Reliability Models and Failure Detection Algorithms for Wind Turbines

Abstract

Durante las pasadas décadas, la industria eólica ha sufrido un crecimiento muysignificativo en Europa llevando a la generación eólica al puesto más relevanteen cuanto a producción energética mediante fuentes renovables. Sin embargo, siconsideramos los aspectos económicos, el sector eólico todavía no ha alcanzadoel nivel competitivo necesario para batir a los sistemas de generación de energíaconvencionales.Los costes principales en la explotación de parques eólicos se asignan a lasactividades relacionadas con la Operación y Mantenimiento (O&M). Esto se debeal hecho de que, en la actualidad, la Operación y Mantenimiento está basadaprincipalmente en acciones correctivas o preventivas. Por tanto, el uso de técnicaspredictivas podría reducir de forma significativa los costes relacionados con lasactividades de mantenimiento mejorando así los beneficios globales de la explotaciónde los parques eólicos.Aunque los beneficios del mantenimiento predictivo se consideran cada díamás importantes, existen todavía la necesidad de investigar y explorar dichastécnicas. Modelos de fiabilidad avanzados y algoritmos de predicción de fallospueden facilitar a los operadores la detección anticipada de fallos de componentesen los aerogeneradores y, en base a ello, adaptar sus estrategias de mantenimiento.Hasta la fecha, los modelos de fiabilidad de turbinas eólicas se basan, casiexclusivamente, en la edad de la turbina. Esto es así porque fueron desarrolladosoriginalmente para máquinas que trabajan en entornos ‘amigables’, por ejemplo, enel interior de naves industriales. Los aerogeneradores, al contrario, están expuestosa condiciones ambientales altamente variables y, por tanto, los modelos clásicosde fiabilidad no reflejan la realidad con suficiente precisión. Es necesario, portanto, desarrollar nuevos modelos de fiabilidad que sean capaces de reproducir el comportamiento de los fallos de las turbinas eólicas y sus componentes, teniendoen cuenta las condiciones meteorológicas y operacionales en su emplazamiento.La predicción de fallos se realiza habitualmente utilizando datos que se obtienendel sistema de Supervisión Control y Adquisición de Datos (SCADA) o de Sistemasde Monitorización de Condición (CMS). Cabe destacar que en turbinas eólicasmodernas conviven ambos tipos de sistemas y la fusión de ambas fuentes de datospuede mejorar significativamente la detección de fallos. Esta tesis pretende mejorarlas prácticas actuales de Operación y Mantenimiento mediante: (1) el desarrollo demodelos avanzados de fiabilidad y detección de fallos basados en datos que incluyanlas condiciones ambientales y operacionales existentes en los parques eólicos y (2)la aplicación de nuevos algoritmos de detección de fallos que usen las condicionesambientales y operacionales del emplazamiento, así como datos procedentes tantode sistemas SCADA como CMS. Estos dos objetivos se han dividido en cuatrotareas.En la primera tarea se ha realizado un análisis exhaustivo tanto de los fallosproducidos en un amplio conjunto de aerogeneradores (amplio en número de turbinasy en longitud de los registros) como de sus tiempos de parada asociados. De estaforma, se han visualizado los componentes que más fallan en función de la tecnologíadel aerogenerador, así como sus modos de fallo. Esta información es vital para eldesarrollo posterior de modelos de fiabilidad y mantenimiento.En segundo lugar, se han investigado las condiciones meteorológicas previasa sucesos con fallos de los principales componentes de los aerogeneradores. Seha desarrollado un entorno de aprendizaje basado en datos utilizando técnicas deagrupamiento ‘k-means clustering’ y reglas de asociación ‘a priori’. Este entorno escapaz de manejar grandes cantidades de datos proporcionando resultados útiles yfácilmente visualizables. Adicionalmente, se han aplicado algoritmos de detecciónde anomalías y patrones para encontrar cambios abruptos y patrones recurrentesen la serie temporal de la velocidad del viento en momentos previos a los fallosde los componentes principales de los aerogeneradores. En la tercera tarea, sepropone un nuevo modelo de fiabilidad que incorpora directamente las condicionesmeteorológicas registradas durante los dos meses previos al fallo. El modelo usados procesos estadísticos separados, uno genera los sucesos de fallos, así comoceros ocasionales mientras que el otro genera los ceros estructurales necesarios paralos algoritmos de cálculo. Los posibles efectos no observados (heterogeneidad) en el parque eólico se tienen en cuenta de forma adicional. Para evitar problemas de‘over-fitting’ y multicolinearidades, se utilizan sofisticadas técnicas de regularización.Finalmente, la capacidad del modelo se verifica usando datos históricos de fallosy lecturas meteorológicas obtenidas en los mástiles meteorológicos de los parqueseólicos.En la última tarea se han desarrollado algoritmos de predicción basados encondiciones meteorológicas y en datos operacionales y de vibraciones. Se ha‘entrenado’ una red de Bayes, para predecir los fallos de componentes en unparque eólico, basada fundamentalmente en las condiciones meteorológicas delemplazamiento. Posteriormente, se introduce una metodología para fusionar datosde vibraciones obtenidos del CMS con datos obtenidos del sistema SCADA, conel objetivo de analizar las relaciones entre ambas fuentes. Estos datos se hanutilizado para la predicción de fallos en el eje principal utilizando varios algoritmosde inteligencia artificial, ‘random forests’, ‘gradient boosting machines’, modelosgeneralizados lineales y redes neuronales artificiales. Además, se ha desarrolladouna herramienta para la evaluación on-line de los datos de vibraciones (CMS)denominada DAVE (‘Distance Based Automated Vibration Evaluation’).Los resultados de esta tesis demuestran que el comportamiento de los fallos delos componentes de aerogeneradores está altamente influenciado por las condicionesmeteorológicas del emplazamiento. El entorno de aprendizaje basado en datos escapaz de identificar las condiciones generales y temporales específicas previas alos fallos de componentes. Además, se ha demostrado que, con los modelos defiabilidad y algoritmos de detección propuestos, la Operación y Mantenimiento delas turbinas eólicas puede mejorarse significativamente. Estos modelos de fiabilidady de detección de fallos son los primeros que proporcionan una representaciónrealística y específica del emplazamiento, al considerar combinaciones complejasde las condiciones ambientales, así como indicadores operacionales y de estadode operación obtenidos a partir de la fusión de datos de vibraciones CMS y datosdel SCADA. Por tanto, este trabajo proporciona entornos prácticos, modelos yalgoritmos que se podrán aplicar en el campo del mantenimiento predictivo deturbinas eólicas.<br /

    Similar works