorno DAVE presentado en esta
tesis. Para esto, seria necesario probar estos enfoques en escenarios mas grandes a
fin de garantizar su funcionamiento.

El descubrimiento de patrones ha mostrado un gran potencial para detectar
patrones recurrentes en series temporales de velocidad del viento, esto debe analiz-
arse mas detalladamente teniendo en cuenta técnicas apropiadas para evaluar los
resultados del algoritmo.

Como los enfoques presentados en esta tesis persiguen objetivos ligeramente
diferentes, seria interesante combinar los algoritmos de descubrimiento de anomalias
y descubrimiento de patrones, el entorno DAVE, el clasificador bayesiano y el modelo
de fiabilidad, en una herramienta predictiva para O&M, que combinara los diferentes

objetivos y generase varias formas de alertas tempranas.
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Appendices

B Failure Modes for G < 1 MW, G > 1 MW, stall and pitch

regulated turbines
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Figure B.1. Failure modes (G < 1 MW turbines) for the blades and gearbox.

207



Appendices

Transformer Yaw System
60% 60%
40% 40%
- I I b
~mil = N m ]
. O & Qv \\\ > e} 0% s
@ S ie® 8 & @
& O\6§b & ‘boé\ Q«Q £ \$ (\@ "\\ Q~‘ e @ Qo
T e S T
& g & ~k’° *
N <® = 4
PRGN Q

Figure B.2. Failure modes (G < 1 MW turbines) for the transformer and yaw system.
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Figure B.3. Failure modes (G < 1 MW turbines) for the generator.
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Figure B.4. Failure modes (G > 1 MW turbines) for the blades and gearbox.
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Figure B.5. Failure modes (G > 1 MW turbines) for the transformer and yaw system.
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Figure B.6. Failure modes (G > 1 MW turbines) for the generator.
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Figure B.7. Failure modes (stall regulated turbines) for the blades and gearbox.
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Figure B.8. Failure modes (stall regulated turbines) for the transformer and yaw system.

Generator

60%

40%

0% b= _ | .__— .-—_ -

P Q& & e O o SR L SR 4
FEFP P PO o Wl oeds
59 e (\?’O QQ\\ QQ«‘\ Q {\%\\Q
o S
ICdey <
é\'oe}‘

Figure B.9. Failure modes (stall regulated turbines) for the generator.
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Figure B.10. Failure modes (pitch regulated turbines) for the blades and gearbox.
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Figure B.11. Failure modes (pitch regulated turbines) for the transformer and yaw system.
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Figure B.12. Failure modes (pitch regulated turbines) for the generator.
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Figure C.13. Grouped matrix for 1-D rules with a minimum support of 0.03.
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Figure C.14. Grouped matrix for Multi-D rules with a minimum support of 0.03.
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D Evaluation Metrics for the Predictions without Discretised

Data Input

Table D.1. Results of the predictions using logistic regression without discretised input
data.

Component MCC ACC Sensitivity Specificity TP FP TN FN

All Failures 0.275 0.639 0.789 0.471 15 9 8 4
Blades 0.666 0.861 0.800 0.885 8 323 2
Gearbox 0.172 0.750 0.400 0.806 2 6 25 3
Generator 0.213 0.861 0.250 0.938 1 2 3 3
Main Bearing 1.000 1.000 1.000 1.000 1 0 3 0
Pitch System  NA NA NA NA NA NA NA NA
Yaw System 0 0.972 0 1.000 0 0 35 1

Table D.2. Results of the predictions using random forests without discretised input data.

Component MCC ACC Sensitivity ~ Specificity TP FP TN FN

All Failures 0 0.5277778 1 0.0000000 19 17 0 0
Blades -0.150 0.667 0 0.923 0 2 24 10
Gearbox -0.068 0.833 0 0.968 0 1 30 5
Generator 0 0.889 0 1.000 0 0 32 4
Main Bearing 0 0.972 0 1.000 0 0 3 1
Pitch System 0 1.00 NA 1.000 0 0 36 0
Yaw System 0 0.972 0 1.000 0 0 3% 1
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